mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-25 15:24:17 +08:00
771915c4f6
Remove kmem_realloc() function and convert its users to use MM API directly (krealloc()) Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1051 lines
23 KiB
C
1051 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2017 Christoph Hellwig.
|
|
*/
|
|
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_trace.h"
|
|
|
|
/*
|
|
* In-core extent record layout:
|
|
*
|
|
* +-------+----------------------------+
|
|
* | 00:53 | all 54 bits of startoff |
|
|
* | 54:63 | low 10 bits of startblock |
|
|
* +-------+----------------------------+
|
|
* | 00:20 | all 21 bits of length |
|
|
* | 21 | unwritten extent bit |
|
|
* | 22:63 | high 42 bits of startblock |
|
|
* +-------+----------------------------+
|
|
*/
|
|
#define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
|
|
#define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
|
|
#define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
|
|
|
|
struct xfs_iext_rec {
|
|
uint64_t lo;
|
|
uint64_t hi;
|
|
};
|
|
|
|
/*
|
|
* Given that the length can't be a zero, only an empty hi value indicates an
|
|
* unused record.
|
|
*/
|
|
static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
|
|
{
|
|
return rec->hi == 0;
|
|
}
|
|
|
|
static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
|
|
{
|
|
rec->lo = 0;
|
|
rec->hi = 0;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_set(
|
|
struct xfs_iext_rec *rec,
|
|
struct xfs_bmbt_irec *irec)
|
|
{
|
|
ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
|
|
ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
|
|
ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
|
|
|
|
rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
|
|
rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
|
|
|
|
rec->lo |= (irec->br_startblock << 54);
|
|
rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
|
|
|
|
if (irec->br_state == XFS_EXT_UNWRITTEN)
|
|
rec->hi |= (1 << 21);
|
|
}
|
|
|
|
static void
|
|
xfs_iext_get(
|
|
struct xfs_bmbt_irec *irec,
|
|
struct xfs_iext_rec *rec)
|
|
{
|
|
irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
|
|
irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
|
|
|
|
irec->br_startblock = rec->lo >> 54;
|
|
irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
|
|
|
|
if (rec->hi & (1 << 21))
|
|
irec->br_state = XFS_EXT_UNWRITTEN;
|
|
else
|
|
irec->br_state = XFS_EXT_NORM;
|
|
}
|
|
|
|
enum {
|
|
NODE_SIZE = 256,
|
|
KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
|
|
RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
|
|
sizeof(struct xfs_iext_rec),
|
|
};
|
|
|
|
/*
|
|
* In-core extent btree block layout:
|
|
*
|
|
* There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
|
|
*
|
|
* The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
|
|
* contain the startoffset, blockcount, startblock and unwritten extent flag.
|
|
* See above for the exact format, followed by pointers to the previous and next
|
|
* leaf blocks (if there are any).
|
|
*
|
|
* The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
|
|
* by an equal number of pointers to the btree blocks at the next lower level.
