mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-25 20:14:25 +08:00
9d9539db86
As Linus suggested this enables pidfs unconditionally. A key property to retain is the ability to compare pidfds by inode number (cf. [1]). That's extremely helpful just as comparing namespace file descriptors by inode number is. They are used in a variety of scenarios where they need to be compared, e.g., when receiving a pidfd via SO_PEERPIDFD from a socket to trivially authenticate a the sender and various other use-cases. For 64bit systems this is pretty trivial to do. For 32bit it's slightly more annoying as we discussed but we simply add a dumb ida based allocator that gets used on 32bit. This gives the same guarantees about inode numbers on 64bit without any overflow risk. Practically, we'll never run into overflow issues because we're constrained by the number of processes that can exist on 32bit and by the number of open files that can exist on a 32bit system. On 64bit none of this matters and things are very simple. If 32bit also needs the uniqueness guarantee they can simply parse the contents of /proc/<pid>/fd/<nr>. The uniqueness guarantees have a variety of use-cases. One of the most obvious ones is that they will make pidfiles (or "pidfdfiles", I guess) reliable as the unique identifier can be placed into there that won't be reycled. Also a frequent request. Note, I took the chance and simplified path_from_stashed() even further. Instead of passing the inode number explicitly to path_from_stashed() we let the filesystem handle that internally. So path_from_stashed() ends up even simpler than it is now. This is also a good solution allowing the cleanup code to be clean and consistent between 32bit and 64bit. The cleanup path in prepare_anon_dentry() is also switched around so we put the inode before the dentry allocation. This means we only have to call the cleanup handler for the filesystem's inode data once and can rely ->evict_inode() otherwise. Aside from having to have a bit of extra code for 32bit it actually ends up a nice cleanup for path_from_stashed() imho. Tested on both 32 and 64bit including error injection. Link: https://github.com/systemd/systemd/pull/31713 [1] Link: https://lore.kernel.org/r/20240312-dingo-sehnlich-b3ecc35c6de7@brauner Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
770 lines
19 KiB
C
770 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
|
*
|
|
* (C) 2002-2003 Nadia Yvette Chambers, IBM
|
|
* (C) 2004 Nadia Yvette Chambers, Oracle
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
|
*
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
|
* against. There is very little to them aside from hashing them and
|
|
* parking tasks using given ID's on a list.
|
|
*
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
|
* and the hash is only accessed with the tasklist_lock at least
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
|
*
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
|
*
|
|
* Pid namespaces:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/pidfs.h>
|
|
#include <net/sock.h>
|
|
#include <uapi/linux/pidfd.h>
|
|
|
|
struct pid init_struct_pid = {
|
|
.count = REFCOUNT_INIT(1),
|
|
.tasks = {
|
|
{ .first = NULL },
|
|
{ .first = NULL },
|
|
{ .first = NULL },
|
|
},
|
|
.level = 0,
|
|
.numbers = { {
|
|
.nr = 0,
|
|
.ns = &init_pid_ns,
|
|
}, }
|
|
};
|
|
|
|
int pid_max = PID_MAX_DEFAULT;
|
|
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
|
int pid_max_max = PID_MAX_LIMIT;
|
|
/*
|
|
* Pseudo filesystems start inode numbering after one. We use Reserved
|
|
* PIDs as a natural offset.
