mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-16 08:44:21 +08:00
e8635b484f
This patch adds support for PCI and PCIe to the base Cavium OCTEON processor support. Signed-off-by: David Daney <ddaney@caviumnetworks.com> Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2147 lines
49 KiB
Plaintext
2147 lines
49 KiB
Plaintext
config MIPS
|
|
bool
|
|
default y
|
|
select HAVE_IDE
|
|
select HAVE_OPROFILE
|
|
select HAVE_ARCH_KGDB
|
|
# Horrible source of confusion. Die, die, die ...
|
|
select EMBEDDED
|
|
select RTC_LIB
|
|
|
|
mainmenu "Linux/MIPS Kernel Configuration"
|
|
|
|
menu "Machine selection"
|
|
|
|
config ZONE_DMA
|
|
bool
|
|
|
|
choice
|
|
prompt "System type"
|
|
default SGI_IP22
|
|
|
|
config MACH_ALCHEMY
|
|
bool "Alchemy processor based machines"
|
|
|
|
config BASLER_EXCITE
|
|
bool "Basler eXcite smart camera"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select IRQ_CPU_RM9K
|
|
select MIPS_RM9122
|
|
select SYS_HAS_CPU_RM9000
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
help
|
|
The eXcite is a smart camera platform manufactured by
|
|
Basler Vision Technologies AG.
|
|
|
|
config BCM47XX
|
|
bool "BCM47XX based boards"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SSB
|
|
select SSB_DRIVER_MIPS
|
|
select SSB_DRIVER_EXTIF
|
|
select SSB_EMBEDDED
|
|
select SSB_PCICORE_HOSTMODE if PCI
|
|
select GENERIC_GPIO
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select CFE
|
|
help
|
|
Support for BCM47XX based boards
|
|
|
|
config MIPS_COBALT
|
|
bool "Cobalt Server"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select CEVT_GT641XX
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select I8253
|
|
select I8259
|
|
select IRQ_CPU
|
|
select IRQ_GT641XX
|
|
select PCI_GT64XXX_PCI0
|
|
select PCI
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config MACH_DECSTATION
|
|
bool "DECstations"
|
|
select BOOT_ELF32
|
|
select CEVT_DS1287
|
|
select CEVT_R4K
|
|
select CSRC_IOASIC
|
|
select CSRC_R4K
|
|
select CPU_DADDI_WORKAROUNDS if 64BIT
|
|
select CPU_R4000_WORKAROUNDS if 64BIT
|
|
select CPU_R4400_WORKAROUNDS if 64BIT
|
|
select DMA_NONCOHERENT
|
|
select NO_IOPORT
|
|
select IRQ_CPU
|
|
select SYS_HAS_CPU_R3000
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL if EXPERIMENTAL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_128HZ
|
|
select SYS_SUPPORTS_256HZ
|
|
select SYS_SUPPORTS_1024HZ
|
|
help
|
|
This enables support for DEC's MIPS based workstations. For details
|
|
see the Linux/MIPS FAQ on <http://www.linux-mips.org/> and the
|
|
DECstation porting pages on <http://decstation.unix-ag.org/>.
|
|
|
|
If you have one of the following DECstation Models you definitely
|
|
want to choose R4xx0 for the CPU Type:
|
|
|
|
DECstation 5000/50
|
|
DECstation 5000/150
|
|
DECstation 5000/260
|
|
DECsystem 5900/260
|
|
|
|
otherwise choose R3000.
|
|
|
|
config MACH_JAZZ
|
|
bool "Jazz family of machines"
|
|
select ARC
|
|
select ARC32
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION if CPU_BIG_ENDIAN
|
|
select GENERIC_ISA_DMA
|
|
select IRQ_CPU
|
|
select I8253
|
|
select I8259
|
|
select ISA
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL if EXPERIMENTAL
|
|
select SYS_SUPPORTS_100HZ
|
|
help
|
|
This a family of machines based on the MIPS R4030 chipset which was
|
|
used by several vendors to build RISC/os and Windows NT workstations.
|
|
Members include the Acer PICA, MIPS Magnum 4000, MIPS Millennium and
|
|
Olivetti M700-10 workstations.