|
|
*
|
|
* +-------+-------+-------+-------+-------+----------+----------+
|
|
* Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
|
|
* +-------+-------+-------+-------+-------+----------+----------+
|
|
*
|
|
* +-------+-------+-------+-------+-------+-------+------+-------+
|
|
* Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
|
|
* +-------+-------+-------+-------+-------+-------+------+-------+
|
|
*/
|
|
struct xfs_iext_node {
|
|
uint64_t keys[KEYS_PER_NODE];
|
|
#define XFS_IEXT_KEY_INVALID (1ULL << 63)
|
|
void *ptrs[KEYS_PER_NODE];
|
|
};
|
|
|
|
struct xfs_iext_leaf {
|
|
struct xfs_iext_rec recs[RECS_PER_LEAF];
|
|
struct xfs_iext_leaf *prev;
|
|
struct xfs_iext_leaf *next;
|
|
};
|
|
|
|
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
|
|
{
|
|
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
|
|
}
|
|
|
|
static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
|
|
{
|
|
if (ifp->if_height == 1)
|
|
return xfs_iext_count(ifp);
|
|
return RECS_PER_LEAF;
|
|
}
|
|
|
|
static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
|
|
{
|
|
return &cur->leaf->recs[cur->pos];
|
|
}
|
|
|
|
static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
if (!cur->leaf)
|
|
return false;
|
|
if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
|
|
return false;
|
|
if (xfs_iext_rec_is_empty(cur_rec(cur)))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void *
|
|
xfs_iext_find_first_leaf(
|
|
struct xfs_ifork *ifp)
|
|
{
|
|
struct xfs_iext_node *node = ifp->if_u1.if_root;
|
|
int height;
|
|
|
|
if (!ifp->if_height)
|
|
return NULL;
|
|
|
|
for (height = ifp->if_height; height > 1; height--) {
|
|
node = node->ptrs[0];
|
|
ASSERT(node);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static void *
|
|
xfs_iext_find_last_leaf(
|
|
struct xfs_ifork *ifp)
|
|
{
|
|
struct xfs_iext_node *node = ifp->if_u1.if_root;
|
|
int height, i;
|
|
|
|
if (!ifp->if_height)
|
|
return NULL;
|
|
|
|
for (height = ifp->if_height; height > 1; height--) {
|
|
for (i = 1; i < KEYS_PER_NODE; i++)
|
|
if (!node->ptrs[i])
|
|
break;
|
|
node = node->ptrs[i - 1];
|
|
ASSERT(node);
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
void
|
|
xfs_iext_first(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
cur->pos = 0;
|
|
cur->leaf = xfs_iext_find_first_leaf(ifp);
|
|
}
|
|
|
|
void
|
|
xfs_iext_last(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
int i;
|
|
|
|
cur->leaf = xfs_iext_find_last_leaf(ifp);
|
|
if (!cur->leaf) {
|
|
cur->pos = 0;
|
|
return;
|
|
}
|
|
|
|
for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
|
|
if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
|
|
break;
|
|
}
|
|
cur->pos = i - 1;
|
|
}
|
|
|
|
void
|
|
xfs_iext_next(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
if (!cur->leaf) {
|
|
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
|
|
xfs_iext_first(ifp, cur);
|
|
return;
|
|
}
|
|
|
|
ASSERT(cur->pos >= 0);
|
|
ASSERT(cur->pos < xfs_iext_max_recs(ifp));
|
|
|
|
cur->pos++;
|
|
if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
|
|
cur->leaf->next) {
|
|
cur->leaf = cur->leaf->next;
|
|
cur->pos = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
xfs_iext_prev(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
if (!cur->leaf) {
|
|
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
|
|
xfs_iext_last(ifp, cur);
|
|
return;
|
|
}
|
|
|
|
ASSERT(cur->pos >= 0);
|
|
ASSERT(cur->pos <= RECS_PER_LEAF);
|
|
|
|
recurse:
|
|
do {
|
|
cur->pos--;
|
|
if (xfs_iext_valid(ifp, cur))
|
|
return;
|
|
} while (cur->pos > 0);
|
|
|
