mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 18:24:14 +08:00
434a6c9f90
As it turns out, mapping_info DOES need to be initialized every time, because pgt_data address could be changed during kernel relocation. So it can not be build time assigned. Without this, page tables were not being corrected updated, which could cause reboots when a physical address beyond 2G was chosen. Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Young <dyoung@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: lasse.collin@tukaani.org Link: http://lkml.kernel.org/r/1462825332-10505-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
130 lines
3.7 KiB
C
130 lines
3.7 KiB
C
/*
|
|
* This code is used on x86_64 to create page table identity mappings on
|
|
* demand by building up a new set of page tables (or appending to the
|
|
* existing ones), and then switching over to them when ready.
|
|
*/
|
|
|
|
/*
|
|
* Since we're dealing with identity mappings, physical and virtual
|
|
* addresses are the same, so override these defines which are ultimately
|
|
* used by the headers in misc.h.
|
|
*/
|
|
#define __pa(x) ((unsigned long)(x))
|
|
#define __va(x) ((void *)((unsigned long)(x)))
|
|
|
|
#include "misc.h"
|
|
|
|
/* These actually do the work of building the kernel identity maps. */
|
|
#include <asm/init.h>
|
|
#include <asm/pgtable.h>
|
|
#include "../../mm/ident_map.c"
|
|
|
|
/* Used by pgtable.h asm code to force instruction serialization. */
|
|
unsigned long __force_order;
|
|
|
|
/* Used to track our page table allocation area. */
|
|
struct alloc_pgt_data {
|
|
unsigned char *pgt_buf;
|
|
unsigned long pgt_buf_size;
|
|
unsigned long pgt_buf_offset;
|
|
};
|
|
|
|
/*
|
|
* Allocates space for a page table entry, using struct alloc_pgt_data
|
|
* above. Besides the local callers, this is used as the allocation
|
|
* callback in mapping_info below.
|
|
*/
|
|
static void *alloc_pgt_page(void *context)
|
|
{
|
|
struct alloc_pgt_data *pages = (struct alloc_pgt_data *)context;
|
|
unsigned char *entry;
|
|
|
|
/* Validate there is space available for a new page. */
|
|
if (pages->pgt_buf_offset >= pages->pgt_buf_size) {
|
|
debug_putstr("out of pgt_buf in " __FILE__ "!?\n");
|
|
debug_putaddr(pages->pgt_buf_offset);
|
|
debug_putaddr(pages->pgt_buf_size);
|
|
return NULL;
|
|
}
|
|
|
|
entry = pages->pgt_buf + pages->pgt_buf_offset;
|
|
pages->pgt_buf_offset += PAGE_SIZE;
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Used to track our allocated page tables. */
|
|
static struct alloc_pgt_data pgt_data;
|
|
|
|
/* The top level page table entry pointer. */
|
|
static unsigned long level4p;
|
|
|
|
/* Locates and clears a region for a new top level page table. */
|
|
static void prepare_level4(void)
|
|
{
|
|
/*
|
|
* It should be impossible for this not to already be true,
|
|
* but since calling this a second time would rewind the other
|
|
* counters, let's just make sure this is reset too.
|
|
*/
|
|
pgt_data.pgt_buf_offset = 0;
|
|
|
|
/*
|
|
* If we came here via startup_32(), cr3 will be _pgtable already
|
|
* and we must append to the existing area instead of entirely
|
|
* overwriting it.
|
|
*/
|
|
level4p = read_cr3();
|
|
if (level4p == (unsigned long)_pgtable) {
|
|
debug_putstr("booted via startup_32()\n");
|
|
pgt_data.pgt_buf = _pgtable + BOOT_INIT_PGT_SIZE;
|
|
pgt_data.pgt_buf_size = BOOT_PGT_SIZE - BOOT_INIT_PGT_SIZE;
|
|
memset(pgt_data.pgt_buf, 0, pgt_data.pgt_buf_size);
|
|
} else {
|
|
debug_putstr("booted via startup_64()\n");
|
|
pgt_data.pgt_buf = _pgtable;
|
|
pgt_data.pgt_buf_size = BOOT_PGT_SIZE;
|
|
memset(pgt_data.pgt_buf, 0, pgt_data.pgt_buf_size);
|
|
level4p = (unsigned long)alloc_pgt_page(&pgt_data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Adds the specified range to what will become the new identity mappings.
|
|
* Once all ranges have been added, the new mapping is activated by calling
|
|
* finalize_identity_maps() below.
|
|
*/
|
|
void add_identity_map(unsigned long start, unsigned long size)
|
|
{
|
|
struct x86_mapping_info mapping_info = {
|
|
.alloc_pgt_page = alloc_pgt_page,
|
|
.context = &pgt_data,
|
|
.pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
|
|
};
|
|
unsigned long end = start + size;
|
|
|
|
/* Make sure we have a top level page table ready to use. */
|
|
if (!level4p)
|
|
prepare_level4();
|
|
|
|
/* Align boundary to 2M. */
|
|
start = round_down(start, PMD_SIZE);
|
|
end = round_up(end, PMD_SIZE);
|
|
if (start >= end)
|
|
return;
|
|
|
|
/* Build the mapping. */
|
|
kernel_ident_mapping_init(&mapping_info, (pgd_t *)level4p,
|
|
start, end);
|
|
}
|
|
|
|
/*
|
|
* This switches the page tables to the new level4 that has been built
|
|
* via calls to add_identity_map() above. If booted via startup_32(),
|
|
* this is effectively a no-op.
|
|
*/
|
|
void finalize_identity_maps(void)
|
|
{
|
|
write_cr3(level4p);
|
|
}
|