|
|
|
|
config LASAT
|
|
bool "LASAT Networks platforms"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select PCI_GT64XXX_PCI0
|
|
select MIPS_NILE4
|
|
select R5000_CPU_SCACHE
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL if BROKEN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config LEMOTE_FULONG
|
|
bool "Lemote Fulong mini-PC"
|
|
select ARCH_SPARSEMEM_ENABLE
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select SYS_HAS_CPU_LOONGSON2
|
|
select DMA_NONCOHERENT
|
|
select BOOT_ELF32
|
|
select BOARD_SCACHE
|
|
select HAVE_STD_PC_SERIAL_PORT
|
|
select HW_HAS_PCI
|
|
select I8259
|
|
select ISA
|
|
select IRQ_CPU
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select CPU_HAS_WB
|
|
help
|
|
Lemote Fulong mini-PC board based on the Chinese Loongson-2E CPU and
|
|
an FPGA northbridge
|
|
|
|
config MIPS_MALTA
|
|
bool "MIPS Malta board"
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select BOOT_ELF32
|
|
select BOOT_RAW
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select IRQ_CPU
|
|
select IRQ_GIC
|
|
select HW_HAS_PCI
|
|
select I8253
|
|
select I8259
|
|
select MIPS_BOARDS_GEN
|
|
select MIPS_BONITO64
|
|
select MIPS_CPU_SCACHE
|
|
select PCI_GT64XXX_PCI0
|
|
select MIPS_MSC
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_CPU_MIPS64_R1
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_HAS_CPU_RM7000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_MIPS_CMP if BROKEN # because SYNC_R4K is broken
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_SMARTMIPS
|
|
help
|
|
This enables support for the MIPS Technologies Malta evaluation
|
|
board.
|
|
|
|
config MIPS_SIM
|
|
bool 'MIPS simulator (MIPSsim)'
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select IRQ_CPU
|
|
select BOOT_RAW
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_MULTITHREADING
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
help
|
|
This option enables support for MIPS Technologies MIPSsim software
|
|
emulator.
|
|
|
|
config NEC_MARKEINS
|
|
bool "NEC EMMA2RH Mark-eins board"
|
|
select SOC_EMMA2RH
|
|
select HW_HAS_PCI
|
|
help
|
|
This enables support for the NEC Electronics Mark-eins boards.
|
|
|
|
config MACH_VR41XX
|
|
bool "NEC VR4100 series based machines"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select SYS_HAS_CPU_VR41XX
|
|
|
|
config NXP_STB220
|
|
bool "NXP STB220 board"
|
|
select SOC_PNX833X
|
|
help
|
|
Support for NXP Semiconductors STB220 Development Board.
|
|
|
|
config NXP_STB225
|
|
bool "NXP 225 board"
|
|
select SOC_PNX833X
|
|
select SOC_PNX8335
|
|
help
|
|
Support for NXP Semiconductors STB225 Development Board.
|
|
|
|
config PNX8550_JBS
|
|
bool "NXP PNX8550 based JBS board"
|
|
select PNX8550
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config PNX8550_STB810
|
|
bool "NXP PNX8550 based STB810 board"
|
|
select PNX8550
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config PMC_MSP
|
|
bool "PMC-Sierra MSP chipsets"
|
|
depends on EXPERIMENTAL
|
|
select DMA_NONCOHERENT
|
|
select SWAP_IO_SPACE
|
|
select NO_EXCEPT_FILL
|
|
select BOOT_RAW
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select IRQ_CPU
|
|
select SERIAL_8250
|
|
select SERIAL_8250_CONSOLE
|
|
help
|
|
This adds support for the PMC-Sierra family of Multi-Service
|
|
Processor System-On-A-Chips. These parts include a number
|
|
of integrated peripherals, interfaces and DSPs in addition to
|
|
a variety of MIPS cores.
|
|
|
|
config PMC_YOSEMITE
|
|
bool "PMC-Sierra Yosemite eval board"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_COHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select IRQ_CPU_RM7K
|
|
select IRQ_CPU_RM9K
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_RM9000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_SMP
|
|
help
|
|
Yosemite is an evaluation board for the RM9000x2 processor
|
|
manufactured by PMC-Sierra.
|
|
|
|
config SGI_IP22
|
|
bool "SGI IP22 (Indy/Indigo2)"
|
|
select ARC
|
|
select ARC32
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_EISA
|
|
select I8253
|
|
select I8259
|
|
select IP22_CPU_SCACHE
|
|
select IRQ_CPU
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select SGI_HAS_I8042
|
|
select SGI_HAS_INDYDOG
|
|
select SGI_HAS_HAL2
|
|
select SGI_HAS_SEEQ
|
|
select SGI_HAS_WD93
|
|
select SGI_HAS_ZILOG
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
help
|
|
This are the SGI Indy, Challenge S and Indigo2, as well as certain
|
|
OEM variants like the Tandem CMN B006S. To compile a Linux kernel
|
|
that runs on these, say Y here.
