mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
7752035180
This makes the MMU context code used for CPUs with no hash table (except 603) dynamically allocate the various maps used to track the state of contexts. Only the main free map and CPU 0 stale map are allocated at boot time. Other CPU maps are allocated when those CPUs are brought up and freed if they are unplugged. This also moves the initialization of the MMU context management slightly later during the boot process, which should be fine as it's really only needed when userland if first started anyways. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
398 lines
11 KiB
C
398 lines
11 KiB
C
/*
|
|
* This file contains the routines for handling the MMU on those
|
|
* PowerPC implementations where the MMU is not using the hash
|
|
* table, such as 8xx, 4xx, BookE's etc...
|
|
*
|
|
* Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
|
|
* IBM Corp.
|
|
*
|
|
* Derived from previous arch/powerpc/mm/mmu_context.c
|
|
* and arch/powerpc/include/asm/mmu_context.h
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - The global context lock will not scale very well
|
|
* - The maps should be dynamically allocated to allow for processors
|
|
* that support more PID bits at runtime
|
|
* - Implement flush_tlb_mm() by making the context stale and picking
|
|
* a new one
|
|
* - More aggressively clear stale map bits and maybe find some way to
|
|
* also clear mm->cpu_vm_mask bits when processes are migrated
|
|
*/
|
|
|
|
#undef DEBUG
|
|
#define DEBUG_STEAL_ONLY
|
|
#undef DEBUG_MAP_CONSISTENCY
|
|
/*#define DEBUG_CLAMP_LAST_CONTEXT 15 */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
static unsigned int first_context, last_context;
|
|
static unsigned int next_context, nr_free_contexts;
|
|
static unsigned long *context_map;
|
|
static unsigned long *stale_map[NR_CPUS];
|
|
static struct mm_struct **context_mm;
|
|
static spinlock_t context_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
#define CTX_MAP_SIZE \
|
|
(sizeof(unsigned long) * (last_context / BITS_PER_LONG + 1))
|
|
|
|
|
|
/* Steal a context from a task that has one at the moment.
|
|
*
|
|
* This is used when we are running out of available PID numbers
|
|
* on the processors.
|
|
*
|
|
* This isn't an LRU system, it just frees up each context in
|
|
* turn (sort-of pseudo-random replacement :). This would be the
|
|
* place to implement an LRU scheme if anyone was motivated to do it.
|
|
* -- paulus
|
|
*
|
|
* For context stealing, we use a slightly different approach for
|
|
* SMP and UP. Basically, the UP one is simpler and doesn't use
|
|
* the stale map as we can just flush the local CPU
|
|
* -- benh
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
static unsigned int steal_context_smp(unsigned int id)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned int cpu, max;
|
|
|
|
again:
|
|
max = last_context - first_context;
|
|
|
|
/* Attempt to free next_context first and then loop until we manage */
|
|
while (max--) {
|
|
/* Pick up the victim mm */
|
|
mm = context_mm[id];
|
|
|
|
/* We have a candidate victim, check if it's active, on SMP
|
|
* we cannot steal active contexts
|
|
*/
|
|
if (mm->context.active) {
|
|
id++;
|
|
if (id > last_context)
|
|
id = first_context;
|
|
continue;
|
|
}
|
|
pr_debug("[%d] steal context %d from mm @%p\n",
|
|
smp_processor_id(), id, mm);
|
|
|
|
/* Mark this mm has having no context anymore */
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
|
|
/* Mark it stale on all CPUs that used this mm */
|
|
for_each_cpu_mask_nr(cpu, mm->cpu_vm_mask)
|
|
__set_bit(id, stale_map[cpu]);
|
|
return id;
|
|
}
|
|
|
|
/* This will happen if you have more CPUs than available contexts,
|
|
* all we can do here is wait a bit and try again
|
|
*/
|
|
spin_unlock(&context_lock);
|
|
cpu_relax();
|
|
spin_lock(&context_lock);
|
|
goto again;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/* Note that this will also be called on SMP if all other CPUs are
|
|
* offlined, which means that it may be called for cpu != 0. For
|
|
