mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-02 08:34:20 +08:00
6897b9a177
Drivers should do only device-specific jobs. But in general, drivers using legacy PCI PM framework for .suspend()/.resume() have to manage many PCI PM-related tasks themselves which can be done by PCI Core itself. This brings extra load on the driver and it directly calls PCI helper functions to handle them. Switch to the new generic framework by updating function signatures and define a "struct dev_pm_ops" variable to bind PM callbacks. Also, remove unnecessary calls to the PCI Helper functions along with the legacy .suspend & .resume bindings. Link: https://lore.kernel.org/r/20201102164730.324035-7-vaibhavgupta40@gmail.com Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
7907 lines
209 KiB
C
7907 lines
209 KiB
C
/*
|
|
* Core routines and tables shareable across OS platforms.
|
|
*
|
|
* Copyright (c) 1994-2002 Justin T. Gibbs.
|
|
* Copyright (c) 2000-2002 Adaptec Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx.c#155 $
|
|
*/
|
|
|
|
#include "aic7xxx_osm.h"
|
|
#include "aic7xxx_inline.h"
|
|
#include "aicasm/aicasm_insformat.h"
|
|
|
|
/***************************** Lookup Tables **********************************/
|
|
static const char *const ahc_chip_names[] = {
|
|
"NONE",
|
|
"aic7770",
|
|
"aic7850",
|
|
"aic7855",
|
|
"aic7859",
|
|
"aic7860",
|
|
"aic7870",
|
|
"aic7880",
|
|
"aic7895",
|
|
"aic7895C",
|
|
"aic7890/91",
|
|
"aic7896/97",
|
|
"aic7892",
|
|
"aic7899"
|
|
};
|
|
|
|
/*
|
|
* Hardware error codes.
|
|
*/
|
|
struct ahc_hard_error_entry {
|
|
uint8_t errno;
|
|
const char *errmesg;
|
|
};
|
|
|
|
static const struct ahc_hard_error_entry ahc_hard_errors[] = {
|
|
{ ILLHADDR, "Illegal Host Access" },
|
|
{ ILLSADDR, "Illegal Sequencer Address referenced" },
|
|
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
|
|
{ SQPARERR, "Sequencer Parity Error" },
|
|
{ DPARERR, "Data-path Parity Error" },
|
|
{ MPARERR, "Scratch or SCB Memory Parity Error" },
|
|
{ PCIERRSTAT, "PCI Error detected" },
|
|
{ CIOPARERR, "CIOBUS Parity Error" },
|
|
};
|
|
static const u_int num_errors = ARRAY_SIZE(ahc_hard_errors);
|
|
|
|
static const struct ahc_phase_table_entry ahc_phase_table[] =
|
|
{
|
|
{ P_DATAOUT, MSG_NOOP, "in Data-out phase" },
|
|
{ P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
|
|
{ P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
|
|
{ P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
|
|
{ P_COMMAND, MSG_NOOP, "in Command phase" },
|
|
{ P_MESGOUT, MSG_NOOP, "in Message-out phase" },
|
|
{ P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
|
|
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
|
|
{ P_BUSFREE, MSG_NOOP, "while idle" },
|
|
{ 0, MSG_NOOP, "in unknown phase" }
|
|
};
|
|
|
|
/*
|
|
* In most cases we only wish to itterate over real phases, so
|
|
* exclude the last element from the count.
|
|
*/
|
|
static const u_int num_phases = ARRAY_SIZE(ahc_phase_table) - 1;
|
|
|
|
/*
|
|
* Valid SCSIRATE values. (p. 3-17)
|
|
* Provides a mapping of tranfer periods in ns to the proper value to
|
|
* stick in the scsixfer reg.
|
|
*/
|
|
static const struct ahc_syncrate ahc_syncrates[] =
|
|
{
|
|
/* ultra2 fast/ultra period rate */
|
|
{ 0x42, 0x000, 9, "80.0" },
|
|
{ 0x03, 0x000, 10, "40.0" },
|
|
{ 0x04, 0x000, 11, "33.0" },
|
|
{ 0x05, 0x100, 12, "20.0" },
|
|
{ 0x06, 0x110, 15, "16.0" },
|
|
{ 0x07, 0x120, 18, "13.4" },
|
|
{ 0x08, 0x000, 25, "10.0" },
|
|
{ 0x19, 0x010, 31, "8.0" },
|
|
{ 0x1a, 0x020, 37, "6.67" },
|
|
{ 0x1b, 0x030, 43, "5.7" },
|
|
{ 0x1c, 0x040, 50, "5.0" },
|
|
{ 0x00, 0x050, 56, "4.4" },
|
|
{ 0x00, 0x060, 62, "4.0" },
|
|
{ 0x00, 0x070, 68, "3.6" },
|
|
{ 0x00, 0x000, 0, NULL }
|
|
};
|
|
|
|
/* Our Sequencer Program */
|
|
#include "aic7xxx_seq.h"
|
|
|
|
/**************************** Function Declarations ***************************/
|
|
static void ahc_force_renegotiation(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static struct ahc_tmode_tstate*
|
|
ahc_alloc_tstate(struct ahc_softc *ahc,
|
|
u_int scsi_id, char channel);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_free_tstate(struct ahc_softc *ahc,
|
|
u_int scsi_id, char channel, int force);
|
|
#endif
|
|
static const struct ahc_syncrate*
|
|
ahc_devlimited_syncrate(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *,
|
|
u_int *period,
|
|
u_int *ppr_options,
|
|
role_t role);
|
|
static void ahc_update_pending_scbs(struct ahc_softc *ahc);
|
|
static void ahc_fetch_devinfo(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_scb_devinfo(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahc_assert_atn(struct ahc_softc *ahc);
|
|
static void ahc_setup_initiator_msgout(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahc_build_transfer_msg(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_construct_sdtr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset);
|
|
static void ahc_construct_wdtr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int bus_width);
|
|
static void ahc_construct_ppr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset,
|
|
u_int bus_width, u_int ppr_options);
|
|
static void ahc_clear_msg_state(struct ahc_softc *ahc);
|
|
static void ahc_handle_proto_violation(struct ahc_softc *ahc);
|
|
static void ahc_handle_message_phase(struct ahc_softc *ahc);
|
|
typedef enum {
|
|
AHCMSG_1B,
|
|
AHCMSG_2B,
|
|
AHCMSG_EXT
|
|
} ahc_msgtype;
|
|
static int ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type,
|
|
u_int msgval, int full);
|
|
static int ahc_parse_msg(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static int ahc_handle_msg_reject(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_handle_ign_wide_residue(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_reinitialize_dataptrs(struct ahc_softc *ahc);
|
|
static void ahc_handle_devreset(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
cam_status status, char *message,
|
|
int verbose_level);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_setup_target_msgin(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
#endif
|
|
|
|
static bus_dmamap_callback_t ahc_dmamap_cb;
|
|
static void ahc_build_free_scb_list(struct ahc_softc *ahc);
|
|
static int ahc_init_scbdata(struct ahc_softc *ahc);
|
|
static void ahc_fini_scbdata(struct ahc_softc *ahc);
|
|
static void ahc_qinfifo_requeue(struct ahc_softc *ahc,
|
|
struct scb *prev_scb,
|
|
struct scb *scb);
|
|
static int ahc_qinfifo_count(struct ahc_softc *ahc);
|
|
static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc,
|
|
u_int prev, u_int scbptr);
|
|
static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc);
|
|
static u_int ahc_rem_wscb(struct ahc_softc *ahc,
|
|
u_int scbpos, u_int prev);
|
|
static void ahc_reset_current_bus(struct ahc_softc *ahc);
|
|
#ifdef AHC_DUMP_SEQ
|
|
static void ahc_dumpseq(struct ahc_softc *ahc);
|
|
#endif
|
|
static int ahc_loadseq(struct ahc_softc *ahc);
|
|
static int ahc_check_patch(struct ahc_softc *ahc,
|
|
const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr);
|
|
static void ahc_download_instr(struct ahc_softc *ahc,
|
|
u_int instrptr, uint8_t *dconsts);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_queue_lstate_event(struct ahc_softc *ahc,
|
|
struct ahc_tmode_lstate *lstate,
|
|
u_int initiator_id,
|
|
u_int event_type,
|
|
u_int event_arg);
|
|
static void ahc_update_scsiid(struct ahc_softc *ahc,
|
|
u_int targid_mask);
|
|
static int ahc_handle_target_cmd(struct ahc_softc *ahc,
|
|
struct target_cmd *cmd);
|
|
#endif
|
|
|
|
static u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
static void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
static void ahc_busy_tcl(struct ahc_softc *ahc,
|
|
u_int tcl, u_int busyid);
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
static void ahc_run_untagged_queues(struct ahc_softc *ahc);
|
|
static void ahc_run_untagged_queue(struct ahc_softc *ahc,
|
|
struct scb_tailq *queue);
|
|
|
|
/****************************** Initialization ********************************/
|
|
static void ahc_alloc_scbs(struct ahc_softc *ahc);
|
|
static void ahc_shutdown(void *arg);
|
|
|
|
/*************************** Interrupt Services *******************************/
|
|
static void ahc_clear_intstat(struct ahc_softc *ahc);
|
|
static void ahc_run_qoutfifo(struct ahc_softc *ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused);
|
|
#endif
|
|
static void ahc_handle_brkadrint(struct ahc_softc *ahc);
|
|
static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat);
|
|
static void ahc_handle_scsiint(struct ahc_softc *ahc,
|
|
u_int intstat);
|
|
static void ahc_clear_critical_section(struct ahc_softc *ahc);
|
|
|
|
/***************************** Error Recovery *********************************/
|
|
static void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb);
|
|
static int ahc_abort_scbs(struct ahc_softc *ahc, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status);
|
|
static void ahc_calc_residual(struct ahc_softc *ahc,
|
|
struct scb *scb);
|
|
|
|
/*********************** Untagged Transaction Routines ************************/
|
|
static inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
|
|
static inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
|
|
|
|
/*
|
|
* Block our completion routine from starting the next untagged
|
|
* transaction for this target or target lun.
|
|
*/
|
|
static inline void
|
|
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0)
|
|
ahc->untagged_queue_lock++;
|
|
}
|
|
|
|
/*
|
|
* Allow the next untagged transaction for this target or target lun
|
|
* to be executed. We use a counting semaphore to allow the lock
|
|
* to be acquired recursively. Once the count drops to zero, the
|
|
* transaction queues will be run.
|
|
*/
|
|
static inline void
|
|
ahc_release_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
ahc->untagged_queue_lock--;
|
|
if (ahc->untagged_queue_lock == 0)
|
|
ahc_run_untagged_queues(ahc);
|
|
}
|
|
}
|
|
|
|
/************************* Sequencer Execution Control ************************/
|
|
/*
|
|
* Work around any chip bugs related to halting sequencer execution.
|
|
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
|
|
* reading a register that will set this signal and deassert it.
|
|
* Without this workaround, if the chip is paused, by an interrupt or
|
|
* manual pause while accessing scb ram, accesses to certain registers
|
|
* will hang the system (infinite pci retries).
|
|
*/
|
|
static void
|
|
ahc_pause_bug_fix(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
(void)ahc_inb(ahc, CCSCBCTL);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the sequencer has halted code execution.
|
|
* Returns non-zero status if the sequencer is stopped.
|
|
*/
|
|
int
|
|
ahc_is_paused(struct ahc_softc *ahc)
|
|
{
|
|
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
|
|
}
|
|
|
|
/*
|
|
* Request that the sequencer stop and wait, indefinitely, for it
|
|
* to stop. The sequencer will only acknowledge that it is paused
|
|
* once it has reached an instruction boundary and PAUSEDIS is
|
|
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
|
|
* for critical sections.
|
|
*/
|
|
void
|
|
ahc_pause(struct ahc_softc *ahc)
|
|
{
|
|
ahc_outb(ahc, HCNTRL, ahc->pause);
|
|
|
|
/*
|
|
* Since the sequencer can disable pausing in a critical section, we
|
|
* must loop until it actually stops.
|
|
*/
|
|
while (ahc_is_paused(ahc) == 0)
|
|
;
|
|
|
|
ahc_pause_bug_fix(ahc);
|
|
}
|
|
|
|
/*
|
|
* Allow the sequencer to continue program execution.
|
|
* We check here to ensure that no additional interrupt
|
|
* sources that would cause the sequencer to halt have been
|
|
* asserted. If, for example, a SCSI bus reset is detected
|
|
* while we are fielding a different, pausing, interrupt type,
|
|
* we don't want to release the sequencer before going back
|
|
* into our interrupt handler and dealing with this new
|
|
* condition.
|
|
*/
|
|
void
|
|
ahc_unpause(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
|
|
ahc_outb(ahc, HCNTRL, ahc->unpause);
|
|
}
|
|
|
|
/************************** Memory mapping routines ***************************/
|
|
static struct ahc_dma_seg *
|
|
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
|
|
{
|
|
int sg_index;
|
|
|
|
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_index++;
|
|
|
|
return (&scb->sg_list[sg_index]);
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
|
|
{
|
|
int sg_index;
|
|
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_index = sg - &scb->sg_list[1];
|
|
|
|
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
|
|
{
|
|
return (ahc->scb_data->hscb_busaddr
|
|
+ (sizeof(struct hardware_scb) * index));
|
|
}
|
|
|
|
static void
|
|
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
|
|
{
|
|
ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
|
|
ahc->scb_data->hscb_dmamap,
|
|
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
|
|
/*len*/sizeof(*scb->hscb), op);
|
|
}
|
|
|
|
void
|
|
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
|
|
{
|
|
if (scb->sg_count == 0)
|
|
return;
|
|
|
|
ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
|
|
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
|
|
* sizeof(struct ahc_dma_seg),
|
|
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
static uint32_t
|
|
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
|
|
{
|
|
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
|
|
}
|
|
#endif
|
|
|
|
/*********************** Miscellaneous Support Functions ***********************/
|
|
/*
|
|
* Determine whether the sequencer reported a residual
|
|
* for this SCB/transaction.
|
|
*/
|
|
static void
|
|
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahc_le32toh(scb->hscb->sgptr);
|
|
if ((sgptr & SG_RESID_VALID) != 0)
|
|
ahc_calc_residual(ahc, scb);
|
|
}
|
|
|
|
/*
|
|
* Return pointers to the transfer negotiation information
|
|
* for the specified our_id/remote_id pair.
|
|
*/
|
|
struct ahc_initiator_tinfo *
|
|
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
|
|
u_int remote_id, struct ahc_tmode_tstate **tstate)
|
|
{
|
|
/*
|
|
* Transfer data structures are stored from the perspective
|
|
* of the target role. Since the parameters for a connection
|
|
* in the initiator role to a given target are the same as
|
|
* when the roles are reversed, we pretend we are the target.
|
|
*/
|
|
if (channel == 'B')
|
|
our_id += 8;
|
|
*tstate = ahc->enabled_targets[our_id];
|
|
return (&(*tstate)->transinfo[remote_id]);
|
|
}
|
|
|
|
uint16_t
|
|
ahc_inw(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
uint16_t r = ahc_inb(ahc, port+1) << 8;
|
|
return r | ahc_inb(ahc, port);
|
|
}
|
|
|
|
void
|
|
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
|
|
{
|
|
ahc_outb(ahc, port, value & 0xFF);
|
|
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
|
|
}
|
|
|
|
uint32_t
|
|
ahc_inl(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
return ((ahc_inb(ahc, port))
|
|
| (ahc_inb(ahc, port+1) << 8)
|
|
| (ahc_inb(ahc, port+2) << 16)
|
|
| (ahc_inb(ahc, port+3) << 24));
|
|
}
|
|
|
|
void
|
|
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
|
|
{
|
|
ahc_outb(ahc, port, (value) & 0xFF);
|
|
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
|
|
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
|
|
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
|
|
}
|
|
|
|
uint64_t
|
|
ahc_inq(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
return ((ahc_inb(ahc, port))
|
|
| (ahc_inb(ahc, port+1) << 8)
|
|
| (ahc_inb(ahc, port+2) << 16)
|
|
| (ahc_inb(ahc, port+3) << 24)
|
|
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
|
|
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
|
|
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
|
|
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
|
|
}
|
|
|
|
void
|
|
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
|
|
{
|
|
ahc_outb(ahc, port, value & 0xFF);
|
|
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
|
|
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
|
|
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
|
|
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
|
|
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
|
|
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
|
|
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
|
|
}
|
|
|
|
/*
|
|
* Get a free scb. If there are none, see if we can allocate a new SCB.
|
|
*/
|
|
struct scb *
|
|
ahc_get_scb(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
|
|
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
|
|
ahc_alloc_scbs(ahc);
|
|
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
|
|
if (scb == NULL)
|
|
return (NULL);
|
|
}
|
|
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
|
|
return (scb);
|
|
}
|
|
|
|
/*
|
|
* Return an SCB resource to the free list.
|
|
*/
|
|
void
|
|
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
|
|
hscb = scb->hscb;
|
|
/* Clean up for the next user */
|
|
ahc->scb_data->scbindex[hscb->tag] = NULL;
|
|
scb->flags = SCB_FREE;
|
|
hscb->control = 0;
|
|
|
|
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
|
|
|
|
/* Notify the OSM that a resource is now available. */
|
|
ahc_platform_scb_free(ahc, scb);
|
|
}
|
|
|
|
struct scb *
|
|
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
|
|
{
|
|
struct scb* scb;
|
|
|
|
scb = ahc->scb_data->scbindex[tag];
|
|
if (scb != NULL)
|
|
ahc_sync_scb(ahc, scb,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
return (scb);
|
|
}
|
|
|
|
static void
|
|
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *q_hscb;
|
|
u_int saved_tag;
|
|
|
|
/*
|
|
* Our queuing method is a bit tricky. The card
|
|
* knows in advance which HSCB to download, and we
|
|
* can't disappoint it. To achieve this, the next
|
|
* SCB to download is saved off in ahc->next_queued_scb.
|
|
* When we are called to queue "an arbitrary scb",
|
|
* we copy the contents of the incoming HSCB to the one
|
|
* the sequencer knows about, swap HSCB pointers and
|
|
* finally assign the SCB to the tag indexed location
|
|
* in the scb_array. This makes sure that we can still
|
|
* locate the correct SCB by SCB_TAG.
|
|
*/
|
|
q_hscb = ahc->next_queued_scb->hscb;
|
|
saved_tag = q_hscb->tag;
|
|
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
|
|
if ((scb->flags & SCB_CDB32_PTR) != 0) {
|
|
q_hscb->shared_data.cdb_ptr =
|
|
ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
|
|
+ offsetof(struct hardware_scb, cdb32));
|
|
}
|
|
q_hscb->tag = saved_tag;
|
|
q_hscb->next = scb->hscb->tag;
|
|
|
|
/* Now swap HSCB pointers. */
|
|
ahc->next_queued_scb->hscb = scb->hscb;
|
|
scb->hscb = q_hscb;
|
|
|
|
/* Now define the mapping from tag to SCB in the scbindex */
|
|
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
|
|
}
|
|
|
|
/*
|
|
* Tell the sequencer about a new transaction to execute.
|
|
*/
|
|
void
|
|
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
ahc_swap_with_next_hscb(ahc, scb);
|
|
|
|
if (scb->hscb->tag == SCB_LIST_NULL
|
|
|| scb->hscb->next == SCB_LIST_NULL)
|
|
panic("Attempt to queue invalid SCB tag %x:%x\n",
|
|
scb->hscb->tag, scb->hscb->next);
|
|
|
|
/*
|
|
* Setup data "oddness".
|
|
*/
|
|
scb->hscb->lun &= LID;
|
|
if (ahc_get_transfer_length(scb) & 0x1)
|
|
scb->hscb->lun |= SCB_XFERLEN_ODD;
|
|
|
|
/*
|
|
* Keep a history of SCBs we've downloaded in the qinfifo.
|
|
*/
|
|
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
|
|
|
|
/*
|
|
* Make sure our data is consistent from the
|
|
* perspective of the adapter.
|
|
*/
|
|
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell the adapter about the newly queued SCB */
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
if ((ahc->features & AHC_AUTOPAUSE) == 0)
|
|
ahc_pause(ahc);
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
if ((ahc->features & AHC_AUTOPAUSE) == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
}
|
|
|
|
struct scsi_sense_data *
|
|
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int offset;
|
|
|
|
offset = scb - ahc->scb_data->scbarray;
|
|
return (&ahc->scb_data->sense[offset]);
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int offset;
|
|
|
|
offset = scb - ahc->scb_data->scbarray;
|
|
return (ahc->scb_data->sense_busaddr
|
|
+ (offset * sizeof(struct scsi_sense_data)));
|
|
}
|
|
|
|
/************************** Interrupt Processing ******************************/
|
|
static void
|
|
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
|
|
{
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
/*offset*/0, /*len*/256, op);
|
|
}
|
|
|
|
static void
|
|
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
|
|
{
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0) {
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, 0),
|
|
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
|
|
op);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* See if the firmware has posted any completed commands
|
|
* into our in-core command complete fifos.
|
|
*/
|
|
#define AHC_RUN_QOUTFIFO 0x1
|
|
#define AHC_RUN_TQINFIFO 0x2
|
|
static u_int
|
|
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
|
|
{
|
|
u_int retval;
|
|
|
|
retval = 0;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
/*offset*/ahc->qoutfifonext, /*len*/1,
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
|
|
retval |= AHC_RUN_QOUTFIFO;
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0
|
|
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
|
|
/*len*/sizeof(struct target_cmd),
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
|
|
retval |= AHC_RUN_TQINFIFO;
|
|
}
|
|
#endif
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Catch an interrupt from the adapter
|
|
*/
|
|
int
|
|
ahc_intr(struct ahc_softc *ahc)
|
|
{
|
|
u_int intstat;
|
|
|
|
if ((ahc->pause & INTEN) == 0) {
|
|
/*
|
|
* Our interrupt is not enabled on the chip
|
|
* and may be disabled for re-entrancy reasons,
|
|
* so just return. This is likely just a shared
|
|
* interrupt.
|
|
*/
|
|
return (0);
|
|
}
|
|
/*
|
|
* Instead of directly reading the interrupt status register,
|
|
* infer the cause of the interrupt by checking our in-core
|
|
* completion queues. This avoids a costly PCI bus read in
|
|
* most cases.
|
|
*/
|
|
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
|
|
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
|
|
intstat = CMDCMPLT;
|
|
else {
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
}
|
|
|
|
if ((intstat & INT_PEND) == 0) {
|
|
#if AHC_PCI_CONFIG > 0
|
|
if (ahc->unsolicited_ints > 500) {
|
|
ahc->unsolicited_ints = 0;
|
|
if ((ahc->chip & AHC_PCI) != 0
|
|
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
|
|
ahc->bus_intr(ahc);
|
|
}
|
|
#endif
|
|
ahc->unsolicited_ints++;
|
|
return (0);
|
|
}
|
|
ahc->unsolicited_ints = 0;
|
|
|
|
if (intstat & CMDCMPLT) {
|
|
ahc_outb(ahc, CLRINT, CLRCMDINT);
|
|
|
|
/*
|
|
* Ensure that the chip sees that we've cleared
|
|
* this interrupt before we walk the output fifo.
|
|
* Otherwise, we may, due to posted bus writes,
|
|
* clear the interrupt after we finish the scan,
|
|
* and after the sequencer has added new entries
|
|
* and asserted the interrupt again.
|
|
*/
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_run_qoutfifo(ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Handle statuses that may invalidate our cached
|
|
* copy of INTSTAT separately.
|
|
*/
|
|
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
|
|
/* Hot eject. Do nothing */
|
|
} else if (intstat & BRKADRINT) {
|
|
ahc_handle_brkadrint(ahc);
|
|
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
|
|
|
|
ahc_pause_bug_fix(ahc);
|
|
|
|
if ((intstat & SEQINT) != 0)
|
|
ahc_handle_seqint(ahc, intstat);
|
|
|
|
if ((intstat & SCSIINT) != 0)
|
|
ahc_handle_scsiint(ahc, intstat);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/************************* Sequencer Execution Control ************************/
|
|
/*
|
|
* Restart the sequencer program from address zero
|
|
*/
|
|
static void
|
|
ahc_restart(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t sblkctl;
|
|
|
|
ahc_pause(ahc);
|
|
|
|
/* No more pending messages. */
|
|
ahc_clear_msg_state(ahc);
|
|
|
|
ahc_outb(ahc, SCSISIGO, 0); /* De-assert BSY */
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP); /* No message to send */
|
|
ahc_outb(ahc, SXFRCTL1, ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
|
|
ahc_outb(ahc, LASTPHASE, P_BUSFREE);
|
|
ahc_outb(ahc, SAVED_SCSIID, 0xFF);
|
|
ahc_outb(ahc, SAVED_LUN, 0xFF);
|
|
|
|
/*
|
|
* Ensure that the sequencer's idea of TQINPOS
|
|
* matches our own. The sequencer increments TQINPOS
|
|
* only after it sees a DMA complete and a reset could
|
|
* occur before the increment leaving the kernel to believe
|
|
* the command arrived but the sequencer to not.
|
|
*/
|
|
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
|
|
|
|
/* Always allow reselection */
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
if ((ahc->features & AHC_CMD_CHAN) != 0) {
|
|
/* Ensure that no DMA operations are in progress */
|
|
ahc_outb(ahc, CCSCBCNT, 0);
|
|
ahc_outb(ahc, CCSGCTL, 0);
|
|
ahc_outb(ahc, CCSCBCTL, 0);
|
|
}
|
|
/*
|
|
* If we were in the process of DMA'ing SCB data into
|
|
* an SCB, replace that SCB on the free list. This prevents
|
|
* an SCB leak.
|
|
*/
|
|
if ((ahc_inb(ahc, SEQ_FLAGS2) & SCB_DMA) != 0) {
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
ahc_outb(ahc, SEQ_FLAGS2,
|
|
ahc_inb(ahc, SEQ_FLAGS2) & ~SCB_DMA);
|
|
}
|
|
|
|
/*
|
|
* Clear any pending sequencer interrupt. It is no
|
|
* longer relevant since we're resetting the Program
|
|
* Counter.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRSEQINT);
|
|
|
|
ahc_outb(ahc, MWI_RESIDUAL, 0);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
|
|
/*
|
|
* Take the LED out of diagnostic mode on PM resume, too
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON)));
|
|
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/************************* Input/Output Queues ********************************/
|
|
static void
|
|
ahc_run_qoutfifo(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
|
|
|
|
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
|
|
if ((ahc->qoutfifonext & 0x03) == 0x03) {
|
|
u_int modnext;
|
|
|
|
/*
|
|
* Clear 32bits of QOUTFIFO at a time
|
|
* so that we don't clobber an incoming
|
|
* byte DMA to the array on architectures
|
|
* that only support 32bit load and store
|
|
* operations.
|
|
*/
|
|
modnext = ahc->qoutfifonext & ~0x3;
|
|
*((uint32_t *)(&ahc->qoutfifo[modnext])) = 0xFFFFFFFFUL;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
/*offset*/modnext, /*len*/4,
|
|
BUS_DMASYNC_PREREAD);
|
|
}
|
|
ahc->qoutfifonext++;
|
|
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("%s: WARNING no command for scb %d "
|
|
"(cmdcmplt)\nQOUTPOS = %d\n",
|
|
ahc_name(ahc), scb_index,
|
|
(ahc->qoutfifonext - 1) & 0xFF);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Save off the residual
|
|
* if there is one.