|
|
|
|
config SGI_IP27
|
|
bool "SGI IP27 (Origin200/2000)"
|
|
select ARC
|
|
select ARC64
|
|
select BOOT_ELF64
|
|
select DEFAULT_SGI_PARTITION
|
|
select DMA_COHERENT
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select HW_HAS_PCI
|
|
select NR_CPUS_DEFAULT_64
|
|
select SYS_HAS_CPU_R10000
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_NUMA
|
|
select SYS_SUPPORTS_SMP
|
|
help
|
|
This are the SGI Origin 200, Origin 2000 and Onyx 2 Graphics
|
|
workstations. To compile a Linux kernel that runs on these, say Y
|
|
here.
|
|
|
|
config SGI_IP28
|
|
bool "SGI IP28 (Indigo2 R10k) (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
select ARC
|
|
select ARC64
|
|
select BOOT_ELF64
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
select IRQ_CPU
|
|
select HW_HAS_EISA
|
|
select I8253
|
|
select I8259
|
|
select SGI_HAS_I8042
|
|
select SGI_HAS_INDYDOG
|
|
select SGI_HAS_HAL2
|
|
select SGI_HAS_SEEQ
|
|
select SGI_HAS_WD93
|
|
select SGI_HAS_ZILOG
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_R10000
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
help
|
|
This is the SGI Indigo2 with R10000 processor. To compile a Linux
|
|
kernel that runs on these, say Y here.
|
|
|
|
config SGI_IP32
|
|
bool "SGI IP32 (O2)"
|
|
select ARC
|
|
select ARC32
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select R5000_CPU_SCACHE
|
|
select RM7000_CPU_SCACHE
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_CPU_R10000 if BROKEN
|
|
select SYS_HAS_CPU_RM7000
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
help
|
|
If you want this kernel to run on SGI O2 workstation, say Y here.
|
|
|
|
config SIBYTE_CRHINE
|
|
bool "Sibyte BCM91120C-CRhine"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select SIBYTE_BCM1120
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_CARMEL
|
|
bool "Sibyte BCM91120x-Carmel"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select SIBYTE_BCM1120
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_CRHONE
|
|
bool "Sibyte BCM91125C-CRhone"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select SIBYTE_BCM1125
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_RHONE
|
|
bool "Sibyte BCM91125E-Rhone"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select SIBYTE_BCM1125H
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_SWARM
|
|
bool "Sibyte BCM91250A-SWARM"
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select NR_CPUS_DEFAULT_2
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select ZONE_DMA32 if 64BIT
|
|
|
|
config SIBYTE_LITTLESUR
|
|
bool "Sibyte BCM91250C2-LittleSur"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select NR_CPUS_DEFAULT_2
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_SENTOSA
|
|
bool "Sibyte BCM91250E-Sentosa"
|
|
depends on EXPERIMENTAL
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select NR_CPUS_DEFAULT_2
|
|
select SIBYTE_SB1250
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
|
|
config SIBYTE_BIGSUR
|
|
bool "Sibyte BCM91480B-BigSur"
|
|
select BOOT_ELF32
|
|
select DMA_COHERENT
|
|
select NR_CPUS_DEFAULT_4
|
|
select SIBYTE_BCM1x80
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_SB1
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select ZONE_DMA32 if 64BIT
|
|
|
|
config SNI_RM
|
|
bool "SNI RM200/300/400"
|
|
select ARC if CPU_LITTLE_ENDIAN
|
|
select ARC32 if CPU_LITTLE_ENDIAN
|
|
select SNIPROM if CPU_BIG_ENDIAN
|
|
select ARCH_MAY_HAVE_PC_FDC
|
|
select BOOT_ELF32
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DEFAULT_SGI_PARTITION if CPU_BIG_ENDIAN
|
|
select DMA_NONCOHERENT
|
|
select GENERIC_ISA_DMA
|
|
select HW_HAS_EISA
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select I8253
|
|
select I8259
|
|
select ISA
|
|
select SWAP_IO_SPACE if CPU_BIG_ENDIAN
|
|
select SYS_HAS_CPU_R4X00
|
|
select SYS_HAS_CPU_R5000
|
|
select SYS_HAS_CPU_R10000
|
|
select R5000_CPU_SCACHE
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL if EXPERIMENTAL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
help
|
|
The SNI RM200/300/400 are MIPS-based machines manufactured by
|
|
Siemens Nixdorf Informationssysteme (SNI), parent company of Pyramid
|
|
Technology and now in turn merged with Fujitsu. Say Y here to
|
|
support this machine type.
