mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
d69043c42d
Error handling in xfs_buf_ioapply_map() does not handle IO reference counts correctly. We increment the b_io_remaining count before building the bio, but then fail to decrement it in the failure case. This leads to the buffer never running IO completion and releasing the reference that the IO holds, so at unmount we can leak the buffer. This leak is captured by this assert failure during unmount: XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 273 This is not a new bug - the b_io_remaining accounting has had this problem for a long, long time - it's just very hard to get a zero length bio being built by this code... Further, the buffer IO error can be overwritten on a multi-segment buffer by subsequent bio completions for partial sections of the buffer. Hence we should only set the buffer error status if the buffer is not already carrying an error status. This ensures that a partial IO error on a multi-segment buffer will not be lost. This part of the problem is a regression, however. cc: <stable@vger.kernel.org> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
1825 lines
40 KiB
C
1825 lines
40 KiB
C
/*
|
|
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include <linux/stddef.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/init.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/freezer.h>
|
|
|
|
#include "xfs_sb.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trace.h"
|
|
|
|
static kmem_zone_t *xfs_buf_zone;
|
|
|
|
static struct workqueue_struct *xfslogd_workqueue;
|
|
|
|
#ifdef XFS_BUF_LOCK_TRACKING
|
|
# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
|
|
# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
|
|
# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
|
|
#else
|
|
# define XB_SET_OWNER(bp) do { } while (0)
|
|
# define XB_CLEAR_OWNER(bp) do { } while (0)
|
|
# define XB_GET_OWNER(bp) do { } while (0)
|
|
#endif
|
|
|
|
#define xb_to_gfp(flags) \
|
|
((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
|
|
|
|
|
|
static inline int
|
|
xfs_buf_is_vmapped(
|
|
struct xfs_buf *bp)
|
|
{
|
|
/*
|
|
* Return true if the buffer is vmapped.
|
|
*
|
|
* b_addr is null if the buffer is not mapped, but the code is clever
|
|
* enough to know it doesn't have to map a single page, so the check has
|
|
* to be both for b_addr and bp->b_page_count > 1.
|
|
*/
|
|
return bp->b_addr && bp->b_page_count > 1;
|
|
}
|
|
|
|
static inline int
|
|
xfs_buf_vmap_len(
|
|
struct xfs_buf *bp)
|
|
{
|
|
return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_add - add a buffer to the LRU.
|
|
*
|
|
* The LRU takes a new reference to the buffer so that it will only be freed
|
|
* once the shrinker takes the buffer off the LRU.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_add(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (list_empty(&bp->b_lru)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_lru, &btp->bt_lru);
|
|
btp->bt_lru_nr++;
|
|
bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* xfs_buf_lru_del - remove a buffer from the LRU
|
|
*
|
|
* The unlocked check is safe here because it only occurs when there are not
|
|
* b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
|
|
* to optimise the shrinker removing the buffer from the LRU and calling
|
|
* xfs_buf_free(). i.e. it removes an unnecessary round trip on the
|
|
* bt_lru_lock.
|
|
*/
|
|
STATIC void
|
|
xfs_buf_lru_del(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
if (list_empty(&bp->b_lru))
|
|
return;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
/*
|
|
* When we mark a buffer stale, we remove the buffer from the LRU and clear the
|
|
* b_lru_ref count so that the buffer is freed immediately when the buffer
|
|
* reference count falls to zero. If the buffer is already on the LRU, we need
|
|
* to remove the reference that LRU holds on the buffer.
|
|
*
|
|
* This prevents build-up of stale buffers on the LRU.
|
|
*/
|
|
void
|
|
xfs_buf_stale(
|
|
struct xfs_buf *bp)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_STALE;
|
|
|
|
/*
|
|
* Clear the delwri status so that a delwri queue walker will not
|
|
* flush this buffer to disk now that it is stale. The delwri queue has
|
|
* a reference to the buffer, so this is safe to do.
|
|
*/
|
|
bp->b_flags &= ~_XBF_DELWRI_Q;
|
|
|
|
atomic_set(&(bp)->b_lru_ref, 0);
|
|
if (!list_empty(&bp->b_lru)) {
|
|
struct xfs_buftarg *btp = bp->b_target;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
if (!list_empty(&bp->b_lru) &&
|
|
!(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
|
|
list_del_init(&bp->b_lru);
|
|
btp->bt_lru_nr--;
|
|
atomic_dec(&bp->b_hold);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
ASSERT(atomic_read(&bp->b_hold) >= 1);
|
|
}
|
|
|
|
static int
|
|
xfs_buf_get_maps(
|
|
struct xfs_buf *bp,
|
|
int map_count)
|
|
{
|
|
ASSERT(bp->b_maps == NULL);
|
|
bp->b_map_count = map_count;
|
|
|
|
if (map_count == 1) {
|
|
bp->b_maps = &bp->b_map;
|
|
return 0;
|
|
}
|
|
|
|
bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
|
|
KM_NOFS);
|
|
if (!bp->b_maps)
|
|
return ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
static void
|
|
xfs_buf_free_maps(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (bp->b_maps != &bp->b_map) {
|
|
kmem_free(bp->b_maps);
|
|
bp->b_maps = NULL;
|
|
}
|
|
}
|
|
|
|
struct xfs_buf *
|
|
_xfs_buf_alloc(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
int i;
|
|
|
|
bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
|
|
if (unlikely(!bp))
|
|
return NULL;
|
|
|
|
/*
|
|
* We don't want certain flags to appear in b_flags unless they are
|
|
* specifically set by later operations on the buffer.
|
|
*/
|
|
flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
atomic_set(&bp->b_hold, 1);
|
|
atomic_set(&bp->b_lru_ref, 1);
|
|
init_completion(&bp->b_iowait);
|
|
INIT_LIST_HEAD(&bp->b_lru);
|
|
INIT_LIST_HEAD(&bp->b_list);
|
|
RB_CLEAR_NODE(&bp->b_rbnode);
|
|
sema_init(&bp->b_sema, 0); /* held, no waiters */
|
|
XB_SET_OWNER(bp);
|
|
bp->b_target = target;
|
|
bp->b_flags = flags;
|
|
|
|
/*
|
|
* Set length and io_length to the same value initially.
|
|
* I/O routines should use io_length, which will be the same in
|
|
* most cases but may be reset (e.g. XFS recovery).