* this to work, we somewhat assume that CPUs that are onlined
|
|
* come up with a fully clean TLB (or are cleaned when offlined)
|
|
*/
|
|
static unsigned int steal_context_up(unsigned int id)
|
|
{
|
|
struct mm_struct *mm;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Pick up the victim mm */
|
|
mm = context_mm[id];
|
|
|
|
pr_debug("[%d] steal context %d from mm @%p\n", cpu, id, mm);
|
|
|
|
/* Mark this mm has having no context anymore */
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
|
|
/* Flush the TLB for that context */
|
|
local_flush_tlb_mm(mm);
|
|
|
|
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
|
|
__clear_bit(id, stale_map[cpu]);
|
|
|
|
return id;
|
|
}
|
|
|
|
#ifdef DEBUG_MAP_CONSISTENCY
|
|
static void context_check_map(void)
|
|
{
|
|
unsigned int id, nrf, nact;
|
|
|
|
nrf = nact = 0;
|
|
for (id = first_context; id <= last_context; id++) {
|
|
int used = test_bit(id, context_map);
|
|
if (!used)
|
|
nrf++;
|
|
if (used != (context_mm[id] != NULL))
|
|
pr_err("MMU: Context %d is %s and MM is %p !\n",
|
|
id, used ? "used" : "free", context_mm[id]);
|
|
if (context_mm[id] != NULL)
|
|
nact += context_mm[id]->context.active;
|
|
}
|
|
if (nrf != nr_free_contexts) {
|
|
pr_err("MMU: Free context count out of sync ! (%d vs %d)\n",
|
|
nr_free_contexts, nrf);
|
|
nr_free_contexts = nrf;
|
|
}
|
|
if (nact > num_online_cpus())
|
|
pr_err("MMU: More active contexts than CPUs ! (%d vs %d)\n",
|
|
nact, num_online_cpus());
|
|
if (first_context > 0 && !test_bit(0, context_map))
|
|
pr_err("MMU: Context 0 has been freed !!!\n");
|
|
}
|
|
#else
|
|
static void context_check_map(void) { }
|
|
#endif
|
|
|
|
void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
|
|
{
|
|
unsigned int id, cpu = smp_processor_id();
|
|
unsigned long *map;
|
|
|
|
/* No lockless fast path .. yet */
|
|
spin_lock(&context_lock);
|
|
|
|
#ifndef DEBUG_STEAL_ONLY
|
|
pr_debug("[%d] activating context for mm @%p, active=%d, id=%d\n",
|
|
cpu, next, next->context.active, next->context.id);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Mark us active and the previous one not anymore */
|
|
next->context.active++;
|
|
if (prev) {
|
|
#ifndef DEBUG_STEAL_ONLY
|
|
pr_debug(" old context %p active was: %d\n",
|
|
prev, prev->context.active);
|
|
#endif
|
|
WARN_ON(prev->context.active < 1);
|
|
prev->context.active--;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/* If we already have a valid assigned context, skip all that */
|
|
id = next->context.id;
|
|
if (likely(id != MMU_NO_CONTEXT))
|
|
goto ctxt_ok;
|
|
|
|
/* We really don't have a context, let's try to acquire one */
|
|
id = next_context;
|
|
if (id > last_context)
|
|
id = first_context;
|
|
map = context_map;
|
|
|
|
/* No more free contexts, let's try to steal one */
|
|
if (nr_free_contexts == 0) {
|
|
#ifdef CONFIG_SMP
|
|
if (num_online_cpus() > 1) {
|
|
id = steal_context_smp(id);
|
|
goto stolen;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
id = steal_context_up(id);
|
|
goto stolen;
|
|
}
|
|
nr_free_contexts--;
|
|
|
|
/* We know there's at least one free context, try to find it */
|
|
while (__test_and_set_bit(id, map)) {
|
|
id = find_next_zero_bit(map, last_context+1, id);
|
|
if (id > last_context)
|
|
id = first_context;
|
|
}
|
|
stolen:
|
|
next_context = id + 1;
|
|
context_mm[id] = next;
|
|
next->context.id = id;
|
|
|
|
#ifndef DEBUG_STEAL_ONLY
|
|
pr_debug("[%d] picked up new id %d, nrf is now %d\n",
|
|
cpu, id, nr_free_contexts);
|
|
#endif
|
|
|
|
context_check_map();
|
|
ctxt_ok:
|
|
|
|
/* If that context got marked stale on this CPU, then flush the
|
|
* local TLB for it and unmark it before we use it
|
|
*/
|
|
if (test_bit(id, stale_map[cpu])) {
|
|
pr_debug("[%d] flushing stale context %d for mm @%p !\n",
|
|
cpu, id, next);
|
|
local_flush_tlb_mm(next);
|
|
|
|
/* XXX This clear should ultimately be part of local_flush_tlb_mm */
|
|
__clear_bit(id, stale_map[cpu]);
|
|
}
|
|
|
|
/* Flick the MMU and release lock */
|
|
set_context(id, next->pgd);
|
|
spin_unlock(&context_lock);
|
|
}
|
|
|
|
/*
|
|
* Set up the context for a new address space.