|
if (ifp->if_height > 1 && cur->leaf->prev) {
|
|
cur->leaf = cur->leaf->prev;
|
|
cur->pos = RECS_PER_LEAF;
|
|
goto recurse;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
xfs_iext_key_cmp(
|
|
struct xfs_iext_node *node,
|
|
int n,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
if (node->keys[n] > offset)
|
|
return 1;
|
|
if (node->keys[n] < offset)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
xfs_iext_rec_cmp(
|
|
struct xfs_iext_rec *rec,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
|
|
uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
|
|
|
|
if (rec_offset > offset)
|
|
return 1;
|
|
if (rec_offset + rec_len <= offset)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
xfs_iext_find_level(
|
|
struct xfs_ifork *ifp,
|
|
xfs_fileoff_t offset,
|
|
int level)
|
|
{
|
|
struct xfs_iext_node *node = ifp->if_u1.if_root;
|
|
int height, i;
|
|
|
|
if (!ifp->if_height)
|
|
return NULL;
|
|
|
|
for (height = ifp->if_height; height > level; height--) {
|
|
for (i = 1; i < KEYS_PER_NODE; i++)
|
|
if (xfs_iext_key_cmp(node, i, offset) > 0)
|
|
break;
|
|
|
|
node = node->ptrs[i - 1];
|
|
if (!node)
|
|
break;
|
|
}
|
|
|
|
return node;
|
|
}
|
|
|
|
static int
|
|
xfs_iext_node_pos(
|
|
struct xfs_iext_node *node,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 1; i < KEYS_PER_NODE; i++) {
|
|
if (xfs_iext_key_cmp(node, i, offset) > 0)
|
|
break;
|
|
}
|
|
|
|
return i - 1;
|
|
}
|
|
|
|
static int
|
|
xfs_iext_node_insert_pos(
|
|
struct xfs_iext_node *node,
|
|
xfs_fileoff_t offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KEYS_PER_NODE; i++) {
|
|
if (xfs_iext_key_cmp(node, i, offset) > 0)
|
|
return i;
|
|
}
|
|
|
|
return KEYS_PER_NODE;
|
|
}
|
|
|
|
static int
|
|
xfs_iext_node_nr_entries(
|
|
struct xfs_iext_node *node,
|
|
int start)
|
|
{
|
|
int i;
|
|
|
|
for (i = start; i < KEYS_PER_NODE; i++) {
|
|
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static int
|
|
xfs_iext_leaf_nr_entries(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_leaf *leaf,
|
|
int start)
|
|
{
|
|
int i;
|
|
|
|
for (i = start; i < xfs_iext_max_recs(ifp); i++) {
|
|
if (xfs_iext_rec_is_empty(&leaf->recs[i]))
|
|
break;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
static inline uint64_t
|
|
xfs_iext_leaf_key(
|
|
struct xfs_iext_leaf *leaf,
|
|
int n)
|
|
{
|
|
return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_grow(
|
|
struct xfs_ifork *ifp)
|
|
{
|
|
struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
|
|
int i;
|
|
|
|
if (ifp->if_height == 1) {
|
|
struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
|
|
|
|
node->keys[0] = xfs_iext_leaf_key(prev, 0);
|
|
node->ptrs[0] = prev;
|
|
} else {
|
|
struct xfs_iext_node *prev = ifp->if_u1.if_root;
|
|
|
|
ASSERT(ifp->if_height > 1);
|
|
|
|
node->keys[0] = prev->keys[0];
|
|
node->ptrs[0] = prev;
|
|
}
|
|
|
|
for (i = 1; i < KEYS_PER_NODE; i++)
|
|
node->keys[i] = XFS_IEXT_KEY_INVALID;
|
|
|
|
ifp->if_u1.if_root = node;
|
|
ifp->if_height++;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_update_node(
|
|
struct xfs_ifork *ifp,
|
|
xfs_fileoff_t old_offset,
|
|
xfs_fileoff_t new_offset,
|
|
int level,
|
|
void *ptr)
|
|
{
|
|
struct xfs_iext_node *node = ifp->if_u1.if_root;
|
|
int height, i;
|
|
|
|
for (height = ifp->if_height; height > level; height--) {
|
|
for (i = 0; i < KEYS_PER_NODE; i++) {
|
|
if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
|
|
break;
|
|
if (node->keys[i] == old_offset)
|
|
node->keys[i] = new_offset;
|
|
}
|
|
node = node->ptrs[i - 1];
|
|
ASSERT(node);