|
|
*/
|
|
error = xfs_buf_get_maps(bp, nmaps);
|
|
if (error) {
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp->b_bn = map[0].bm_bn;
|
|
bp->b_length = 0;
|
|
for (i = 0; i < nmaps; i++) {
|
|
bp->b_maps[i].bm_bn = map[i].bm_bn;
|
|
bp->b_maps[i].bm_len = map[i].bm_len;
|
|
bp->b_length += map[i].bm_len;
|
|
}
|
|
bp->b_io_length = bp->b_length;
|
|
|
|
atomic_set(&bp->b_pin_count, 0);
|
|
init_waitqueue_head(&bp->b_waiters);
|
|
|
|
XFS_STATS_INC(xb_create);
|
|
trace_xfs_buf_init(bp, _RET_IP_);
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Allocate a page array capable of holding a specified number
|
|
* of pages, and point the page buf at it.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_get_pages(
|
|
xfs_buf_t *bp,
|
|
int page_count,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
/* Make sure that we have a page list */
|
|
if (bp->b_pages == NULL) {
|
|
bp->b_page_count = page_count;
|
|
if (page_count <= XB_PAGES) {
|
|
bp->b_pages = bp->b_page_array;
|
|
} else {
|
|
bp->b_pages = kmem_alloc(sizeof(struct page *) *
|
|
page_count, KM_NOFS);
|
|
if (bp->b_pages == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees b_pages if it was allocated.
|
|
*/
|
|
STATIC void
|
|
_xfs_buf_free_pages(
|
|
xfs_buf_t *bp)
|
|
{
|
|
if (bp->b_pages != bp->b_page_array) {
|
|
kmem_free(bp->b_pages);
|
|
bp->b_pages = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Releases the specified buffer.
|
|
*
|
|
* The modification state of any associated pages is left unchanged.
|
|
* The buffer most not be on any hash - use xfs_buf_rele instead for
|
|
* hashed and refcounted buffers
|
|
*/
|
|
void
|
|
xfs_buf_free(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_free(bp, _RET_IP_);
|
|
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
|
|
if (bp->b_flags & _XBF_PAGES) {
|
|
uint i;
|
|
|
|
if (xfs_buf_is_vmapped(bp))
|
|
vm_unmap_ram(bp->b_addr - bp->b_offset,
|
|
bp->b_page_count);
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page = bp->b_pages[i];
|
|
|
|
__free_page(page);
|
|
}
|
|
} else if (bp->b_flags & _XBF_KMEM)
|
|
kmem_free(bp->b_addr);
|
|
_xfs_buf_free_pages(bp);
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
}
|
|
|
|
/*
|
|
* Allocates all the pages for buffer in question and builds it's page list.
|
|
*/
|
|
STATIC int
|
|
xfs_buf_allocate_memory(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
size_t size;
|
|
size_t nbytes, offset;
|
|
gfp_t gfp_mask = xb_to_gfp(flags);
|
|
unsigned short page_count, i;
|
|
xfs_off_t start, end;
|
|
int error;
|
|
|
|
/*
|
|
* for buffers that are contained within a single page, just allocate
|
|
* the memory from the heap - there's no need for the complexity of
|
|
* page arrays to keep allocation down to order 0.
|
|
*/
|
|
size = BBTOB(bp->b_length);
|
|
if (size < PAGE_SIZE) {
|
|
bp->b_addr = kmem_alloc(size, KM_NOFS);
|
|
if (!bp->b_addr) {
|
|
/* low memory - use alloc_page loop instead */
|
|
goto use_alloc_page;
|
|
}
|
|
|
|
if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
|
|
((unsigned long)bp->b_addr & PAGE_MASK)) {
|
|
/* b_addr spans two pages - use alloc_page instead */
|
|
kmem_free(bp->b_addr);
|
|
bp->b_addr = NULL;
|
|
goto use_alloc_page;
|
|
}
|
|
bp->b_offset = offset_in_page(bp->b_addr);
|
|
bp->b_pages = bp->b_page_array;
|
|
bp->b_pages[0] = virt_to_page(bp->b_addr);
|
|
bp->b_page_count = 1;
|
|
bp->b_flags |= _XBF_KMEM;
|
|
return 0;
|
|
}
|
|
|
|
use_alloc_page:
|
|
start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
|
|
end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
|
|
>> PAGE_SHIFT;
|
|
page_count = end - start;
|
|
error = _xfs_buf_get_pages(bp, page_count, flags);
|
|
if (unlikely(error))
|
|
return error;
|
|
|
|
offset = bp->b_offset;
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
struct page *page;
|
|
uint retries = 0;
|
|
retry:
|
|
page = alloc_page(gfp_mask);
|
|
if (unlikely(page == NULL)) {
|
|
if (flags & XBF_READ_AHEAD) {
|
|
bp->b_page_count = i;
|
|
error = ENOMEM;
|
|
goto out_free_pages;
|
|
}
|
|
|
|
/*
|
|
* This could deadlock.
|
|
*
|
|
* But until all the XFS lowlevel code is revamped to
|
|
* handle buffer allocation failures we can't do much.
|
|
*/
|
|
if (!(++retries % 100))
|
|
xfs_err(NULL,
|
|
"possible memory allocation deadlock in %s (mode:0x%x)",
|
|
__func__, gfp_mask);
|
|
|
|
XFS_STATS_INC(xb_page_retries);
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
|
|
XFS_STATS_INC(xb_page_found);
|
|
|
|
nbytes = min_t(size_t, size, PAGE_SIZE - offset);
|
|
size -= nbytes;
|
|
bp->b_pages[i] = page;
|
|
offset = 0;
|
|
}
|
|
return 0;
|
|
|
|
out_free_pages:
|
|
for (i = 0; i < bp->b_page_count; i++)
|
|
__free_page(bp->b_pages[i]);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Map buffer into kernel address-space if necessary.
|
|
*/
|
|
STATIC int
|
|
_xfs_buf_map_pages(
|
|
xfs_buf_t *bp,
|
|
uint flags)
|
|
{
|
|
ASSERT(bp->b_flags & _XBF_PAGES);
|
|
if (bp->b_page_count == 1) {
|
|
/* A single page buffer is always mappable */
|
|
bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
|
|
} else if (flags & XBF_UNMAPPED) {
|
|
bp->b_addr = NULL;
|
|
} else {
|
|
int retried = 0;
|
|
|
|
do {
|
|
bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
|
|
-1, PAGE_KERNEL);
|
|
if (bp->b_addr)
|
|
break;
|
|
vm_unmap_aliases();
|
|
} while (retried++ <= 1);
|
|
|
|
if (!bp->b_addr)
|
|
return -ENOMEM;
|
|
bp->b_addr += bp->b_offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finding and Reading Buffers
|
|
*/
|
|
|
|
/*
|
|
* Look up, and creates if absent, a lockable buffer for
|
|
* a given range of an inode. The buffer is returned
|
|
* locked. No I/O is implied by this call.