|
|
*/
|
|
ahc_update_residual(ahc, scb);
|
|
ahc_done(ahc, scb);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_run_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
ahc_run_untagged_queue(ahc, &ahc->untagged_queues[i]);
|
|
}
|
|
|
|
static void
|
|
ahc_run_untagged_queue(struct ahc_softc *ahc, struct scb_tailq *queue)
|
|
{
|
|
struct scb *scb;
|
|
|
|
if (ahc->untagged_queue_lock != 0)
|
|
return;
|
|
|
|
if ((scb = TAILQ_FIRST(queue)) != NULL
|
|
&& (scb->flags & SCB_ACTIVE) == 0) {
|
|
scb->flags |= SCB_ACTIVE;
|
|
ahc_queue_scb(ahc, scb);
|
|
}
|
|
}
|
|
|
|
/************************* Interrupt Handling *********************************/
|
|
static void
|
|
ahc_handle_brkadrint(struct ahc_softc *ahc)
|
|
{
|
|
/*
|
|
* We upset the sequencer :-(
|
|
* Lookup the error message
|
|
*/
|
|
int i;
|
|
int error;
|
|
|
|
error = ahc_inb(ahc, ERROR);
|
|
for (i = 0; error != 1 && i < num_errors; i++)
|
|
error >>= 1;
|
|
printk("%s: brkadrint, %s at seqaddr = 0x%x\n",
|
|
ahc_name(ahc), ahc_hard_errors[i].errmesg,
|
|
ahc_inb(ahc, SEQADDR0) |
|
|
(ahc_inb(ahc, SEQADDR1) << 8));
|
|
|
|
ahc_dump_card_state(ahc);
|
|
|
|
/* Tell everyone that this HBA is no longer available */
|
|
ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_NO_HBA);
|
|
|
|
/* Disable all interrupt sources by resetting the controller */
|
|
ahc_shutdown(ahc);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat)
|
|
{
|
|
struct scb *scb;
|
|
struct ahc_devinfo devinfo;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
|
|
/*
|
|
* Clear the upper byte that holds SEQINT status
|
|
* codes and clear the SEQINT bit. We will unpause
|
|
* the sequencer, if appropriate, after servicing
|
|
* the request.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRSEQINT);
|
|
switch (intstat & SEQINT_MASK) {
|
|
case BAD_STATUS:
|
|
{
|
|
u_int scb_index;
|
|
struct hardware_scb *hscb;
|
|
|
|
/*
|
|
* Set the default return value to 0 (don't
|
|
* send sense). The sense code will change
|
|
* this if needed.
|
|
*/
|
|
ahc_outb(ahc, RETURN_1, 0);
|
|
|
|
/*
|
|
* The sequencer will notify us when a command
|
|
* has an error that would be of interest to
|
|
* the kernel. This allows us to leave the sequencer
|
|
* running in the common case of command completes
|
|
* without error. The sequencer will already have
|
|
* dma'd the SCB back up to us, so we can reference
|
|
* the in kernel copy directly.
|
|
*/
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("ahc_intr - referenced scb "
|
|
"not valid during seqint 0x%x scb(%d)\n",
|
|
intstat, scb_index);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
goto unpause;
|
|
}
|
|
|
|
hscb = scb->hscb;
|
|
|
|
/* Don't want to clobber the original sense code */
|
|
if ((scb->flags & SCB_SENSE) != 0) {
|
|
/*
|
|
* Clear the SCB_SENSE Flag and have
|
|
* the sequencer do a normal command
|
|
* complete.
|
|
*/
|
|
scb->flags &= ~SCB_SENSE;
|
|
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
|
|
break;
|
|
}
|
|
ahc_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
|
|
/* Freeze the queue until the client sees the error. */
|
|
ahc_freeze_devq(ahc, scb);
|
|
ahc_freeze_scb(scb);
|
|
ahc_set_scsi_status(scb, hscb->shared_data.status.scsi_status);
|
|
switch (hscb->shared_data.status.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
printk("%s: Interrupted for status of 0???\n",
|
|
ahc_name(ahc));
|
|
break;
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
case SCSI_STATUS_CHECK_COND:
|
|
{
|
|
struct ahc_dma_seg *sg;
|
|
struct scsi_sense *sc;
|
|
struct ahc_initiator_tinfo *targ_info;
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_transinfo *tinfo;
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_SENSE) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("SCB %d: requests Check Status\n",
|
|
scb->hscb->tag);
|
|
}
|
|
#endif
|
|
|
|
if (ahc_perform_autosense(scb) == 0)
|
|
break;
|
|
|
|
targ_info = ahc_fetch_transinfo(ahc,
|
|
devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target,
|
|
&tstate);
|
|
tinfo = &targ_info->curr;
|
|
sg = scb->sg_list;
|
|
sc = (struct scsi_sense *)(&hscb->shared_data.cdb);
|
|
/*
|
|
* Save off the residual if there is one.
|
|
*/
|
|
ahc_update_residual(ahc, scb);
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_SENSE) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Sending Sense\n");
|
|
}
|
|
#endif
|
|
sg->addr = ahc_get_sense_bufaddr(ahc, scb);
|
|
sg->len = ahc_get_sense_bufsize(ahc, scb);
|
|
sg->len |= AHC_DMA_LAST_SEG;
|
|
|
|
/* Fixup byte order */
|
|
sg->addr = ahc_htole32(sg->addr);
|
|
sg->len = ahc_htole32(sg->len);
|
|
|
|
sc->opcode = REQUEST_SENSE;
|
|
sc->byte2 = 0;
|
|
if (tinfo->protocol_version <= SCSI_REV_2
|
|
&& SCB_GET_LUN(scb) < 8)
|
|
sc->byte2 = SCB_GET_LUN(scb) << 5;
|
|
sc->unused[0] = 0;
|
|
sc->unused[1] = 0;
|
|
sc->length = sg->len;
|
|
sc->control = 0;
|
|
|
|
/*
|
|
* We can't allow the target to disconnect.
|
|
* This will be an untagged transaction and
|
|
* having the target disconnect will make this
|
|
* transaction indestinguishable from outstanding
|
|
* tagged transactions.
|
|
*/
|
|
hscb->control = 0;
|
|
|
|
/*
|
|
* This request sense could be because the
|
|
* the device lost power or in some other
|
|
* way has lost our transfer negotiations.
|
|
* Renegotiate if appropriate. Unit attention
|
|
* errors will be reported before any data
|
|
* phases occur.
|
|
*/
|
|
if (ahc_get_residual(scb)
|
|
== ahc_get_transfer_length(scb)) {
|
|
ahc_update_neg_request(ahc, &devinfo,
|
|
tstate, targ_info,
|
|
AHC_NEG_IF_NON_ASYNC);
|
|
}
|
|
if (tstate->auto_negotiate & devinfo.target_mask) {
|
|
hscb->control |= MK_MESSAGE;
|
|
scb->flags &= ~SCB_NEGOTIATE;
|
|
scb->flags |= SCB_AUTO_NEGOTIATE;
|
|
}
|
|
hscb->cdb_len = sizeof(*sc);
|
|
hscb->dataptr = sg->addr;
|
|
hscb->datacnt = sg->len;
|
|
hscb->sgptr = scb->sg_list_phys | SG_FULL_RESID;
|
|
hscb->sgptr = ahc_htole32(hscb->sgptr);
|
|
scb->sg_count = 1;
|
|
scb->flags |= SCB_SENSE;
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
ahc_outb(ahc, RETURN_1, SEND_SENSE);
|
|
/*
|
|
* Ensure we have enough time to actually
|
|
* retrieve the sense.
|
|
*/
|
|
ahc_scb_timer_reset(scb, 5 * 1000000);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case NO_MATCH:
|
|
{
|
|
/* Ensure we don't leave the selection hardware on */
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
|
|
printk("%s:%c:%d: no active SCB for reconnecting "
|
|
"target - issuing BUS DEVICE RESET\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target);
|
|
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
|
|
"ARG_1 == 0x%x ACCUM = 0x%x\n",
|
|
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
|
|
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
|
|
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
|
|
"SINDEX == 0x%x\n",
|
|
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
|
|
ahc_index_busy_tcl(ahc,
|
|
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
|
|
ahc_inb(ahc, SAVED_LUN))),
|
|
ahc_inb(ahc, SINDEX));
|
|
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
|
|
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
|
|
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
|
|
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
|
|
ahc_inb(ahc, SCB_CONTROL));
|
|
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
|
|
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
|
|
printk("SXFRCTL0 == 0x%x\n", ahc_inb(ahc, SXFRCTL0));
|
|
printk("SEQCTL == 0x%x\n", ahc_inb(ahc, SEQCTL));
|
|
ahc_dump_card_state(ahc);
|
|
ahc->msgout_buf[0] = MSG_BUS_DEV_RESET;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
ahc_outb(ahc, MSG_OUT, HOST_MSG);
|
|
ahc_assert_atn(ahc);
|
|
break;
|
|
}
|
|
case SEND_REJECT:
|
|
{
|
|
u_int rejbyte = ahc_inb(ahc, ACCUM);
|
|
printk("%s:%c:%d: Warning - unknown message received from "
|
|
"target (0x%x). Rejecting\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
|
|
break;
|
|
}
|
|
case PROTO_VIOLATION:
|
|
{
|
|
ahc_handle_proto_violation(ahc);
|
|
break;
|
|
}
|
|
case IGN_WIDE_RES:
|
|
ahc_handle_ign_wide_residue(ahc, &devinfo);
|
|
break;
|
|
case PDATA_REINIT:
|
|
ahc_reinitialize_dataptrs(ahc);
|
|
break;
|
|
case BAD_PHASE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
printk("%s:%c:%d: unknown scsi bus phase %x, "
|
|
"lastphase = 0x%x. Attempting to continue\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
lastphase, ahc_inb(ahc, SCSISIGI));
|
|
break;
|
|
}
|
|
case MISSED_BUSFREE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
printk("%s:%c:%d: Missed busfree. "
|
|
"Lastphase = 0x%x, Curphase = 0x%x\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
lastphase, ahc_inb(ahc, SCSISIGI));
|
|
ahc_restart(ahc);
|
|
return;
|
|
}
|
|
case HOST_MSG_LOOP:
|
|
{
|
|
/*
|
|
* The sequencer has encountered a message phase
|
|
* that requires host assistance for completion.
|
|
* While handling the message phase(s), we will be
|
|
* notified by the sequencer after each byte is
|
|
* transferred so we can track bus phase changes.
|
|
*
|
|
* If this is the first time we've seen a HOST_MSG_LOOP
|
|
* interrupt, initialize the state of the host message
|
|
* loop.
|
|
*/
|
|
if (ahc->msg_type == MSG_TYPE_NONE) {
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
u_int bus_phase;
|
|
|
|
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
if (bus_phase != P_MESGIN
|
|
&& bus_phase != P_MESGOUT) {
|
|
printk("ahc_intr: HOST_MSG_LOOP bad "
|
|
"phase 0x%x\n",
|
|
bus_phase);
|
|
/*
|
|
* Probably transitioned to bus free before
|
|
* we got here. Just punt the message.
|
|
*/
|
|
ahc_clear_intstat(ahc);
|
|
ahc_restart(ahc);
|
|
return;
|
|
}
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (devinfo.role == ROLE_INITIATOR) {
|
|
if (bus_phase == P_MESGOUT) {
|
|
if (scb == NULL)
|
|
panic("HOST_MSG_LOOP with "
|
|
"invalid SCB %x\n",
|
|
scb_index);
|
|
|
|
ahc_setup_initiator_msgout(ahc,
|
|
&devinfo,
|
|
scb);
|
|
} else {
|
|
ahc->msg_type =
|
|
MSG_TYPE_INITIATOR_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
}
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
else {
|
|
if (bus_phase == P_MESGOUT) {
|
|
ahc->msg_type =
|
|
MSG_TYPE_TARGET_MSGOUT;
|
|
ahc->msgin_index = 0;
|
|
}
|
|
else
|
|
ahc_setup_target_msgin(ahc,
|
|
&devinfo,
|
|
scb);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ahc_handle_message_phase(ahc);
|
|
break;
|
|
}
|
|
case PERR_DETECTED:
|
|
{
|
|
/*
|
|
* If we've cleared the parity error interrupt
|
|
* but the sequencer still believes that SCSIPERR
|
|
* is true, it must be that the parity error is
|
|
* for the currently presented byte on the bus,
|
|
* and we are not in a phase (data-in) where we will
|
|
* eventually ack this byte. Ack the byte and
|
|
* throw it away in the hope that the target will
|
|
* take us to message out to deliver the appropriate
|
|
* error message.
|
|
*/
|
|
if ((intstat & SCSIINT) == 0
|
|
&& (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) {
|
|
|
|
if ((ahc->features & AHC_DT) == 0) {
|
|
u_int curphase;
|
|
|
|
/*
|
|
* The hardware will only let you ack bytes
|
|
* if the expected phase in SCSISIGO matches
|
|
* the current phase. Make sure this is
|
|
* currently the case.
|
|
*/
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
ahc_outb(ahc, LASTPHASE, curphase);
|
|
ahc_outb(ahc, SCSISIGO, curphase);
|
|
}
|
|
if ((ahc_inb(ahc, SCSISIGI) & (CDI|MSGI)) == 0) {
|
|
int wait;
|
|
|
|
/*
|
|
* In a data phase. Faster to bitbucket
|
|
* the data than to individually ack each
|
|
* byte. This is also the only strategy
|
|
* that will work with AUTOACK enabled.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL1,
|
|
ahc_inb(ahc, SXFRCTL1) | BITBUCKET);
|
|
wait = 5000;
|
|
while (--wait != 0) {
|
|
if ((ahc_inb(ahc, SCSISIGI)
|
|
& (CDI|MSGI)) != 0)
|
|
break;
|
|
ahc_delay(100);
|
|
}
|
|
ahc_outb(ahc, SXFRCTL1,
|
|
ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
|
|
if (wait == 0) {
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Unable to clear parity error. "
|
|
"Resetting bus.\n");
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb != NULL)
|
|
ahc_set_transaction_status(scb,
|
|
CAM_UNCOR_PARITY);
|
|
ahc_reset_channel(ahc, devinfo.channel,
|
|
/*init reset*/TRUE);
|
|
}
|
|
} else {
|
|
ahc_inb(ahc, SCSIDATL);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DATA_OVERRUN:
|
|
{
|
|
/*
|
|
* When the sequencer detects an overrun, it
|
|
* places the controller in "BITBUCKET" mode
|
|
* and allows the target to complete its transfer.
|
|
* Unfortunately, none of the counters get updated
|
|
* when the controller is in this mode, so we have
|
|
* no way of knowing how large the overrun was.
|
|
*/
|
|
u_int scbindex = ahc_inb(ahc, SCB_TAG);
|
|
u_int lastphase = ahc_inb(ahc, LASTPHASE);
|
|
u_int i;
|
|
|
|
scb = ahc_lookup_scb(ahc, scbindex);
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (lastphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
ahc_print_path(ahc, scb);
|
|
printk("data overrun detected %s."
|
|
" Tag == 0x%x.\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
scb->hscb->tag);
|
|
ahc_print_path(ahc, scb);
|
|
printk("%s seen Data Phase. Length = %ld. NumSGs = %d.\n",
|
|
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
|
|
ahc_get_transfer_length(scb), scb->sg_count);
|
|
if (scb->sg_count > 0) {
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
|
|
i,
|
|
(ahc_le32toh(scb->sg_list[i].len) >> 24
|
|
& SG_HIGH_ADDR_BITS),
|
|
ahc_le32toh(scb->sg_list[i].addr),
|
|
ahc_le32toh(scb->sg_list[i].len)
|
|
& AHC_SG_LEN_MASK);
|
|
}
|
|
}
|
|
/*
|
|
* Set this and it will take effect when the
|
|
* target does a command complete.
|
|
*/
|
|
ahc_freeze_devq(ahc, scb);
|
|
if ((scb->flags & SCB_SENSE) == 0) {
|
|
ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
|
|
} else {
|
|
scb->flags &= ~SCB_SENSE;
|
|
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
|
|
}
|
|
ahc_freeze_scb(scb);
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
/*
|
|
* Clear the channel in case we return
|
|
* to data phase later.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
|
|
}
|
|
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
|
|
u_int dscommand1;
|
|
|
|
/* Ensure HHADDR is 0 for future DMA operations. */
|
|
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
|
|
ahc_outb(ahc, HADDR, 0);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1);
|
|
}
|
|
break;
|
|
}
|
|
case MKMSG_FAILED:
|
|
{
|
|
u_int scbindex;
|
|
|
|
printk("%s:%c:%d:%d: Attempt to issue message failed\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
devinfo.lun);
|
|
scbindex = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scbindex);
|
|
if (scb != NULL
|
|
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
|
|
/*
|
|
* Ensure that we didn't put a second instance of this
|
|
* SCB into the QINFIFO.
|
|
*/
|
|
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_CHANNEL(ahc, scb),
|
|
SCB_GET_LUN(scb), scb->hscb->tag,
|
|
ROLE_INITIATOR, /*status*/0,
|
|
SEARCH_REMOVE);
|
|
break;
|
|
}
|
|
case NO_FREE_SCB:
|
|
{
|
|
printk("%s: No free or disconnected SCBs\n", ahc_name(ahc));
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
case SCB_MISMATCH:
|
|
{
|
|
u_int scbptr;
|
|
|
|
scbptr = ahc_inb(ahc, SCBPTR);
|
|
printk("Bogus TAG after DMA. SCBPTR %d, tag %d, our tag %d\n",
|
|
scbptr, ahc_inb(ahc, ARG_1),
|
|
ahc->scb_data->hscbs[scbptr].tag);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
case OUT_OF_RANGE:
|
|
{
|
|
printk("%s: BTT calculation out of range\n", ahc_name(ahc));
|
|
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
|
|
"ARG_1 == 0x%x ACCUM = 0x%x\n",
|
|
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
|
|
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
|
|
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
|
|
"SINDEX == 0x%x\n, A == 0x%x\n",
|
|
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
|
|
ahc_index_busy_tcl(ahc,
|
|
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
|
|
ahc_inb(ahc, SAVED_LUN))),
|
|
ahc_inb(ahc, SINDEX),
|
|
ahc_inb(ahc, ACCUM));
|
|
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
|
|
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
|
|
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
|
|
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
|
|
ahc_inb(ahc, SCB_CONTROL));
|
|
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
|
|
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
default:
|
|
printk("ahc_intr: seqint, "
|
|
"intstat == 0x%x, scsisigi = 0x%x\n",
|
|
intstat, ahc_inb(ahc, SCSISIGI));
|
|
break;
|
|
}
|
|
unpause:
|
|
/*
|
|
* The sequencer is paused immediately on
|
|
* a SEQINT, so we should restart it when
|
|
* we're done.
|
|
*/
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat)
|
|
{
|
|
u_int scb_index;
|
|
u_int status0;
|
|
u_int status;
|
|
struct scb *scb;
|
|
char cur_channel;
|
|
char intr_channel;
|
|
|
|
if ((ahc->features & AHC_TWIN) != 0
|
|
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
|
|
cur_channel = 'B';
|
|
else
|
|
cur_channel = 'A';
|
|
intr_channel = cur_channel;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
status0 = ahc_inb(ahc, SSTAT0) & IOERR;
|
|
else
|
|
status0 = 0;
|
|
status = ahc_inb(ahc, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
|
|
if (status == 0 && status0 == 0) {
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
/* Try the other channel */
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
|
|
status = ahc_inb(ahc, SSTAT1)
|
|
& (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
|
|
intr_channel = (cur_channel == 'A') ? 'B' : 'A';
|
|
}
|
|
if (status == 0) {
|
|
printk("%s: Spurious SCSI interrupt\n", ahc_name(ahc));
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_unpause(ahc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahc_clear_critical_section(ahc);
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb != NULL
|
|
&& (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
|
|
scb = NULL;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (status0 & IOERR) != 0) {
|
|
int now_lvd;
|
|
|
|
now_lvd = ahc_inb(ahc, SBLKCTL) & ENAB40;
|
|
printk("%s: Transceiver State Has Changed to %s mode\n",
|
|
ahc_name(ahc), now_lvd ? "LVD" : "SE");
|
|
ahc_outb(ahc, CLRSINT0, CLRIOERR);
|
|
/*
|
|
* When transitioning to SE mode, the reset line
|
|
* glitches, triggering an arbitration bug in some
|
|
* Ultra2 controllers. This bug is cleared when we
|
|
* assert the reset line. Since a reset glitch has
|
|
* already occurred with this transition and a
|
|
* transceiver state change is handled just like
|
|
* a bus reset anyway, asserting the reset line
|
|
* ourselves is safe.
|
|
*/
|
|
ahc_reset_channel(ahc, intr_channel,
|
|
/*Initiate Reset*/now_lvd == 0);
|
|
} else if ((status & SCSIRSTI) != 0) {
|
|
printk("%s: Someone reset channel %c\n",
|
|
ahc_name(ahc), intr_channel);
|
|
if (intr_channel != cur_channel)
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
|
|
ahc_reset_channel(ahc, intr_channel, /*Initiate Reset*/FALSE);
|
|
} else if ((status & SCSIPERR) != 0) {
|
|
/*
|
|
* Determine the bus phase and queue an appropriate message.
|
|
* SCSIPERR is latched true as soon as a parity error
|
|
* occurs. If the sequencer acked the transfer that
|
|
* caused the parity error and the currently presented
|
|
* transfer on the bus has correct parity, SCSIPERR will
|
|
* be cleared by CLRSCSIPERR. Use this to determine if
|
|
* we should look at the last phase the sequencer recorded,
|
|
* or the current phase presented on the bus.
|
|
*/
|
|
struct ahc_devinfo devinfo;
|
|
u_int mesg_out;
|
|
u_int curphase;
|
|
u_int errorphase;
|
|
u_int lastphase;
|
|
u_int scsirate;
|
|
u_int i;
|
|
u_int sstat2;
|
|
int silent;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
sstat2 = ahc_inb(ahc, SSTAT2);
|
|
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
|
|
/*
|
|
* For all phases save DATA, the sequencer won't
|
|
* automatically ack a byte that has a parity error
|
|
* in it. So the only way that the current phase
|
|
* could be 'data-in' is if the parity error is for
|
|
* an already acked byte in the data phase. During
|
|
* synchronous data-in transfers, we may actually
|
|
* ack bytes before latching the current phase in
|
|
* LASTPHASE, leading to the discrepancy between
|
|
* curphase and lastphase.
|
|
*/
|
|
if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0
|
|
|| curphase == P_DATAIN || curphase == P_DATAIN_DT)
|
|
errorphase = curphase;
|
|
else
|
|
errorphase = lastphase;
|
|
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (errorphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
mesg_out = ahc_phase_table[i].mesg_out;
|
|
silent = FALSE;
|
|
if (scb != NULL) {
|
|
if (SCB_IS_SILENT(scb))
|
|
silent = TRUE;
|
|
else
|
|
ahc_print_path(ahc, scb);
|
|
scb->flags |= SCB_TRANSMISSION_ERROR;
|
|
} else
|
|
printk("%s:%c:%d: ", ahc_name(ahc), intr_channel,
|
|
SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID)));
|
|
scsirate = ahc_inb(ahc, SCSIRATE);
|
|
if (silent == FALSE) {
|
|
printk("parity error detected %s. "
|
|
"SEQADDR(0x%x) SCSIRATE(0x%x)\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
ahc_inw(ahc, SEQADDR0),
|
|
scsirate);
|
|
if ((ahc->features & AHC_DT) != 0) {
|
|
if ((sstat2 & CRCVALERR) != 0)
|
|
printk("\tCRC Value Mismatch\n");
|
|
if ((sstat2 & CRCENDERR) != 0)
|
|
printk("\tNo terminal CRC packet "
|
|
"received\n");
|
|
if ((sstat2 & CRCREQERR) != 0)
|
|
printk("\tIllegal CRC packet "
|
|
"request\n");
|
|
if ((sstat2 & DUAL_EDGE_ERR) != 0)
|
|
printk("\tUnexpected %sDT Data Phase\n",
|
|
(scsirate & SINGLE_EDGE)
|
|
? "" : "non-");
|
|
}
|
|
}
|
|
|
|
if ((ahc->features & AHC_DT) != 0
|
|
&& (sstat2 & DUAL_EDGE_ERR) != 0) {
|
|
/*
|
|
* This error applies regardless of
|
|
* data direction, so ignore the value
|
|
* in the phase table.
|
|
*/
|
|
mesg_out = MSG_INITIATOR_DET_ERR;
|
|
}
|
|
|
|
/*
|
|
* We've set the hardware to assert ATN if we
|
|
* get a parity error on "in" phases, so all we
|
|
* need to do is stuff the message buffer with
|
|
* the appropriate message. "In" phases have set
|
|
* mesg_out to something other than MSG_NOP.
|
|
*/
|
|
if (mesg_out != MSG_NOOP) {
|
|
if (ahc->msg_type != MSG_TYPE_NONE)
|
|
ahc->send_msg_perror = TRUE;
|
|
else
|
|
ahc_outb(ahc, MSG_OUT, mesg_out);
|
|
}
|
|
/*
|
|
* Force a renegotiation with this target just in
|
|
* case we are out of sync for some external reason
|
|
* unknown (or unreported) by the target.
|
|
*/
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
ahc_force_renegotiation(ahc, &devinfo);
|
|
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_unpause(ahc);
|
|
} else if ((status & SELTO) != 0) {
|
|
u_int scbptr;
|
|
|
|
/* Stop the selection */
|
|
ahc_outb(ahc, SCSISEQ, 0);
|
|
|
|
/* No more pending messages */
|
|
ahc_clear_msg_state(ahc);
|
|
|
|
/* Clear interrupt state */
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
|
|
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
|
|
|
|
/*
|
|
* Although the driver does not care about the
|
|
* 'Selection in Progress' status bit, the busy
|
|
* LED does. SELINGO is only cleared by a successful
|
|
* selection, so we must manually clear it to insure
|
|
* the LED turns off just incase no future successful
|
|
* selections occur (e.g. no devices on the bus).
|
|
*/
|
|
ahc_outb(ahc, CLRSINT0, CLRSELINGO);
|
|
|
|
scbptr = ahc_inb(ahc, WAITING_SCBH);
|
|
ahc_outb(ahc, SCBPTR, scbptr);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("%s: ahc_intr - referenced scb not "
|
|
"valid during SELTO scb(%d, %d)\n",
|
|
ahc_name(ahc), scbptr, scb_index);
|
|
ahc_dump_card_state(ahc);
|
|
} else {
|
|
struct ahc_devinfo devinfo;
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_SELTO) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Saw Selection Timeout for SCB 0x%x\n",
|
|
scb_index);
|
|
}
|
|
#endif
|
|
ahc_scb_devinfo(ahc, &devinfo, scb);
|
|
ahc_set_transaction_status(scb, CAM_SEL_TIMEOUT);
|
|
ahc_freeze_devq(ahc, scb);
|
|
|
|
/*
|
|
* Cancel any pending transactions on the device
|
|
* now that it seems to be missing. This will
|
|
* also revert us to async/narrow transfers until
|
|
* we can renegotiate with the device.
|
|
*/
|
|
ahc_handle_devreset(ahc, &devinfo,
|
|
CAM_SEL_TIMEOUT,
|
|
"Selection Timeout",
|
|
/*verbose_level*/1);
|
|
}
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_restart(ahc);
|
|
} else if ((status & BUSFREE) != 0
|
|
&& (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) {
|
|
struct ahc_devinfo devinfo;
|
|
u_int lastphase;
|
|
u_int saved_scsiid;
|
|
u_int saved_lun;
|
|
u_int target;
|
|
u_int initiator_role_id;
|
|
char channel;
|
|
int printerror;
|
|
|
|
/*
|
|
* Clear our selection hardware as soon as possible.
|
|
* We may have an entry in the waiting Q for this target,
|
|
* that is affected by this busfree and we don't want to
|
|
* go about selecting the target while we handle the event.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
|
|
/*
|
|
* Disable busfree interrupts and clear the busfree
|
|
* interrupt status. We do this here so that several
|
|
* bus transactions occur prior to clearing the SCSIINT
|
|
* latch. It can take a bit for the clearing to take effect.
|
|
*/
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
|
|
ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR);
|
|
|
|
/*
|
|
* Look at what phase we were last in.
|
|
* If its message out, chances are pretty good
|
|
* that the busfree was in response to one of
|
|
* our abort requests.
|
|
*/
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
|
|
saved_lun = ahc_inb(ahc, SAVED_LUN);
|
|
target = SCSIID_TARGET(ahc, saved_scsiid);
|
|
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
|
|
channel = SCSIID_CHANNEL(ahc, saved_scsiid);
|
|
ahc_compile_devinfo(&devinfo, initiator_role_id,
|
|
target, saved_lun, channel, ROLE_INITIATOR);
|
|
printerror = 1;
|
|
|
|
if (lastphase == P_MESGOUT) {
|
|
u_int tag;
|
|
|
|
tag = SCB_LIST_NULL;
|
|
if (ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT_TAG, TRUE)
|
|
|| ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT, TRUE)) {
|
|
if (ahc->msgout_buf[ahc->msgout_index - 1]
|
|
== MSG_ABORT_TAG)
|
|
tag = scb->hscb->tag;
|
|
ahc_print_path(ahc, scb);
|
|
printk("SCB %d - Abort%s Completed.\n",
|
|
scb->hscb->tag, tag == SCB_LIST_NULL ?