|
|
}
|
|
|
|
ASSERT(node == ptr);
|
|
}
|
|
|
|
static struct xfs_iext_node *
|
|
xfs_iext_split_node(
|
|
struct xfs_iext_node **nodep,
|
|
int *pos,
|
|
int *nr_entries)
|
|
{
|
|
struct xfs_iext_node *node = *nodep;
|
|
struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
|
|
const int nr_move = KEYS_PER_NODE / 2;
|
|
int nr_keep = nr_move + (KEYS_PER_NODE & 1);
|
|
int i = 0;
|
|
|
|
/* for sequential append operations just spill over into the new node */
|
|
if (*pos == KEYS_PER_NODE) {
|
|
*nodep = new;
|
|
*pos = 0;
|
|
*nr_entries = 0;
|
|
goto done;
|
|
}
|
|
|
|
|
|
for (i = 0; i < nr_move; i++) {
|
|
new->keys[i] = node->keys[nr_keep + i];
|
|
new->ptrs[i] = node->ptrs[nr_keep + i];
|
|
|
|
node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
|
|
node->ptrs[nr_keep + i] = NULL;
|
|
}
|
|
|
|
if (*pos >= nr_keep) {
|
|
*nodep = new;
|
|
*pos -= nr_keep;
|
|
*nr_entries = nr_move;
|
|
} else {
|
|
*nr_entries = nr_keep;
|
|
}
|
|
done:
|
|
for (; i < KEYS_PER_NODE; i++)
|
|
new->keys[i] = XFS_IEXT_KEY_INVALID;
|
|
return new;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_insert_node(
|
|
struct xfs_ifork *ifp,
|
|
uint64_t offset,
|
|
void *ptr,
|
|
int level)
|
|
{
|
|
struct xfs_iext_node *node, *new;
|
|
int i, pos, nr_entries;
|
|
|
|
again:
|
|
if (ifp->if_height < level)
|
|
xfs_iext_grow(ifp);
|
|
|
|
new = NULL;
|
|
node = xfs_iext_find_level(ifp, offset, level);
|
|
pos = xfs_iext_node_insert_pos(node, offset);
|
|
nr_entries = xfs_iext_node_nr_entries(node, pos);
|
|
|
|
ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
|
|
ASSERT(nr_entries <= KEYS_PER_NODE);
|
|
|
|
if (nr_entries == KEYS_PER_NODE)
|
|
new = xfs_iext_split_node(&node, &pos, &nr_entries);
|
|
|
|
/*
|
|
* Update the pointers in higher levels if the first entry changes
|
|
* in an existing node.
|
|
*/
|
|
if (node != new && pos == 0 && nr_entries > 0)
|
|
xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
|
|
|
|
for (i = nr_entries; i > pos; i--) {
|
|
node->keys[i] = node->keys[i - 1];
|
|
node->ptrs[i] = node->ptrs[i - 1];
|
|
}
|
|
node->keys[pos] = offset;
|
|
node->ptrs[pos] = ptr;
|
|
|
|
if (new) {
|
|
offset = new->keys[0];
|
|
ptr = new;
|
|
level++;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
static struct xfs_iext_leaf *
|
|
xfs_iext_split_leaf(
|
|
struct xfs_iext_cursor *cur,
|
|
int *nr_entries)
|
|
{
|
|
struct xfs_iext_leaf *leaf = cur->leaf;
|
|
struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
|
|
const int nr_move = RECS_PER_LEAF / 2;
|
|
int nr_keep = nr_move + (RECS_PER_LEAF & 1);
|
|
int i;
|
|
|
|
/* for sequential append operations just spill over into the new node */
|
|
if (cur->pos == RECS_PER_LEAF) {
|
|
cur->leaf = new;
|
|
cur->pos = 0;
|
|
*nr_entries = 0;
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < nr_move; i++) {
|
|
new->recs[i] = leaf->recs[nr_keep + i];
|
|
xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
|
|
}
|
|
|
|
if (cur->pos >= nr_keep) {
|
|
cur->leaf = new;
|
|
cur->pos -= nr_keep;
|
|
*nr_entries = nr_move;
|
|
} else {
|
|
*nr_entries = nr_keep;
|
|
}
|
|
done:
|
|
if (leaf->next)
|
|
leaf->next->prev = new;
|
|
new->next = leaf->next;
|
|
new->prev = leaf;
|
|
leaf->next = new;
|
|
return new;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_alloc_root(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
ASSERT(ifp->if_bytes == 0);
|
|
|
|
ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
|
|
ifp->if_height = 1;
|
|
|
|
/* now that we have a node step into it */
|
|
cur->leaf = ifp->if_u1.if_root;
|
|