|
|
*/
|
|
xfs_buf_t *
|
|
_xfs_buf_find(
|
|
struct xfs_buftarg *btp,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags,
|
|
xfs_buf_t *new_bp)
|
|
{
|
|
size_t numbytes;
|
|
struct xfs_perag *pag;
|
|
struct rb_node **rbp;
|
|
struct rb_node *parent;
|
|
xfs_buf_t *bp;
|
|
xfs_daddr_t blkno = map[0].bm_bn;
|
|
int numblks = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < nmaps; i++)
|
|
numblks += map[i].bm_len;
|
|
numbytes = BBTOB(numblks);
|
|
|
|
/* Check for IOs smaller than the sector size / not sector aligned */
|
|
ASSERT(!(numbytes < (1 << btp->bt_sshift)));
|
|
ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
|
|
|
|
/* get tree root */
|
|
pag = xfs_perag_get(btp->bt_mount,
|
|
xfs_daddr_to_agno(btp->bt_mount, blkno));
|
|
|
|
/* walk tree */
|
|
spin_lock(&pag->pag_buf_lock);
|
|
rbp = &pag->pag_buf_tree.rb_node;
|
|
parent = NULL;
|
|
bp = NULL;
|
|
while (*rbp) {
|
|
parent = *rbp;
|
|
bp = rb_entry(parent, struct xfs_buf, b_rbnode);
|
|
|
|
if (blkno < bp->b_bn)
|
|
rbp = &(*rbp)->rb_left;
|
|
else if (blkno > bp->b_bn)
|
|
rbp = &(*rbp)->rb_right;
|
|
else {
|
|
/*
|
|
* found a block number match. If the range doesn't
|
|
* match, the only way this is allowed is if the buffer
|
|
* in the cache is stale and the transaction that made
|
|
* it stale has not yet committed. i.e. we are
|
|
* reallocating a busy extent. Skip this buffer and
|
|
* continue searching to the right for an exact match.
|
|
*/
|
|
if (bp->b_length != numblks) {
|
|
ASSERT(bp->b_flags & XBF_STALE);
|
|
rbp = &(*rbp)->rb_right;
|
|
continue;
|
|
}
|
|
atomic_inc(&bp->b_hold);
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* No match found */
|
|
if (new_bp) {
|
|
rb_link_node(&new_bp->b_rbnode, parent, rbp);
|
|
rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
|
|
/* the buffer keeps the perag reference until it is freed */
|
|
new_bp->b_pag = pag;
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
XFS_STATS_INC(xb_miss_locked);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
}
|
|
return new_bp;
|
|
|
|
found:
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
|
|
if (!xfs_buf_trylock(bp)) {
|
|
if (flags & XBF_TRYLOCK) {
|
|
xfs_buf_rele(bp);
|
|
XFS_STATS_INC(xb_busy_locked);
|
|
return NULL;
|
|
}
|
|
xfs_buf_lock(bp);
|
|
XFS_STATS_INC(xb_get_locked_waited);
|
|
}
|
|
|
|
/*
|
|
* if the buffer is stale, clear all the external state associated with
|
|
* it. We need to keep flags such as how we allocated the buffer memory
|
|
* intact here.
|
|
*/
|
|
if (bp->b_flags & XBF_STALE) {
|
|
ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
|
|
bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
|
|
}
|
|
|
|
trace_xfs_buf_find(bp, flags, _RET_IP_);
|
|
XFS_STATS_INC(xb_get_locked);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Assembles a buffer covering the specified range. The code is optimised for
|
|
* cache hits, as metadata intensive workloads will see 3 orders of magnitude
|
|
* more hits than misses.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_get_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
struct xfs_buf *new_bp;
|
|
int error = 0;
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
|
|
if (likely(bp))
|
|
goto found;
|
|
|
|
new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
|
|
if (unlikely(!new_bp))
|
|
return NULL;
|
|
|
|
error = xfs_buf_allocate_memory(new_bp, flags);
|
|
if (error) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
|
|
if (!bp) {
|
|
xfs_buf_free(new_bp);
|
|
return NULL;
|
|
}
|
|
|
|
if (bp != new_bp)
|
|
xfs_buf_free(new_bp);
|
|
|
|
found:
|
|
if (!bp->b_addr) {
|
|
error = _xfs_buf_map_pages(bp, flags);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
XFS_STATS_INC(xb_get);
|
|
trace_xfs_buf_get(bp, flags, _RET_IP_);
|
|
return bp;
|
|
}
|
|
|
|
STATIC int
|
|
_xfs_buf_read(
|
|
xfs_buf_t *bp,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
ASSERT(!(flags & XBF_WRITE));
|
|
ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
|
|
|
|
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
|
|
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
|
|
|
|
xfs_buf_iorequest(bp);
|
|
if (flags & XBF_ASYNC)
|
|
return 0;
|
|
return xfs_buf_iowait(bp);
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_read_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps,
|
|
xfs_buf_flags_t flags)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
flags |= XBF_READ;
|
|
|
|
bp = xfs_buf_get_map(target, map, nmaps, flags);
|
|
if (bp) {
|
|
trace_xfs_buf_read(bp, flags, _RET_IP_);
|
|
|
|
if (!XFS_BUF_ISDONE(bp)) {
|
|
XFS_STATS_INC(xb_get_read);
|
|
_xfs_buf_read(bp, flags);
|
|
} else if (flags & XBF_ASYNC) {
|
|
/*
|
|
* Read ahead call which is already satisfied,
|
|
* drop the buffer
|
|
*/
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
} else {
|
|
/* We do not want read in the flags */
|
|
bp->b_flags &= ~XBF_READ;
|
|
}
|
|
}
|
|
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* If we are not low on memory then do the readahead in a deadlock
|
|
* safe manner.