|
|
*/
|
|
static u64 pidfs_ino = RESERVED_PIDS;
|
|
|
|
/*
|
|
* PID-map pages start out as NULL, they get allocated upon
|
|
* first use and are never deallocated. This way a low pid_max
|
|
* value does not cause lots of bitmaps to be allocated, but
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
|
*/
|
|
struct pid_namespace init_pid_ns = {
|
|
.ns.count = REFCOUNT_INIT(2),
|
|
.idr = IDR_INIT(init_pid_ns.idr),
|
|
.pid_allocated = PIDNS_ADDING,
|
|
.level = 0,
|
|
.child_reaper = &init_task,
|
|
.user_ns = &init_user_ns,
|
|
.ns.inum = PROC_PID_INIT_INO,
|
|
#ifdef CONFIG_PID_NS
|
|
.ns.ops = &pidns_operations,
|
|
#endif
|
|
#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
|
|
.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
|
|
#endif
|
|
};
|
|
EXPORT_SYMBOL_GPL(init_pid_ns);
|
|
|
|
/*
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
|
*
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
|
* detach_pid()->free_pid() and another cpu that does
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
|
* read_lock(&tasklist_lock);
|
|
*
|
|
* After we clean up the tasklist_lock and know there are no
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
|
* For now it is easier to be safe than to prove it can't happen.
|
|
*/
|
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
|
|
|
void put_pid(struct pid *pid)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
if (!pid)
|
|
return;
|
|
|
|
ns = pid->numbers[pid->level].ns;
|
|
if (refcount_dec_and_test(&pid->count)) {
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
put_pid_ns(ns);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
|
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
|
{
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
|
put_pid(pid);
|
|
}
|
|
|
|
void free_pid(struct pid *pid)
|
|
{
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
|
for (i = 0; i <= pid->level; i++) {
|
|
struct upid *upid = pid->numbers + i;
|
|
struct pid_namespace *ns = upid->ns;
|
|
switch (--ns->pid_allocated) {
|
|
case 2:
|
|
case 1:
|
|
/* When all that is left in the pid namespace
|
|
* is the reaper wake up the reaper. The reaper
|
|
* may be sleeping in zap_pid_ns_processes().
|
|
*/
|
|
wake_up_process(ns->child_reaper);
|
|
break;
|
|
case PIDNS_ADDING:
|
|
/* Handle a fork failure of the first process */
|
|
WARN_ON(ns->child_reaper);
|
|
ns->pid_allocated = 0;
|
|
break;
|
|
}
|
|
|
|
idr_remove(&ns->idr, upid->nr);
|
|
}
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
|
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
|
}
|
|
|
|
struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
|
|
size_t set_tid_size)
|
|
{
|
|
struct pid *pid;
|
|
enum pid_type type;
|
|
int i, nr;
|
|
struct pid_namespace *tmp;
|
|
struct upid *upid;
|
|
int retval = -ENOMEM;
|
|
|
|
/*
|
|
* set_tid_size contains the size of the set_tid array. Starting at
|
|
* the most nested currently active PID namespace it tells alloc_pid()
|
|
* which PID to set for a process in that most nested PID namespace
|
|
* up to set_tid_size PID namespaces. It does not have to set the PID
|
|
* for a process in all nested PID namespaces but set_tid_size must
|
|
* never be greater than the current ns->level + 1.
|
|
*/
|
|
if (set_tid_size > ns->level + 1)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
|
|
if (!pid)
|
|
return ERR_PTR(retval);
|
|
|
|
tmp = ns;
|
|
pid->level = ns->level;
|
|
|
|
for (i = ns->level; i >= 0; i--) {
|
|
int tid = 0;
|
|
|
|
if (set_tid_size) {
|
|
tid = set_tid[ns->level - i];
|
|
|
|
retval = -EINVAL;
|
|
if (tid < 1 || tid >= pid_max)
|
|
goto out_free;
|
|
/*
|
|
* Also fail if a PID != 1 is requested and
|
|
* no PID 1 exists.
|
|
*/
|
|
if (tid != 1 && !tmp->child_reaper)
|
|
goto out_free;
|
|
retval = -EPERM;
|
|
if (!checkpoint_restore_ns_capable(tmp->user_ns))
|
|
goto out_free;
|
|
set_tid_size--;
|
|
}
|
|
|
|
idr_preload(GFP_KERNEL);
|
|
spin_lock_irq(&pidmap_lock);
|
|
|
|
if (tid) {
|
|
nr = idr_alloc(&tmp->idr, NULL, tid,
|
|
tid + 1, GFP_ATOMIC);
|
|
/*
|
|
* If ENOSPC is returned it means that the PID is
|
|
* alreay in use. Return EEXIST in that case.