cur->pos = 0;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_realloc_root(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur)
|
|
{
|
|
int64_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
|
|
void *new;
|
|
|
|
/* account for the prev/next pointers */
|
|
if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
|
|
new_size = NODE_SIZE;
|
|
|
|
new = krealloc(ifp->if_u1.if_root, new_size, GFP_NOFS | __GFP_NOFAIL);
|
|
memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
|
|
ifp->if_u1.if_root = new;
|
|
cur->leaf = new;
|
|
}
|
|
|
|
/*
|
|
* Increment the sequence counter on extent tree changes. If we are on a COW
|
|
* fork, this allows the writeback code to skip looking for a COW extent if the
|
|
* COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
|
|
* sequence counter is seen before the modifications to the extent tree itself
|
|
* take effect.
|
|
*/
|
|
static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp)
|
|
{
|
|
WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
|
|
}
|
|
|
|
void
|
|
xfs_iext_insert(
|
|
struct xfs_inode *ip,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_bmbt_irec *irec,
|
|
int state)
|
|
{
|
|
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
|
|
xfs_fileoff_t offset = irec->br_startoff;
|
|
struct xfs_iext_leaf *new = NULL;
|
|
int nr_entries, i;
|
|
|
|
xfs_iext_inc_seq(ifp);
|
|
|
|
if (ifp->if_height == 0)
|
|
xfs_iext_alloc_root(ifp, cur);
|
|
else if (ifp->if_height == 1)
|
|
xfs_iext_realloc_root(ifp, cur);
|
|
|
|
nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
|
|
ASSERT(nr_entries <= RECS_PER_LEAF);
|
|
ASSERT(cur->pos >= nr_entries ||
|
|
xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
|
|
|
|
if (nr_entries == RECS_PER_LEAF)
|
|
new = xfs_iext_split_leaf(cur, &nr_entries);
|
|
|
|
/*
|
|
* Update the pointers in higher levels if the first entry changes
|
|
* in an existing node.
|
|
*/
|
|
if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
|
|
xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
|
|
offset, 1, cur->leaf);
|
|
}
|
|
|
|
for (i = nr_entries; i > cur->pos; i--)
|
|
cur->leaf->recs[i] = cur->leaf->recs[i - 1];
|
|
xfs_iext_set(cur_rec(cur), irec);
|
|
ifp->if_bytes += sizeof(struct xfs_iext_rec);
|
|
|
|
trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
|
|
|
|
if (new)
|
|
xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
|
|
}
|
|
|
|
static struct xfs_iext_node *
|
|
xfs_iext_rebalance_node(
|
|
struct xfs_iext_node *parent,
|
|
int *pos,
|
|
struct xfs_iext_node *node,
|
|
int nr_entries)
|
|
{
|
|
/*
|
|
* If the neighbouring nodes are completely full, or have different
|
|
* parents, we might never be able to merge our node, and will only
|
|
* delete it once the number of entries hits zero.
|
|
*/
|
|
if (nr_entries == 0)
|
|
return node;
|
|
|
|
if (*pos > 0) {
|
|
struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
|
|
int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
|
|
|
|
if (nr_prev + nr_entries <= KEYS_PER_NODE) {
|
|
for (i = 0; i < nr_entries; i++) {
|
|
prev->keys[nr_prev + i] = node->keys[i];
|
|
prev->ptrs[nr_prev + i] = node->ptrs[i];
|
|
}
|
|
return node;
|
|
}
|
|
}
|
|
|
|
if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
|
|
struct xfs_iext_node *next = parent->ptrs[*pos + 1];
|
|
int nr_next = xfs_iext_node_nr_entries(next, 0), i;
|
|
|
|
if (nr_entries + nr_next <= KEYS_PER_NODE) {
|
|
/*
|
|
* Merge the next node into this node so that we don't
|
|
* have to do an additional update of the keys in the
|
|
* higher levels.