|
|
"" : " Tag");
|
|
ahc_abort_scbs(ahc, target, channel,
|
|
saved_lun, tag,
|
|
ROLE_INITIATOR,
|
|
CAM_REQ_ABORTED);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_1B,
|
|
MSG_BUS_DEV_RESET, TRUE)) {
|
|
ahc_compile_devinfo(&devinfo,
|
|
initiator_role_id,
|
|
target,
|
|
CAM_LUN_WILDCARD,
|
|
channel,
|
|
ROLE_INITIATOR);
|
|
ahc_handle_devreset(ahc, &devinfo,
|
|
CAM_BDR_SENT,
|
|
"Bus Device Reset",
|
|
/*verbose_level*/0);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_PPR, FALSE)) {
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* PPR Rejected. Try non-ppr negotiation
|
|
* and retry command.
|
|
*/
|
|
tinfo = ahc_fetch_transinfo(ahc,
|
|
devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target,
|
|
&tstate);
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->goal.ppr_options = 0;
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_WDTR, FALSE)) {
|
|
/*
|
|
* Negotiation Rejected. Go-narrow and
|
|
* retry command.
|
|
*/
|
|
ahc_set_width(ahc, &devinfo,
|
|
MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_SDTR, FALSE)) {
|
|
/*
|
|
* Negotiation Rejected. Go-async and
|
|
* retry command.
|
|
*/
|
|
ahc_set_syncrate(ahc, &devinfo,
|
|
/*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0,
|
|
AHC_TRANS_CUR|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
}
|
|
}
|
|
if (printerror != 0) {
|
|
u_int i;
|
|
|
|
if (scb != NULL) {
|
|
u_int tag;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0)
|
|
tag = scb->hscb->tag;
|
|
else
|
|
tag = SCB_LIST_NULL;
|
|
ahc_print_path(ahc, scb);
|
|
ahc_abort_scbs(ahc, target, channel,
|
|
SCB_GET_LUN(scb), tag,
|
|
ROLE_INITIATOR,
|
|
CAM_UNEXP_BUSFREE);
|
|
} else {
|
|
/*
|
|
* We had not fully identified this connection,
|
|
* so we cannot abort anything.
|
|
*/
|
|
printk("%s: ", ahc_name(ahc));
|
|
}
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (lastphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
if (lastphase != P_BUSFREE) {
|
|
/*
|
|
* Renegotiate with this device at the
|
|
* next opportunity just in case this busfree
|
|
* is due to a negotiation mismatch with the
|
|
* device.
|
|
*/
|
|
ahc_force_renegotiation(ahc, &devinfo);
|
|
}
|
|
printk("Unexpected busfree %s\n"
|
|
"SEQADDR == 0x%x\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
ahc_inb(ahc, SEQADDR0)
|
|
| (ahc_inb(ahc, SEQADDR1) << 8));
|
|
}
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_restart(ahc);
|
|
} else {
|
|
printk("%s: Missing case in ahc_handle_scsiint. status = %x\n",
|
|
ahc_name(ahc), status);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force renegotiation to occur the next time we initiate
|
|
* a command to the current device.
|
|
*/
|
|
static void
|
|
ahc_force_renegotiation(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
struct ahc_initiator_tinfo *targ_info;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
targ_info = ahc_fetch_transinfo(ahc,
|
|
devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target,
|
|
&tstate);
|
|
ahc_update_neg_request(ahc, devinfo, tstate,
|
|
targ_info, AHC_NEG_IF_NON_ASYNC);
|
|
}
|
|
|
|
#define AHC_MAX_STEPS 2000
|
|
static void
|
|
ahc_clear_critical_section(struct ahc_softc *ahc)
|
|
{
|
|
int stepping;
|
|
int steps;
|
|
u_int simode0;
|
|
u_int simode1;
|
|
|
|
if (ahc->num_critical_sections == 0)
|
|
return;
|
|
|
|
stepping = FALSE;
|
|
steps = 0;
|
|
simode0 = 0;
|
|
simode1 = 0;
|
|
for (;;) {
|
|
struct cs *cs;
|
|
u_int seqaddr;
|
|
u_int i;
|
|
|
|
seqaddr = ahc_inb(ahc, SEQADDR0)
|
|
| (ahc_inb(ahc, SEQADDR1) << 8);
|
|
|
|
/*
|
|
* Seqaddr represents the next instruction to execute,
|
|
* so we are really executing the instruction just
|
|
* before it.
|
|
*/
|
|
if (seqaddr != 0)
|
|
seqaddr -= 1;
|
|
cs = ahc->critical_sections;
|
|
for (i = 0; i < ahc->num_critical_sections; i++, cs++) {
|
|
|
|
if (cs->begin < seqaddr && cs->end >= seqaddr)
|
|
break;
|
|
}
|
|
|
|
if (i == ahc->num_critical_sections)
|
|
break;
|
|
|
|
if (steps > AHC_MAX_STEPS) {
|
|
printk("%s: Infinite loop in critical section\n",
|
|
ahc_name(ahc));
|
|
ahc_dump_card_state(ahc);
|
|
panic("critical section loop");
|
|
}
|
|
|
|
steps++;
|
|
if (stepping == FALSE) {
|
|
|
|
/*
|
|
* Disable all interrupt sources so that the
|
|
* sequencer will not be stuck by a pausing
|
|
* interrupt condition while we attempt to
|
|
* leave a critical section.
|
|
*/
|
|
simode0 = ahc_inb(ahc, SIMODE0);
|
|
ahc_outb(ahc, SIMODE0, 0);
|
|
simode1 = ahc_inb(ahc, SIMODE1);
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
/*
|
|
* On DT class controllers, we
|
|
* use the enhanced busfree logic.
|
|
* Unfortunately we cannot re-enable
|
|
* busfree detection within the
|
|
* current connection, so we must
|
|
* leave it on while single stepping.
|
|
*/
|
|
ahc_outb(ahc, SIMODE1, simode1 & ENBUSFREE);
|
|
else
|
|
ahc_outb(ahc, SIMODE1, 0);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl | STEP);
|
|
stepping = TRUE;
|
|
}
|
|
if ((ahc->features & AHC_DT) != 0) {
|
|
ahc_outb(ahc, CLRSINT1, CLRBUSFREE);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
}
|
|
ahc_outb(ahc, HCNTRL, ahc->unpause);
|
|
while (!ahc_is_paused(ahc))
|
|
ahc_delay(200);
|
|
}
|
|
if (stepping) {
|
|
ahc_outb(ahc, SIMODE0, simode0);
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any pending interrupt status.
|
|
*/
|
|
static void
|
|
ahc_clear_intstat(struct ahc_softc *ahc)
|
|
{
|
|
/* Clear any interrupt conditions this may have caused */
|
|
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|
|
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
|
|
CLRREQINIT);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_flush_device_writes(ahc);
|
|
}
|
|
|
|
/**************************** Debugging Routines ******************************/
|
|
#ifdef AHC_DEBUG
|
|
uint32_t ahc_debug = AHC_DEBUG_OPTS;
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
static void
|
|
ahc_print_scb(struct scb *scb)
|
|
{
|
|
int i;
|
|
|
|
struct hardware_scb *hscb = scb->hscb;
|
|
|
|
printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
|
|
(void *)scb,
|
|
hscb->control,
|
|
hscb->scsiid,
|
|
hscb->lun,
|
|
hscb->cdb_len);
|
|
printk("Shared Data: ");
|
|
for (i = 0; i < sizeof(hscb->shared_data.cdb); i++)
|
|
printk("%#02x", hscb->shared_data.cdb[i]);
|
|
printk(" dataptr:%#x datacnt:%#x sgptr:%#x tag:%#x\n",
|
|
ahc_le32toh(hscb->dataptr),
|
|
ahc_le32toh(hscb->datacnt),
|
|
ahc_le32toh(hscb->sgptr),
|
|
hscb->tag);
|
|
if (scb->sg_count > 0) {
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
|
|
i,
|
|
(ahc_le32toh(scb->sg_list[i].len) >> 24
|
|
& SG_HIGH_ADDR_BITS),
|
|
ahc_le32toh(scb->sg_list[i].addr),
|
|
ahc_le32toh(scb->sg_list[i].len));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/************************* Transfer Negotiation *******************************/
|
|
/*
|
|
* Allocate per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static struct ahc_tmode_tstate *
|
|
ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel)
|
|
{
|
|
struct ahc_tmode_tstate *master_tstate;
|
|
struct ahc_tmode_tstate *tstate;
|
|
int i;
|
|
|
|
master_tstate = ahc->enabled_targets[ahc->our_id];
|
|
if (channel == 'B') {
|
|
scsi_id += 8;
|
|
master_tstate = ahc->enabled_targets[ahc->our_id_b + 8];
|
|
}
|
|
if (ahc->enabled_targets[scsi_id] != NULL
|
|
&& ahc->enabled_targets[scsi_id] != master_tstate)
|
|
panic("%s: ahc_alloc_tstate - Target already allocated",
|
|
ahc_name(ahc));
|
|
tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
|
|
if (tstate == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If we have allocated a master tstate, copy user settings from
|
|
* the master tstate (taken from SRAM or the EEPROM) for this
|
|
* channel, but reset our current and goal settings to async/narrow
|
|
* until an initiator talks to us.
|
|
*/
|
|
if (master_tstate != NULL) {
|
|
memcpy(tstate, master_tstate, sizeof(*tstate));
|
|
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
|
|
tstate->ultraenb = 0;
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++) {
|
|
memset(&tstate->transinfo[i].curr, 0,
|
|
sizeof(tstate->transinfo[i].curr));
|
|
memset(&tstate->transinfo[i].goal, 0,
|
|
sizeof(tstate->transinfo[i].goal));
|
|
}
|
|
} else
|
|
memset(tstate, 0, sizeof(*tstate));
|
|
ahc->enabled_targets[scsi_id] = tstate;
|
|
return (tstate);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Free per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static void
|
|
ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* Don't clean up our "master" tstate.
|
|
* It has our default user settings.
|
|
*/
|
|
if (((channel == 'B' && scsi_id == ahc->our_id_b)
|
|
|| (channel == 'A' && scsi_id == ahc->our_id))
|
|
&& force == FALSE)
|
|
return;
|
|
|
|
if (channel == 'B')
|
|
scsi_id += 8;
|
|
tstate = ahc->enabled_targets[scsi_id];
|
|
kfree(tstate);
|
|
ahc->enabled_targets[scsi_id] = NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called when we have an active connection to a target on the bus,
|
|
* this function finds the nearest syncrate to the input period limited
|
|
* by the capabilities of the bus connectivity of and sync settings for
|
|
* the target.
|
|
*/
|
|
static const struct ahc_syncrate *
|
|
ahc_devlimited_syncrate(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
u_int *period, u_int *ppr_options, role_t role)
|
|
{
|
|
struct ahc_transinfo *transinfo;
|
|
u_int maxsync;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
|
|
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
|
|
maxsync = AHC_SYNCRATE_DT;
|
|
} else {
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
/* Can't do DT on an SE bus */
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
} else if ((ahc->features & AHC_ULTRA) != 0) {
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
} else {
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
}
|
|
/*
|
|
* Never allow a value higher than our current goal
|
|
* period otherwise we may allow a target initiated
|
|
* negotiation to go above the limit as set by the
|
|
* user. In the case of an initiator initiated
|
|
* sync negotiation, we limit based on the user
|
|
* setting. This allows the system to still accept
|
|
* incoming negotiations even if target initiated
|
|
* negotiation is not performed.
|
|
*/
|
|
if (role == ROLE_TARGET)
|
|
transinfo = &tinfo->user;
|
|
else
|
|
transinfo = &tinfo->goal;
|
|
*ppr_options &= transinfo->ppr_options;
|
|
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
|
|
maxsync = max(maxsync, (u_int)AHC_SYNCRATE_ULTRA2);
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
if (transinfo->period == 0) {
|
|
*period = 0;
|
|
*ppr_options = 0;
|
|
return (NULL);
|
|
}
|
|
*period = max(*period, (u_int)transinfo->period);
|
|
return (ahc_find_syncrate(ahc, period, ppr_options, maxsync));
|
|
}
|
|
|
|
/*
|
|
* Look up the valid period to SCSIRATE conversion in our table.
|
|
* Return the period and offset that should be sent to the target
|
|
* if this was the beginning of an SDTR.
|
|
*/
|
|
const struct ahc_syncrate *
|
|
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
|
|
u_int *ppr_options, u_int maxsync)
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
|
|
if ((ahc->features & AHC_DT) == 0)
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
|
|
/* Skip all DT only entries if DT is not available */
|
|
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA2)
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
|
|
/* Now set the maxsync based on the card capabilities
|
|
* DT is already done above */
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA)
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
|
|
&& maxsync < AHC_SYNCRATE_FAST)
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
|
|
for (syncrate = &ahc_syncrates[maxsync];
|
|
syncrate->rate != NULL;
|
|
syncrate++) {
|
|
|
|
/*
|
|
* The Ultra2 table doesn't go as low
|
|
* as for the Fast/Ultra cards.
|
|
*/
|
|
if ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (syncrate->sxfr_u2 == 0))
|
|
break;
|
|
|
|
if (*period <= syncrate->period) {
|
|
/*
|
|
* When responding to a target that requests
|
|
* sync, the requested rate may fall between
|
|
* two rates that we can output, but still be
|
|
* a rate that we can receive. Because of this,
|
|
* we want to respond to the target with
|
|
* the same rate that it sent to us even
|
|
* if the period we use to send data to it
|
|
* is lower. Only lower the response period
|
|
* if we must.
|
|
*/
|
|
if (syncrate == &ahc_syncrates[maxsync])
|
|
*period = syncrate->period;
|
|
|
|
/*
|
|
* At some speeds, we only support
|
|
* ST transfers.
|
|
*/
|
|
if ((syncrate->sxfr_u2 & ST_SXFR) != 0)
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((*period == 0)
|
|
|| (syncrate->rate == NULL)
|
|
|| ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (syncrate->sxfr_u2 == 0))) {
|
|
/* Use asynchronous transfers. */
|
|
*period = 0;
|
|
syncrate = NULL;
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
return (syncrate);
|
|
}
|
|
|
|
/*
|
|
* Convert from an entry in our syncrate table to the SCSI equivalent
|
|
* sync "period" factor.
|
|
*/
|
|
u_int
|
|
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
scsirate &= SXFR_ULTRA2;
|
|
else
|
|
scsirate &= SXFR;
|
|
|
|
/* now set maxsync based on card capabilities */
|
|
if ((ahc->features & AHC_DT) == 0 && maxsync < AHC_SYNCRATE_ULTRA2)
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA)
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
|
|
&& maxsync < AHC_SYNCRATE_FAST)
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
|
|
|
|
syncrate = &ahc_syncrates[maxsync];
|
|
while (syncrate->rate != NULL) {
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
if (syncrate->sxfr_u2 == 0)
|
|
break;
|
|
else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2))
|
|
return (syncrate->period);
|
|
} else if (scsirate == (syncrate->sxfr & SXFR)) {
|
|
return (syncrate->period);
|
|
}
|
|
syncrate++;
|
|
}
|
|
return (0); /* async */
|
|
}
|
|
|
|
/*
|
|
* Truncate the given synchronous offset to a value the
|
|
* current adapter type and syncrate are capable of.
|
|
*/
|
|
static void
|
|
ahc_validate_offset(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
const struct ahc_syncrate *syncrate,
|
|
u_int *offset, int wide, role_t role)
|
|
{
|
|
u_int maxoffset;
|
|
|
|
/* Limit offset to what we can do */
|
|
if (syncrate == NULL) {
|
|
maxoffset = 0;
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
maxoffset = MAX_OFFSET_ULTRA2;
|
|
} else {
|
|
if (wide)
|
|
maxoffset = MAX_OFFSET_16BIT;
|
|
else
|
|
maxoffset = MAX_OFFSET_8BIT;
|
|
}
|
|
*offset = min(*offset, maxoffset);
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*offset = min(*offset, (u_int)tinfo->user.offset);
|
|
else
|
|
*offset = min(*offset, (u_int)tinfo->goal.offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Truncate the given transfer width parameter to a value the
|
|
* current adapter type is capable of.
|
|
*/
|
|
static void
|
|
ahc_validate_width(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo,
|
|
u_int *bus_width, role_t role)
|
|
{
|
|
switch (*bus_width) {
|
|
default:
|
|
if (ahc->features & AHC_WIDE) {
|
|
/* Respond Wide */
|
|
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case MSG_EXT_WDTR_BUS_8_BIT:
|
|
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
break;
|
|
}
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*bus_width = min((u_int)tinfo->user.width, *bus_width);
|
|
else
|
|
*bus_width = min((u_int)tinfo->goal.width, *bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the bitmask of targets for which the controller should
|
|
* negotiate with at the next convenient opportunity. This currently
|
|
* means the next time we send the initial identify messages for
|
|
* a new transaction.
|
|
*/
|
|
int
|
|
ahc_update_neg_request(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct ahc_tmode_tstate *tstate,
|
|
struct ahc_initiator_tinfo *tinfo, ahc_neg_type neg_type)
|
|
{
|
|
u_int auto_negotiate_orig;
|
|
|
|
auto_negotiate_orig = tstate->auto_negotiate;
|
|
if (neg_type == AHC_NEG_ALWAYS) {
|
|
/*
|
|
* Force our "current" settings to be
|
|
* unknown so that unless a bus reset
|
|
* occurs the need to renegotiate is
|
|
* recorded persistently.
|
|
*/
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
tinfo->curr.width = AHC_WIDTH_UNKNOWN;
|
|
tinfo->curr.period = AHC_PERIOD_UNKNOWN;
|
|
tinfo->curr.offset = AHC_OFFSET_UNKNOWN;
|
|
}
|
|
if (tinfo->curr.period != tinfo->goal.period
|
|
|| tinfo->curr.width != tinfo->goal.width
|
|
|| tinfo->curr.offset != tinfo->goal.offset
|
|
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|
|
|| (neg_type == AHC_NEG_IF_NON_ASYNC
|
|
&& (tinfo->goal.offset != 0
|
|
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|
|
|| tinfo->goal.ppr_options != 0)))
|
|
tstate->auto_negotiate |= devinfo->target_mask;
|
|
else
|
|
tstate->auto_negotiate &= ~devinfo->target_mask;
|
|
|
|
return (auto_negotiate_orig != tstate->auto_negotiate);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of synchronous negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
const struct ahc_syncrate *syncrate, u_int period,
|
|
u_int offset, u_int ppr_options, u_int type, int paused)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int old_period;
|
|
u_int old_offset;
|
|
u_int old_ppr;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
|
|
if (syncrate == NULL) {
|
|
period = 0;
|
|
offset = 0;
|
|
}
|
|
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHC_TRANS_USER) != 0) {
|
|
tinfo->user.period = period;
|
|
tinfo->user.offset = offset;
|
|
tinfo->user.ppr_options = ppr_options;
|
|
}
|
|
|
|
if ((type & AHC_TRANS_GOAL) != 0) {
|
|
tinfo->goal.period = period;
|
|
tinfo->goal.offset = offset;
|
|
tinfo->goal.ppr_options = ppr_options;
|
|
}
|
|
|
|
old_period = tinfo->curr.period;
|
|
old_offset = tinfo->curr.offset;
|
|
old_ppr = tinfo->curr.ppr_options;
|
|
|
|
if ((type & AHC_TRANS_CUR) != 0
|
|
&& (old_period != period
|
|
|| old_offset != offset
|
|
|| old_ppr != ppr_options)) {
|
|
u_int scsirate;
|
|
|
|
update_needed++;
|
|
scsirate = tinfo->scsirate;
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
|
|
scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC);
|
|
if (syncrate != NULL) {
|
|
scsirate |= syncrate->sxfr_u2;
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0)
|
|
scsirate |= ENABLE_CRC;
|
|
else
|
|
scsirate |= SINGLE_EDGE;
|
|
}
|
|
} else {
|
|
|
|
scsirate &= ~(SXFR|SOFS);
|
|
/*
|
|
* Ensure Ultra mode is set properly for
|
|
* this target.
|
|
*/
|
|
tstate->ultraenb &= ~devinfo->target_mask;
|
|
if (syncrate != NULL) {
|
|
if (syncrate->sxfr & ULTRA_SXFR) {
|
|
tstate->ultraenb |=
|
|
devinfo->target_mask;
|
|
}
|
|
scsirate |= syncrate->sxfr & SXFR;
|
|
scsirate |= offset & SOFS;
|
|
}
|
|
if (active) {
|
|
u_int sxfrctl0;
|
|
|
|
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
|
|
sxfrctl0 &= ~FAST20;
|
|
if (tstate->ultraenb & devinfo->target_mask)
|
|
sxfrctl0 |= FAST20;
|
|
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
|
|
}
|
|
}
|
|
if (active) {
|
|
ahc_outb(ahc, SCSIRATE, scsirate);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIOFFSET, offset);
|
|
}
|
|
|
|
tinfo->scsirate = scsirate;
|
|
tinfo->curr.period = period;
|
|
tinfo->curr.offset = offset;
|
|
tinfo->curr.ppr_options = ppr_options;
|
|
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
if (offset != 0) {
|
|
printk("%s: target %d synchronous at %sMHz%s, "
|
|
"offset = 0x%x\n", ahc_name(ahc),
|
|
devinfo->target, syncrate->rate,
|
|
(ppr_options & MSG_EXT_PPR_DT_REQ)
|
|
? " DT" : "", offset);
|
|
} else {
|
|
printk("%s: target %d using "
|
|
"asynchronous transfers\n",
|
|
ahc_name(ahc), devinfo->target);
|
|
}
|
|
}
|
|
}
|
|
|
|
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_TO_GOAL);
|
|
|
|
if (update_needed)
|
|
ahc_update_pending_scbs(ahc);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of wide negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int width, u_int type, int paused)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int oldwidth;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHC_TRANS_USER) != 0)
|
|
tinfo->user.width = width;
|
|
|
|
if ((type & AHC_TRANS_GOAL) != 0)
|
|
tinfo->goal.width = width;
|
|
|
|
oldwidth = tinfo->curr.width;
|
|
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
|
|
u_int scsirate;
|
|
|
|
update_needed++;
|
|
scsirate = tinfo->scsirate;
|
|
scsirate &= ~WIDEXFER;
|
|
if (width == MSG_EXT_WDTR_BUS_16_BIT)
|
|
scsirate |= WIDEXFER;
|
|
|
|
tinfo->scsirate = scsirate;
|
|
|
|
if (active)
|
|
ahc_outb(ahc, SCSIRATE, scsirate);
|
|
|
|
tinfo->curr.width = width;
|
|
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
printk("%s: target %d using %dbit transfers\n",
|
|
ahc_name(ahc), devinfo->target,
|
|
8 * (0x01 << width));
|
|
}
|
|
}
|
|
|
|
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_TO_GOAL);
|
|
if (update_needed)
|
|
ahc_update_pending_scbs(ahc);
|
|
}
|
|
|
|
/*
|
|
* Update the current state of tagged queuing for a given target.
|
|
*/
|
|
static void
|
|
ahc_set_tags(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
|
|
struct ahc_devinfo *devinfo, ahc_queue_alg alg)
|
|
{
|
|
struct scsi_device *sdev = cmd->device;
|
|
|
|
ahc_platform_set_tags(ahc, sdev, devinfo, alg);
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
devinfo->lun, AC_TRANSFER_NEG);
|
|
}
|
|
|
|
/*
|
|
* When the transfer settings for a connection change, update any
|
|
* in-transit SCBs to contain the new data so the hardware will
|
|
* be set correctly during future (re)selections.
|
|
*/
|
|
static void
|
|
ahc_update_pending_scbs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *pending_scb;
|
|
int pending_scb_count;
|
|
int i;
|
|
int paused;
|
|
u_int saved_scbptr;
|
|
|
|
/*
|
|
* Traverse the pending SCB list and ensure that all of the
|
|
* SCBs there have the proper settings.
|
|
*/
|
|
pending_scb_count = 0;
|
|
LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
|
|
struct ahc_devinfo devinfo;
|
|
struct hardware_scb *pending_hscb;
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
ahc_scb_devinfo(ahc, &devinfo, pending_scb);
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target, &tstate);
|
|
pending_hscb = pending_scb->hscb;
|
|
pending_hscb->control &= ~ULTRAENB;
|
|
if ((tstate->ultraenb & devinfo.target_mask) != 0)
|
|
pending_hscb->control |= ULTRAENB;
|
|
pending_hscb->scsirate = tinfo->scsirate;
|
|
pending_hscb->scsioffset = tinfo->curr.offset;
|
|
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
|
|
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
|
|
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
|
|
pending_hscb->control &= ~MK_MESSAGE;
|
|
}
|
|
ahc_sync_scb(ahc, pending_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
pending_scb_count++;
|
|
}
|
|
|
|
if (pending_scb_count == 0)
|
|
return;
|
|
|
|
if (ahc_is_paused(ahc)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahc_pause(ahc);
|
|
}
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
/* Ensure that the hscbs down on the card match the new information */
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
struct hardware_scb *pending_hscb;
|
|
u_int control;
|
|
u_int scb_tag;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
scb_tag = ahc_inb(ahc, SCB_TAG);
|
|
pending_scb = ahc_lookup_scb(ahc, scb_tag);
|
|
if (pending_scb == NULL)
|
|
continue;
|
|
|
|
pending_hscb = pending_scb->hscb;
|
|
control = ahc_inb(ahc, SCB_CONTROL);
|
|
control &= ~(ULTRAENB|MK_MESSAGE);
|
|
control |= pending_hscb->control & (ULTRAENB|MK_MESSAGE);
|
|
ahc_outb(ahc, SCB_CONTROL, control);
|
|
ahc_outb(ahc, SCB_SCSIRATE, pending_hscb->scsirate);
|
|
ahc_outb(ahc, SCB_SCSIOFFSET, pending_hscb->scsioffset);
|
|
}
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
|
|
if (paused == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/**************************** Pathing Information *****************************/
|
|
static void
|
|
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
u_int saved_scsiid;
|
|
role_t role;
|
|
int our_id;
|
|
|
|
if (ahc_inb(ahc, SSTAT0) & TARGET)
|
|
role = ROLE_TARGET;
|
|
else
|
|
role = ROLE_INITIATOR;
|
|
|
|
if (role == ROLE_TARGET
|
|
&& (ahc->features & AHC_MULTI_TID) != 0
|
|
&& (ahc_inb(ahc, SEQ_FLAGS)
|
|
& (CMDPHASE_PENDING|TARG_CMD_PENDING|NO_DISCONNECT)) != 0) {
|
|
/* We were selected, so pull our id from TARGIDIN */
|
|
our_id = ahc_inb(ahc, TARGIDIN) & OID;
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0)
|
|
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
|
|
else
|
|
our_id = ahc_inb(ahc, SCSIID) & OID;
|
|
|
|
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
|
|
ahc_compile_devinfo(devinfo,
|
|
our_id,
|
|
SCSIID_TARGET(ahc, saved_scsiid),
|
|
ahc_inb(ahc, SAVED_LUN),
|
|
SCSIID_CHANNEL(ahc, saved_scsiid),
|
|
role);
|
|
}
|
|
|
|
static const struct ahc_phase_table_entry*
|
|
ahc_lookup_phase_entry(int phase)
|
|
{
|
|
const struct ahc_phase_table_entry *entry;
|
|
const struct ahc_phase_table_entry *last_entry;
|
|
|
|
/*
|
|
* num_phases doesn't include the default entry which
|
|
* will be returned if the phase doesn't match.