|
|
*/
|
|
void
|
|
xfs_buf_readahead_map(
|
|
struct xfs_buftarg *target,
|
|
struct xfs_buf_map *map,
|
|
int nmaps)
|
|
{
|
|
if (bdi_read_congested(target->bt_bdi))
|
|
return;
|
|
|
|
xfs_buf_read_map(target, map, nmaps,
|
|
XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
|
|
}
|
|
|
|
/*
|
|
* Read an uncached buffer from disk. Allocates and returns a locked
|
|
* buffer containing the disk contents or nothing.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_buf_read_uncached(
|
|
struct xfs_buftarg *target,
|
|
xfs_daddr_t daddr,
|
|
size_t numblks,
|
|
int flags)
|
|
{
|
|
xfs_buf_t *bp;
|
|
int error;
|
|
|
|
bp = xfs_buf_get_uncached(target, numblks, flags);
|
|
if (!bp)
|
|
return NULL;
|
|
|
|
/* set up the buffer for a read IO */
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = daddr;
|
|
bp->b_maps[0].bm_bn = daddr;
|
|
bp->b_flags |= XBF_READ;
|
|
|
|
xfsbdstrat(target->bt_mount, bp);
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_buf_relse(bp);
|
|
return NULL;
|
|
}
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Return a buffer allocated as an empty buffer and associated to external
|
|
* memory via xfs_buf_associate_memory() back to it's empty state.
|
|
*/
|
|
void
|
|
xfs_buf_set_empty(
|
|
struct xfs_buf *bp,
|
|
size_t numblks)
|
|
{
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_page_count = 0;
|
|
bp->b_addr = NULL;
|
|
bp->b_length = numblks;
|
|
bp->b_io_length = numblks;
|
|
|
|
ASSERT(bp->b_map_count == 1);
|
|
bp->b_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
|
|
bp->b_maps[0].bm_len = bp->b_length;
|
|
}
|
|
|
|
static inline struct page *
|
|
mem_to_page(
|
|
void *addr)
|
|
{
|
|
if ((!is_vmalloc_addr(addr))) {
|
|
return virt_to_page(addr);
|
|
} else {
|
|
return vmalloc_to_page(addr);
|
|
}
|
|
}
|
|
|
|
int
|
|
xfs_buf_associate_memory(
|
|
xfs_buf_t *bp,
|
|
void *mem,
|
|
size_t len)
|
|
{
|
|
int rval;
|
|
int i = 0;
|
|
unsigned long pageaddr;
|
|
unsigned long offset;
|
|
size_t buflen;
|
|
int page_count;
|
|
|
|
pageaddr = (unsigned long)mem & PAGE_MASK;
|
|
offset = (unsigned long)mem - pageaddr;
|
|
buflen = PAGE_ALIGN(len + offset);
|
|
page_count = buflen >> PAGE_SHIFT;
|
|
|
|
/* Free any previous set of page pointers */
|
|
if (bp->b_pages)
|
|
_xfs_buf_free_pages(bp);
|
|
|
|
bp->b_pages = NULL;
|
|
bp->b_addr = mem;
|
|
|
|
rval = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (rval)
|
|
return rval;
|
|
|
|
bp->b_offset = offset;
|
|
|
|
for (i = 0; i < bp->b_page_count; i++) {
|
|
bp->b_pages[i] = mem_to_page((void *)pageaddr);
|
|
pageaddr += PAGE_SIZE;
|
|
}
|
|
|
|
bp->b_io_length = BTOBB(len);
|
|
bp->b_length = BTOBB(buflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
xfs_buf_t *
|
|
xfs_buf_get_uncached(
|
|
struct xfs_buftarg *target,
|
|
size_t numblks,
|
|
int flags)
|
|
{
|
|
unsigned long page_count;
|
|
int error, i;
|
|
struct xfs_buf *bp;
|
|
DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
|
|
|
|
bp = _xfs_buf_alloc(target, &map, 1, 0);
|
|
if (unlikely(bp == NULL))
|
|
goto fail;
|
|
|
|
page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
|
|
error = _xfs_buf_get_pages(bp, page_count, 0);
|
|
if (error)
|
|
goto fail_free_buf;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
|
|
if (!bp->b_pages[i])
|
|
goto fail_free_mem;
|
|
}
|
|
bp->b_flags |= _XBF_PAGES;
|
|
|
|
error = _xfs_buf_map_pages(bp, 0);
|
|
if (unlikely(error)) {
|
|
xfs_warn(target->bt_mount,
|
|
"%s: failed to map pages\n", __func__);
|
|
goto fail_free_mem;
|
|
}
|
|
|
|
trace_xfs_buf_get_uncached(bp, _RET_IP_);
|
|
return bp;
|
|
|
|
fail_free_mem:
|
|
while (--i >= 0)
|
|
__free_page(bp->b_pages[i]);
|
|
_xfs_buf_free_pages(bp);
|
|
fail_free_buf:
|
|
xfs_buf_free_maps(bp);
|
|
kmem_zone_free(xfs_buf_zone, bp);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Increment reference count on buffer, to hold the buffer concurrently
|
|
* with another thread which may release (free) the buffer asynchronously.
|
|
* Must hold the buffer already to call this function.
|
|
*/
|
|
void
|
|
xfs_buf_hold(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_hold(bp, _RET_IP_);
|
|
atomic_inc(&bp->b_hold);
|
|
}
|
|
|
|
/*
|
|
* Releases a hold on the specified buffer. If the
|
|
* the hold count is 1, calls xfs_buf_free.
|
|
*/
|
|
void
|
|
xfs_buf_rele(
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_perag *pag = bp->b_pag;
|
|
|
|
trace_xfs_buf_rele(bp, _RET_IP_);
|
|
|
|
if (!pag) {
|
|
ASSERT(list_empty(&bp->b_lru));
|
|
ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
|
|
if (atomic_dec_and_test(&bp->b_hold))
|
|
xfs_buf_free(bp);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
|
|
|
|
ASSERT(atomic_read(&bp->b_hold) > 0);
|
|
if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
|
|
if (!(bp->b_flags & XBF_STALE) &&
|
|
atomic_read(&bp->b_lru_ref)) {
|
|
xfs_buf_lru_add(bp);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
} else {
|
|
xfs_buf_lru_del(bp);
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
|
|
spin_unlock(&pag->pag_buf_lock);
|
|
xfs_perag_put(pag);
|
|
xfs_buf_free(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Lock a buffer object, if it is not already locked.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we are
|
|
* being asked to lock a buffer that has been reallocated. Because it is
|
|
* pinned, we know that the log has not been pushed to disk and hence it
|
|
* will still be locked. Rather than continuing to have trylock attempts
|
|
* fail until someone else pushes the log, push it ourselves before
|
|
* returning. This means that the xfsaild will not get stuck trying
|
|
* to push on stale inode buffers.