|
|
*/
|
|
for (i = 0; i < nr_next; i++) {
|
|
node->keys[nr_entries + i] = next->keys[i];
|
|
node->ptrs[nr_entries + i] = next->ptrs[i];
|
|
}
|
|
|
|
++*pos;
|
|
return next;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
xfs_iext_remove_node(
|
|
struct xfs_ifork *ifp,
|
|
xfs_fileoff_t offset,
|
|
void *victim)
|
|
{
|
|
struct xfs_iext_node *node, *parent;
|
|
int level = 2, pos, nr_entries, i;
|
|
|
|
ASSERT(level <= ifp->if_height);
|
|
node = xfs_iext_find_level(ifp, offset, level);
|
|
pos = xfs_iext_node_pos(node, offset);
|
|
again:
|
|
ASSERT(node->ptrs[pos]);
|
|
ASSERT(node->ptrs[pos] == victim);
|
|
kmem_free(victim);
|
|
|
|
nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
|
|
offset = node->keys[0];
|
|
for (i = pos; i < nr_entries; i++) {
|
|
node->keys[i] = node->keys[i + 1];
|
|
node->ptrs[i] = node->ptrs[i + 1];
|
|
}
|
|
node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
|
|
node->ptrs[nr_entries] = NULL;
|
|
|
|
if (pos == 0 && nr_entries > 0) {
|
|
xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
|
|
offset = node->keys[0];
|
|
}
|
|
|
|
if (nr_entries >= KEYS_PER_NODE / 2)
|
|
return;
|
|
|
|
if (level < ifp->if_height) {
|
|
/*
|
|
* If we aren't at the root yet try to find a neighbour node to
|
|
* merge with (or delete the node if it is empty), and then
|
|
* recurse up to the next level.
|
|
*/
|
|
level++;
|
|
parent = xfs_iext_find_level(ifp, offset, level);
|
|
pos = xfs_iext_node_pos(parent, offset);
|
|
|
|
ASSERT(pos != KEYS_PER_NODE);
|
|
ASSERT(parent->ptrs[pos] == node);
|
|
|
|
node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
|
|
if (node) {
|
|
victim = node;
|
|
node = parent;
|
|
goto again;
|
|
}
|
|
} else if (nr_entries == 1) {
|
|
/*
|
|
* If we are at the root and only one entry is left we can just
|
|
* free this node and update the root pointer.
|
|
*/
|
|
ASSERT(node == ifp->if_u1.if_root);
|
|
ifp->if_u1.if_root = node->ptrs[0];
|
|
ifp->if_height--;
|
|
kmem_free(node);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_iext_rebalance_leaf(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_iext_leaf *leaf,
|
|
xfs_fileoff_t offset,
|
|
int nr_entries)
|
|
{
|
|
/*
|
|
* If the neighbouring nodes are completely full we might never be able
|
|
* to merge our node, and will only delete it once the number of
|
|
* entries hits zero.
|
|
*/
|
|
if (nr_entries == 0)
|
|
goto remove_node;
|
|
|
|
if (leaf->prev) {
|
|
int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
|
|
|
|
if (nr_prev + nr_entries <= RECS_PER_LEAF) {
|
|
for (i = 0; i < nr_entries; i++)
|
|
leaf->prev->recs[nr_prev + i] = leaf->recs[i];
|
|
|
|
if (cur->leaf == leaf) {
|
|
cur->leaf = leaf->prev;
|
|
cur->pos += nr_prev;
|
|
}
|
|
goto remove_node;
|
|
}
|
|
}
|
|
|
|
if (leaf->next) {
|
|
int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
|
|
|
|
if (nr_entries + nr_next <= RECS_PER_LEAF) {
|
|
/*
|
|
* Merge the next node into this node so that we don't
|
|
* have to do an additional update of the keys in the
|
|
* higher levels.