|
|
*/
|
|
last_entry = &ahc_phase_table[num_phases];
|
|
for (entry = ahc_phase_table; entry < last_entry; entry++) {
|
|
if (phase == entry->phase)
|
|
break;
|
|
}
|
|
return (entry);
|
|
}
|
|
|
|
void
|
|
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target,
|
|
u_int lun, char channel, role_t role)
|
|
{
|
|
devinfo->our_scsiid = our_id;
|
|
devinfo->target = target;
|
|
devinfo->lun = lun;
|
|
devinfo->target_offset = target;
|
|
devinfo->channel = channel;
|
|
devinfo->role = role;
|
|
if (channel == 'B')
|
|
devinfo->target_offset += 8;
|
|
devinfo->target_mask = (0x01 << devinfo->target_offset);
|
|
}
|
|
|
|
void
|
|
ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
printk("%s:%c:%d:%d: ", ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
|
|
static void
|
|
ahc_scb_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
role_t role;
|
|
int our_id;
|
|
|
|
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
|
|
role = ROLE_INITIATOR;
|
|
if ((scb->flags & SCB_TARGET_SCB) != 0)
|
|
role = ROLE_TARGET;
|
|
ahc_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahc, scb), role);
|
|
}
|
|
|
|
|
|
/************************ Message Phase Processing ****************************/
|
|
static void
|
|
ahc_assert_atn(struct ahc_softc *ahc)
|
|
{
|
|
u_int scsisigo;
|
|
|
|
scsisigo = ATNO;
|
|
if ((ahc->features & AHC_DT) == 0)
|
|
scsisigo |= ahc_inb(ahc, SCSISIGI);
|
|
ahc_outb(ahc, SCSISIGO, scsisigo);
|
|
}
|
|
|
|
/*
|
|
* When an initiator transaction with the MK_MESSAGE flag either reconnects
|
|
* or enters the initial message out phase, we are interrupted. Fill our
|
|
* outgoing message buffer with the appropriate message and beging handing
|
|
* the message phase(s) manually.
|
|
*/
|
|
static void
|
|
ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
|
|
if ((scb->flags & SCB_DEVICE_RESET) == 0
|
|
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) {
|
|
u_int identify_msg;
|
|
|
|
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
|
|
if ((scb->hscb->control & DISCENB) != 0)
|
|
identify_msg |= MSG_IDENTIFY_DISCFLAG;
|
|
ahc->msgout_buf[ahc->msgout_index++] = identify_msg;
|
|
ahc->msgout_len++;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0) {
|
|
ahc->msgout_buf[ahc->msgout_index++] =
|
|
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
|
|
ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag;
|
|
ahc->msgout_len += 2;
|
|
}
|
|
}
|
|
|
|
if (scb->flags & SCB_DEVICE_RESET) {
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_BUS_DEV_RESET;
|
|
ahc->msgout_len++;
|
|
ahc_print_path(ahc, scb);
|
|
printk("Bus Device Reset Message Sent\n");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else if ((scb->flags & SCB_ABORT) != 0) {
|
|
if ((scb->hscb->control & TAG_ENB) != 0)
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT_TAG;
|
|
else
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT;
|
|
ahc->msgout_len++;
|
|
ahc_print_path(ahc, scb);
|
|
printk("Abort%s Message Sent\n",
|
|
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
} else {
|
|
printk("ahc_intr: AWAITING_MSG for an SCB that "
|
|
"does not have a waiting message\n");
|
|
printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
|
|
devinfo->target_mask);
|
|
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
|
|
"SCB flags = %x", scb->hscb->tag, scb->hscb->control,
|
|
ahc_inb(ahc, MSG_OUT), scb->flags);
|
|
}
|
|
|
|
/*
|
|
* Clear the MK_MESSAGE flag from the SCB so we aren't
|
|
* asked to send this message again.
|
|
*/
|
|
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE);
|
|
scb->hscb->control &= ~MK_MESSAGE;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
}
|
|
|
|
/*
|
|
* Build an appropriate transfer negotiation message for the
|
|
* currently active target.
|
|
*/
|
|
static void
|
|
ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* We need to initiate transfer negotiations.
|
|
* If our current and goal settings are identical,
|
|
* we want to renegotiate due to a check condition.
|
|
*/
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
const struct ahc_syncrate *rate;
|
|
int dowide;
|
|
int dosync;
|
|
int doppr;
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/*
|
|
* Filter our period based on the current connection.
|
|
* If we can't perform DT transfers on this segment (not in LVD
|
|
* mode for instance), then our decision to issue a PPR message
|
|
* may change.
|
|
*/
|
|
period = tinfo->goal.period;
|
|
offset = tinfo->goal.offset;
|
|
ppr_options = tinfo->goal.ppr_options;
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
ppr_options = 0;
|
|
rate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options, devinfo->role);
|
|
dowide = tinfo->curr.width != tinfo->goal.width;
|
|
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
|
|
/*
|
|
* Only use PPR if we have options that need it, even if the device
|
|
* claims to support it. There might be an expander in the way
|
|
* that doesn't.
|
|
*/
|
|
doppr = ppr_options != 0;
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
|
|
dosync = tinfo->goal.offset != 0;
|
|
}
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
/*
|
|
* Force async with a WDTR message if we have a wide bus,
|
|
* or just issue an SDTR with a 0 offset.
|
|
*/
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
dowide = 1;
|
|
else
|
|
dosync = 1;
|
|
|
|
if (bootverbose) {
|
|
ahc_print_devinfo(ahc, devinfo);
|
|
printk("Ensuring async\n");
|
|
}
|
|
}
|
|
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
doppr = 0;
|
|
|
|
/*
|
|
* Both the PPR message and SDTR message require the
|
|
* goal syncrate to be limited to what the target device
|
|
* is capable of handling (based on whether an LVD->SE
|
|
* expander is on the bus), so combine these two cases.
|
|
* Regardless, guarantee that if we are using WDTR and SDTR
|
|
* messages that WDTR comes first.
|
|
*/
|
|
if (doppr || (dosync && !dowide)) {
|
|
|
|
offset = tinfo->goal.offset;
|
|
ahc_validate_offset(ahc, tinfo, rate, &offset,
|
|
doppr ? tinfo->goal.width
|
|
: tinfo->curr.width,
|
|
devinfo->role);
|
|
if (doppr) {
|
|
ahc_construct_ppr(ahc, devinfo, period, offset,
|
|
tinfo->goal.width, ppr_options);
|
|
} else {
|
|
ahc_construct_sdtr(ahc, devinfo, period, offset);
|
|
}
|
|
} else {
|
|
ahc_construct_wdtr(ahc, devinfo, tinfo->goal.width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a synchronous negotiation message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_sdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset)
|
|
{
|
|
if (offset == 0)
|
|
period = AHC_ASYNC_XFER_PERIOD;
|
|
ahc->msgout_index += spi_populate_sync_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, period, offset);
|
|
ahc->msgout_len += 5;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, period, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a wide negotiation message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_wdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int bus_width)
|
|
{
|
|
ahc->msgout_index += spi_populate_width_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, bus_width);
|
|
ahc->msgout_len += 4;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending WDTR %x\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a parallel protocol request message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_ppr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset, u_int bus_width,
|
|
u_int ppr_options)
|
|
{
|
|
if (offset == 0)
|
|
period = AHC_ASYNC_XFER_PERIOD;
|
|
ahc->msgout_index += spi_populate_ppr_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, period, offset,
|
|
bus_width, ppr_options);
|
|
ahc->msgout_len += 8;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
|
|
"offset %x, ppr_options %x\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any active message state.
|
|
*/
|
|
static void
|
|
ahc_clear_msg_state(struct ahc_softc *ahc)
|
|
{
|
|
ahc->msgout_len = 0;
|
|
ahc->msgin_index = 0;
|
|
ahc->msg_type = MSG_TYPE_NONE;
|
|
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0) {
|
|
/*
|
|
* The target didn't care to respond to our
|
|
* message request, so clear ATN.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
}
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
|
|
ahc_outb(ahc, SEQ_FLAGS2,
|
|
ahc_inb(ahc, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_proto_violation(struct ahc_softc *ahc)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int seq_flags;
|
|
u_int curphase;
|
|
u_int lastphase;
|
|
int found;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
scbid = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scbid);
|
|
seq_flags = ahc_inb(ahc, SEQ_FLAGS);
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
if ((seq_flags & NOT_IDENTIFIED) != 0) {
|
|
|
|
/*
|
|
* The reconnecting target either did not send an
|
|
* identify message, or did, but we didn't find an SCB
|
|
* to match.
|
|
*/
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Target did not send an IDENTIFY message. "
|
|
"LASTPHASE = 0x%x.\n", lastphase);
|
|
scb = NULL;
|
|
} else if (scb == NULL) {
|
|
/*
|
|
* We don't seem to have an SCB active for this
|
|
* transaction. Print an error and reset the bus.
|
|
*/
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("No SCB found during protocol violation\n");
|
|
goto proto_violation_reset;
|
|
} else {
|
|
ahc_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
|
|
if ((seq_flags & NO_CDB_SENT) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("No or incomplete CDB sent to device.\n");
|
|
} else if ((ahc_inb(ahc, SCB_CONTROL) & STATUS_RCVD) == 0) {
|
|
/*
|
|
* The target never bothered to provide status to
|
|
* us prior to completing the command. Since we don't
|
|
* know the disposition of this command, we must attempt
|
|
* to abort it. Assert ATN and prepare to send an abort
|
|
* message.
|
|
*/
|
|
ahc_print_path(ahc, scb);
|
|
printk("Completed command without status.\n");
|
|
} else {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Unknown protocol violation.\n");
|
|
ahc_dump_card_state(ahc);
|
|
}
|
|
}
|
|
if ((lastphase & ~P_DATAIN_DT) == 0
|
|
|| lastphase == P_COMMAND) {
|
|
proto_violation_reset:
|
|
/*
|
|
* Target either went directly to data/command
|
|
* phase or didn't respond to our ATN.
|
|
* The only safe thing to do is to blow
|
|
* it away with a bus reset.
|
|
*/
|
|
found = ahc_reset_channel(ahc, 'A', TRUE);
|
|
printk("%s: Issued Channel %c Bus Reset. "
|
|
"%d SCBs aborted\n", ahc_name(ahc), 'A', found);
|
|
} else {
|
|
/*
|
|
* Leave the selection hardware off in case
|
|
* this abort attempt will affect yet to
|
|
* be sent commands.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & ~ENSELO);
|
|
ahc_assert_atn(ahc);
|
|
ahc_outb(ahc, MSG_OUT, HOST_MSG);
|
|
if (scb == NULL) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
ahc->msgout_buf[0] = MSG_ABORT_TASK;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
} else {
|
|
ahc_print_path(ahc, scb);
|
|
scb->flags |= SCB_ABORT;
|
|
}
|
|
printk("Protocol violation %s. Attempting to abort.\n",
|
|
ahc_lookup_phase_entry(curphase)->phasemsg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manual message loop handler.
|
|
*/
|
|
static void
|
|
ahc_handle_message_phase(struct ahc_softc *ahc)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
u_int bus_phase;
|
|
int end_session;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
end_session = FALSE;
|
|
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
|
|
reswitch:
|
|
switch (ahc->msg_type) {
|
|
case MSG_TYPE_INITIATOR_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int phasemis;
|
|
int msgdone;
|
|
|
|
if (ahc->msgout_len == 0)
|
|
panic("HOST_MSG_LOOP interrupt with no active message");
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("INITIATOR_MSG_OUT");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGOUT;
|
|
if (phasemis) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahc_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
if (bus_phase == P_MESGIN) {
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
ahc->send_msg_perror = FALSE;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (ahc->send_msg_perror) {
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n", ahc->send_msg_perror);
|
|
#endif
|
|
ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahc->msgout_index == ahc->msgout_len;
|
|
if (msgdone) {
|
|
/*
|
|
* The target has requested a retry.
|
|
* Re-assert ATN, reset our message index to
|
|
* 0, and try again.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc_assert_atn(ahc);
|
|
}
|
|
|
|
lastbyte = ahc->msgout_index == (ahc->msgout_len - 1);
|
|
if (lastbyte) {
|
|
/* Last byte is signified by dropping ATN */
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
}
|
|
|
|
/*
|
|
* Clear our interrupt status and present
|
|
* the next byte on the bus.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahc->msgout_buf[ahc->msgout_index]);
|
|
#endif
|
|
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
|
|
break;
|
|
}
|
|
case MSG_TYPE_INITIATOR_MSGIN:
|
|
{
|
|
int phasemis;
|
|
int message_done;
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("INITIATOR_MSG_IN");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGIN;
|
|
if (phasemis) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahc_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
ahc->msgin_index = 0;
|
|
if (bus_phase == P_MESGOUT
|
|
&& (ahc->send_msg_perror == TRUE
|
|
|| (ahc->msgout_len != 0
|
|
&& ahc->msgout_index == 0))) {
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Pull the byte in without acking it */
|
|
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahc->msgin_buf[ahc->msgin_index]);
|
|
#endif
|
|
|
|
message_done = ahc_parse_msg(ahc, &devinfo);
|
|
|
|
if (message_done) {
|
|
/*
|
|
* Clear our incoming message buffer in case there
|
|
* is another message following this one.
|
|
*/
|
|
ahc->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response,
|
|
* assert ATN so the target takes us to the
|
|
* message out phase.
|
|
*/
|
|
if (ahc->msgout_len != 0) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Asserting ATN for response\n");
|
|
}
|
|
#endif
|
|
ahc_assert_atn(ahc);
|
|
}
|
|
} else
|
|
ahc->msgin_index++;
|
|
|
|
if (message_done == MSGLOOP_TERMINATED) {
|
|
end_session = TRUE;
|
|
} else {
|
|
/* Ack the byte */
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
ahc_inb(ahc, SCSIDATL);
|
|
}
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGIN:
|
|
{
|
|
int msgdone;
|
|
int msgout_request;
|
|
|
|
if (ahc->msgout_len == 0)
|
|
panic("Target MSGIN with no active message");
|
|
|
|
/*
|
|
* If we interrupted a mesgout session, the initiator
|
|
* will not know this until our first REQ. So, we
|
|
* only honor mesgout requests after we've sent our
|
|
* first byte.
|
|
*/
|
|
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0
|
|
&& ahc->msgout_index > 0)
|
|
msgout_request = TRUE;
|
|
else
|
|
msgout_request = FALSE;
|
|
|
|
if (msgout_request) {
|
|
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGOUT;
|
|
ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO);
|
|
ahc->msgin_index = 0;
|
|
/* Dummy read to REQ for first byte */
|
|
ahc_inb(ahc, SCSIDATL);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahc->msgout_index == ahc->msgout_len;
|
|
if (msgdone) {
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Present the next byte on the bus.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int msgdone;
|
|
|
|
/*
|
|
* The initiator signals that this is
|
|
* the last byte by dropping ATN.
|
|
*/
|
|
lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0;
|
|
|
|
/*
|
|
* Read the latched byte, but turn off SPIOEN first
|
|
* so that we don't inadvertently cause a REQ for the
|
|
* next byte.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
|
|
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL);
|
|
msgdone = ahc_parse_msg(ahc, &devinfo);
|
|
if (msgdone == MSGLOOP_TERMINATED) {
|
|
/*
|
|
* The message is *really* done in that it caused
|
|
* us to go to bus free. The sequencer has already
|
|
* been reset at this point, so pull the ejection
|
|
* handle.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ahc->msgin_index++;
|
|
|
|
/*
|
|
* XXX Read spec about initiator dropping ATN too soon
|
|
* and use msgdone to detect it.
|
|
*/
|
|
if (msgdone == MSGLOOP_MSGCOMPLETE) {
|
|
ahc->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response, transition
|
|
* to the Message in phase and send it.
|
|
*/
|
|
if (ahc->msgout_len != 0) {
|
|
ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lastbyte)
|
|
end_session = TRUE;
|
|
else {
|
|
/* Ask for the next byte. */
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unknown REQINIT message type");
|
|
}
|
|
|
|
if (end_session) {
|
|
ahc_clear_msg_state(ahc);
|
|
ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP);
|
|
} else
|
|
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
|
|
}
|
|
|
|
/*
|
|
* See if we sent a particular extended message to the target.
|
|
* If "full" is true, return true only if the target saw the full
|
|
* message. If "full" is false, return true if the target saw at
|
|
* least the first byte of the message.
|
|
*/
|
|
static int
|
|
ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, u_int msgval, int full)
|
|
{
|
|
int found;
|
|
u_int index;
|
|
|
|
found = FALSE;
|
|
index = 0;
|
|
|
|
while (index < ahc->msgout_len) {
|
|
if (ahc->msgout_buf[index] == MSG_EXTENDED) {
|
|
u_int end_index;
|
|
|
|
end_index = index + 1 + ahc->msgout_buf[index + 1];
|
|
if (ahc->msgout_buf[index+2] == msgval
|
|
&& type == AHCMSG_EXT) {
|
|
|
|
if (full) {
|
|
if (ahc->msgout_index > end_index)
|
|
found = TRUE;
|
|
} else if (ahc->msgout_index > index)
|
|
found = TRUE;
|
|
}
|
|
index = end_index;
|
|
} else if (ahc->msgout_buf[index] >= MSG_SIMPLE_TASK
|
|
&& ahc->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
|
|
|
|
/* Skip tag type and tag id or residue param*/
|
|
index += 2;
|
|
} else {
|
|
/* Single byte message */
|
|
if (type == AHCMSG_1B
|
|
&& ahc->msgout_buf[index] == msgval
|
|
&& ahc->msgout_index > index)
|
|
found = TRUE;
|
|
index++;
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
}
|
|
return (found);
|
|
}
|
|
|
|
/*
|
|
* Wait for a complete incoming message, parse it, and respond accordingly.
|
|
*/
|
|
static int
|
|
ahc_parse_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
int reject;
|
|
int done;
|
|
int response;
|
|
u_int targ_scsirate;
|
|
|
|
done = MSGLOOP_IN_PROG;
|
|
response = FALSE;
|
|
reject = FALSE;
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
targ_scsirate = tinfo->scsirate;
|
|
|
|
/*
|
|
* Parse as much of the message as is available,
|
|
* rejecting it if we don't support it. When
|
|
* the entire message is available and has been
|
|
* handled, return MSGLOOP_MSGCOMPLETE, indicating
|
|
* that we have parsed an entire message.
|
|
*
|
|
* In the case of extended messages, we accept the length
|
|
* byte outright and perform more checking once we know the
|
|
* extended message type.
|
|
*/
|
|
switch (ahc->msgin_buf[0]) {
|
|
case MSG_DISCONNECT:
|
|
case MSG_SAVEDATAPOINTER:
|
|
case MSG_CMDCOMPLETE:
|
|
case MSG_RESTOREPOINTERS:
|
|
case MSG_IGN_WIDE_RESIDUE:
|
|
/*
|
|
* End our message loop as these are messages
|
|
* the sequencer handles on its own.
|
|
*/
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case MSG_MESSAGE_REJECT:
|
|
response = ahc_handle_msg_reject(ahc, devinfo);
|
|
fallthrough;
|
|
case MSG_NOOP:
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
case MSG_EXTENDED:
|
|
{
|
|
/* Wait for enough of the message to begin validation */
|
|
if (ahc->msgin_index < 2)
|
|
break;
|
|
switch (ahc->msgin_buf[2]) {
|
|
case MSG_EXT_SDTR:
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
u_int saved_offset;
|
|
|
|
if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have both args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_SDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1))
|
|
break;
|
|
|
|
period = ahc->msgin_buf[3];
|
|
ppr_options = 0;
|
|
saved_offset = offset = ahc->msgin_buf[4];
|
|
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options,
|
|
devinfo->role);
|
|
ahc_validate_offset(ahc, tinfo, syncrate, &offset,
|
|
targ_scsirate & WIDEXFER,
|
|
devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received "
|
|
"SDTR period %x, offset %x\n\t"
|
|
"Filtered to period %x, offset %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
ahc->msgin_buf[3], saved_offset,
|
|
period, offset);
|
|
}
|
|
ahc_set_syncrate(ahc, devinfo,
|
|
syncrate, period,
|
|
offset, ppr_options,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
|
|
/*
|
|
* See if we initiated Sync Negotiation
|
|
* and didn't have to fall down to async
|
|
* transfers.
|
|
*/
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, TRUE)) {
|
|
/* We started it */
|
|
if (saved_offset != offset) {
|
|
/* Went too low - force async */
|
|
reject = TRUE;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own SDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated SDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_sdtr(ahc, devinfo,
|
|
period, offset);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case MSG_EXT_WDTR:
|
|
{
|
|
u_int bus_width;
|
|
u_int saved_width;
|
|
u_int sending_reply;
|
|
|
|
sending_reply = FALSE;
|
|
if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have our arg before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_WDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1))
|
|
break;
|
|
|
|
bus_width = ahc->msgin_buf[3];
|
|
saved_width = bus_width;
|
|
ahc_validate_width(ahc, tinfo, &bus_width,
|
|
devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received WDTR "
|
|
"%x filtered to %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, bus_width);
|
|
}
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, TRUE)) {
|
|
/*
|
|
* Don't send a WDTR back to the
|
|
* target, since we asked first.
|
|
* If the width went higher than our
|
|
* request, reject it.
|
|
*/
|
|
if (saved_width > bus_width) {
|
|
reject = TRUE;
|
|
printk("(%s:%c:%d:%d): requested %dBit "
|
|
"transfers. Rejecting...\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
8 * (0x01 << bus_width));
|
|
bus_width = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own WDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated WDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_wdtr(ahc, devinfo, bus_width);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
sending_reply = TRUE;
|
|
}
|
|
/*
|
|
* After a wide message, we are async, but
|
|
* some devices don't seem to honor this portion
|
|
* of the spec. Force a renegotiation of the
|
|
* sync component of our transfer agreement even
|
|
* if our goal is async. By updating our width
|
|
* after forcing the negotiation, we avoid
|
|
* renegotiating for width.
|
|
*/
|
|
ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_ALWAYS);
|
|
ahc_set_width(ahc, devinfo, bus_width,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
if (sending_reply == FALSE && reject == FALSE) {
|
|
|
|
/*
|
|
* We will always have an SDTR to send.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case MSG_EXT_PPR:
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
u_int period;
|
|
u_int offset;
|
|
u_int bus_width;
|
|
u_int ppr_options;
|
|
u_int saved_width;
|
|
u_int saved_offset;
|
|
u_int saved_ppr_options;
|
|
|
|
if (ahc->msgin_buf[1] != MSG_EXT_PPR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have all args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_PPR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_PPR_LEN + 1))
|
|
break;
|
|
|
|
period = ahc->msgin_buf[3];
|
|
offset = ahc->msgin_buf[5];
|
|
bus_width = ahc->msgin_buf[6];
|
|
saved_width = bus_width;
|
|
ppr_options = ahc->msgin_buf[7];
|
|
/*
|
|
* According to the spec, a DT only
|
|
* period factor with no DT option
|
|
* set implies async.
|
|
*/
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& period == 9)
|
|
offset = 0;
|
|
saved_ppr_options = ppr_options;
|
|
saved_offset = offset;
|
|
|
|
/*
|
|
* Mask out any options we don't support
|
|
* on any controller. Transfer options are
|
|
* only available if we are negotiating wide.
|
|
*/
|
|
ppr_options &= MSG_EXT_PPR_DT_REQ;
|
|
if (bus_width == 0)
|
|
ppr_options = 0;
|
|
|
|
ahc_validate_width(ahc, tinfo, &bus_width,
|
|
devinfo->role);
|
|
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options,
|
|
devinfo->role);
|
|
ahc_validate_offset(ahc, tinfo, syncrate,
|
|
&offset, bus_width,
|
|
devinfo->role);
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, TRUE)) {
|
|
/*
|
|
* If we are unable to do any of the
|
|
* requested options (we went too low),
|
|
* then we'll have to reject the message.
|
|
*/
|
|
if (saved_width > bus_width
|
|
|| saved_offset != offset
|
|
|| saved_ppr_options != ppr_options) {
|
|
reject = TRUE;
|
|
period = 0;
|
|
offset = 0;
|
|
bus_width = 0;
|
|
ppr_options = 0;
|
|
syncrate = NULL;
|
|
}
|
|
} else {
|
|
if (devinfo->role != ROLE_TARGET)
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated PPR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
else
|
|
printk("(%s:%c:%d:%d): Initiator "
|
|
"Initiated PPR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_ppr(ahc, devinfo, period, offset,
|
|
bus_width, ppr_options);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received PPR width %x, "
|
|
"period %x, offset %x,options %x\n"
|
|
"\tFiltered to width %x, period %x, "
|
|
"offset %x, options %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, ahc->msgin_buf[3],
|
|
saved_offset, saved_ppr_options,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
ahc_set_width(ahc, devinfo, bus_width,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, devinfo,
|
|
syncrate, period,
|
|
offset, ppr_options,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
default:
|
|
/* Unknown extended message. Reject it. */
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
case MSG_BUS_DEV_RESET:
|
|
ahc_handle_devreset(ahc, devinfo,
|
|
CAM_BDR_SENT,
|
|
"Bus Device Reset Received",
|
|
/*verbose_level*/0);
|
|
ahc_restart(ahc);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case MSG_ABORT_TAG:
|
|
case MSG_ABORT:
|
|
case MSG_CLEAR_QUEUE:
|
|
{
|
|
int tag;
|
|
|
|
/* Target mode messages */
|
|
if (devinfo->role != ROLE_TARGET) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
tag = SCB_LIST_NULL;
|
|
if (ahc->msgin_buf[0] == MSG_ABORT_TAG)
|
|
tag = ahc_inb(ahc, INITIATOR_TAG);
|
|
ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
|
|
devinfo->lun, tag, ROLE_TARGET,
|
|
CAM_REQ_ABORTED);
|
|
|
|
tstate = ahc->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[devinfo->lun];
|
|
if (lstate != NULL) {
|
|
ahc_queue_lstate_event(ahc, lstate,
|
|
devinfo->our_scsiid,
|
|
ahc->msgin_buf[0],
|
|
/*arg*/tag);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
ahc_restart(ahc);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
}
|
|
#endif
|
|
case MSG_TERM_IO_PROC:
|
|
default:
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (reject) {
|
|
/*
|
|
* Setup to reject the message.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_buf[0] = MSG_MESSAGE_REJECT;
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
response = TRUE;
|
|
}
|
|
|
|
if (done != MSGLOOP_IN_PROG && !response)
|
|
/* Clear the outgoing message buffer */
|
|
ahc->msgout_len = 0;
|
|
|
|
return (done);
|
|
}
|
|
|
|
/*
|
|
* Process a message reject message.
|
|
*/
|
|
static int
|
|
ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* What we care about here is if we had an
|
|
* outstanding SDTR or WDTR message for this
|
|
* target. If we did, this is a signal that
|
|
* the target is refusing negotiation.
|
|
*/
|
|
struct scb *scb;
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int scb_index;
|
|
u_int last_msg;
|
|
int response = 0;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/* Might be necessary */
|
|
last_msg = ahc_inb(ahc, LAST_MSG);
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
|
|
/*
|
|
* Target does not support the PPR message.
|
|
* Attempt to negotiate SPI-2 style.
|
|
*/
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): PPR Rejected. "
|
|
"Trying WDTR/SDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
tinfo->goal.ppr_options = 0;
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = 1;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
|
|
|
|
/* note 8bit xfers */
|
|
printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
|
|
"8bit transfers\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
/*
|
|
* No need to clear the sync rate. If the target
|
|
* did not accept the command, our syncrate is
|
|
* unaffected. If the target started the negotiation,
|
|
* but rejected our response, we already cleared the
|
|
* sync rate before sending our WDTR.
|
|
*/
|
|
if (tinfo->goal.offset != tinfo->curr.offset) {
|
|
|
|
/* Start the sync negotiation */
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = 1;
|
|
}
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
|
|
/* note asynch xfers and clear flag */
|
|
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, /*period*/0,
|
|
/*offset*/0, /*ppr_options*/0,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
|
|
"Using asynchronous transfers\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
|
|
int tag_type;
|
|
int mask;
|
|
|
|
tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
|
|
|
|
if (tag_type == MSG_SIMPLE_TASK) {
|
|
printk("(%s:%c:%d:%d): refuses tagged commands. "
|
|
"Performing non-tagged I/O\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_NONE);
|
|
mask = ~0x23;
|
|
} else {
|
|
printk("(%s:%c:%d:%d): refuses %s tagged commands. "
|
|
"Performing simple queue tagged I/O only\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, tag_type == MSG_ORDERED_TASK
|
|
? "ordered" : "head of queue");
|
|
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_BASIC);
|
|
mask = ~0x03;
|
|
}
|
|
|
|
/*
|
|
* Resend the identify for this CCB as the target
|
|
* may believe that the selection is invalid otherwise.