|
|
*/
|
|
if (nr == -ENOSPC)
|
|
nr = -EEXIST;
|
|
} else {
|
|
int pid_min = 1;
|
|
/*
|
|
* init really needs pid 1, but after reaching the
|
|
* maximum wrap back to RESERVED_PIDS
|
|
*/
|
|
if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
|
|
pid_min = RESERVED_PIDS;
|
|
|
|
/*
|
|
* Store a null pointer so find_pid_ns does not find
|
|
* a partially initialized PID (see below).
|
|
*/
|
|
nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
|
|
pid_max, GFP_ATOMIC);
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
idr_preload_end();
|
|
|
|
if (nr < 0) {
|
|
retval = (nr == -ENOSPC) ? -EAGAIN : nr;
|
|
goto out_free;
|
|
}
|
|
|
|
pid->numbers[i].nr = nr;
|
|
pid->numbers[i].ns = tmp;
|
|
tmp = tmp->parent;
|
|
}
|
|
|
|
/*
|
|
* ENOMEM is not the most obvious choice especially for the case
|
|
* where the child subreaper has already exited and the pid
|
|
* namespace denies the creation of any new processes. But ENOMEM
|
|
* is what we have exposed to userspace for a long time and it is
|
|
* documented behavior for pid namespaces. So we can't easily
|
|
* change it even if there were an error code better suited.
|
|
*/
|
|
retval = -ENOMEM;
|
|
|
|
get_pid_ns(ns);
|
|
refcount_set(&pid->count, 1);
|
|
spin_lock_init(&pid->lock);
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
|
|
|
init_waitqueue_head(&pid->wait_pidfd);
|
|
INIT_HLIST_HEAD(&pid->inodes);
|
|
|
|
upid = pid->numbers + ns->level;
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (!(ns->pid_allocated & PIDNS_ADDING))
|
|
goto out_unlock;
|
|
pid->stashed = NULL;
|
|
pid->ino = ++pidfs_ino;
|
|
for ( ; upid >= pid->numbers; --upid) {
|
|
/* Make the PID visible to find_pid_ns. */
|
|
idr_replace(&upid->ns->idr, pid, upid->nr);
|
|
upid->ns->pid_allocated++;
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
return pid;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&pidmap_lock);
|
|
put_pid_ns(ns);
|
|
|
|
out_free:
|
|
spin_lock_irq(&pidmap_lock);
|
|
while (++i <= ns->level) {
|
|
upid = pid->numbers + i;
|
|
idr_remove(&upid->ns->idr, upid->nr);
|
|
}
|
|
|
|
/* On failure to allocate the first pid, reset the state */
|
|
if (ns->pid_allocated == PIDNS_ADDING)
|
|
idr_set_cursor(&ns->idr, 0);
|
|
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
return ERR_PTR(retval);
|
|
}
|
|
|
|
void disable_pid_allocation(struct pid_namespace *ns)
|
|
{
|
|
spin_lock_irq(&pidmap_lock);
|
|
ns->pid_allocated &= ~PIDNS_ADDING;
|
|
spin_unlock_irq(&pidmap_lock);
|
|
}
|
|
|
|
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
|
|
{
|
|
return idr_find(&ns->idr, nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid_ns);
|
|
|
|
struct pid *find_vpid(int nr)
|
|
{
|
|
return find_pid_ns(nr, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_vpid);
|
|
|
|
static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
|
|
{
|
|
return (type == PIDTYPE_PID) ?
|
|
&task->thread_pid :
|
|
&task->signal->pids[type];
|
|
}
|
|
|
|
/*
|
|
* attach_pid() must be called with the tasklist_lock write-held.