|
|
*/
|
|
for (i = 0; i < nr_next; i++) {
|
|
leaf->recs[nr_entries + i] =
|
|
leaf->next->recs[i];
|
|
}
|
|
|
|
if (cur->leaf == leaf->next) {
|
|
cur->leaf = leaf;
|
|
cur->pos += nr_entries;
|
|
}
|
|
|
|
offset = xfs_iext_leaf_key(leaf->next, 0);
|
|
leaf = leaf->next;
|
|
goto remove_node;
|
|
}
|
|
}
|
|
|
|
return;
|
|
remove_node:
|
|
if (leaf->prev)
|
|
leaf->prev->next = leaf->next;
|
|
if (leaf->next)
|
|
leaf->next->prev = leaf->prev;
|
|
xfs_iext_remove_node(ifp, offset, leaf);
|
|
}
|
|
|
|
static void
|
|
xfs_iext_free_last_leaf(
|
|
struct xfs_ifork *ifp)
|
|
{
|
|
ifp->if_height--;
|
|
kmem_free(ifp->if_u1.if_root);
|
|
ifp->if_u1.if_root = NULL;
|
|
}
|
|
|
|
void
|
|
xfs_iext_remove(
|
|
struct xfs_inode *ip,
|
|
struct xfs_iext_cursor *cur,
|
|
int state)
|
|
{
|
|
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
|
|
struct xfs_iext_leaf *leaf = cur->leaf;
|
|
xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
|
|
int i, nr_entries;
|
|
|
|
trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
|
|
|
|
ASSERT(ifp->if_height > 0);
|
|
ASSERT(ifp->if_u1.if_root != NULL);
|
|
ASSERT(xfs_iext_valid(ifp, cur));
|
|
|
|
xfs_iext_inc_seq(ifp);
|
|
|
|
nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
|
|
for (i = cur->pos; i < nr_entries; i++)
|
|
leaf->recs[i] = leaf->recs[i + 1];
|
|
xfs_iext_rec_clear(&leaf->recs[nr_entries]);
|
|
ifp->if_bytes -= sizeof(struct xfs_iext_rec);
|
|
|
|
if (cur->pos == 0 && nr_entries > 0) {
|
|
xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
|
|
leaf);
|
|
offset = xfs_iext_leaf_key(leaf, 0);
|
|
} else if (cur->pos == nr_entries) {
|
|
if (ifp->if_height > 1 && leaf->next)
|
|
cur->leaf = leaf->next;
|
|
else
|
|
cur->leaf = NULL;
|
|
cur->pos = 0;
|
|
}
|
|
|
|
if (nr_entries >= RECS_PER_LEAF / 2)
|
|
return;
|
|
|
|
if (ifp->if_height > 1)
|
|
xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
|
|
else if (nr_entries == 0)
|
|
xfs_iext_free_last_leaf(ifp);
|
|
}
|
|
|
|
/*
|
|
* Lookup the extent covering bno.
|
|
*
|
|
* If there is an extent covering bno return the extent index, and store the
|
|
* expanded extent structure in *gotp, and the extent cursor in *cur.
|
|
* If there is no extent covering bno, but there is an extent after it (e.g.
|
|
* it lies in a hole) return that extent in *gotp and its cursor in *cur
|
|
* instead.
|
|
* If bno is beyond the last extent return false, and return an invalid
|
|
* cursor value.