|
|
*/
|
|
ahc_outb(ahc, SCB_CONTROL,
|
|
ahc_inb(ahc, SCB_CONTROL) & mask);
|
|
scb->hscb->control &= mask;
|
|
ahc_set_transaction_tag(scb, /*enabled*/FALSE,
|
|
/*type*/MSG_SIMPLE_TASK);
|
|
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
|
|
ahc_assert_atn(ahc);
|
|
|
|
/*
|
|
* This transaction is now at the head of
|
|
* the untagged queue for this target.
|
|
*/
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
struct scb_tailq *untagged_q;
|
|
|
|
untagged_q =
|
|
&(ahc->untagged_queues[devinfo->target_offset]);
|
|
TAILQ_INSERT_HEAD(untagged_q, scb, links.tqe);
|
|
scb->flags |= SCB_UNTAGGEDQ;
|
|
}
|
|
ahc_busy_tcl(ahc, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
|
|
scb->hscb->tag);
|
|
|
|
/*
|
|
* Requeue all tagged commands for this target
|
|
* currently in our possession so they can be
|
|
* converted to untagged commands.
|
|
*/
|
|
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_CHANNEL(ahc, scb),
|
|
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
|
|
ROLE_INITIATOR, CAM_REQUEUE_REQ,
|
|
SEARCH_COMPLETE);
|
|
} else {
|
|
/*
|
|
* Otherwise, we ignore it.
|
|
*/
|
|
printk("%s:%c:%d: Message reject for %x -- ignored\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
last_msg);
|
|
}
|
|
return (response);
|
|
}
|
|
|
|
/*
|
|
* Process an ingnore wide residue message.
|
|
*/
|
|
static void
|
|
ahc_handle_ign_wide_residue(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
u_int scb_index;
|
|
struct scb *scb;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
/*
|
|
* XXX Actually check data direction in the sequencer?
|
|
* Perhaps add datadir to some spare bits in the hscb?
|
|
*/
|
|
if ((ahc_inb(ahc, SEQ_FLAGS) & DPHASE) == 0
|
|
|| ahc_get_transfer_dir(scb) != CAM_DIR_IN) {
|
|
/*
|
|
* Ignore the message if we haven't
|
|
* seen an appropriate data phase yet.
|
|
*/
|
|
} else {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing. Otherwise, subtract a byte
|
|
* and update the residual count accordingly.
|
|
*/
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
|
|
if ((sgptr & SG_LIST_NULL) != 0
|
|
&& (ahc_inb(ahc, SCB_LUN) & SCB_XFERLEN_ODD) != 0) {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing.
|
|
*/
|
|
} else {
|
|
struct ahc_dma_seg *sg;
|
|
uint32_t data_cnt;
|
|
uint32_t data_addr;
|
|
uint32_t sglen;
|
|
|
|
/* Pull in all of the sgptr */
|
|
sgptr = ahc_inl(ahc, SCB_RESIDUAL_SGPTR);
|
|
data_cnt = ahc_inl(ahc, SCB_RESIDUAL_DATACNT);
|
|
|
|
if ((sgptr & SG_LIST_NULL) != 0) {
|
|
/*
|
|
* The residual data count is not updated
|
|
* for the command run to completion case.
|
|
* Explicitly zero the count.
|
|
*/
|
|
data_cnt &= ~AHC_SG_LEN_MASK;
|
|
}
|
|
|
|
data_addr = ahc_inl(ahc, SHADDR);
|
|
|
|
data_cnt += 1;
|
|
data_addr -= 1;
|
|
sgptr &= SG_PTR_MASK;
|
|
|
|
sg = ahc_sg_bus_to_virt(scb, sgptr);
|
|
|
|
/*
|
|
* The residual sg ptr points to the next S/G
|
|
* to load so we must go back one.
|
|
*/
|
|
sg--;
|
|
sglen = ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
|
|
if (sg != scb->sg_list
|
|
&& sglen < (data_cnt & AHC_SG_LEN_MASK)) {
|
|
|
|
sg--;
|
|
sglen = ahc_le32toh(sg->len);
|
|
/*
|
|
* Preserve High Address and SG_LIST bits
|
|
* while setting the count to 1.
|
|
*/
|
|
data_cnt = 1 | (sglen & (~AHC_SG_LEN_MASK));
|
|
data_addr = ahc_le32toh(sg->addr)
|
|
+ (sglen & AHC_SG_LEN_MASK) - 1;
|
|
|
|
/*
|
|
* Increment sg so it points to the
|
|
* "next" sg.
|
|
*/
|
|
sg++;
|
|
sgptr = ahc_sg_virt_to_bus(scb, sg);
|
|
}
|
|
ahc_outl(ahc, SCB_RESIDUAL_SGPTR, sgptr);
|
|
ahc_outl(ahc, SCB_RESIDUAL_DATACNT, data_cnt);
|
|
/*
|
|
* Toggle the "oddness" of the transfer length
|
|
* to handle this mid-transfer ignore wide
|
|
* residue. This ensures that the oddness is
|
|
* correct for subsequent data transfers.
|
|
*/
|
|
ahc_outb(ahc, SCB_LUN,
|
|
ahc_inb(ahc, SCB_LUN) ^ SCB_XFERLEN_ODD);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Reinitialize the data pointers for the active transfer
|
|
* based on its current residual.
|
|
*/
|
|
static void
|
|
ahc_reinitialize_dataptrs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
struct ahc_dma_seg *sg;
|
|
u_int scb_index;
|
|
uint32_t sgptr;
|
|
uint32_t resid;
|
|
uint32_t dataptr;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
sgptr = (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 3) << 24)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 2) << 16)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 1) << 8)
|
|
| ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
|
|
|
|
sgptr &= SG_PTR_MASK;
|
|
sg = ahc_sg_bus_to_virt(scb, sgptr);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
resid = (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 2) << 16)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 1) << 8)
|
|
| ahc_inb(ahc, SCB_RESIDUAL_DATACNT);
|
|
|
|
dataptr = ahc_le32toh(sg->addr)
|
|
+ (ahc_le32toh(sg->len) & AHC_SG_LEN_MASK)
|
|
- resid;
|
|
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
|
|
u_int dscommand1;
|
|
|
|
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
|
|
ahc_outb(ahc, HADDR,
|
|
(ahc_le32toh(sg->len) >> 24) & SG_HIGH_ADDR_BITS);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1);
|
|
}
|
|
ahc_outb(ahc, HADDR + 3, dataptr >> 24);
|
|
ahc_outb(ahc, HADDR + 2, dataptr >> 16);
|
|
ahc_outb(ahc, HADDR + 1, dataptr >> 8);
|
|
ahc_outb(ahc, HADDR, dataptr);
|
|
ahc_outb(ahc, HCNT + 2, resid >> 16);
|
|
ahc_outb(ahc, HCNT + 1, resid >> 8);
|
|
ahc_outb(ahc, HCNT, resid);
|
|
if ((ahc->features & AHC_ULTRA2) == 0) {
|
|
ahc_outb(ahc, STCNT + 2, resid >> 16);
|
|
ahc_outb(ahc, STCNT + 1, resid >> 8);
|
|
ahc_outb(ahc, STCNT, resid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the effects of issuing a bus device reset message.
|
|
*/
|
|
static void
|
|
ahc_handle_devreset(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
cam_status status, char *message, int verbose_level)
|
|
{
|
|
#ifdef AHC_TARGET_MODE
|
|
struct ahc_tmode_tstate* tstate;
|
|
u_int lun;
|
|
#endif
|
|
int found;
|
|
|
|
found = ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL, devinfo->role,
|
|
status);
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target mord peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
tstate = ahc->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahc_queue_lstate_event(ahc, lstate, devinfo->our_scsiid,
|
|
MSG_BUS_DEV_RESET, /*arg*/0);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go back to async/narrow transfers and renegotiate.
|
|
*/
|
|
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0, /*ppr_options*/0,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
|
|
if (status != CAM_SEL_TIMEOUT)
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_SENT_BDR);
|
|
|
|
if (message != NULL
|
|
&& (verbose_level <= bootverbose))
|
|
printk("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
|
|
message, devinfo->channel, devinfo->target, found);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
static void
|
|
ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
|
|
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
else
|
|
panic("ahc_intr: AWAITING target message with no message");
|
|
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
}
|
|
#endif
|
|
/**************************** Initialization **********************************/
|
|
/*
|
|
* Allocate a controller structure for a new device
|
|
* and perform initial initializion.
|
|
*/
|
|
struct ahc_softc *
|
|
ahc_alloc(void *platform_arg, char *name)
|
|
{
|
|
struct ahc_softc *ahc;
|
|
int i;
|
|
|
|
ahc = kzalloc(sizeof(*ahc), GFP_ATOMIC);
|
|
if (!ahc) {
|
|
printk("aic7xxx: cannot malloc softc!\n");
|
|
kfree(name);
|
|
return NULL;
|
|
}
|
|
|
|
ahc->seep_config = kmalloc(sizeof(*ahc->seep_config), GFP_ATOMIC);
|
|
if (ahc->seep_config == NULL) {
|
|
kfree(ahc);
|
|
kfree(name);
|
|
return (NULL);
|
|
}
|
|
LIST_INIT(&ahc->pending_scbs);
|
|
/* We don't know our unit number until the OSM sets it */
|
|
ahc->name = name;
|
|
ahc->unit = -1;
|
|
ahc->description = NULL;
|
|
ahc->channel = 'A';
|
|
ahc->channel_b = 'B';
|
|
ahc->chip = AHC_NONE;
|
|
ahc->features = AHC_FENONE;
|
|
ahc->bugs = AHC_BUGNONE;
|
|
ahc->flags = AHC_FNONE;
|
|
/*
|
|
* Default to all error reporting enabled with the
|
|
* sequencer operating at its fastest speed.
|
|
* The bus attach code may modify this.
|
|
*/
|
|
ahc->seqctl = FASTMODE;
|
|
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++)
|
|
TAILQ_INIT(&ahc->untagged_queues[i]);
|
|
if (ahc_platform_alloc(ahc, platform_arg) != 0) {
|
|
ahc_free(ahc);
|
|
ahc = NULL;
|
|
}
|
|
return (ahc);
|
|
}
|
|
|
|
int
|
|
ahc_softc_init(struct ahc_softc *ahc)
|
|
{
|
|
|
|
/* The IRQMS bit is only valid on VL and EISA chips */
|
|
if ((ahc->chip & AHC_PCI) == 0)
|
|
ahc->unpause = ahc_inb(ahc, HCNTRL) & IRQMS;
|
|
else
|
|
ahc->unpause = 0;
|
|
ahc->pause = ahc->unpause | PAUSE;
|
|
/* XXX The shared scb data stuff should be deprecated */
|
|
if (ahc->scb_data == NULL) {
|
|
ahc->scb_data = kzalloc(sizeof(*ahc->scb_data), GFP_ATOMIC);
|
|
if (ahc->scb_data == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ahc_set_unit(struct ahc_softc *ahc, int unit)
|
|
{
|
|
ahc->unit = unit;
|
|
}
|
|
|
|
void
|
|
ahc_set_name(struct ahc_softc *ahc, char *name)
|
|
{
|
|
kfree(ahc->name);
|
|
ahc->name = name;
|
|
}
|
|
|
|
void
|
|
ahc_free(struct ahc_softc *ahc)
|
|
{
|
|
int i;
|
|
|
|
switch (ahc->init_level) {
|
|
default:
|
|
case 5:
|
|
ahc_shutdown(ahc);
|
|
fallthrough;
|
|
case 4:
|
|
ahc_dmamap_unload(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap);
|
|
fallthrough;
|
|
case 3:
|
|
ahc_dmamem_free(ahc, ahc->shared_data_dmat, ahc->qoutfifo,
|
|
ahc->shared_data_dmamap);
|
|
ahc_dmamap_destroy(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap);
|
|
fallthrough;
|
|
case 2:
|
|
ahc_dma_tag_destroy(ahc, ahc->shared_data_dmat);
|
|
case 1:
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
ahc_platform_free(ahc);
|
|
ahc_fini_scbdata(ahc);
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++) {
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
tstate = ahc->enabled_targets[i];
|
|
if (tstate != NULL) {
|
|
#ifdef AHC_TARGET_MODE
|
|
int j;
|
|
|
|
for (j = 0; j < AHC_NUM_LUNS; j++) {
|
|
struct ahc_tmode_lstate *lstate;
|
|
|
|
lstate = tstate->enabled_luns[j];
|
|
if (lstate != NULL) {
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
}
|
|
}
|
|
#endif
|
|
kfree(tstate);
|
|
}
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
if (ahc->black_hole != NULL) {
|
|
xpt_free_path(ahc->black_hole->path);
|
|
kfree(ahc->black_hole);
|
|
}
|
|
#endif
|
|
kfree(ahc->name);
|
|
kfree(ahc->seep_config);
|
|
kfree(ahc);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ahc_shutdown(void *arg)
|
|
{
|
|
struct ahc_softc *ahc;
|
|
int i;
|
|
|
|
ahc = (struct ahc_softc *)arg;
|
|
|
|
/* This will reset most registers to 0, but not all */
|
|
ahc_reset(ahc, /*reinit*/FALSE);
|
|
ahc_outb(ahc, SCSISEQ, 0);
|
|
ahc_outb(ahc, SXFRCTL0, 0);
|
|
ahc_outb(ahc, DSPCISTATUS, 0);
|
|
|
|
for (i = TARG_SCSIRATE; i < SCSICONF; i++)
|
|
ahc_outb(ahc, i, 0);
|
|
}
|
|
|
|
/*
|
|
* Reset the controller and record some information about it
|
|
* that is only available just after a reset. If "reinit" is
|
|
* non-zero, this reset occurred after initial configuration
|
|
* and the caller requests that the chip be fully reinitialized
|
|
* to a runable state. Chip interrupts are *not* enabled after
|
|
* a reinitialization. The caller must enable interrupts via
|
|
* ahc_intr_enable().
|
|
*/
|
|
int
|
|
ahc_reset(struct ahc_softc *ahc, int reinit)
|
|
{
|
|
u_int sblkctl;
|
|
u_int sxfrctl1_a, sxfrctl1_b;
|
|
int error;
|
|
int wait;
|
|
|
|
/*
|
|
* Preserve the value of the SXFRCTL1 register for all channels.
|
|
* It contains settings that affect termination and we don't want
|
|
* to disturb the integrity of the bus.
|
|
*/
|
|
ahc_pause(ahc);
|
|
sxfrctl1_b = 0;
|
|
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7770) {
|
|
u_int sblkctl;
|
|
|
|
/*
|
|
* Save channel B's settings in case this chip
|
|
* is setup for TWIN channel operation.
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
|
|
sxfrctl1_b = ahc_inb(ahc, SXFRCTL1);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
|
|
}
|
|
sxfrctl1_a = ahc_inb(ahc, SXFRCTL1);
|
|
|
|
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
|
|
|
|
/*
|
|
* Ensure that the reset has finished. We delay 1000us
|
|
* prior to reading the register to make sure the chip
|
|
* has sufficiently completed its reset to handle register
|
|
* accesses.
|
|
*/
|
|
wait = 1000;
|
|
do {
|
|
ahc_delay(1000);
|
|
} while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK));
|
|
|
|
if (wait == 0) {
|
|
printk("%s: WARNING - Failed chip reset! "
|
|
"Trying to initialize anyway.\n", ahc_name(ahc));
|
|
}
|
|
ahc_outb(ahc, HCNTRL, ahc->pause);
|
|
|
|
/* Determine channel configuration */
|
|
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
|
|
/* No Twin Channel PCI cards */
|
|
if ((ahc->chip & AHC_PCI) != 0)
|
|
sblkctl &= ~SELBUSB;
|
|
switch (sblkctl) {
|
|
case 0:
|
|
/* Single Narrow Channel */
|
|
break;
|
|
case 2:
|
|
/* Wide Channel */
|
|
ahc->features |= AHC_WIDE;
|
|
break;
|
|
case 8:
|
|
/* Twin Channel */
|
|
ahc->features |= AHC_TWIN;
|
|
break;
|
|
default:
|
|
printk(" Unsupported adapter type. Ignoring\n");
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* Reload sxfrctl1.
|
|
*
|
|
* We must always initialize STPWEN to 1 before we
|
|
* restore the saved values. STPWEN is initialized
|
|
* to a tri-state condition which can only be cleared
|
|
* by turning it on.
|
|
*/
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
u_int sblkctl;
|
|
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
|
|
ahc_outb(ahc, SXFRCTL1, sxfrctl1_b);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
|
|
}
|
|
ahc_outb(ahc, SXFRCTL1, sxfrctl1_a);
|
|
|
|
error = 0;
|
|
if (reinit != 0)
|
|
/*
|
|
* If a recovery action has forced a chip reset,
|
|
* re-initialize the chip to our liking.
|
|
*/
|
|
error = ahc->bus_chip_init(ahc);
|
|
#ifdef AHC_DUMP_SEQ
|
|
else
|
|
ahc_dumpseq(ahc);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of SCBs available on the controller
|
|
*/
|
|
int
|
|
ahc_probe_scbs(struct ahc_softc *ahc) {
|
|
int i;
|
|
|
|
for (i = 0; i < AHC_SCB_MAX; i++) {
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
ahc_outb(ahc, SCB_BASE, i);
|
|
if (ahc_inb(ahc, SCB_BASE) != i)
|
|
break;
|
|
ahc_outb(ahc, SCBPTR, 0);
|
|
if (ahc_inb(ahc, SCB_BASE) != 0)
|
|
break;
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
ahc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
dma_addr_t *baddr;
|
|
|
|
baddr = (dma_addr_t *)arg;
|
|
*baddr = segs->ds_addr;
|
|
}
|
|
|
|
static void
|
|
ahc_build_free_scb_list(struct ahc_softc *ahc)
|
|
{
|
|
int scbsize;
|
|
int i;
|
|
|
|
scbsize = 32;
|
|
if ((ahc->flags & AHC_LSCBS_ENABLED) != 0)
|
|
scbsize = 64;
|
|
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
int j;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
|
|
/*
|
|
* Touch all SCB bytes to avoid parity errors
|
|
* should one of our debugging routines read
|
|
* an otherwise uninitiatlized byte.
|
|
*/
|
|
for (j = 0; j < scbsize; j++)
|
|
ahc_outb(ahc, SCB_BASE+j, 0xFF);
|
|
|
|
/* Clear the control byte. */
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
/* Set the next pointer */
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0)
|
|
ahc_outb(ahc, SCB_NEXT, i+1);
|
|
else
|
|
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
|
|
|
|
/* Make the tag number, SCSIID, and lun invalid */
|
|
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
|
|
ahc_outb(ahc, SCB_SCSIID, 0xFF);
|
|
ahc_outb(ahc, SCB_LUN, 0xFF);
|
|
}
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0) {
|
|
/* SCB 0 heads the free list. */
|
|
ahc_outb(ahc, FREE_SCBH, 0);
|
|
} else {
|
|
/* No free list. */
|
|
ahc_outb(ahc, FREE_SCBH, SCB_LIST_NULL);
|
|
}
|
|
|
|
/* Make sure that the last SCB terminates the free list */
|
|
ahc_outb(ahc, SCBPTR, i-1);
|
|
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
|
|
}
|
|
|
|
static int
|
|
ahc_init_scbdata(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
|
|
scb_data = ahc->scb_data;
|
|
SLIST_INIT(&scb_data->free_scbs);
|
|
SLIST_INIT(&scb_data->sg_maps);
|
|
|
|
/* Allocate SCB resources */
|
|
scb_data->scbarray = kcalloc(AHC_SCB_MAX_ALLOC, sizeof(struct scb),
|
|
GFP_ATOMIC);
|
|
if (scb_data->scbarray == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* Determine the number of hardware SCBs and initialize them */
|
|
|
|
scb_data->maxhscbs = ahc_probe_scbs(ahc);
|
|
if (ahc->scb_data->maxhscbs == 0) {
|
|
printk("%s: No SCB space found\n", ahc_name(ahc));
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Create our DMA tags. These tags define the kinds of device
|
|
* accessible memory allocations and memory mappings we will
|
|
* need to perform during normal operation.
|
|
*
|
|
* Unless we need to further restrict the allocation, we rely
|
|
* on the restrictions of the parent dmat, hence the common
|
|
* use of MAXADDR and MAXSIZE.
|
|
*/
|
|
|
|
/* DMA tag for our hardware scb structures */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->hscb_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Allocation for our hscbs */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->hscb_dmat,
|
|
(void **)&scb_data->hscbs,
|
|
BUS_DMA_NOWAIT, &scb_data->hscb_dmamap) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* And permanently map them */
|
|
ahc_dmamap_load(ahc, scb_data->hscb_dmat, scb_data->hscb_dmamap,
|
|
scb_data->hscbs,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
|
|
ahc_dmamap_cb, &scb_data->hscb_busaddr, /*flags*/0);
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our sense buffers */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sense_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Allocate them */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->sense_dmat,
|
|
(void **)&scb_data->sense,
|
|
BUS_DMA_NOWAIT, &scb_data->sense_dmamap) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* And permanently map them */
|
|
ahc_dmamap_load(ahc, scb_data->sense_dmat, scb_data->sense_dmamap,
|
|
scb_data->sense,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
|
|
ahc_dmamap_cb, &scb_data->sense_busaddr, /*flags*/0);
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our S/G structures. We allocate in page sized chunks */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/8,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
PAGE_SIZE, /*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sg_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Perform initial CCB allocation */
|
|
memset(scb_data->hscbs, 0,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb));
|
|
ahc_alloc_scbs(ahc);
|
|
|
|
if (scb_data->numscbs == 0) {
|
|
printk("%s: ahc_init_scbdata - "
|
|
"Unable to allocate initial scbs\n",
|
|
ahc_name(ahc));
|
|
goto error_exit;
|
|
}
|
|
|
|
/*
|
|
* Reserve the next queued SCB.
|
|
*/
|
|
ahc->next_queued_scb = ahc_get_scb(ahc);
|
|
|
|
/*
|
|
* Note that we were successful
|
|
*/
|
|
return (0);
|
|
|
|
error_exit:
|
|
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
ahc_fini_scbdata(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
|
|
scb_data = ahc->scb_data;
|
|
if (scb_data == NULL)
|
|
return;
|
|
|
|
switch (scb_data->init_level) {
|
|
default:
|
|
case 7:
|
|
{
|
|
struct sg_map_node *sg_map;
|
|
|
|
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps))!= NULL) {
|
|
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
|
|
ahc_dmamap_unload(ahc, scb_data->sg_dmat,
|
|
sg_map->sg_dmamap);
|
|
ahc_dmamem_free(ahc, scb_data->sg_dmat,
|
|
sg_map->sg_vaddr,
|
|
sg_map->sg_dmamap);
|
|
kfree(sg_map);
|
|
}
|
|
ahc_dma_tag_destroy(ahc, scb_data->sg_dmat);
|
|
}
|
|
fallthrough;
|
|
case 6:
|
|
ahc_dmamap_unload(ahc, scb_data->sense_dmat,
|
|
scb_data->sense_dmamap);
|
|
fallthrough;
|
|
case 5:
|
|
ahc_dmamem_free(ahc, scb_data->sense_dmat, scb_data->sense,
|
|
scb_data->sense_dmamap);
|
|
ahc_dmamap_destroy(ahc, scb_data->sense_dmat,
|
|
scb_data->sense_dmamap);
|
|
fallthrough;
|
|
case 4:
|
|
ahc_dma_tag_destroy(ahc, scb_data->sense_dmat);
|
|
fallthrough;
|
|
case 3:
|
|
ahc_dmamap_unload(ahc, scb_data->hscb_dmat,
|
|
scb_data->hscb_dmamap);
|
|
fallthrough;
|
|
case 2:
|
|
ahc_dmamem_free(ahc, scb_data->hscb_dmat, scb_data->hscbs,
|
|
scb_data->hscb_dmamap);
|
|
ahc_dmamap_destroy(ahc, scb_data->hscb_dmat,
|
|
scb_data->hscb_dmamap);
|
|
fallthrough;
|
|
case 1:
|
|
ahc_dma_tag_destroy(ahc, scb_data->hscb_dmat);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
kfree(scb_data->scbarray);
|
|
}
|
|
|
|
static void
|
|
ahc_alloc_scbs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
struct scb *next_scb;
|
|
struct sg_map_node *sg_map;
|
|
dma_addr_t physaddr;
|
|
struct ahc_dma_seg *segs;
|
|
int newcount;
|
|
int i;
|
|
|
|
scb_data = ahc->scb_data;
|
|
if (scb_data->numscbs >= AHC_SCB_MAX_ALLOC)
|
|
/* Can't allocate any more */
|
|
return;
|
|
|
|
next_scb = &scb_data->scbarray[scb_data->numscbs];
|
|
|
|
sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
|
|
|
|
if (sg_map == NULL)
|
|
return;
|
|
|
|
/* Allocate S/G space for the next batch of SCBS */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->sg_dmat,
|
|
(void **)&sg_map->sg_vaddr,
|
|
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
|
|
kfree(sg_map);
|
|
return;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
|
|
|
|
ahc_dmamap_load(ahc, scb_data->sg_dmat, sg_map->sg_dmamap,
|
|
sg_map->sg_vaddr, PAGE_SIZE, ahc_dmamap_cb,
|
|
&sg_map->sg_physaddr, /*flags*/0);
|
|
|
|
segs = sg_map->sg_vaddr;
|
|
physaddr = sg_map->sg_physaddr;
|
|
|
|
newcount = (PAGE_SIZE / (AHC_NSEG * sizeof(struct ahc_dma_seg)));
|
|
newcount = min(newcount, (AHC_SCB_MAX_ALLOC - scb_data->numscbs));
|
|
for (i = 0; i < newcount; i++) {
|
|
struct scb_platform_data *pdata;
|
|
|
|
pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
|
|
if (pdata == NULL)
|
|
break;
|
|
next_scb->platform_data = pdata;
|
|
next_scb->sg_map = sg_map;
|
|
next_scb->sg_list = segs;
|
|
/*
|
|
* The sequencer always starts with the second entry.
|
|
* The first entry is embedded in the scb.
|
|
*/
|
|
next_scb->sg_list_phys = physaddr + sizeof(struct ahc_dma_seg);
|
|
next_scb->ahc_softc = ahc;
|
|
next_scb->flags = SCB_FREE;
|
|
next_scb->hscb = &scb_data->hscbs[scb_data->numscbs];
|
|
next_scb->hscb->tag = ahc->scb_data->numscbs;
|
|
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs,
|
|
next_scb, links.sle);
|
|
segs += AHC_NSEG;
|
|
physaddr += (AHC_NSEG * sizeof(struct ahc_dma_seg));
|
|
next_scb++;
|
|
ahc->scb_data->numscbs++;
|
|
}
|
|
}
|
|
|
|
void
|
|
ahc_controller_info(struct ahc_softc *ahc, char *buf)
|
|
{
|
|
int len;
|
|
|
|
len = sprintf(buf, "%s: ", ahc_chip_names[ahc->chip & AHC_CHIPID_MASK]);
|
|
buf += len;
|
|
if ((ahc->features & AHC_TWIN) != 0)
|
|
len = sprintf(buf, "Twin Channel, A SCSI Id=%d, "
|
|
"B SCSI Id=%d, primary %c, ",
|
|
ahc->our_id, ahc->our_id_b,
|
|
(ahc->flags & AHC_PRIMARY_CHANNEL) + 'A');
|
|
else {
|
|
const char *speed;
|
|
const char *type;
|
|
|
|
speed = "";
|
|
if ((ahc->features & AHC_ULTRA) != 0) {
|
|
speed = "Ultra ";
|
|
} else if ((ahc->features & AHC_DT) != 0) {
|
|
speed = "Ultra160 ";
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
speed = "Ultra2 ";
|
|
}
|
|
if ((ahc->features & AHC_WIDE) != 0) {
|
|
type = "Wide";
|
|
} else {
|
|
type = "Single";
|
|
}
|
|
len = sprintf(buf, "%s%s Channel %c, SCSI Id=%d, ",
|
|
speed, type, ahc->channel, ahc->our_id);
|
|
}
|
|
buf += len;
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0)
|
|
sprintf(buf, "%d/%d SCBs",
|
|
ahc->scb_data->maxhscbs, AHC_MAX_QUEUE);
|
|
else
|
|
sprintf(buf, "%d SCBs", ahc->scb_data->maxhscbs);
|
|
}
|
|
|
|
int
|
|
ahc_chip_init(struct ahc_softc *ahc)
|
|
{
|
|
int term;
|
|
int error;
|
|
u_int i;
|
|
u_int scsi_conf;
|
|
u_int scsiseq_template;
|
|
uint32_t physaddr;
|
|
|
|
ahc_outb(ahc, SEQ_FLAGS, 0);
|
|
ahc_outb(ahc, SEQ_FLAGS2, 0);
|
|
|
|
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
|
|
if (ahc->features & AHC_TWIN) {
|
|
|
|
/*
|
|
* Setup Channel B first.