|
|
*/
|
|
int
|
|
xfs_buf_trylock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int locked;
|
|
|
|
locked = down_trylock(&bp->b_sema) == 0;
|
|
if (locked)
|
|
XB_SET_OWNER(bp);
|
|
else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
|
|
trace_xfs_buf_trylock(bp, _RET_IP_);
|
|
return locked;
|
|
}
|
|
|
|
/*
|
|
* Lock a buffer object.
|
|
*
|
|
* If we come across a stale, pinned, locked buffer, we know that we
|
|
* are being asked to lock a buffer that has been reallocated. Because
|
|
* it is pinned, we know that the log has not been pushed to disk and
|
|
* hence it will still be locked. Rather than sleeping until someone
|
|
* else pushes the log, push it ourselves before trying to get the lock.
|
|
*/
|
|
void
|
|
xfs_buf_lock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
trace_xfs_buf_lock(bp, _RET_IP_);
|
|
|
|
if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
|
|
xfs_log_force(bp->b_target->bt_mount, 0);
|
|
down(&bp->b_sema);
|
|
XB_SET_OWNER(bp);
|
|
|
|
trace_xfs_buf_lock_done(bp, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_unlock(
|
|
struct xfs_buf *bp)
|
|
{
|
|
XB_CLEAR_OWNER(bp);
|
|
up(&bp->b_sema);
|
|
|
|
trace_xfs_buf_unlock(bp, _RET_IP_);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_wait_unpin(
|
|
xfs_buf_t *bp)
|
|
{
|
|
DECLARE_WAITQUEUE (wait, current);
|
|
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
return;
|
|
|
|
add_wait_queue(&bp->b_waiters, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&bp->b_pin_count) == 0)
|
|
break;
|
|
io_schedule();
|
|
}
|
|
remove_wait_queue(&bp->b_waiters, &wait);
|
|
set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
/*
|
|
* Buffer Utility Routines
|
|
*/
|
|
|
|
STATIC void
|
|
xfs_buf_iodone_work(
|
|
struct work_struct *work)
|
|
{
|
|
xfs_buf_t *bp =
|
|
container_of(work, xfs_buf_t, b_iodone_work);
|
|
|
|
if (bp->b_iodone)
|
|
(*(bp->b_iodone))(bp);
|
|
else if (bp->b_flags & XBF_ASYNC)
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
trace_xfs_buf_iodone(bp, _RET_IP_);
|
|
|
|
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
|
|
if (bp->b_error == 0)
|
|
bp->b_flags |= XBF_DONE;
|
|
|
|
if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
|
|
if (schedule) {
|
|
INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
|
|
queue_work(xfslogd_workqueue, &bp->b_iodone_work);
|
|
} else {
|
|
xfs_buf_iodone_work(&bp->b_iodone_work);
|
|
}
|
|
} else {
|
|
complete(&bp->b_iowait);
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror(
|
|
xfs_buf_t *bp,
|
|
int error)
|
|
{
|
|
ASSERT(error >= 0 && error <= 0xffff);
|
|
bp->b_error = (unsigned short)error;
|
|
trace_xfs_buf_ioerror(bp, error, _RET_IP_);
|
|
}
|
|
|
|
void
|
|
xfs_buf_ioerror_alert(
|
|
struct xfs_buf *bp,
|
|
const char *func)
|
|
{
|
|
xfs_alert(bp->b_target->bt_mount,
|
|
"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
|
|
(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
|
|
}
|
|
|
|
/*
|
|
* Called when we want to stop a buffer from getting written or read.
|
|
* We attach the EIO error, muck with its flags, and call xfs_buf_ioend
|
|
* so that the proper iodone callbacks get called.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror(
|
|
xfs_buf_t *bp)
|
|
{
|
|
#ifdef XFSERRORDEBUG
|
|
ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
|
|
#endif
|
|
|
|
/*
|
|
* No need to wait until the buffer is unpinned, we aren't flushing it.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
|
|
/*
|
|
* We're calling xfs_buf_ioend, so delete XBF_DONE flag.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_UNDONE(bp);
|
|
xfs_buf_stale(bp);
|
|
|
|
xfs_buf_ioend(bp, 0);
|
|
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Same as xfs_bioerror, except that we are releasing the buffer
|
|
* here ourselves, and avoiding the xfs_buf_ioend call.
|
|
* This is meant for userdata errors; metadata bufs come with
|
|
* iodone functions attached, so that we can track down errors.
|
|
*/
|
|
STATIC int
|
|
xfs_bioerror_relse(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int64_t fl = bp->b_flags;
|
|
/*
|
|
* No need to wait until the buffer is unpinned.
|
|
* We aren't flushing it.
|
|
*
|
|
* chunkhold expects B_DONE to be set, whether
|
|
* we actually finish the I/O or not. We don't want to
|
|
* change that interface.
|
|
*/
|
|
XFS_BUF_UNREAD(bp);
|
|
XFS_BUF_DONE(bp);
|
|
xfs_buf_stale(bp);
|
|
bp->b_iodone = NULL;
|
|
if (!(fl & XBF_ASYNC)) {
|
|
/*
|
|
* Mark b_error and B_ERROR _both_.
|
|
* Lot's of chunkcache code assumes that.
|
|
* There's no reason to mark error for
|
|
* ASYNC buffers.
|
|
*/
|
|
xfs_buf_ioerror(bp, EIO);
|
|
complete(&bp->b_iowait);
|
|
} else {
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
return EIO;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_bdstrat_cb(
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
/*
|
|
* Metadata write that didn't get logged but
|
|
* written delayed anyway. These aren't associated
|
|
* with a transaction, and can be ignored.
|
|
*/
|
|
if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
|
|
return xfs_bioerror_relse(bp);
|
|
else
|
|
return xfs_bioerror(bp);
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_bwrite(
|
|
struct xfs_buf *bp)
|
|
{
|
|
int error;
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
bp->b_flags |= XBF_WRITE;
|
|
bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
|
|
|
|
xfs_bdstrat_cb(bp);
|
|
|
|
error = xfs_buf_iowait(bp);
|
|
if (error) {
|
|
xfs_force_shutdown(bp->b_target->bt_mount,
|
|
SHUTDOWN_META_IO_ERROR);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Wrapper around bdstrat so that we can stop data from going to disk in case
|
|
* we are shutting down the filesystem. Typically user data goes thru this
|
|
* path; one of the exceptions is the superblock.