|
|
*/
|
|
bool
|
|
xfs_iext_lookup_extent(
|
|
struct xfs_inode *ip,
|
|
struct xfs_ifork *ifp,
|
|
xfs_fileoff_t offset,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_bmbt_irec *gotp)
|
|
{
|
|
XFS_STATS_INC(ip->i_mount, xs_look_exlist);
|
|
|
|
cur->leaf = xfs_iext_find_level(ifp, offset, 1);
|
|
if (!cur->leaf) {
|
|
cur->pos = 0;
|
|
return false;
|
|
}
|
|
|
|
for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
|
|
struct xfs_iext_rec *rec = cur_rec(cur);
|
|
|
|
if (xfs_iext_rec_is_empty(rec))
|
|
break;
|
|
if (xfs_iext_rec_cmp(rec, offset) >= 0)
|
|
goto found;
|
|
}
|
|
|
|
/* Try looking in the next node for an entry > offset */
|
|
if (ifp->if_height == 1 || !cur->leaf->next)
|
|
return false;
|
|
cur->leaf = cur->leaf->next;
|
|
cur->pos = 0;
|
|
if (!xfs_iext_valid(ifp, cur))
|
|
return false;
|
|
found:
|
|
xfs_iext_get(gotp, cur_rec(cur));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Returns the last extent before end, and if this extent doesn't cover
|
|
* end, update end to the end of the extent.
|
|
*/
|
|
bool
|
|
xfs_iext_lookup_extent_before(
|
|
struct xfs_inode *ip,
|
|
struct xfs_ifork *ifp,
|
|
xfs_fileoff_t *end,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_bmbt_irec *gotp)
|
|
{
|
|
/* could be optimized to not even look up the next on a match.. */
|
|
if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
|
|
gotp->br_startoff <= *end - 1)
|
|
return true;
|
|
if (!xfs_iext_prev_extent(ifp, cur, gotp))
|
|
return false;
|
|
*end = gotp->br_startoff + gotp->br_blockcount;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
xfs_iext_update_extent(
|
|
struct xfs_inode *ip,
|
|
int state,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_bmbt_irec *new)
|
|
{
|
|
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
|
|
|
|
xfs_iext_inc_seq(ifp);
|
|
|
|
if (cur->pos == 0) {
|
|
struct xfs_bmbt_irec old;
|
|
|
|
xfs_iext_get(&old, cur_rec(cur));
|
|
if (new->br_startoff != old.br_startoff) {
|
|
xfs_iext_update_node(ifp, old.br_startoff,
|
|
new->br_startoff, 1, cur->leaf);
|
|
}
|
|
}
|
|
|
|
trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
|
|
xfs_iext_set(cur_rec(cur), new);
|
|
trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
|
|
}
|
|
|
|
/*
|
|
* Return true if the cursor points at an extent and return the extent structure
|
|
* in gotp. Else return false.
|
|
*/
|
|
bool
|
|
xfs_iext_get_extent(
|
|
struct xfs_ifork *ifp,
|
|
struct xfs_iext_cursor *cur,
|
|
struct xfs_bmbt_irec *gotp)
|
|
{
|
|
if (!xfs_iext_valid(ifp, cur))
|
|
return false;
|
|
xfs_iext_get(gotp, cur_rec(cur));
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is a recursive function, because of that we need to be extremely
|
|
* careful with stack usage.
|
|
*/
|
|
static void
|
|
xfs_iext_destroy_node(
|
|
struct xfs_iext_node *node,
|
|
int level)
|
|
{
|
|
int i;
|
|
|
|
if (level > 1) {
|
|
for (i = 0; i < KEYS_PER_NODE; i++) {
|
|
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
|
|
break;
|
|
xfs_iext_destroy_node(node->ptrs[i], level - 1);
|
|
}
|
|
}
|
|
|
|
kmem_free(node);
|
|
}
|
|
|
|
void
|
|
xfs_iext_destroy(
|
|
struct xfs_ifork *ifp)
|
|
{
|
|
xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
|
|
|
|
ifp->if_bytes = 0;
|
|
ifp->if_height = 0;
|
|
ifp->if_u1.if_root = NULL;
|
|
}
|