|
|
*/
|
|
void attach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid = *task_pid_ptr(task, type);
|
|
hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
|
|
}
|
|
|
|
static void __change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *new)
|
|
{
|
|
struct pid **pid_ptr = task_pid_ptr(task, type);
|
|
struct pid *pid;
|
|
int tmp;
|
|
|
|
pid = *pid_ptr;
|
|
|
|
hlist_del_rcu(&task->pid_links[type]);
|
|
*pid_ptr = new;
|
|
|
|
if (type == PIDTYPE_PID) {
|
|
WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
|
|
wake_up_all(&pid->wait_pidfd);
|
|
}
|
|
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
|
if (pid_has_task(pid, tmp))
|
|
return;
|
|
|
|
free_pid(pid);
|
|
}
|
|
|
|
void detach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
__change_pid(task, type, NULL);
|
|
}
|
|
|
|
void change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *pid)
|
|
{
|
|
__change_pid(task, type, pid);
|
|
attach_pid(task, type);
|
|
}
|
|
|
|
void exchange_tids(struct task_struct *left, struct task_struct *right)
|
|
{
|
|
struct pid *pid1 = left->thread_pid;
|
|
struct pid *pid2 = right->thread_pid;
|
|
struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
|
|
struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
|
|
|
|
/* Swap the single entry tid lists */
|
|
hlists_swap_heads_rcu(head1, head2);
|
|
|
|
/* Swap the per task_struct pid */
|
|
rcu_assign_pointer(left->thread_pid, pid2);
|
|
rcu_assign_pointer(right->thread_pid, pid1);
|
|
|
|
/* Swap the cached value */
|
|
WRITE_ONCE(left->pid, pid_nr(pid2));
|
|
WRITE_ONCE(right->pid, pid_nr(pid1));
|
|
}
|
|
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
|
void transfer_pid(struct task_struct *old, struct task_struct *new,
|
|
enum pid_type type)
|
|
{
|
|
WARN_ON_ONCE(type == PIDTYPE_PID);
|
|
hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
|
|
}
|
|
|
|
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result = NULL;
|
|
if (pid) {
|
|
struct hlist_node *first;
|
|
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
|
|
lockdep_tasklist_lock_is_held());
|
|
if (first)
|
|
result = hlist_entry(first, struct task_struct, pid_links[(type)]);
|
|
}
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(pid_task);
|
|
|
|
/*
|
|
* Must be called under rcu_read_lock().
|
|
*/
|
|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
|
|
"find_task_by_pid_ns() needs rcu_read_lock() protection");
|
|
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
|
|
}
|
|
|
|
struct task_struct *find_task_by_vpid(pid_t vnr)
|
|
{
|
|
return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
|
|
}
|
|
|
|
struct task_struct *find_get_task_by_vpid(pid_t nr)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
rcu_read_lock();
|
|
task = find_task_by_vpid(nr);
|
|
if (task)
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
return task;
|
|
}
|
|
|
|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid;
|
|
rcu_read_lock();
|
|
pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
|
|
rcu_read_unlock();
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_task_pid);
|
|
|
|
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result;
|
|
rcu_read_lock();
|
|
result = pid_task(pid, type);
|
|
if (result)
|
|
get_task_struct(result);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_pid_task);
|
|
|
|
struct pid *find_get_pid(pid_t nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = get_pid(find_vpid(nr));
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
|
|
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
|
|
{
|
|
struct upid *upid;
|
|
pid_t nr = 0;
|
|
|
|
if (pid && ns->level <= pid->level) {
|
|
upid = &pid->numbers[ns->level];
|
|
if (upid->ns == ns)
|
|
nr = upid->nr;
|
|
}
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_nr_ns);
|
|
|
|
pid_t pid_vnr(struct pid *pid)
|
|
{
|
|
return pid_nr_ns(pid, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_vnr);
|
|
|
|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
|
|
struct pid_namespace *ns)
|
|
{
|
|
pid_t nr = 0;
|
|
|
|
rcu_read_lock();
|
|
if (!ns)
|
|
ns = task_active_pid_ns(current);
|
|
nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
|
|
rcu_read_unlock();
|
|
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL(__task_pid_nr_ns);
|
|
|
|
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
|
|
{
|
|
return ns_of_pid(task_pid(tsk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_active_pid_ns);
|
|
|
|
/*
|
|
* Used by proc to find the first pid that is greater than or equal to nr.