|
|
*/
|
|
void
|
|
xfsbdstrat(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buf *bp)
|
|
{
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
trace_xfs_bdstrat_shut(bp, _RET_IP_);
|
|
xfs_bioerror_relse(bp);
|
|
return;
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioend(
|
|
xfs_buf_t *bp,
|
|
int schedule)
|
|
{
|
|
if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
|
|
xfs_buf_ioend(bp, schedule);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_buf_bio_end_io(
|
|
struct bio *bio,
|
|
int error)
|
|
{
|
|
xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
|
|
|
|
/*
|
|
* don't overwrite existing errors - otherwise we can lose errors on
|
|
* buffers that require multiple bios to complete.
|
|
*/
|
|
if (!bp->b_error)
|
|
xfs_buf_ioerror(bp, -error);
|
|
|
|
if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
|
|
invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
|
|
|
|
_xfs_buf_ioend(bp, 1);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void
|
|
xfs_buf_ioapply_map(
|
|
struct xfs_buf *bp,
|
|
int map,
|
|
int *buf_offset,
|
|
int *count,
|
|
int rw)
|
|
{
|
|
int page_index;
|
|
int total_nr_pages = bp->b_page_count;
|
|
int nr_pages;
|
|
struct bio *bio;
|
|
sector_t sector = bp->b_maps[map].bm_bn;
|
|
int size;
|
|
int offset;
|
|
|
|
total_nr_pages = bp->b_page_count;
|
|
|
|
/* skip the pages in the buffer before the start offset */
|
|
page_index = 0;
|
|
offset = *buf_offset;
|
|
while (offset >= PAGE_SIZE) {
|
|
page_index++;
|
|
offset -= PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Limit the IO size to the length of the current vector, and update the
|
|
* remaining IO count for the next time around.
|
|
*/
|
|
size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
|
|
*count -= size;
|
|
*buf_offset += size;
|
|
|
|
next_chunk:
|
|
atomic_inc(&bp->b_io_remaining);
|
|
nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
|
|
if (nr_pages > total_nr_pages)
|
|
nr_pages = total_nr_pages;
|
|
|
|
bio = bio_alloc(GFP_NOIO, nr_pages);
|
|
bio->bi_bdev = bp->b_target->bt_bdev;
|
|
bio->bi_sector = sector;
|
|
bio->bi_end_io = xfs_buf_bio_end_io;
|
|
bio->bi_private = bp;
|
|
|
|
|
|
for (; size && nr_pages; nr_pages--, page_index++) {
|
|
int rbytes, nbytes = PAGE_SIZE - offset;
|
|
|
|
if (nbytes > size)
|
|
nbytes = size;
|
|
|
|
rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
|
|
offset);
|
|
if (rbytes < nbytes)
|
|
break;
|
|
|
|
offset = 0;
|
|
sector += BTOBB(nbytes);
|
|
size -= nbytes;
|
|
total_nr_pages--;
|
|
}
|
|
|
|
if (likely(bio->bi_size)) {
|
|
if (xfs_buf_is_vmapped(bp)) {
|
|
flush_kernel_vmap_range(bp->b_addr,
|
|
xfs_buf_vmap_len(bp));
|
|
}
|
|
submit_bio(rw, bio);
|
|
if (size)
|
|
goto next_chunk;
|
|
} else {
|
|
/*
|
|
* This is guaranteed not to be the last io reference count
|
|
* because the caller (xfs_buf_iorequest) holds a count itself.
|
|
*/
|
|
atomic_dec(&bp->b_io_remaining);
|
|
xfs_buf_ioerror(bp, EIO);
|
|
bio_put(bio);
|
|
}
|
|
|
|
}
|
|
|
|
STATIC void
|
|
_xfs_buf_ioapply(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct blk_plug plug;
|
|
int rw;
|
|
int offset;
|
|
int size;
|
|
int i;
|
|
|
|
if (bp->b_flags & XBF_WRITE) {
|
|
if (bp->b_flags & XBF_SYNCIO)
|
|
rw = WRITE_SYNC;
|
|
else
|
|
rw = WRITE;
|
|
if (bp->b_flags & XBF_FUA)
|
|
rw |= REQ_FUA;
|
|
if (bp->b_flags & XBF_FLUSH)
|
|
rw |= REQ_FLUSH;
|
|
} else if (bp->b_flags & XBF_READ_AHEAD) {
|
|
rw = READA;
|
|
} else {
|
|
rw = READ;
|
|
}
|
|
|
|
/* we only use the buffer cache for meta-data */
|
|
rw |= REQ_META;
|
|
|
|
/*
|
|
* Walk all the vectors issuing IO on them. Set up the initial offset
|
|
* into the buffer and the desired IO size before we start -
|
|
* _xfs_buf_ioapply_vec() will modify them appropriately for each
|
|
* subsequent call.
|
|
*/
|
|
offset = bp->b_offset;
|
|
size = BBTOB(bp->b_io_length);
|
|
blk_start_plug(&plug);
|
|
for (i = 0; i < bp->b_map_count; i++) {
|
|
xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
|
|
if (bp->b_error)
|
|
break;
|
|
if (size <= 0)
|
|
break; /* all done */
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
void
|
|
xfs_buf_iorequest(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iorequest(bp, _RET_IP_);
|
|
|
|
ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
|
|
|
|
if (bp->b_flags & XBF_WRITE)
|
|
xfs_buf_wait_unpin(bp);
|
|
xfs_buf_hold(bp);
|
|
|
|
/* Set the count to 1 initially, this will stop an I/O
|
|
* completion callout which happens before we have started
|
|
* all the I/O from calling xfs_buf_ioend too early.
|
|
*/
|
|
atomic_set(&bp->b_io_remaining, 1);
|
|
_xfs_buf_ioapply(bp);
|
|
_xfs_buf_ioend(bp, 1);
|
|
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
/*
|
|
* Waits for I/O to complete on the buffer supplied. It returns immediately if
|
|
* no I/O is pending or there is already a pending error on the buffer. It
|
|
* returns the I/O error code, if any, or 0 if there was no error.
|
|
*/
|
|
int
|
|
xfs_buf_iowait(
|
|
xfs_buf_t *bp)
|
|
{
|
|
trace_xfs_buf_iowait(bp, _RET_IP_);
|
|
|
|
if (!bp->b_error)
|
|
wait_for_completion(&bp->b_iowait);
|
|
|
|
trace_xfs_buf_iowait_done(bp, _RET_IP_);
|
|
return bp->b_error;
|
|
}
|
|
|
|
xfs_caddr_t
|
|
xfs_buf_offset(
|
|
xfs_buf_t *bp,
|
|
size_t offset)
|
|
{
|
|
struct page *page;
|
|
|
|
if (bp->b_addr)
|
|
return bp->b_addr + offset;
|
|
|
|
offset += bp->b_offset;
|
|
page = bp->b_pages[offset >> PAGE_SHIFT];
|
|
return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
|
|
}
|
|
|
|
/*
|
|
* Move data into or out of a buffer.