|
|
*/
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) | SELBUSB);
|
|
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
|
|
ahc_outb(ahc, SCSIID, ahc->our_id_b);
|
|
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
|
|
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|
|
|term|ahc->seltime_b|ENSTIMER|ACTNEGEN);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
|
|
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
|
|
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
|
|
|
|
/* Select Channel A */
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
|
|
}
|
|
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
|
|
else
|
|
ahc_outb(ahc, SCSIID, ahc->our_id);
|
|
scsi_conf = ahc_inb(ahc, SCSICONF);
|
|
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|
|
|term|ahc->seltime
|
|
|ENSTIMER|ACTNEGEN);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
|
|
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
|
|
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
|
|
|
|
/* There are no untagged SCBs active yet. */
|
|
for (i = 0; i < 16; i++) {
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, 0));
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
int lun;
|
|
|
|
/*
|
|
* The SCB based BTT allows an entry per
|
|
* target and lun pair.
|
|
*/
|
|
for (lun = 1; lun < AHC_NUM_LUNS; lun++)
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, lun));
|
|
}
|
|
}
|
|
|
|
/* All of our queues are empty */
|
|
for (i = 0; i < 256; i++)
|
|
ahc->qoutfifo[i] = SCB_LIST_NULL;
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_PREREAD);
|
|
|
|
for (i = 0; i < 256; i++)
|
|
ahc->qinfifo[i] = SCB_LIST_NULL;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0) {
|
|
ahc_outb(ahc, TARGID, 0);
|
|
ahc_outb(ahc, TARGID + 1, 0);
|
|
}
|
|
|
|
/*
|
|
* Tell the sequencer where it can find our arrays in memory.
|
|
*/
|
|
physaddr = ahc->scb_data->hscb_busaddr;
|
|
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
|
|
|
|
physaddr = ahc->shared_data_busaddr;
|
|
ahc_outb(ahc, SHARED_DATA_ADDR, physaddr & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 1, (physaddr >> 8) & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 2, (physaddr >> 16) & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 3, (physaddr >> 24) & 0xFF);
|
|
|
|
/*
|
|
* Initialize the group code to command length table.
|
|
* This overrides the values in TARG_SCSIRATE, so only
|
|
* setup the table after we have processed that information.
|
|
*/
|
|
ahc_outb(ahc, CMDSIZE_TABLE, 5);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
|
|
|
|
if ((ahc->features & AHC_HS_MAILBOX) != 0)
|
|
ahc_outb(ahc, HS_MAILBOX, 0);
|
|
|
|
/* Tell the sequencer of our initial queue positions */
|
|
if ((ahc->features & AHC_TARGETMODE) != 0) {
|
|
ahc->tqinfifonext = 1;
|
|
ahc_outb(ahc, KERNEL_TQINPOS, ahc->tqinfifonext - 1);
|
|
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
|
|
}
|
|
ahc->qinfifonext = 0;
|
|
ahc->qoutfifonext = 0;
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
ahc_outb(ahc, SNSCB_QOFF, ahc->qinfifonext);
|
|
ahc_outb(ahc, SDSCB_QOFF, 0);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
ahc_outb(ahc, QINPOS, ahc->qinfifonext);
|
|
ahc_outb(ahc, QOUTPOS, ahc->qoutfifonext);
|
|
}
|
|
|
|
/* We don't have any waiting selections */
|
|
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
|
|
|
|
/* Our disconnection list is empty too */
|
|
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
|
|
|
|
/* Message out buffer starts empty */
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
|
|
|
|
/*
|
|
* Setup the allowed SCSI Sequences based on operational mode.
|
|
* If we are a target, we'll enable select in operations once
|
|
* we've had a lun enabled.
|
|
*/
|
|
scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP;
|
|
if ((ahc->flags & AHC_INITIATORROLE) != 0)
|
|
scsiseq_template |= ENRSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template);
|
|
|
|
/* Initialize our list of free SCBs. */
|
|
ahc_build_free_scb_list(ahc);
|
|
|
|
/*
|
|
* Tell the sequencer which SCB will be the next one it receives.
|
|
*/
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
|
|
|
|
/*
|
|
* Load the Sequencer program and Enable the adapter
|
|
* in "fast" mode.
|
|
*/
|
|
if (bootverbose)
|
|
printk("%s: Downloading Sequencer Program...",
|
|
ahc_name(ahc));
|
|
|
|
error = ahc_loadseq(ahc);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
int wait;
|
|
|
|
/*
|
|
* Wait for up to 500ms for our transceivers
|
|
* to settle. If the adapter does not have
|
|
* a cable attached, the transceivers may
|
|
* never settle, so don't complain if we
|
|
* fail here.
|
|
*/
|
|
for (wait = 5000;
|
|
(ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
|
|
wait--)
|
|
ahc_delay(100);
|
|
}
|
|
ahc_restart(ahc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Start the board, ready for normal operation
|
|
*/
|
|
int
|
|
ahc_init(struct ahc_softc *ahc)
|
|
{
|
|
int max_targ;
|
|
u_int i;
|
|
u_int scsi_conf;
|
|
u_int ultraenb;
|
|
u_int discenable;
|
|
u_int tagenable;
|
|
size_t driver_data_size;
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_DEBUG_SEQUENCER) != 0)
|
|
ahc->flags |= AHC_SEQUENCER_DEBUG;
|
|
#endif
|
|
|
|
#ifdef AHC_PRINT_SRAM
|
|
printk("Scratch Ram:");
|
|
for (i = 0x20; i < 0x5f; i++) {
|
|
if (((i % 8) == 0) && (i != 0)) {
|
|
printk ("\n ");
|
|
}
|
|
printk (" 0x%x", ahc_inb(ahc, i));
|
|
}
|
|
if ((ahc->features & AHC_MORE_SRAM) != 0) {
|
|
for (i = 0x70; i < 0x7f; i++) {
|
|
if (((i % 8) == 0) && (i != 0)) {
|
|
printk ("\n ");
|
|
}
|
|
printk (" 0x%x", ahc_inb(ahc, i));
|
|
}
|
|
}
|
|
printk ("\n");
|
|
/*
|
|
* Reading uninitialized scratch ram may
|
|
* generate parity errors.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRPARERR);
|
|
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
|
|
#endif
|
|
max_targ = 15;
|
|
|
|
/*
|
|
* Assume we have a board at this stage and it has been reset.
|
|
*/
|
|
if ((ahc->flags & AHC_USEDEFAULTS) != 0)
|
|
ahc->our_id = ahc->our_id_b = 7;
|
|
|
|
/*
|
|
* Default to allowing initiator operations.
|
|
*/
|
|
ahc->flags |= AHC_INITIATORROLE;
|
|
|
|
/*
|
|
* Only allow target mode features if this unit has them enabled.
|
|
*/
|
|
if ((AHC_TMODE_ENABLE & (0x1 << ahc->unit)) == 0)
|
|
ahc->features &= ~AHC_TARGETMODE;
|
|
|
|
ahc->init_level++;
|
|
|
|
/*
|
|
* DMA tag for our command fifos and other data in system memory
|
|
* the card's sequencer must be able to access. For initiator
|
|
* roles, we need to allocate space for the qinfifo and qoutfifo.
|
|
* The qinfifo and qoutfifo are composed of 256 1 byte elements.
|
|
* When providing for the target mode role, we must additionally
|
|
* provide space for the incoming target command fifo and an extra
|
|
* byte to deal with a dma bug in some chip versions.
|
|
*/
|
|
driver_data_size = 2 * 256 * sizeof(uint8_t);
|
|
if ((ahc->features & AHC_TARGETMODE) != 0)
|
|
driver_data_size += AHC_TMODE_CMDS * sizeof(struct target_cmd)
|
|
+ /*DMA WideOdd Bug Buffer*/1;
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
driver_data_size,
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &ahc->shared_data_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahc->init_level++;
|
|
|
|
/* Allocation of driver data */
|
|
if (ahc_dmamem_alloc(ahc, ahc->shared_data_dmat,
|
|
(void **)&ahc->qoutfifo,
|
|
BUS_DMA_NOWAIT, &ahc->shared_data_dmamap) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahc->init_level++;
|
|
|
|
/* And permanently map it in */
|
|
ahc_dmamap_load(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
ahc->qoutfifo, driver_data_size, ahc_dmamap_cb,
|
|
&ahc->shared_data_busaddr, /*flags*/0);
|
|
|
|
if ((ahc->features & AHC_TARGETMODE) != 0) {
|
|
ahc->targetcmds = (struct target_cmd *)ahc->qoutfifo;
|
|
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[AHC_TMODE_CMDS];
|
|
ahc->dma_bug_buf = ahc->shared_data_busaddr
|
|
+ driver_data_size - 1;
|
|
/* All target command blocks start out invalid. */
|
|
for (i = 0; i < AHC_TMODE_CMDS; i++)
|
|
ahc->targetcmds[i].cmd_valid = 0;
|
|
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_PREREAD);
|
|
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[256];
|
|
}
|
|
ahc->qinfifo = &ahc->qoutfifo[256];
|
|
|
|
ahc->init_level++;
|
|
|
|
/* Allocate SCB data now that buffer_dmat is initialized */
|
|
if (ahc->scb_data->maxhscbs == 0)
|
|
if (ahc_init_scbdata(ahc) != 0)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Allocate a tstate to house information for our
|
|
* initiator presence on the bus as well as the user
|
|
* data for any target mode initiator.
|
|
*/
|
|
if (ahc_alloc_tstate(ahc, ahc->our_id, 'A') == NULL) {
|
|
printk("%s: unable to allocate ahc_tmode_tstate. "
|
|
"Failing attach\n", ahc_name(ahc));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
if (ahc_alloc_tstate(ahc, ahc->our_id_b, 'B') == NULL) {
|
|
printk("%s: unable to allocate ahc_tmode_tstate. "
|
|
"Failing attach\n", ahc_name(ahc));
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX_ALLOC) {
|
|
ahc->flags |= AHC_PAGESCBS;
|
|
} else {
|
|
ahc->flags &= ~AHC_PAGESCBS;
|
|
}
|
|
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_MISC) {
|
|
printk("%s: hardware scb %u bytes; kernel scb %u bytes; "
|
|
"ahc_dma %u bytes\n",
|
|
ahc_name(ahc),
|
|
(u_int)sizeof(struct hardware_scb),
|
|
(u_int)sizeof(struct scb),
|
|
(u_int)sizeof(struct ahc_dma_seg));
|
|
}
|
|
#endif /* AHC_DEBUG */
|
|
|
|
/*
|
|
* Look at the information that board initialization or
|
|
* the board bios has left us.
|
|
*/
|
|
if (ahc->features & AHC_TWIN) {
|
|
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
|
|
if ((scsi_conf & RESET_SCSI) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0)
|
|
ahc->flags |= AHC_RESET_BUS_B;
|
|
}
|
|
|
|
scsi_conf = ahc_inb(ahc, SCSICONF);
|
|
if ((scsi_conf & RESET_SCSI) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0)
|
|
ahc->flags |= AHC_RESET_BUS_A;
|
|
|
|
ultraenb = 0;
|
|
tagenable = ALL_TARGETS_MASK;
|
|
|
|
/* Grab the disconnection disable table and invert it for our needs */
|
|
if ((ahc->flags & AHC_USEDEFAULTS) != 0) {
|
|
printk("%s: Host Adapter Bios disabled. Using default SCSI "
|
|
"device parameters\n", ahc_name(ahc));
|
|
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B|
|
|
AHC_TERM_ENB_A|AHC_TERM_ENB_B;
|
|
discenable = ALL_TARGETS_MASK;
|
|
if ((ahc->features & AHC_ULTRA) != 0)
|
|
ultraenb = ALL_TARGETS_MASK;
|
|
} else {
|
|
discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
|
|
| ahc_inb(ahc, DISC_DSB));
|
|
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
|
|
ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
|
|
| ahc_inb(ahc, ULTRA_ENB);
|
|
}
|
|
|
|
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
|
|
max_targ = 7;
|
|
|
|
for (i = 0; i <= max_targ; i++) {
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int our_id;
|
|
u_int target_id;
|
|
char channel;
|
|
|
|
channel = 'A';
|
|
our_id = ahc->our_id;
|
|
target_id = i;
|
|
if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
|
|
channel = 'B';
|
|
our_id = ahc->our_id_b;
|
|
target_id = i % 8;
|
|
}
|
|
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
|
|
target_id, &tstate);
|
|
/* Default to async narrow across the board */
|
|
memset(tinfo, 0, sizeof(*tinfo));
|
|
if (ahc->flags & AHC_USEDEFAULTS) {
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
|
|
/*
|
|
* These will be truncated when we determine the
|
|
* connection type we have with the target.
|
|
*/
|
|
tinfo->user.period = ahc_syncrates->period;
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
} else {
|
|
u_int scsirate;
|
|
uint16_t mask;
|
|
|
|
/* Take the settings leftover in scratch RAM. */
|
|
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
|
|
mask = (0x01 << i);
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
u_int offset;
|
|
u_int maxsync;
|
|
|
|
if ((scsirate & SOFS) == 0x0F) {
|
|
/*
|
|
* Haven't negotiated yet,
|
|
* so the format is different.
|
|
*/
|
|
scsirate = (scsirate & SXFR) >> 4
|
|
| (ultraenb & mask)
|
|
? 0x08 : 0x0
|
|
| (scsirate & WIDEXFER);
|
|
offset = MAX_OFFSET_ULTRA2;
|
|
} else
|
|
offset = ahc_inb(ahc, TARG_OFFSET + i);
|
|
if ((scsirate & ~WIDEXFER) == 0 && offset != 0)
|
|
/* Set to the lowest sync rate, 5MHz */
|
|
scsirate |= 0x1c;
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
maxsync = AHC_SYNCRATE_DT;
|
|
tinfo->user.period =
|
|
ahc_find_period(ahc, scsirate, maxsync);
|
|
if (offset == 0)
|
|
tinfo->user.period = 0;
|
|
else
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
if ((scsirate & SXFR_ULTRA2) <= 8/*10MHz*/
|
|
&& (ahc->features & AHC_DT) != 0)
|
|
tinfo->user.ppr_options =
|
|
MSG_EXT_PPR_DT_REQ;
|
|
} else if ((scsirate & SOFS) != 0) {
|
|
if ((scsirate & SXFR) == 0x40
|
|
&& (ultraenb & mask) != 0) {
|
|
/* Treat 10MHz as a non-ultra speed */
|
|
scsirate &= ~SXFR;
|
|
ultraenb &= ~mask;
|
|
}
|
|
tinfo->user.period =
|
|
ahc_find_period(ahc, scsirate,
|
|
(ultraenb & mask)
|
|
? AHC_SYNCRATE_ULTRA
|
|
: AHC_SYNCRATE_FAST);
|
|
if (tinfo->user.period != 0)
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
}
|
|
if (tinfo->user.period == 0)
|
|
tinfo->user.offset = 0;
|
|
if ((scsirate & WIDEXFER) != 0
|
|
&& (ahc->features & AHC_WIDE) != 0)
|
|
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
tinfo->user.protocol_version = 4;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
tinfo->user.transport_version = 3;
|
|
else
|
|
tinfo->user.transport_version = 2;
|
|
tinfo->goal.protocol_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->curr.protocol_version = 2;
|
|
tinfo->curr.transport_version = 2;
|
|
}
|
|
tstate->ultraenb = 0;
|
|
}
|
|
ahc->user_discenable = discenable;
|
|
ahc->user_tagenable = tagenable;
|
|
|
|
return (ahc->bus_chip_init(ahc));
|
|
}
|
|
|
|
void
|
|
ahc_intr_enable(struct ahc_softc *ahc, int enable)
|
|
{
|
|
u_int hcntrl;
|
|
|
|
hcntrl = ahc_inb(ahc, HCNTRL);
|
|
hcntrl &= ~INTEN;
|
|
ahc->pause &= ~INTEN;
|
|
ahc->unpause &= ~INTEN;
|
|
if (enable) {
|
|
hcntrl |= INTEN;
|
|
ahc->pause |= INTEN;
|
|
ahc->unpause |= INTEN;
|
|
}
|
|
ahc_outb(ahc, HCNTRL, hcntrl);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the card is paused in a location
|
|
* outside of all critical sections and that all
|
|
* pending work is completed prior to returning.
|
|
* This routine should only be called from outside
|
|
* an interrupt context.
|
|
*/
|
|
void
|
|
ahc_pause_and_flushwork(struct ahc_softc *ahc)
|
|
{
|
|
int intstat;
|
|
int maxloops;
|
|
int paused;
|
|
|
|
maxloops = 1000;
|
|
ahc->flags |= AHC_ALL_INTERRUPTS;
|
|
paused = FALSE;
|
|
do {
|
|
if (paused) {
|
|
ahc_unpause(ahc);
|
|
/*
|
|
* Give the sequencer some time to service
|
|
* any active selections.
|
|
*/
|
|
ahc_delay(500);
|
|
}
|
|
ahc_intr(ahc);
|
|
ahc_pause(ahc);
|
|
paused = TRUE;
|
|
ahc_outb(ahc, SCSISEQ, ahc_inb(ahc, SCSISEQ) & ~ENSELO);
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
if ((intstat & INT_PEND) == 0) {
|
|
ahc_clear_critical_section(ahc);
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
}
|
|
} while (--maxloops
|
|
&& (intstat != 0xFF || (ahc->features & AHC_REMOVABLE) == 0)
|
|
&& ((intstat & INT_PEND) != 0
|
|
|| (ahc_inb(ahc, SSTAT0) & (SELDO|SELINGO)) != 0));
|
|
if (maxloops == 0) {
|
|
printk("Infinite interrupt loop, INTSTAT = %x",
|
|
ahc_inb(ahc, INTSTAT));
|
|
}
|
|
ahc_platform_flushwork(ahc);
|
|
ahc->flags &= ~AHC_ALL_INTERRUPTS;
|
|
}
|
|
|
|
int __maybe_unused
|
|
ahc_suspend(struct ahc_softc *ahc)
|
|
{
|
|
|
|
ahc_pause_and_flushwork(ahc);
|
|
|
|
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
|
|
ahc_unpause(ahc);
|
|
return (EBUSY);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* XXX What about ATIOs that have not yet been serviced?
|
|
* Perhaps we should just refuse to be suspended if we
|
|
* are acting in a target role.
|
|
*/
|
|
if (ahc->pending_device != NULL) {
|
|
ahc_unpause(ahc);
|
|
return (EBUSY);
|
|
}
|
|
#endif
|
|
ahc_shutdown(ahc);
|
|
return (0);
|
|
}
|
|
|
|
int __maybe_unused
|
|
ahc_resume(struct ahc_softc *ahc)
|
|
{
|
|
|
|
ahc_reset(ahc, /*reinit*/TRUE);
|
|
ahc_intr_enable(ahc, TRUE);
|
|
ahc_restart(ahc);
|
|
return (0);
|
|
}
|
|
/************************** Busy Target Table *********************************/
|
|
/*
|
|
* Return the untagged transaction id for a given target/channel lun.
|
|
* Optionally, clear the entry.
|
|
*/
|
|
static u_int
|
|
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl)
|
|
{
|
|
u_int scbid;
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
scbid = ahc_inb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl));
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
scbid = ahc_inb(ahc, BUSY_TARGETS + target_offset);
|
|
}
|
|
|
|
return (scbid);
|
|
}
|
|
|
|
static void
|
|
ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl)
|
|
{
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
ahc_outb(ahc, SCB_64_BTT+TCL_TARGET_OFFSET(tcl), SCB_LIST_NULL);
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
ahc_outb(ahc, BUSY_TARGETS + target_offset, SCB_LIST_NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_busy_tcl(struct ahc_softc *ahc, u_int tcl, u_int scbid)
|
|
{
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
ahc_outb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl), scbid);
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
ahc_outb(ahc, BUSY_TARGETS + target_offset, scbid);
|
|
}
|
|
}
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
int
|
|
ahc_match_scb(struct ahc_softc *ahc, struct scb *scb, int target,
|
|
char channel, int lun, u_int tag, role_t role)
|
|
{
|
|
int targ = SCB_GET_TARGET(ahc, scb);
|
|
char chan = SCB_GET_CHANNEL(ahc, scb);
|
|
int slun = SCB_GET_LUN(scb);
|
|
int match;
|
|
|
|
match = ((chan == channel) || (channel == ALL_CHANNELS));
|
|
if (match != 0)
|
|
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
|
|
if (match != 0)
|
|
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
|
|
if (match != 0) {
|
|
#ifdef AHC_TARGET_MODE
|
|
int group;
|
|
|
|
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
|
|
if (role == ROLE_INITIATOR) {
|
|
match = (group != XPT_FC_GROUP_TMODE)
|
|
&& ((tag == scb->hscb->tag)
|
|
|| (tag == SCB_LIST_NULL));
|
|
} else if (role == ROLE_TARGET) {
|
|
match = (group == XPT_FC_GROUP_TMODE)
|
|
&& ((tag == scb->io_ctx->csio.tag_id)
|
|
|| (tag == SCB_LIST_NULL));
|
|
}
|
|
#else /* !AHC_TARGET_MODE */
|
|
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
|
|
#endif /* AHC_TARGET_MODE */
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
static void
|
|
ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int target;
|
|
char channel;
|
|
int lun;
|
|
|
|
target = SCB_GET_TARGET(ahc, scb);
|
|
lun = SCB_GET_LUN(scb);
|
|
channel = SCB_GET_CHANNEL(ahc, scb);
|
|
|
|
ahc_search_qinfifo(ahc, target, channel, lun,
|
|
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
ahc_platform_freeze_devq(ahc, scb);
|
|
}
|
|
|
|
void
|
|
ahc_qinfifo_requeue_tail(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct scb *prev_scb;
|
|
|
|
prev_scb = NULL;
|
|
if (ahc_qinfifo_count(ahc) != 0) {
|
|
u_int prev_tag;
|
|
uint8_t prev_pos;
|
|
|
|
prev_pos = ahc->qinfifonext - 1;
|
|
prev_tag = ahc->qinfifo[prev_pos];
|
|
prev_scb = ahc_lookup_scb(ahc, prev_tag);
|
|
}
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_qinfifo_requeue(struct ahc_softc *ahc, struct scb *prev_scb,
|
|
struct scb *scb)
|
|
{
|
|
if (prev_scb == NULL) {
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
|
|
} else {
|
|
prev_scb->hscb->next = scb->hscb->tag;
|
|
ahc_sync_scb(ahc, prev_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
|
|
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
|
|
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
ahc_qinfifo_count(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t qinpos;
|
|
uint8_t diff;
|
|
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
qinpos = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinpos);
|
|
} else
|
|
qinpos = ahc_inb(ahc, QINPOS);
|
|
diff = ahc->qinfifonext - qinpos;
|
|
return (diff);
|
|
}
|
|
|
|
int
|
|
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status,
|
|
ahc_search_action action)
|
|
{
|
|
struct scb *scb;
|
|
struct scb *prev_scb;
|
|
uint8_t qinstart;
|
|
uint8_t qinpos;
|
|
uint8_t qintail;
|
|
uint8_t next;
|
|
uint8_t prev;
|
|
uint8_t curscbptr;
|
|
int found;
|
|
int have_qregs;
|
|
|
|
qintail = ahc->qinfifonext;
|
|
have_qregs = (ahc->features & AHC_QUEUE_REGS) != 0;
|
|
if (have_qregs) {
|
|
qinstart = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinstart);
|
|
} else
|
|
qinstart = ahc_inb(ahc, QINPOS);
|
|
qinpos = qinstart;
|
|
found = 0;
|
|
prev_scb = NULL;
|
|
|
|
if (action == SEARCH_COMPLETE) {
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
}
|
|
|
|
/*
|
|
* Start with an empty queue. Entries that are not chosen
|
|
* for removal will be re-added to the queue as we go.
|
|
*/
|
|
ahc->qinfifonext = qinpos;
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
|
|
|
|
while (qinpos != qintail) {
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinpos]);
|
|
if (scb == NULL) {
|
|
printk("qinpos = %d, SCB index = %d\n",
|
|
qinpos, ahc->qinfifo[qinpos]);
|
|
panic("Loop 1\n");
|
|
}
|
|
|
|
if (ahc_match_scb(ahc, scb, target, channel, lun, tag, role)) {
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb, status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in qinfifo\n");
|
|
ahc_done(ahc, scb);
|
|
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SEARCH_REMOVE:
|
|
break;
|
|
case SEARCH_COUNT:
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
prev_scb = scb;
|
|
break;
|
|
}
|
|
} else {
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
prev_scb = scb;
|
|
}
|
|
qinpos++;
|
|
}
|
|
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
}
|
|
|
|
if (action != SEARCH_COUNT
|
|
&& (found != 0)
|
|
&& (qinstart != ahc->qinfifonext)) {
|
|
/*
|
|
* The sequencer may be in the process of dmaing
|
|
* down the SCB at the beginning of the queue.
|
|
* This could be problematic if either the first,
|
|
* or the second SCB is removed from the queue
|
|
* (the first SCB includes a pointer to the "next"
|
|
* SCB to dma). If we have removed any entries, swap
|
|
* the first element in the queue with the next HSCB
|
|
* so the sequencer will notice that NEXT_QUEUED_SCB
|
|
* has changed during its dma attempt and will retry
|
|
* the DMA.
|
|
*/
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinstart]);
|
|
|
|
if (scb == NULL) {
|
|
printk("found = %d, qinstart = %d, qinfifionext = %d\n",
|
|
found, qinstart, ahc->qinfifonext);
|
|
panic("First/Second Qinfifo fixup\n");
|
|
}
|
|
/*
|
|
* ahc_swap_with_next_hscb forces our next pointer to
|
|
* point to the reserved SCB for future commands. Save
|
|
* and restore our original next pointer to maintain
|
|
* queue integrity.
|
|
*/
|
|
next = scb->hscb->next;
|
|
ahc->scb_data->scbindex[scb->hscb->tag] = NULL;
|
|
ahc_swap_with_next_hscb(ahc, scb);
|
|
scb->hscb->next = next;
|
|
ahc->qinfifo[qinstart] = scb->hscb->tag;
|
|
|
|
/* Tell the card about the new head of the qinfifo. */
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
|
|
|
|
/* Fixup the tail "next" pointer. */
|
|
qintail = ahc->qinfifonext - 1;
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qintail]);
|
|
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
|
|
}
|
|
|
|
/*
|
|
* Search waiting for selection list.