|
|
*/
|
|
int init_new_context(struct task_struct *t, struct mm_struct *mm)
|
|
{
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
mm->context.active = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We're finished using the context for an address space.
|
|
*/
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned int id;
|
|
|
|
if (mm->context.id == MMU_NO_CONTEXT)
|
|
return;
|
|
|
|
WARN_ON(mm->context.active != 0);
|
|
|
|
spin_lock(&context_lock);
|
|
id = mm->context.id;
|
|
if (id != MMU_NO_CONTEXT) {
|
|
__clear_bit(id, context_map);
|
|
mm->context.id = MMU_NO_CONTEXT;
|
|
#ifdef DEBUG_MAP_CONSISTENCY
|
|
mm->context.active = 0;
|
|
context_mm[id] = NULL;
|
|
#endif
|
|
nr_free_contexts++;
|
|
}
|
|
spin_unlock(&context_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static int __cpuinit mmu_context_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (unsigned int)(long)hcpu;
|
|
|
|
/* We don't touch CPU 0 map, it's allocated at aboot and kept
|
|
* around forever
|
|
*/
|
|
if (cpu == 0)
|
|
return NOTIFY_OK;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
pr_debug("MMU: Allocating stale context map for CPU %d\n", cpu);
|
|
stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
|
|
break;
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
pr_debug("MMU: Freeing stale context map for CPU %d\n", cpu);
|
|
kfree(stale_map[cpu]);
|
|
stale_map[cpu] = NULL;
|
|
break;
|
|
#endif
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata mmu_context_cpu_nb = {
|
|
.notifier_call = mmu_context_cpu_notify,
|
|
};
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* Initialize the context management stuff.
|
|
*/
|
|
void __init mmu_context_init(void)
|
|
{
|
|
/* Mark init_mm as being active on all possible CPUs since
|
|
* we'll get called with prev == init_mm the first time
|
|
* we schedule on a given CPU
|
|
*/
|
|
init_mm.context.active = NR_CPUS;
|
|
|
|
/*
|
|
* The MPC8xx has only 16 contexts. We rotate through them on each
|
|
* task switch. A better way would be to keep track of tasks that
|
|
* own contexts, and implement an LRU usage. That way very active
|
|
* tasks don't always have to pay the TLB reload overhead. The
|
|
* kernel pages are mapped shared, so the kernel can run on behalf
|
|
* of any task that makes a kernel entry. Shared does not mean they
|
|
* are not protected, just that the ASID comparison is not performed.
|
|
* -- Dan
|
|
*
|
|
* The IBM4xx has 256 contexts, so we can just rotate through these
|
|
* as a way of "switching" contexts. If the TID of the TLB is zero,
|
|
* the PID/TID comparison is disabled, so we can use a TID of zero
|
|
* to represent all kernel pages as shared among all contexts.
|
|
* -- Dan
|
|
*/
|
|
if (mmu_has_feature(MMU_FTR_TYPE_8xx)) {
|
|
first_context = 0;
|
|
last_context = 15;
|
|
} else {
|
|
first_context = 1;
|
|
last_context = 255;
|
|
}
|
|
|
|
#ifdef DEBUG_CLAMP_LAST_CONTEXT
|
|
last_context = DEBUG_CLAMP_LAST_CONTEXT;
|
|
#endif
|
|
/*
|
|
* Allocate the maps used by context management
|
|
*/
|
|
context_map = alloc_bootmem(CTX_MAP_SIZE);
|
|
context_mm = alloc_bootmem(sizeof(void *) * (last_context + 1));
|
|
stale_map[0] = alloc_bootmem(CTX_MAP_SIZE);
|
|
|
|
#ifdef CONFIG_SMP
|
|
register_cpu_notifier(&mmu_context_cpu_nb);
|
|
#endif
|
|
|
|
printk(KERN_INFO
|
|
"MMU: Allocated %d bytes of context maps for %d contexts\n",
|
|
2 * CTX_MAP_SIZE + (sizeof(void *) * (last_context + 1)),
|
|
last_context - first_context + 1);
|
|
|
|
/*
|
|
* Some processors have too few contexts to reserve one for
|
|
* init_mm, and require using context 0 for a normal task.
|
|
* Other processors reserve the use of context zero for the kernel.
|
|
* This code assumes first_context < 32.
|
|
*/
|
|
context_map[0] = (1 << first_context) - 1;
|
|
next_context = first_context;
|
|
nr_free_contexts = last_context - first_context + 1;
|
|
}
|
|
|