|
|
*/
|
|
void
|
|
xfs_buf_iomove(
|
|
xfs_buf_t *bp, /* buffer to process */
|
|
size_t boff, /* starting buffer offset */
|
|
size_t bsize, /* length to copy */
|
|
void *data, /* data address */
|
|
xfs_buf_rw_t mode) /* read/write/zero flag */
|
|
{
|
|
size_t bend;
|
|
|
|
bend = boff + bsize;
|
|
while (boff < bend) {
|
|
struct page *page;
|
|
int page_index, page_offset, csize;
|
|
|
|
page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
|
|
page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
|
|
page = bp->b_pages[page_index];
|
|
csize = min_t(size_t, PAGE_SIZE - page_offset,
|
|
BBTOB(bp->b_io_length) - boff);
|
|
|
|
ASSERT((csize + page_offset) <= PAGE_SIZE);
|
|
|
|
switch (mode) {
|
|
case XBRW_ZERO:
|
|
memset(page_address(page) + page_offset, 0, csize);
|
|
break;
|
|
case XBRW_READ:
|
|
memcpy(data, page_address(page) + page_offset, csize);
|
|
break;
|
|
case XBRW_WRITE:
|
|
memcpy(page_address(page) + page_offset, data, csize);
|
|
}
|
|
|
|
boff += csize;
|
|
data += csize;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handling of buffer targets (buftargs).
|
|
*/
|
|
|
|
/*
|
|
* Wait for any bufs with callbacks that have been submitted but have not yet
|
|
* returned. These buffers will have an elevated hold count, so wait on those
|
|
* while freeing all the buffers only held by the LRU.
|
|
*/
|
|
void
|
|
xfs_wait_buftarg(
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
struct xfs_buf *bp;
|
|
|
|
restart:
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
if (atomic_read(&bp->b_hold) > 1) {
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
delay(100);
|
|
goto restart;
|
|
}
|
|
/*
|
|
* clear the LRU reference count so the buffer doesn't get
|
|
* ignored in xfs_buf_rele().
|
|
*/
|
|
atomic_set(&bp->b_lru_ref, 0);
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
xfs_buf_rele(bp);
|
|
spin_lock(&btp->bt_lru_lock);
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
}
|
|
|
|
int
|
|
xfs_buftarg_shrink(
|
|
struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct xfs_buftarg *btp = container_of(shrink,
|
|
struct xfs_buftarg, bt_shrinker);
|
|
struct xfs_buf *bp;
|
|
int nr_to_scan = sc->nr_to_scan;
|
|
LIST_HEAD(dispose);
|
|
|
|
if (!nr_to_scan)
|
|
return btp->bt_lru_nr;
|
|
|
|
spin_lock(&btp->bt_lru_lock);
|
|
while (!list_empty(&btp->bt_lru)) {
|
|
if (nr_to_scan-- <= 0)
|
|
break;
|
|
|
|
bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
|
|
|
|
/*
|
|
* Decrement the b_lru_ref count unless the value is already
|
|
* zero. If the value is already zero, we need to reclaim the
|
|
* buffer, otherwise it gets another trip through the LRU.
|
|
*/
|
|
if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
|
|
list_move_tail(&bp->b_lru, &btp->bt_lru);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* remove the buffer from the LRU now to avoid needing another
|
|
* lock round trip inside xfs_buf_rele().
|
|
*/
|
|
list_move(&bp->b_lru, &dispose);
|
|
btp->bt_lru_nr--;
|
|
bp->b_lru_flags |= _XBF_LRU_DISPOSE;
|
|
}
|
|
spin_unlock(&btp->bt_lru_lock);
|
|
|
|
while (!list_empty(&dispose)) {
|
|
bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
|
|
list_del_init(&bp->b_lru);
|
|
xfs_buf_rele(bp);
|
|
}
|
|
|
|
return btp->bt_lru_nr;
|
|
}
|
|
|
|
void
|
|
xfs_free_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct xfs_buftarg *btp)
|
|
{
|
|
unregister_shrinker(&btp->bt_shrinker);
|
|
|
|
if (mp->m_flags & XFS_MOUNT_BARRIER)
|
|
xfs_blkdev_issue_flush(btp);
|
|
|
|
kmem_free(btp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setsize_buftarg_flags(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize,
|
|
int verbose)
|
|
{
|
|
btp->bt_bsize = blocksize;
|
|
btp->bt_sshift = ffs(sectorsize) - 1;
|
|
btp->bt_smask = sectorsize - 1;
|
|
|
|
if (set_blocksize(btp->bt_bdev, sectorsize)) {
|
|
char name[BDEVNAME_SIZE];
|
|
|
|
bdevname(btp->bt_bdev, name);
|
|
|
|
xfs_warn(btp->bt_mount,
|
|
"Cannot set_blocksize to %u on device %s\n",
|
|
sectorsize, name);
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When allocating the initial buffer target we have not yet
|
|
* read in the superblock, so don't know what sized sectors
|
|
* are being used is at this early stage. Play safe.
|
|
*/
|
|
STATIC int
|
|
xfs_setsize_buftarg_early(
|
|
xfs_buftarg_t *btp,
|
|
struct block_device *bdev)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp,
|
|
PAGE_SIZE, bdev_logical_block_size(bdev), 0);
|
|
}
|
|
|
|
int
|
|
xfs_setsize_buftarg(
|
|
xfs_buftarg_t *btp,
|
|
unsigned int blocksize,
|
|
unsigned int sectorsize)
|
|
{
|
|
return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
|
|
}
|
|
|
|
xfs_buftarg_t *
|
|
xfs_alloc_buftarg(
|
|
struct xfs_mount *mp,
|
|
struct block_device *bdev,
|
|
int external,
|
|
const char *fsname)
|
|
{
|
|
xfs_buftarg_t *btp;
|
|
|
|
btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
|
|
|
|
btp->bt_mount = mp;
|
|
btp->bt_dev = bdev->bd_dev;
|
|
btp->bt_bdev = bdev;
|
|
btp->bt_bdi = blk_get_backing_dev_info(bdev);
|
|
if (!btp->bt_bdi)
|
|
goto error;
|
|
|
|
INIT_LIST_HEAD(&btp->bt_lru);
|
|
spin_lock_init(&btp->bt_lru_lock);
|
|
if (xfs_setsize_buftarg_early(btp, bdev))
|
|
goto error;
|
|
btp->bt_shrinker.shrink = xfs_buftarg_shrink;
|
|
btp->bt_shrinker.seeks = DEFAULT_SEEKS;
|
|
register_shrinker(&btp->bt_shrinker);
|
|
return btp;
|
|
|
|
error:
|
|
kmem_free(btp);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Add a buffer to the delayed write list.