|
|
*/
|
|
curscbptr = ahc_inb(ahc, SCBPTR);
|
|
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
|
|
prev = SCB_LIST_NULL;
|
|
|
|
while (next != SCB_LIST_NULL) {
|
|
uint8_t scb_index;
|
|
|
|
ahc_outb(ahc, SCBPTR, next);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
if (scb_index >= ahc->scb_data->numscbs) {
|
|
printk("Waiting List inconsistency. "
|
|
"SCB index == %d, yet numscbs == %d.",
|
|
scb_index, ahc->scb_data->numscbs);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
}
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("scb_index = %d, next = %d\n",
|
|
scb_index, next);
|
|
panic("Waiting List traversal\n");
|
|
}
|
|
if (ahc_match_scb(ahc, scb, target, channel,
|
|
lun, SCB_LIST_NULL, role)) {
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb,
|
|
status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in Waiting List\n");
|
|
ahc_done(ahc, scb);
|
|
}
|
|
fallthrough;
|
|
case SEARCH_REMOVE:
|
|
next = ahc_rem_wscb(ahc, next, prev);
|
|
break;
|
|
case SEARCH_COUNT:
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
break;
|
|
}
|
|
} else {
|
|
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
}
|
|
ahc_outb(ahc, SCBPTR, curscbptr);
|
|
|
|
found += ahc_search_untagged_queues(ahc, /*ahc_io_ctx_t*/NULL, target,
|
|
channel, lun, status, action);
|
|
|
|
if (action == SEARCH_COMPLETE)
|
|
ahc_release_untagged_queues(ahc);
|
|
return (found);
|
|
}
|
|
|
|
int
|
|
ahc_search_untagged_queues(struct ahc_softc *ahc, ahc_io_ctx_t ctx,
|
|
int target, char channel, int lun, uint32_t status,
|
|
ahc_search_action action)
|
|
{
|
|
struct scb *scb;
|
|
int maxtarget;
|
|
int found;
|
|
int i;
|
|
|
|
if (action == SEARCH_COMPLETE) {
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
}
|
|
|
|
found = 0;
|
|
i = 0;
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
|
|
maxtarget = 16;
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
|
|
i = target;
|
|
if (channel == 'B')
|
|
i += 8;
|
|
maxtarget = i + 1;
|
|
}
|
|
} else {
|
|
maxtarget = 0;
|
|
}
|
|
|
|
for (; i < maxtarget; i++) {
|
|
struct scb_tailq *untagged_q;
|
|
struct scb *next_scb;
|
|
|
|
untagged_q = &(ahc->untagged_queues[i]);
|
|
next_scb = TAILQ_FIRST(untagged_q);
|
|
while (next_scb != NULL) {
|
|
|
|
scb = next_scb;
|
|
next_scb = TAILQ_NEXT(scb, links.tqe);
|
|
|
|
/*
|
|
* The head of the list may be the currently
|
|
* active untagged command for a device.
|
|
* We're only searching for commands that
|
|
* have not been started. A transaction
|
|
* marked active but still in the qinfifo
|
|
* is removed by the qinfifo scanning code
|
|
* above.
|
|
*/
|
|
if ((scb->flags & SCB_ACTIVE) != 0)
|
|
continue;
|
|
|
|
if (ahc_match_scb(ahc, scb, target, channel, lun,
|
|
SCB_LIST_NULL, ROLE_INITIATOR) == 0
|
|
|| (ctx != NULL && ctx != scb->io_ctx))
|
|
continue;
|
|
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb, status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in untaggedQ\n");
|
|
ahc_done(ahc, scb);
|
|
break;
|
|
}
|
|
case SEARCH_REMOVE:
|
|
scb->flags &= ~SCB_UNTAGGEDQ;
|
|
TAILQ_REMOVE(untagged_q, scb, links.tqe);
|
|
break;
|
|
case SEARCH_COUNT:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (action == SEARCH_COMPLETE)
|
|
ahc_release_untagged_queues(ahc);
|
|
return (found);
|
|
}
|
|
|
|
int
|
|
ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, int stop_on_first, int remove,
|
|
int save_state)
|
|
{
|
|
struct scb *scbp;
|
|
u_int next;
|
|
u_int prev;
|
|
u_int count;
|
|
u_int active_scb;
|
|
|
|
count = 0;
|
|
next = ahc_inb(ahc, DISCONNECTED_SCBH);
|
|
prev = SCB_LIST_NULL;
|
|
|
|
if (save_state) {
|
|
/* restore this when we're done */
|
|
active_scb = ahc_inb(ahc, SCBPTR);
|
|
} else
|
|
/* Silence compiler */
|
|
active_scb = SCB_LIST_NULL;
|
|
|
|
while (next != SCB_LIST_NULL) {
|
|
u_int scb_index;
|
|
|
|
ahc_outb(ahc, SCBPTR, next);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
if (scb_index >= ahc->scb_data->numscbs) {
|
|
printk("Disconnected List inconsistency. "
|
|
"SCB index == %d, yet numscbs == %d.",
|
|
scb_index, ahc->scb_data->numscbs);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
}
|
|
|
|
if (next == prev) {
|
|
panic("Disconnected List Loop. "
|
|
"cur SCBPTR == %x, prev SCBPTR == %x.",
|
|
next, prev);
|
|
}
|
|
scbp = ahc_lookup_scb(ahc, scb_index);
|
|
if (ahc_match_scb(ahc, scbp, target, channel, lun,
|
|
tag, ROLE_INITIATOR)) {
|
|
count++;
|
|
if (remove) {
|
|
next =
|
|
ahc_rem_scb_from_disc_list(ahc, prev, next);
|
|
} else {
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
if (stop_on_first)
|
|
break;
|
|
} else {
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
}
|
|
if (save_state)
|
|
ahc_outb(ahc, SCBPTR, active_scb);
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Remove an SCB from the on chip list of disconnected transactions.
|
|
* This is empty/unused if we are not performing SCB paging.
|
|
*/
|
|
static u_int
|
|
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr)
|
|
{
|
|
u_int next;
|
|
|
|
ahc_outb(ahc, SCBPTR, scbptr);
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
|
|
if (prev != SCB_LIST_NULL) {
|
|
ahc_outb(ahc, SCBPTR, prev);
|
|
ahc_outb(ahc, SCB_NEXT, next);
|
|
} else
|
|
ahc_outb(ahc, DISCONNECTED_SCBH, next);
|
|
|
|
return (next);
|
|
}
|
|
|
|
/*
|
|
* Add the SCB as selected by SCBPTR onto the on chip list of
|
|
* free hardware SCBs. This list is empty/unused if we are not
|
|
* performing SCB paging.
|
|
*/
|
|
static void
|
|
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
|
|
{
|
|
/*
|
|
* Invalidate the tag so that our abort
|
|
* routines don't think it's active.
|
|
*/
|
|
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0) {
|
|
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
|
|
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manipulate the waiting for selection list and return the
|
|
* scb that follows the one that we remove.
|
|
*/
|
|
static u_int
|
|
ahc_rem_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
|
|
{
|
|
u_int curscb, next;
|
|
|
|
/*
|
|
* Select the SCB we want to abort and
|
|
* pull the next pointer out of it.
|
|
*/
|
|
curscb = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, scbpos);
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
|
|
/* Clear the necessary fields */
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
|
|
/* update the waiting list */
|
|
if (prev == SCB_LIST_NULL) {
|
|
/* First in the list */
|
|
ahc_outb(ahc, WAITING_SCBH, next);
|
|
|
|
/*
|
|
* Ensure we aren't attempting to perform
|
|
* selection for this entry.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else {
|
|
/*
|
|
* Select the scb that pointed to us
|
|
* and update its next pointer.
|
|
*/
|
|
ahc_outb(ahc, SCBPTR, prev);
|
|
ahc_outb(ahc, SCB_NEXT, next);
|
|
}
|
|
|
|
/*
|
|
* Point us back at the original scb position.
|
|
*/
|
|
ahc_outb(ahc, SCBPTR, curscb);
|
|
return next;
|
|
}
|
|
|
|
/******************************** Error Handling ******************************/
|
|
/*
|
|
* Abort all SCBs that match the given description (target/channel/lun/tag),
|
|
* setting their status to the passed in status if the status has not already
|
|
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
|
|
* is paused before it is called.
|
|
*/
|
|
static int
|
|
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status)
|
|
{
|
|
struct scb *scbp;
|
|
struct scb *scbp_next;
|
|
u_int active_scb;
|
|
int i, j;
|
|
int maxtarget;
|
|
int minlun;
|
|
int maxlun;
|
|
|
|
int found;
|
|
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
|
|
/* restore this when we're done */
|
|
active_scb = ahc_inb(ahc, SCBPTR);
|
|
|
|
found = ahc_search_qinfifo(ahc, target, channel, lun, SCB_LIST_NULL,
|
|
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
/*
|
|
* Clean out the busy target table for any untagged commands.
|
|
*/
|
|
i = 0;
|
|
maxtarget = 16;
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
i = target;
|
|
if (channel == 'B')
|
|
i += 8;
|
|
maxtarget = i + 1;
|
|
}
|
|
|
|
if (lun == CAM_LUN_WILDCARD) {
|
|
|
|
/*
|
|
* Unless we are using an SCB based
|
|
* busy targets table, there is only
|
|
* one table entry for all luns of
|
|
* a target.
|
|
*/
|
|
minlun = 0;
|
|
maxlun = 1;
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0)
|
|
maxlun = AHC_NUM_LUNS;
|
|
} else {
|
|
minlun = lun;
|
|
maxlun = lun + 1;
|
|
}
|
|
|
|
if (role != ROLE_TARGET) {
|
|
for (;i < maxtarget; i++) {
|
|
for (j = minlun;j < maxlun; j++) {
|
|
u_int scbid;
|
|
u_int tcl;
|
|
|
|
tcl = BUILD_TCL(i << 4, j);
|
|
scbid = ahc_index_busy_tcl(ahc, tcl);
|
|
scbp = ahc_lookup_scb(ahc, scbid);
|
|
if (scbp == NULL
|
|
|| ahc_match_scb(ahc, scbp, target, channel,
|
|
lun, tag, role) == 0)
|
|
continue;
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, j));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through the disconnected list and remove any entries we
|
|
* have queued for completion, 0'ing their control byte too.
|
|
* We save the active SCB and restore it ourselves, so there
|
|
* is no reason for this search to restore it too.
|
|
*/
|
|
ahc_search_disc_list(ahc, target, channel, lun, tag,
|
|
/*stop_on_first*/FALSE, /*remove*/TRUE,
|
|
/*save_state*/FALSE);
|
|
}
|
|
|
|
/*
|
|
* Go through the hardware SCB array looking for commands that
|
|
* were active but not on any list. In some cases, these remnants
|
|
* might not still have mappings in the scbindex array (e.g. unexpected
|
|
* bus free with the same scb queued for an abort). Don't hold this
|
|
* against them.
|
|
*/
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
u_int scbid;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
scbid = ahc_inb(ahc, SCB_TAG);
|
|
scbp = ahc_lookup_scb(ahc, scbid);
|
|
if ((scbp == NULL && scbid != SCB_LIST_NULL)
|
|
|| (scbp != NULL
|
|
&& ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)))
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
}
|
|
|
|
/*
|
|
* Go through the pending CCB list and look for
|
|
* commands for this target that are still active.
|
|
* These are other tagged commands that were
|
|
* disconnected when the reset occurred.
|
|
*/
|
|
scbp_next = LIST_FIRST(&ahc->pending_scbs);
|
|
while (scbp_next != NULL) {
|
|
scbp = scbp_next;
|
|
scbp_next = LIST_NEXT(scbp, pending_links);
|
|
if (ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)) {
|
|
cam_status ostat;
|
|
|
|
ostat = ahc_get_transaction_status(scbp);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scbp, status);
|
|
if (ahc_get_transaction_status(scbp) != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scbp);
|
|
if ((scbp->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB on pending list\n");
|
|
ahc_done(ahc, scbp);
|
|
found++;
|
|
}
|
|
}
|
|
ahc_outb(ahc, SCBPTR, active_scb);
|
|
ahc_platform_abort_scbs(ahc, target, channel, lun, tag, role, status);
|
|
ahc_release_untagged_queues(ahc);
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
ahc_reset_current_bus(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t scsiseq;
|
|
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_delay(AHC_BUSRESET_DELAY);
|
|
/* Turn off the bus reset */
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
|
|
|
|
ahc_clear_intstat(ahc);
|
|
|
|
/* Re-enable reset interrupts */
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
|
|
}
|
|
|
|
int
|
|
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
u_int initiator, target, max_scsiid;
|
|
u_int sblkctl;
|
|
u_int scsiseq;
|
|
u_int simode1;
|
|
int found;
|
|
int restart_needed;
|
|
char cur_channel;
|
|
|
|
ahc->pending_device = NULL;
|
|
|
|
ahc_compile_devinfo(&devinfo,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD,
|
|
channel, ROLE_UNKNOWN);
|
|
ahc_pause(ahc);
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahc_clear_critical_section(ahc);
|
|
|
|
/*
|
|
* Run our command complete fifos to ensure that we perform
|
|
* completion processing on any commands that 'completed'
|
|
* before the reset occurred.
|
|
*/
|
|
ahc_run_qoutfifo(ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* XXX - In Twin mode, the tqinfifo may have commands
|
|
* for an unaffected channel in it. However, if
|
|
* we have run out of ATIO resources to drain that
|
|
* queue, we may not get them all out here. Further,
|
|
* the blocked transactions for the reset channel
|
|
* should just be killed off, irrespecitve of whether
|
|
* we are blocked on ATIO resources. Write a routine
|
|
* to compact the tqinfifo appropriately.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0) {
|
|
ahc_run_tqinfifo(ahc, /*paused*/TRUE);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Reset the bus if we are initiating this reset
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
cur_channel = 'A';
|
|
if ((ahc->features & AHC_TWIN) != 0
|
|
&& ((sblkctl & SELBUSB) != 0))
|
|
cur_channel = 'B';
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
if (cur_channel != channel) {
|
|
/* Case 1: Command for another bus is active
|
|
* Stealthily reset the other bus without
|
|
* upsetting the current bus.
|
|
*/
|
|
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
|
|
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Bus resets clear ENSELI, so we cannot
|
|
* defer re-enabling bus reset interrupts
|
|
* if we are in target mode.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
simode1 |= ENSCSIRST;
|
|
#endif
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
if (initiate_reset)
|
|
ahc_reset_current_bus(ahc);
|
|
ahc_clear_intstat(ahc);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
ahc_outb(ahc, SBLKCTL, sblkctl);
|
|
restart_needed = FALSE;
|
|
} else {
|
|
/* Case 2: A command from this bus is active or we're idle */
|
|
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Bus resets clear ENSELI, so we cannot
|
|
* defer re-enabling bus reset interrupts
|
|
* if we are in target mode.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
simode1 |= ENSCSIRST;
|
|
#endif
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
if (initiate_reset)
|
|
ahc_reset_current_bus(ahc);
|
|
ahc_clear_intstat(ahc);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
restart_needed = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Clean up all the state information for the
|
|
* pending transactions on this bus.
|
|
*/
|
|
found = ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, channel,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL,
|
|
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
|
|
|
|
max_scsiid = (ahc->features & AHC_WIDE) ? 15 : 7;
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target more peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
struct ahc_tmode_tstate* tstate;
|
|
u_int lun;
|
|
|
|
tstate = ahc->enabled_targets[target];
|
|
if (tstate == NULL)
|
|
continue;
|
|
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahc_queue_lstate_event(ahc, lstate, CAM_TARGET_WILDCARD,
|
|
EVENT_TYPE_BUS_RESET, /*arg*/0);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
/* Notify the XPT that a bus reset occurred */
|
|
ahc_send_async(ahc, devinfo.channel, CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD, AC_BUS_RESET);
|
|
|
|
/*
|
|
* Revert to async/narrow transfers until we renegotiate.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
|
|
if (ahc->enabled_targets[target] == NULL)
|
|
continue;
|
|
for (initiator = 0; initiator <= max_scsiid; initiator++) {
|
|
struct ahc_devinfo devinfo;
|
|
|
|
ahc_compile_devinfo(&devinfo, target, initiator,
|
|
CAM_LUN_WILDCARD,
|
|
channel, ROLE_UNKNOWN);
|
|
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0, AHC_TRANS_CUR,
|
|
/*paused*/TRUE);
|
|
}
|
|
}
|
|
|
|
if (restart_needed)
|
|
ahc_restart(ahc);
|
|
else
|
|
ahc_unpause(ahc);
|
|
return found;
|
|
}
|
|
|
|
|
|
/***************************** Residual Processing ****************************/
|
|
/*
|
|
* Calculate the residual for a just completed SCB.
|
|
*/
|
|
static void
|
|
ahc_calc_residual(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
struct status_pkt *spkt;
|
|
uint32_t sgptr;
|
|
uint32_t resid_sgptr;
|
|
uint32_t resid;
|
|
|
|
/*
|
|
* 5 cases.
|
|
* 1) No residual.
|
|
* SG_RESID_VALID clear in sgptr.
|
|
* 2) Transferless command
|
|
* 3) Never performed any transfers.
|
|
* sgptr has SG_FULL_RESID set.
|
|
* 4) No residual but target did not
|
|
* save data pointers after the
|
|
* last transfer, so sgptr was
|
|
* never updated.
|
|
* 5) We have a partial residual.
|
|
* Use residual_sgptr to determine
|
|
* where we are.
|
|
*/
|
|
|
|
hscb = scb->hscb;
|
|
sgptr = ahc_le32toh(hscb->sgptr);
|
|
if ((sgptr & SG_RESID_VALID) == 0)
|
|
/* Case 1 */
|
|
return;
|
|
sgptr &= ~SG_RESID_VALID;
|
|
|
|
if ((sgptr & SG_LIST_NULL) != 0)
|
|
/* Case 2 */
|
|
return;
|
|
|
|
spkt = &hscb->shared_data.status;
|
|
resid_sgptr = ahc_le32toh(spkt->residual_sg_ptr);
|
|
if ((sgptr & SG_FULL_RESID) != 0) {
|
|
/* Case 3 */
|
|
resid = ahc_get_transfer_length(scb);
|
|
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
|
|
/* Case 4 */
|
|
return;
|
|
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
|
|
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
|
|
} else {
|
|
struct ahc_dma_seg *sg;
|
|
|
|
/*
|
|
* Remainder of the SG where the transfer
|
|
* stopped.
|
|
*/
|
|
resid = ahc_le32toh(spkt->residual_datacnt) & AHC_SG_LEN_MASK;
|
|
sg = ahc_sg_bus_to_virt(scb, resid_sgptr & SG_PTR_MASK);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
/*
|
|
* Add up the contents of all residual
|
|
* SG segments that are after the SG where
|
|
* the transfer stopped.
|
|
*/
|
|
while ((ahc_le32toh(sg->len) & AHC_DMA_LAST_SEG) == 0) {
|
|
sg++;
|
|
resid += ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
|
|
}
|
|
}
|
|
if ((scb->flags & SCB_SENSE) == 0)
|
|
ahc_set_residual(scb, resid);
|
|
else
|
|
ahc_set_sense_residual(scb, resid);
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MISC) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Handled %sResidual of %d bytes\n",
|
|
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/******************************* Target Mode **********************************/
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Add a target mode event to this lun's queue
|
|
*/
|
|
static void
|
|
ahc_queue_lstate_event(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate,
|
|
u_int initiator_id, u_int event_type, u_int event_arg)
|
|
{
|
|
struct ahc_tmode_event *event;
|
|
int pending;
|
|
|
|
xpt_freeze_devq(lstate->path, /*count*/1);
|
|
if (lstate->event_w_idx >= lstate->event_r_idx)
|
|
pending = lstate->event_w_idx - lstate->event_r_idx;
|
|
else
|
|
pending = AHC_TMODE_EVENT_BUFFER_SIZE + 1
|
|
- (lstate->event_r_idx - lstate->event_w_idx);
|
|
|
|
if (event_type == EVENT_TYPE_BUS_RESET
|
|
|| event_type == MSG_BUS_DEV_RESET) {
|
|
/*
|
|
* Any earlier events are irrelevant, so reset our buffer.
|
|
* This has the effect of allowing us to deal with reset
|
|
* floods (an external device holding down the reset line)
|
|
* without losing the event that is really interesting.
|
|
*/
|
|
lstate->event_r_idx = 0;
|
|
lstate->event_w_idx = 0;
|
|
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
|
|
}
|
|
|
|
if (pending == AHC_TMODE_EVENT_BUFFER_SIZE) {
|
|
xpt_print_path(lstate->path);
|
|
printk("immediate event %x:%x lost\n",
|
|
lstate->event_buffer[lstate->event_r_idx].event_type,
|
|
lstate->event_buffer[lstate->event_r_idx].event_arg);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
|
|
}
|
|
|
|
event = &lstate->event_buffer[lstate->event_w_idx];
|
|
event->initiator_id = initiator_id;
|
|
event->event_type = event_type;
|
|
event->event_arg = event_arg;
|
|
lstate->event_w_idx++;
|
|
if (lstate->event_w_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_w_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Send any target mode events queued up waiting
|
|
* for immediate notify resources.
|
|
*/
|
|
void
|
|
ahc_send_lstate_events(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate)
|
|
{
|
|
struct ccb_hdr *ccbh;
|
|
struct ccb_immed_notify *inot;
|
|
|
|
while (lstate->event_r_idx != lstate->event_w_idx
|
|
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
|
|
struct ahc_tmode_event *event;
|
|
|
|
event = &lstate->event_buffer[lstate->event_r_idx];
|
|
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
|
|
inot = (struct ccb_immed_notify *)ccbh;
|
|
switch (event->event_type) {
|
|
case EVENT_TYPE_BUS_RESET:
|
|
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
|
|
break;
|
|
default:
|
|
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
|
|
inot->message_args[0] = event->event_type;
|
|
inot->message_args[1] = event->event_arg;
|
|
break;
|
|
}
|
|
inot->initiator_id = event->initiator_id;
|
|
inot->sense_len = 0;
|
|
xpt_done((union ccb *)inot);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/******************** Sequencer Program Patching/Download *********************/
|
|
|
|
#ifdef AHC_DUMP_SEQ
|
|
void
|
|
ahc_dumpseq(struct ahc_softc* ahc)
|
|
{
|
|
int i;
|
|
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
for (i = 0; i < ahc->instruction_ram_size; i++) {
|
|
uint8_t ins_bytes[4];
|
|
|
|
ahc_insb(ahc, SEQRAM, ins_bytes, 4);
|
|
printk("0x%08x\n", ins_bytes[0] << 24
|
|
| ins_bytes[1] << 16
|
|
| ins_bytes[2] << 8
|
|
| ins_bytes[3]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
ahc_loadseq(struct ahc_softc *ahc)
|
|
{
|
|
struct cs cs_table[NUM_CRITICAL_SECTIONS];
|
|
u_int begin_set[NUM_CRITICAL_SECTIONS];
|
|
u_int end_set[NUM_CRITICAL_SECTIONS];
|
|
const struct patch *cur_patch;
|
|
u_int cs_count;
|
|
u_int cur_cs;
|
|
u_int i;
|
|
u_int skip_addr;
|
|
u_int sg_prefetch_cnt;
|
|
int downloaded;
|
|
uint8_t download_consts[7];
|
|
|
|
/*
|
|
* Start out with 0 critical sections
|
|
* that apply to this firmware load.
|
|
*/
|
|
cs_count = 0;
|
|
cur_cs = 0;
|
|
memset(begin_set, 0, sizeof(begin_set));
|
|
memset(end_set, 0, sizeof(end_set));
|
|
|
|
/* Setup downloadable constant table */
|
|
download_consts[QOUTFIFO_OFFSET] = 0;
|
|
if (ahc->targetcmds != NULL)
|
|
download_consts[QOUTFIFO_OFFSET] += 32;
|
|
download_consts[QINFIFO_OFFSET] = download_consts[QOUTFIFO_OFFSET] + 1;
|
|
download_consts[CACHESIZE_MASK] = ahc->pci_cachesize - 1;
|
|
download_consts[INVERTED_CACHESIZE_MASK] = ~(ahc->pci_cachesize - 1);
|
|
sg_prefetch_cnt = ahc->pci_cachesize;
|
|
if (sg_prefetch_cnt < (2 * sizeof(struct ahc_dma_seg)))
|
|
sg_prefetch_cnt = 2 * sizeof(struct ahc_dma_seg);
|
|
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
|
|
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_cnt - 1);
|
|
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_cnt - 1);
|
|
|
|
cur_patch = patches;
|
|
downloaded = 0;
|
|
skip_addr = 0;
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
|
|
for (i = 0; i < sizeof(seqprog)/4; i++) {
|
|
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
|
|
/*
|
|
* Don't download this instruction as it
|
|
* is in a patch that was removed.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (downloaded == ahc->instruction_ram_size) {
|
|
/*
|
|
* We're about to exceed the instruction
|
|
* storage capacity for this chip. Fail
|
|
* the load.
|
|
*/
|
|
printk("\n%s: Program too large for instruction memory "
|
|
"size of %d!\n", ahc_name(ahc),
|
|
ahc->instruction_ram_size);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Move through the CS table until we find a CS
|
|
* that might apply to this instruction.
|
|
*/
|
|
for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
|
|
if (critical_sections[cur_cs].end <= i) {
|
|
if (begin_set[cs_count] == TRUE
|
|
&& end_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].end = downloaded;
|
|
end_set[cs_count] = TRUE;
|
|
cs_count++;
|
|
}
|
|
continue;
|
|
}
|
|
if (critical_sections[cur_cs].begin <= i
|
|
&& begin_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].begin = downloaded;
|
|
begin_set[cs_count] = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
ahc_download_instr(ahc, i, download_consts);
|
|
downloaded++;
|
|
}
|
|
|
|
ahc->num_critical_sections = cs_count;
|
|
if (cs_count != 0) {
|
|
|
|
cs_count *= sizeof(struct cs);
|
|
ahc->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
|
|
if (ahc->critical_sections == NULL)
|
|
panic("ahc_loadseq: Could not malloc");
|
|
}
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
|
|
|
|
if (bootverbose) {
|
|
printk(" %d instructions downloaded\n", downloaded);
|
|
printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
|
|
ahc_name(ahc), ahc->features, ahc->bugs, ahc->flags);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ahc_check_patch(struct ahc_softc *ahc, const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr)
|
|
{
|
|
const struct patch *cur_patch;
|
|
const struct patch *last_patch;
|
|
u_int num_patches;
|
|
|
|
num_patches = ARRAY_SIZE(patches);
|
|
last_patch = &patches[num_patches];
|
|
cur_patch = *start_patch;
|
|
|
|
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
|
|
|
|
if (cur_patch->patch_func(ahc) == 0) {
|
|
|
|
/* Start rejecting code */
|
|
*skip_addr = start_instr + cur_patch->skip_instr;
|
|
cur_patch += cur_patch->skip_patch;
|
|
} else {
|
|
/* Accepted this patch. Advance to the next
|
|
* one and wait for our intruction pointer to
|
|
* hit this point.
|
|
*/
|
|
cur_patch++;
|
|
}
|
|
}
|
|
|
|
*start_patch = cur_patch;
|
|
if (start_instr < *skip_addr)
|
|
/* Still skipping */
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
ahc_download_instr(struct ahc_softc *ahc, u_int instrptr, uint8_t *dconsts)
|
|
{
|
|
union ins_formats instr;
|
|
struct ins_format1 *fmt1_ins;
|
|
struct ins_format3 *fmt3_ins;
|
|
u_int opcode;
|
|
|
|
/*
|
|
* The firmware is always compiled into a little endian format.
|
|
*/
|
|
instr.integer = ahc_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
|
|
|
|
fmt1_ins = &instr.format1;
|
|
fmt3_ins = NULL;
|
|
|
|
/* Pull the opcode */
|
|
opcode = instr.format1.opcode;
|
|
switch (opcode) {
|
|
case AIC_OP_JMP:
|
|
case AIC_OP_JC:
|
|
case AIC_OP_JNC:
|
|
case AIC_OP_CALL:
|
|
case AIC_OP_JNE:
|
|
case AIC_OP_JNZ:
|
|
case AIC_OP_JE:
|
|
case AIC_OP_JZ:
|
|
{
|
|
const struct patch *cur_patch;
|
|
int address_offset;
|
|
u_int address;
|
|
u_int skip_addr;
|
|
u_int i;
|
|
|
|
fmt3_ins = &instr.format3;
|
|
address_offset = 0;
|
|
address = fmt3_ins->address;
|
|
cur_patch = patches;
|
|
skip_addr = 0;
|
|
|
|
for (i = 0; i < address;) {
|
|
|
|
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
|
|
|
|
if (skip_addr > i) {
|
|
int end_addr;
|
|
|
|
end_addr = min(address, skip_addr);
|
|
address_offset += end_addr - i;
|
|
i = skip_addr;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
address -= address_offset;
|
|
fmt3_ins->address = address;
|
|
}
|
|
fallthrough;
|
|
case AIC_OP_OR:
|
|
case AIC_OP_AND:
|
|
case AIC_OP_XOR:
|
|
case AIC_OP_ADD:
|
|
case AIC_OP_ADC:
|
|
case AIC_OP_BMOV:
|
|
if (fmt1_ins->parity != 0) {
|
|
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
|
|
}
|
|
fmt1_ins->parity = 0;
|
|
if ((ahc->features & AHC_CMD_CHAN) == 0
|
|
&& opcode == AIC_OP_BMOV) {
|
|
/*
|
|
* Block move was added at the same time
|
|
* as the command channel. Verify that
|
|
* this is only a move of a single element
|
|
* and convert the BMOV to a MOV
|
|
* (AND with an immediate of FF).