|
|
*
|
|
* If there is a pid at nr this function is exactly the same as find_pid_ns.
|
|
*/
|
|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
|
|
{
|
|
return idr_get_next(&ns->idr, &nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_ge_pid);
|
|
|
|
struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
|
|
{
|
|
struct fd f;
|
|
struct pid *pid;
|
|
|
|
f = fdget(fd);
|
|
if (!f.file)
|
|
return ERR_PTR(-EBADF);
|
|
|
|
pid = pidfd_pid(f.file);
|
|
if (!IS_ERR(pid)) {
|
|
get_pid(pid);
|
|
*flags = f.file->f_flags;
|
|
}
|
|
|
|
fdput(f);
|
|
return pid;
|
|
}
|
|
|
|
/**
|
|
* pidfd_get_task() - Get the task associated with a pidfd
|
|
*
|
|
* @pidfd: pidfd for which to get the task
|
|
* @flags: flags associated with this pidfd
|
|
*
|
|
* Return the task associated with @pidfd. The function takes a reference on
|
|
* the returned task. The caller is responsible for releasing that reference.
|
|
*
|
|
* Return: On success, the task_struct associated with the pidfd.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
|
|
{
|
|
unsigned int f_flags;
|
|
struct pid *pid;
|
|
struct task_struct *task;
|
|
|
|
pid = pidfd_get_pid(pidfd, &f_flags);
|
|
if (IS_ERR(pid))
|
|
return ERR_CAST(pid);
|
|
|
|
task = get_pid_task(pid, PIDTYPE_TGID);
|
|
put_pid(pid);
|
|
if (!task)
|
|
return ERR_PTR(-ESRCH);
|
|
|
|
*flags = f_flags;
|
|
return task;
|
|
}
|
|
|
|
/**
|
|
* pidfd_create() - Create a new pid file descriptor.
|
|
*
|
|
* @pid: struct pid that the pidfd will reference
|
|
* @flags: flags to pass
|
|
*
|
|
* This creates a new pid file descriptor with the O_CLOEXEC flag set.
|
|
*
|
|
* Note, that this function can only be called after the fd table has
|
|
* been unshared to avoid leaking the pidfd to the new process.
|
|
*
|
|
* This symbol should not be explicitly exported to loadable modules.
|
|
*
|
|
* Return: On success, a cloexec pidfd is returned.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
static int pidfd_create(struct pid *pid, unsigned int flags)
|
|
{
|
|
int pidfd;
|
|
struct file *pidfd_file;
|
|
|
|
pidfd = pidfd_prepare(pid, flags, &pidfd_file);
|
|
if (pidfd < 0)
|
|
return pidfd;
|
|
|
|
fd_install(pidfd, pidfd_file);
|
|
return pidfd;
|
|
}
|
|
|
|
/**
|
|
* sys_pidfd_open() - Open new pid file descriptor.
|
|
*
|
|
* @pid: pid for which to retrieve a pidfd
|
|
* @flags: flags to pass
|
|
*
|
|
* This creates a new pid file descriptor with the O_CLOEXEC flag set for
|
|
* the task identified by @pid. Without PIDFD_THREAD flag the target task
|
|
* must be a thread-group leader.