|
|
*
|
|
* This queues a buffer for writeout if it hasn't already been. Note that
|
|
* neither this routine nor the buffer list submission functions perform
|
|
* any internal synchronization. It is expected that the lists are thread-local
|
|
* to the callers.
|
|
*
|
|
* Returns true if we queued up the buffer, or false if it already had
|
|
* been on the buffer list.
|
|
*/
|
|
bool
|
|
xfs_buf_delwri_queue(
|
|
struct xfs_buf *bp,
|
|
struct list_head *list)
|
|
{
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
ASSERT(!(bp->b_flags & XBF_READ));
|
|
|
|
/*
|
|
* If the buffer is already marked delwri it already is queued up
|
|
* by someone else for imediate writeout. Just ignore it in that
|
|
* case.
|
|
*/
|
|
if (bp->b_flags & _XBF_DELWRI_Q) {
|
|
trace_xfs_buf_delwri_queued(bp, _RET_IP_);
|
|
return false;
|
|
}
|
|
|
|
trace_xfs_buf_delwri_queue(bp, _RET_IP_);
|
|
|
|
/*
|
|
* If a buffer gets written out synchronously or marked stale while it
|
|
* is on a delwri list we lazily remove it. To do this, the other party
|
|
* clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
|
|
* It remains referenced and on the list. In a rare corner case it
|
|
* might get readded to a delwri list after the synchronous writeout, in
|
|
* which case we need just need to re-add the flag here.
|
|
*/
|
|
bp->b_flags |= _XBF_DELWRI_Q;
|
|
if (list_empty(&bp->b_list)) {
|
|
atomic_inc(&bp->b_hold);
|
|
list_add_tail(&bp->b_list, list);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Compare function is more complex than it needs to be because
|
|
* the return value is only 32 bits and we are doing comparisons
|
|
* on 64 bit values
|
|
*/
|
|
static int
|
|
xfs_buf_cmp(
|
|
void *priv,
|
|
struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
|
|
struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
|
|
xfs_daddr_t diff;
|
|
|
|
diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
|
|
if (diff < 0)
|
|
return -1;
|
|
if (diff > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list,
|
|
struct list_head *io_list,
|
|
bool wait)
|
|
{
|
|
struct blk_plug plug;
|
|
struct xfs_buf *bp, *n;
|
|
int pinned = 0;
|
|
|
|
list_for_each_entry_safe(bp, n, buffer_list, b_list) {
|
|
if (!wait) {
|
|
if (xfs_buf_ispinned(bp)) {
|
|
pinned++;
|
|
continue;
|
|
}
|
|
if (!xfs_buf_trylock(bp))
|
|
continue;
|
|
} else {
|
|
xfs_buf_lock(bp);
|
|
}
|
|
|
|
/*
|
|
* Someone else might have written the buffer synchronously or
|
|
* marked it stale in the meantime. In that case only the
|
|
* _XBF_DELWRI_Q flag got cleared, and we have to drop the
|
|
* reference and remove it from the list here.
|
|
*/
|
|
if (!(bp->b_flags & _XBF_DELWRI_Q)) {
|
|
list_del_init(&bp->b_list);
|
|
xfs_buf_relse(bp);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&bp->b_list, io_list);
|
|
trace_xfs_buf_delwri_split(bp, _RET_IP_);
|
|
}
|
|
|
|
list_sort(NULL, io_list, xfs_buf_cmp);
|
|
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry_safe(bp, n, io_list, b_list) {
|
|
bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
|
|
bp->b_flags |= XBF_WRITE;
|
|
|
|
if (!wait) {
|
|
bp->b_flags |= XBF_ASYNC;
|
|
list_del_init(&bp->b_list);
|
|
}
|
|
xfs_bdstrat_cb(bp);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
|
|
return pinned;
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list asynchronously.
|
|
*
|
|
* This will take the @buffer_list, write all non-locked and non-pinned buffers
|
|
* out and not wait for I/O completion on any of the buffers. This interface
|
|
* is only safely useable for callers that can track I/O completion by higher
|
|
* level means, e.g. AIL pushing as the @buffer_list is consumed in this
|
|
* function.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit_nowait(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
|
|
}
|
|
|
|
/*
|
|
* Write out a buffer list synchronously.
|
|
*
|
|
* This will take the @buffer_list, write all buffers out and wait for I/O
|
|
* completion on all of the buffers. @buffer_list is consumed by the function,
|
|
* so callers must have some other way of tracking buffers if they require such
|
|
* functionality.
|
|
*/
|
|
int
|
|
xfs_buf_delwri_submit(
|
|
struct list_head *buffer_list)
|
|
{
|
|
LIST_HEAD (io_list);
|
|
int error = 0, error2;
|
|
struct xfs_buf *bp;
|
|
|
|
__xfs_buf_delwri_submit(buffer_list, &io_list, true);
|
|
|
|
/* Wait for IO to complete. */
|
|
while (!list_empty(&io_list)) {
|
|
bp = list_first_entry(&io_list, struct xfs_buf, b_list);
|
|
|
|
list_del_init(&bp->b_list);
|
|
error2 = xfs_buf_iowait(bp);
|
|
xfs_buf_relse(bp);
|
|
if (!error)
|
|
error = error2;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int __init
|
|
xfs_buf_init(void)
|
|
{
|
|
xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
|
|
KM_ZONE_HWALIGN, NULL);
|
|
if (!xfs_buf_zone)
|
|
goto out;
|
|
|
|
xfslogd_workqueue = alloc_workqueue("xfslogd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
|
|
if (!xfslogd_workqueue)
|
|
goto out_free_buf_zone;
|
|
|
|
return 0;
|
|
|
|
out_free_buf_zone:
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
out:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
xfs_buf_terminate(void)
|
|
{
|
|
destroy_workqueue(xfslogd_workqueue);
|
|
kmem_zone_destroy(xfs_buf_zone);
|
|
}
|