|
|
*/
|
|
if (fmt1_ins->immediate != 1)
|
|
panic("%s: BMOV not supported\n",
|
|
ahc_name(ahc));
|
|
fmt1_ins->opcode = AIC_OP_AND;
|
|
fmt1_ins->immediate = 0xff;
|
|
}
|
|
fallthrough;
|
|
case AIC_OP_ROL:
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
int i, count;
|
|
|
|
/* Calculate odd parity for the instruction */
|
|
for (i = 0, count = 0; i < 31; i++) {
|
|
uint32_t mask;
|
|
|
|
mask = 0x01 << i;
|
|
if ((instr.integer & mask) != 0)
|
|
count++;
|
|
}
|
|
if ((count & 0x01) == 0)
|
|
instr.format1.parity = 1;
|
|
} else {
|
|
/* Compress the instruction for older sequencers */
|
|
if (fmt3_ins != NULL) {
|
|
instr.integer =
|
|
fmt3_ins->immediate
|
|
| (fmt3_ins->source << 8)
|
|
| (fmt3_ins->address << 16)
|
|
| (fmt3_ins->opcode << 25);
|
|
} else {
|
|
instr.integer =
|
|
fmt1_ins->immediate
|
|
| (fmt1_ins->source << 8)
|
|
| (fmt1_ins->destination << 16)
|
|
| (fmt1_ins->ret << 24)
|
|
| (fmt1_ins->opcode << 25);
|
|
}
|
|
}
|
|
/* The sequencer is a little endian cpu */
|
|
instr.integer = ahc_htole32(instr.integer);
|
|
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
|
|
break;
|
|
default:
|
|
panic("Unknown opcode encountered in seq program");
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
ahc_print_register(const ahc_reg_parse_entry_t *table, u_int num_entries,
|
|
const char *name, u_int address, u_int value,
|
|
u_int *cur_column, u_int wrap_point)
|
|
{
|
|
int printed;
|
|
u_int printed_mask;
|
|
|
|
if (cur_column != NULL && *cur_column >= wrap_point) {
|
|
printk("\n");
|
|
*cur_column = 0;
|
|
}
|
|
printed = printk("%s[0x%x]", name, value);
|
|
if (table == NULL) {
|
|
printed += printk(" ");
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
printed_mask = 0;
|
|
while (printed_mask != 0xFF) {
|
|
int entry;
|
|
|
|
for (entry = 0; entry < num_entries; entry++) {
|
|
if (((value & table[entry].mask)
|
|
!= table[entry].value)
|
|
|| ((printed_mask & table[entry].mask)
|
|
== table[entry].mask))
|
|
continue;
|
|
|
|
printed += printk("%s%s",
|
|
printed_mask == 0 ? ":(" : "|",
|
|
table[entry].name);
|
|
printed_mask |= table[entry].mask;
|
|
|
|
break;
|
|
}
|
|
if (entry >= num_entries)
|
|
break;
|
|
}
|
|
if (printed_mask != 0)
|
|
printed += printk(") ");
|
|
else
|
|
printed += printk(" ");
|
|
if (cur_column != NULL)
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
|
|
void
|
|
ahc_dump_card_state(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
struct scb_tailq *untagged_q;
|
|
u_int cur_col;
|
|
int paused;
|
|
int target;
|
|
int maxtarget;
|
|
int i;
|
|
uint8_t last_phase;
|
|
uint8_t qinpos;
|
|
uint8_t qintail;
|
|
uint8_t qoutpos;
|
|
uint8_t scb_index;
|
|
uint8_t saved_scbptr;
|
|
|
|
if (ahc_is_paused(ahc)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahc_pause(ahc);
|
|
}
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
last_phase = ahc_inb(ahc, LASTPHASE);
|
|
printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
|
|
"%s: Dumping Card State %s, at SEQADDR 0x%x\n",
|
|
ahc_name(ahc), ahc_lookup_phase_entry(last_phase)->phasemsg,
|
|
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
|
|
if (paused)
|
|
printk("Card was paused\n");
|
|
printk("ACCUM = 0x%x, SINDEX = 0x%x, DINDEX = 0x%x, ARG_2 = 0x%x\n",
|
|
ahc_inb(ahc, ACCUM), ahc_inb(ahc, SINDEX), ahc_inb(ahc, DINDEX),
|
|
ahc_inb(ahc, ARG_2));
|
|
printk("HCNT = 0x%x SCBPTR = 0x%x\n", ahc_inb(ahc, HCNT),
|
|
ahc_inb(ahc, SCBPTR));
|
|
cur_col = 0;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
ahc_scsiphase_print(ahc_inb(ahc, SCSIPHASE), &cur_col, 50);
|
|
ahc_scsisigi_print(ahc_inb(ahc, SCSISIGI), &cur_col, 50);
|
|
ahc_error_print(ahc_inb(ahc, ERROR), &cur_col, 50);
|
|
ahc_scsibusl_print(ahc_inb(ahc, SCSIBUSL), &cur_col, 50);
|
|
ahc_lastphase_print(ahc_inb(ahc, LASTPHASE), &cur_col, 50);
|
|
ahc_scsiseq_print(ahc_inb(ahc, SCSISEQ), &cur_col, 50);
|
|
ahc_sblkctl_print(ahc_inb(ahc, SBLKCTL), &cur_col, 50);
|
|
ahc_scsirate_print(ahc_inb(ahc, SCSIRATE), &cur_col, 50);
|
|
ahc_seqctl_print(ahc_inb(ahc, SEQCTL), &cur_col, 50);
|
|
ahc_seq_flags_print(ahc_inb(ahc, SEQ_FLAGS), &cur_col, 50);
|
|
ahc_sstat0_print(ahc_inb(ahc, SSTAT0), &cur_col, 50);
|
|
ahc_sstat1_print(ahc_inb(ahc, SSTAT1), &cur_col, 50);
|
|
ahc_sstat2_print(ahc_inb(ahc, SSTAT2), &cur_col, 50);
|
|
ahc_sstat3_print(ahc_inb(ahc, SSTAT3), &cur_col, 50);
|
|
ahc_simode0_print(ahc_inb(ahc, SIMODE0), &cur_col, 50);
|
|
ahc_simode1_print(ahc_inb(ahc, SIMODE1), &cur_col, 50);
|
|
ahc_sxfrctl0_print(ahc_inb(ahc, SXFRCTL0), &cur_col, 50);
|
|
ahc_dfcntrl_print(ahc_inb(ahc, DFCNTRL), &cur_col, 50);
|
|
ahc_dfstatus_print(ahc_inb(ahc, DFSTATUS), &cur_col, 50);
|
|
if (cur_col != 0)
|
|
printk("\n");
|
|
printk("STACK:");
|
|
for (i = 0; i < STACK_SIZE; i++)
|
|
printk(" 0x%x", ahc_inb(ahc, STACK)|(ahc_inb(ahc, STACK) << 8));
|
|
printk("\nSCB count = %d\n", ahc->scb_data->numscbs);
|
|
printk("Kernel NEXTQSCB = %d\n", ahc->next_queued_scb->hscb->tag);
|
|
printk("Card NEXTQSCB = %d\n", ahc_inb(ahc, NEXT_QUEUED_SCB));
|
|
/* QINFIFO */
|
|
printk("QINFIFO entries: ");
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
qinpos = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinpos);
|
|
} else
|
|
qinpos = ahc_inb(ahc, QINPOS);
|
|
qintail = ahc->qinfifonext;
|
|
while (qinpos != qintail) {
|
|
printk("%d ", ahc->qinfifo[qinpos]);
|
|
qinpos++;
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Waiting Queue entries: ");
|
|
scb_index = ahc_inb(ahc, WAITING_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Disconnected Queue entries: ");
|
|
scb_index = ahc_inb(ahc, DISCONNECTED_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
printk("QOUTFIFO entries: ");
|
|
qoutpos = ahc->qoutfifonext;
|
|
i = 0;
|
|
while (ahc->qoutfifo[qoutpos] != SCB_LIST_NULL && i++ < 256) {
|
|
printk("%d ", ahc->qoutfifo[qoutpos]);
|
|
qoutpos++;
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer Free SCB List: ");
|
|
scb_index = ahc_inb(ahc, FREE_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer SCB Info: ");
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
cur_col = printk("\n%3d ", i);
|
|
|
|
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL), &cur_col, 60);
|
|
ahc_scb_scsiid_print(ahc_inb(ahc, SCB_SCSIID), &cur_col, 60);
|
|
ahc_scb_lun_print(ahc_inb(ahc, SCB_LUN), &cur_col, 60);
|
|
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Pending list: ");
|
|
i = 0;
|
|
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
|
|
if (i++ > 256)
|
|
break;
|
|
cur_col = printk("\n%3d ", scb->hscb->tag);
|
|
ahc_scb_control_print(scb->hscb->control, &cur_col, 60);
|
|
ahc_scb_scsiid_print(scb->hscb->scsiid, &cur_col, 60);
|
|
ahc_scb_lun_print(scb->hscb->lun, &cur_col, 60);
|
|
if ((ahc->flags & AHC_PAGESCBS) == 0) {
|
|
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
|
|
printk("(");
|
|
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL),
|
|
&cur_col, 60);
|
|
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
|
|
printk(")");
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Kernel Free SCB list: ");
|
|
i = 0;
|
|
SLIST_FOREACH(scb, &ahc->scb_data->free_scbs, links.sle) {
|
|
if (i++ > 256)
|
|
break;
|
|
printk("%d ", scb->hscb->tag);
|
|
}
|
|
printk("\n");
|
|
|
|
maxtarget = (ahc->features & (AHC_WIDE|AHC_TWIN)) ? 15 : 7;
|
|
for (target = 0; target <= maxtarget; target++) {
|
|
untagged_q = &ahc->untagged_queues[target];
|
|
if (TAILQ_FIRST(untagged_q) == NULL)
|
|
continue;
|
|
printk("Untagged Q(%d): ", target);
|
|
i = 0;
|
|
TAILQ_FOREACH(scb, untagged_q, links.tqe) {
|
|
if (i++ > 256)
|
|
break;
|
|
printk("%d ", scb->hscb->tag);
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
if (paused == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/************************* Target Mode ****************************************/
|
|
#ifdef AHC_TARGET_MODE
|
|
cam_status
|
|
ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb,
|
|
struct ahc_tmode_tstate **tstate,
|
|
struct ahc_tmode_lstate **lstate,
|
|
int notfound_failure)
|
|
{
|
|
|
|
if ((ahc->features & AHC_TARGETMODE) == 0)
|
|
return (CAM_REQ_INVALID);
|
|
|
|
/*
|
|
* Handle the 'black hole' device that sucks up
|
|
* requests to unattached luns on enabled targets.
|
|
*/
|
|
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
|
|
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
|
|
*tstate = NULL;
|
|
*lstate = ahc->black_hole;
|
|
} else {
|
|
u_int max_id;
|
|
|
|
max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
|
|
if (ccb->ccb_h.target_id >= max_id)
|
|
return (CAM_TID_INVALID);
|
|
|
|
if (ccb->ccb_h.target_lun >= AHC_NUM_LUNS)
|
|
return (CAM_LUN_INVALID);
|
|
|
|
*tstate = ahc->enabled_targets[ccb->ccb_h.target_id];
|
|
*lstate = NULL;
|
|
if (*tstate != NULL)
|
|
*lstate =
|
|
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
|
|
}
|
|
|
|
if (notfound_failure != 0 && *lstate == NULL)
|
|
return (CAM_PATH_INVALID);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
ahc_handle_en_lun(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_tmode_lstate *lstate;
|
|
struct ccb_en_lun *cel;
|
|
cam_status status;
|
|
u_long s;
|
|
u_int target;
|
|
u_int lun;
|
|
u_int target_mask;
|
|
u_int our_id;
|
|
int error;
|
|
char channel;
|
|
|
|
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate,
|
|
/*notfound_failure*/FALSE);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
if (cam_sim_bus(sim) == 0)
|
|
our_id = ahc->our_id;
|
|
else
|
|
our_id = ahc->our_id_b;
|
|
|
|
if (ccb->ccb_h.target_id != our_id) {
|
|
/*
|
|
* our_id represents our initiator ID, or
|
|
* the ID of the first target to have an
|
|
* enabled lun in target mode. There are
|
|
* two cases that may preclude enabling a
|
|
* target id other than our_id.
|
|
*
|
|
* o our_id is for an active initiator role.
|
|
* Since the hardware does not support
|
|
* reselections to the initiator role at
|
|
* anything other than our_id, and our_id
|
|
* is used by the hardware to indicate the
|
|
* ID to use for both select-out and
|
|
* reselect-out operations, the only target
|
|
* ID we can support in this mode is our_id.
|
|
*
|
|
* o The MULTARGID feature is not available and
|
|
* a previous target mode ID has been enabled.
|
|
*/
|
|
if ((ahc->features & AHC_MULTIROLE) != 0) {
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0) {
|
|
/*
|
|
* Only allow additional targets if
|
|
* the initiator role is disabled.
|
|
* The hardware cannot handle a re-select-in
|
|
* on the initiator id during a re-select-out
|
|
* on a different target id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
} else if ((ahc->flags & AHC_INITIATORROLE) != 0
|
|
|| ahc->enabled_luns > 0) {
|
|
/*
|
|
* Only allow our target id to change
|
|
* if the initiator role is not configured
|
|
* and there are no enabled luns which
|
|
* are attached to the currently registered
|
|
* scsi id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
}
|
|
} else if ((ahc->features & AHC_MULTI_TID) == 0
|
|
&& ahc->enabled_luns > 0) {
|
|
|
|
status = CAM_TID_INVALID;
|
|
}
|
|
}
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We now have an id that is valid.
|
|
* If we aren't in target mode, switch modes.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) == 0
|
|
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
|
|
u_long s;
|
|
ahc_flag saved_flags;
|
|
|
|
printk("Configuring Target Mode\n");
|
|
ahc_lock(ahc, &s);
|
|
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
|
|
ccb->ccb_h.status = CAM_BUSY;
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
saved_flags = ahc->flags;
|
|
ahc->flags |= AHC_TARGETROLE;
|
|
if ((ahc->features & AHC_MULTIROLE) == 0)
|
|
ahc->flags &= ~AHC_INITIATORROLE;
|
|
ahc_pause(ahc);
|
|
error = ahc_loadseq(ahc);
|
|
if (error != 0) {
|
|
/*
|
|
* Restore original configuration and notify
|
|
* the caller that we cannot support target mode.
|
|
* Since the adapter started out in this
|
|
* configuration, the firmware load will succeed,
|
|
* so there is no point in checking ahc_loadseq's
|
|
* return value.
|
|
*/
|
|
ahc->flags = saved_flags;
|
|
(void)ahc_loadseq(ahc);
|
|
ahc_restart(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
|
|
return;
|
|
}
|
|
ahc_restart(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
}
|
|
cel = &ccb->cel;
|
|
target = ccb->ccb_h.target_id;
|
|
lun = ccb->ccb_h.target_lun;
|
|
channel = SIM_CHANNEL(ahc, sim);
|
|
target_mask = 0x01 << target;
|
|
if (channel == 'B')
|
|
target_mask <<= 8;
|
|
|
|
if (cel->enable != 0) {
|
|
u_int scsiseq;
|
|
|
|
/* Are we already enabled?? */
|
|
if (lstate != NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun already enabled\n");
|
|
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
|
|
return;
|
|
}
|
|
|
|
if (cel->grp6_len != 0
|
|
|| cel->grp7_len != 0) {
|
|
/*
|
|
* Don't (yet?) support vendor
|
|
* specific commands.
|
|
*/
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
printk("Non-zero Group Codes\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Seems to be okay.
|
|
* Setup our data structures.
|
|
*/
|
|
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
|
|
tstate = ahc_alloc_tstate(ahc, target, channel);
|
|
if (tstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate tstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
}
|
|
lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
|
|
if (lstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate lstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
status = xpt_create_path(&lstate->path, /*periph*/NULL,
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
xpt_path_lun_id(ccb->ccb_h.path));
|
|
if (status != CAM_REQ_CMP) {
|
|
kfree(lstate);
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate path\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
SLIST_INIT(&lstate->accept_tios);
|
|
SLIST_INIT(&lstate->immed_notifies);
|
|
ahc_lock(ahc, &s);
|
|
ahc_pause(ahc);
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = lstate;
|
|
ahc->enabled_luns++;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahc_inb(ahc, TARGID)
|
|
| (ahc_inb(ahc, TARGID + 1) << 8);
|
|
|
|
targid_mask |= target_mask;
|
|
ahc_outb(ahc, TARGID, targid_mask);
|
|
ahc_outb(ahc, TARGID+1, (targid_mask >> 8));
|
|
|
|
ahc_update_scsiid(ahc, targid_mask);
|
|
} else {
|
|
u_int our_id;
|
|
char channel;
|
|
|
|
channel = SIM_CHANNEL(ahc, sim);
|
|
our_id = SIM_SCSI_ID(ahc, sim);
|
|
|
|
/*
|
|
* This can only happen if selections
|
|
* are not enabled
|
|
*/
|
|
if (target != our_id) {
|
|
u_int sblkctl;
|
|
char cur_channel;
|
|
int swap;
|
|
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
cur_channel = (sblkctl & SELBUSB)
|
|
? 'B' : 'A';
|
|
if ((ahc->features & AHC_TWIN) == 0)
|
|
cur_channel = 'A';
|
|
swap = cur_channel != channel;
|
|
if (channel == 'A')
|
|
ahc->our_id = target;
|
|
else
|
|
ahc->our_id_b = target;
|
|
|
|
if (swap)
|
|
ahc_outb(ahc, SBLKCTL,
|
|
sblkctl ^ SELBUSB);
|
|
|
|
ahc_outb(ahc, SCSIID, target);
|
|
|
|
if (swap)
|
|
ahc_outb(ahc, SBLKCTL, sblkctl);
|
|
}
|
|
}
|
|
} else
|
|
ahc->black_hole = lstate;
|
|
/* Allow select-in operations */
|
|
if (ahc->black_hole != NULL && ahc->enabled_luns > 0) {
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
scsiseq |= ENSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
scsiseq |= ENSELI;
|
|
ahc_outb(ahc, SCSISEQ, scsiseq);
|
|
}
|
|
ahc_unpause(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun now enabled for target mode\n");
|
|
} else {
|
|
struct scb *scb;
|
|
int i, empty;
|
|
|
|
if (lstate == NULL) {
|
|
ccb->ccb_h.status = CAM_LUN_INVALID;
|
|
return;
|
|
}
|
|
|
|
ahc_lock(ahc, &s);
|
|
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
|
|
struct ccb_hdr *ccbh;
|
|
|
|
ccbh = &scb->io_ctx->ccb_h;
|
|
if (ccbh->func_code == XPT_CONT_TARGET_IO
|
|
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
|
|
printk("CTIO pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
|
|
printk("ATIOs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
|
|
printk("INOTs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Target mode disabled\n");
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
|
|
ahc_pause(ahc);
|
|
/* Can we clean up the target too? */
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = NULL;
|
|
ahc->enabled_luns--;
|
|
for (empty = 1, i = 0; i < 8; i++)
|
|
if (tstate->enabled_luns[i] != NULL) {
|
|
empty = 0;
|
|
break;
|
|
}
|
|
|
|
if (empty) {
|
|
ahc_free_tstate(ahc, target, channel,
|
|
/*force*/FALSE);
|
|
if (ahc->features & AHC_MULTI_TID) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahc_inb(ahc, TARGID)
|
|
| (ahc_inb(ahc, TARGID + 1)
|
|
<< 8);
|
|
|
|
targid_mask &= ~target_mask;
|
|
ahc_outb(ahc, TARGID, targid_mask);
|
|
ahc_outb(ahc, TARGID+1,
|
|
(targid_mask >> 8));
|
|
ahc_update_scsiid(ahc, targid_mask);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
ahc->black_hole = NULL;
|
|
|
|
/*
|
|
* We can't allow selections without
|
|
* our black hole device.
|
|
*/
|
|
empty = TRUE;
|
|
}
|
|
if (ahc->enabled_luns == 0) {
|
|
/* Disallow select-in */
|
|
u_int scsiseq;
|
|
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
scsiseq &= ~ENSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
scsiseq &= ~ENSELI;
|
|
ahc_outb(ahc, SCSISEQ, scsiseq);
|
|
|
|
if ((ahc->features & AHC_MULTIROLE) == 0) {
|
|
printk("Configuring Initiator Mode\n");
|
|
ahc->flags &= ~AHC_TARGETROLE;
|
|
ahc->flags |= AHC_INITIATORROLE;
|
|
/*
|
|
* Returning to a configuration that
|
|
* fit previously will always succeed.
|
|
*/
|
|
(void)ahc_loadseq(ahc);
|
|
ahc_restart(ahc);
|
|
/*
|
|
* Unpaused. The extra unpause
|
|
* that follows is harmless.
|
|
*/
|
|
}
|
|
}
|
|
ahc_unpause(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_update_scsiid(struct ahc_softc *ahc, u_int targid_mask)
|
|
{
|
|
u_int scsiid_mask;
|
|
u_int scsiid;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) == 0)
|
|
panic("ahc_update_scsiid called on non-multitid unit\n");
|
|
|
|
/*
|
|
* Since we will rely on the TARGID mask
|
|
* for selection enables, ensure that OID
|
|
* in SCSIID is not set to some other ID
|
|
* that we don't want to allow selections on.
|
|
*/
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
scsiid = ahc_inb(ahc, SCSIID_ULTRA2);
|
|
else
|
|
scsiid = ahc_inb(ahc, SCSIID);
|
|
scsiid_mask = 0x1 << (scsiid & OID);
|
|
if ((targid_mask & scsiid_mask) == 0) {
|
|
u_int our_id;
|
|
|
|
/* ffs counts from 1 */
|
|
our_id = ffs(targid_mask);
|
|
if (our_id == 0)
|
|
our_id = ahc->our_id;
|
|
else
|
|
our_id--;
|
|
scsiid &= TID;
|
|
scsiid |= our_id;
|
|
}
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIID_ULTRA2, scsiid);
|
|
else
|
|
ahc_outb(ahc, SCSIID, scsiid);
|
|
}
|
|
|
|
static void
|
|
ahc_run_tqinfifo(struct ahc_softc *ahc, int paused)
|
|
{
|
|
struct target_cmd *cmd;
|
|
|
|
/*
|
|
* If the card supports auto-access pause,
|
|
* we can access the card directly regardless
|
|
* of whether it is paused or not.
|
|
*/
|
|
if ((ahc->features & AHC_AUTOPAUSE) != 0)
|
|
paused = TRUE;
|
|
|
|
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
while ((cmd = &ahc->targetcmds[ahc->tqinfifonext])->cmd_valid != 0) {
|
|
|
|
/*
|
|
* Only advance through the queue if we
|
|
* have the resources to process the command.
|
|
*/
|
|
if (ahc_handle_target_cmd(ahc, cmd) != 0)
|
|
break;
|
|
|
|
cmd->cmd_valid = 0;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, ahc->tqinfifonext),
|
|
sizeof(struct target_cmd),
|
|
BUS_DMASYNC_PREREAD);
|
|
ahc->tqinfifonext++;
|
|
|
|
/*
|
|
* Lazily update our position in the target mode incoming
|
|
* command queue as seen by the sequencer.
|
|
*/
|
|
if ((ahc->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
|
|
if ((ahc->features & AHC_HS_MAILBOX) != 0) {
|
|
u_int hs_mailbox;
|
|
|
|
hs_mailbox = ahc_inb(ahc, HS_MAILBOX);
|
|
hs_mailbox &= ~HOST_TQINPOS;
|
|
hs_mailbox |= ahc->tqinfifonext & HOST_TQINPOS;
|
|
ahc_outb(ahc, HS_MAILBOX, hs_mailbox);
|
|
} else {
|
|
if (!paused)
|
|
ahc_pause(ahc);
|
|
ahc_outb(ahc, KERNEL_TQINPOS,
|
|
ahc->tqinfifonext & HOST_TQINPOS);
|
|
if (!paused)
|
|
ahc_unpause(ahc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahc_handle_target_cmd(struct ahc_softc *ahc, struct target_cmd *cmd)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_tmode_lstate *lstate;
|
|
struct ccb_accept_tio *atio;
|
|
uint8_t *byte;
|
|
int initiator;
|
|
int target;
|
|
int lun;
|
|
|
|
initiator = SCSIID_TARGET(ahc, cmd->scsiid);
|
|
target = SCSIID_OUR_ID(cmd->scsiid);
|
|
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
|
|
|
|
byte = cmd->bytes;
|
|
tstate = ahc->enabled_targets[target];
|
|
lstate = NULL;
|
|
if (tstate != NULL)
|
|
lstate = tstate->enabled_luns[lun];
|
|
|
|
/*
|
|
* Commands for disabled luns go to the black hole driver.
|
|
*/
|
|
if (lstate == NULL)
|
|
lstate = ahc->black_hole;
|
|
|
|
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
|
|
if (atio == NULL) {
|
|
ahc->flags |= AHC_TQINFIFO_BLOCKED;
|
|
/*
|
|
* Wait for more ATIOs from the peripheral driver for this lun.
|
|
*/
|
|
if (bootverbose)
|
|
printk("%s: ATIOs exhausted\n", ahc_name(ahc));
|
|
return (1);
|
|
} else
|
|
ahc->flags &= ~AHC_TQINFIFO_BLOCKED;
|
|
#if 0
|
|
printk("Incoming command from %d for %d:%d%s\n",
|
|
initiator, target, lun,
|
|
lstate == ahc->black_hole ? "(Black Holed)" : "");
|
|
#endif
|
|
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
|
|
|
|
if (lstate == ahc->black_hole) {
|
|
/* Fill in the wildcards */
|
|
atio->ccb_h.target_id = target;
|
|
atio->ccb_h.target_lun = lun;
|
|
}
|
|
|
|
/*
|
|
* Package it up and send it off to
|
|
* whomever has this lun enabled.
|
|
*/
|
|
atio->sense_len = 0;
|
|
atio->init_id = initiator;
|
|
if (byte[0] != 0xFF) {
|
|
/* Tag was included */
|
|
atio->tag_action = *byte++;
|
|
atio->tag_id = *byte++;
|
|
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
|
|
} else {
|
|
atio->ccb_h.flags = 0;
|
|
}
|
|
byte++;
|
|
|
|
/* Okay. Now determine the cdb size based on the command code */
|
|
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
|
|
case 0:
|
|
atio->cdb_len = 6;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
atio->cdb_len = 10;
|
|
break;
|
|
case 4:
|
|
atio->cdb_len = 16;
|
|
break;
|
|
case 5:
|
|
atio->cdb_len = 12;
|
|
break;
|
|
case 3:
|
|
default:
|
|
/* Only copy the opcode. */
|
|
atio->cdb_len = 1;
|
|
printk("Reserved or VU command code type encountered\n");
|
|
break;
|
|
}
|
|
|
|
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
|
|
|
|
atio->ccb_h.status |= CAM_CDB_RECVD;
|
|
|
|
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
|
|
/*
|
|
* We weren't allowed to disconnect.
|
|
* We're hanging on the bus until a
|
|
* continue target I/O comes in response
|
|
* to this accept tio.
|
|
*/
|
|
#if 0
|
|
printk("Received Immediate Command %d:%d:%d - %p\n",
|
|
initiator, target, lun, ahc->pending_device);
|
|
#endif
|
|
ahc->pending_device = lstate;
|
|
ahc_freeze_ccb((union ccb *)atio);
|
|
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
|
|
}
|
|
xpt_done((union ccb*)atio);
|
|
return (0);
|
|
}
|
|
|
|
#endif
|