|
|
*
|
|
* Return: On success, a cloexec pidfd is returned.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
|
|
{
|
|
int fd;
|
|
struct pid *p;
|
|
|
|
if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
|
|
return -EINVAL;
|
|
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
p = find_get_pid(pid);
|
|
if (!p)
|
|
return -ESRCH;
|
|
|
|
fd = pidfd_create(p, flags);
|
|
|
|
put_pid(p);
|
|
return fd;
|
|
}
|
|
|
|
void __init pid_idr_init(void)
|
|
{
|
|
/* Verify no one has done anything silly: */
|
|
BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
|
|
|
|
/* bump default and minimum pid_max based on number of cpus */
|
|
pid_max = min(pid_max_max, max_t(int, pid_max,
|
|
PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
|
|
pid_max_min = max_t(int, pid_max_min,
|
|
PIDS_PER_CPU_MIN * num_possible_cpus());
|
|
pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
|
|
|
|
idr_init(&init_pid_ns.idr);
|
|
|
|
init_pid_ns.pid_cachep = kmem_cache_create("pid",
|
|
struct_size_t(struct pid, numbers, 1),
|
|
__alignof__(struct pid),
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
|
|
NULL);
|
|
}
|
|
|
|
static struct file *__pidfd_fget(struct task_struct *task, int fd)
|
|
{
|
|
struct file *file;
|
|
int ret;
|
|
|
|
ret = down_read_killable(&task->signal->exec_update_lock);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
|
|
file = fget_task(task, fd);
|
|
else
|
|
file = ERR_PTR(-EPERM);
|
|
|
|
up_read(&task->signal->exec_update_lock);
|
|
|
|
if (!file) {
|
|
/*
|
|
* It is possible that the target thread is exiting; it can be
|
|
* either:
|
|
* 1. before exit_signals(), which gives a real fd
|
|
* 2. before exit_files() takes the task_lock() gives a real fd
|
|
* 3. after exit_files() releases task_lock(), ->files is NULL;
|
|
* this has PF_EXITING, since it was set in exit_signals(),
|
|
* __pidfd_fget() returns EBADF.
|
|
* In case 3 we get EBADF, but that really means ESRCH, since
|
|
* the task is currently exiting and has freed its files
|
|
* struct, so we fix it up.
|
|
*/
|
|
if (task->flags & PF_EXITING)
|
|
file = ERR_PTR(-ESRCH);
|
|
else
|
|
file = ERR_PTR(-EBADF);
|
|
}
|
|
|
|
return file;
|
|
}
|
|
|
|
static int pidfd_getfd(struct pid *pid, int fd)
|
|
{
|
|
struct task_struct *task;
|
|
struct file *file;
|
|
int ret;
|
|
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
if (!task)
|
|
return -ESRCH;
|
|
|
|
file = __pidfd_fget(task, fd);
|
|
put_task_struct(task);
|
|
if (IS_ERR(file))
|
|
return PTR_ERR(file);
|
|
|
|
ret = receive_fd(file, NULL, O_CLOEXEC);
|
|
fput(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sys_pidfd_getfd() - Get a file descriptor from another process
|
|
*
|
|
* @pidfd: the pidfd file descriptor of the process
|
|
* @fd: the file descriptor number to get
|
|
* @flags: flags on how to get the fd (reserved)
|
|
*
|
|
* This syscall gets a copy of a file descriptor from another process
|
|
* based on the pidfd, and file descriptor number. It requires that
|
|
* the calling process has the ability to ptrace the process represented
|
|
* by the pidfd. The process which is having its file descriptor copied
|
|
* is otherwise unaffected.
|
|
*
|
|
* Return: On success, a cloexec file descriptor is returned.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
|
|
unsigned int, flags)
|
|
{
|
|
struct pid *pid;
|
|
struct fd f;
|
|
int ret;
|
|
|
|
/* flags is currently unused - make sure it's unset */
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
f = fdget(pidfd);
|
|
if (!f.file)
|
|
return -EBADF;
|
|
|
|
pid = pidfd_pid(f.file);
|
|
if (IS_ERR(pid))
|
|
ret = PTR_ERR(pid);
|
|
else
|
|
ret = pidfd_getfd(pid, fd);
|
|
|
|
fdput(f);
|
|
return ret;
|
|
}
|