|
|
|
|
config MACH_TX39XX
|
|
bool "Toshiba TX39 series based machines"
|
|
|
|
config MACH_TX49XX
|
|
bool "Toshiba TX49 series based machines"
|
|
|
|
config MIKROTIK_RB532
|
|
bool "Mikrotik RB532 boards"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select IRQ_CPU
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SWAP_IO_SPACE
|
|
select BOOT_RAW
|
|
select ARCH_REQUIRE_GPIOLIB
|
|
help
|
|
Support the Mikrotik(tm) RouterBoard 532 series,
|
|
based on the IDT RC32434 SoC.
|
|
|
|
config WR_PPMC
|
|
bool "Wind River PPMC board"
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select IRQ_CPU
|
|
select BOOT_ELF32
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select PCI_GT64XXX_PCI0
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_HAS_CPU_MIPS64_R1
|
|
select SYS_HAS_CPU_NEVADA
|
|
select SYS_HAS_CPU_RM7000
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
help
|
|
This enables support for the Wind River MIPS32 4KC PPMC evaluation
|
|
board, which is based on GT64120 bridge chip.
|
|
|
|
config CAVIUM_OCTEON_SIMULATOR
|
|
bool "Cavium Networks Octeon Simulator"
|
|
select CEVT_R4K
|
|
select 64BIT_PHYS_ADDR
|
|
select DMA_COHERENT
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_HAS_CPU_CAVIUM_OCTEON
|
|
help
|
|
The Octeon simulator is software performance model of the Cavium
|
|
Octeon Processor. It supports simulating Octeon processors on x86
|
|
hardware.
|
|
|
|
config CAVIUM_OCTEON_REFERENCE_BOARD
|
|
bool "Cavium Networks Octeon reference board"
|
|
select CEVT_R4K
|
|
select 64BIT_PHYS_ADDR
|
|
select DMA_COHERENT
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select SYS_SUPPORTS_HIGHMEM
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_HAS_CPU_CAVIUM_OCTEON
|
|
select SWAP_IO_SPACE
|
|
select HW_HAS_PCI
|
|
select ARCH_SUPPORTS_MSI
|
|
help
|
|
This option supports all of the Octeon reference boards from Cavium
|
|
Networks. It builds a kernel that dynamically determines the Octeon
|
|
CPU type and supports all known board reference implementations.
|
|
Some of the supported boards are:
|
|
EBT3000
|
|
EBH3000
|
|
EBH3100
|
|
Thunder
|
|
Kodama
|
|
Hikari
|
|
Say Y here for most Octeon reference boards.
|
|
|
|
endchoice
|
|
|
|
source "arch/mips/alchemy/Kconfig"
|
|
source "arch/mips/basler/excite/Kconfig"
|
|
source "arch/mips/jazz/Kconfig"
|
|
source "arch/mips/lasat/Kconfig"
|
|
source "arch/mips/pmc-sierra/Kconfig"
|
|
source "arch/mips/sgi-ip27/Kconfig"
|
|
source "arch/mips/sibyte/Kconfig"
|
|
source "arch/mips/txx9/Kconfig"
|
|
source "arch/mips/vr41xx/Kconfig"
|
|
source "arch/mips/cavium-octeon/Kconfig"
|
|
|
|
endmenu
|
|
|
|
config RWSEM_GENERIC_SPINLOCK
|
|
bool
|
|
default y
|
|
|
|
config RWSEM_XCHGADD_ALGORITHM
|
|
bool
|
|
|
|
config ARCH_HAS_ILOG2_U32
|
|
bool
|
|
default n
|
|
|
|
config ARCH_HAS_ILOG2_U64
|
|
bool
|
|
default n
|
|
|
|
config ARCH_SUPPORTS_OPROFILE
|
|
bool
|
|
default y if !MIPS_MT_SMTC
|
|
|
|
config GENERIC_FIND_NEXT_BIT
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_HWEIGHT
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_CALIBRATE_DELAY
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_CLOCKEVENTS
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_TIME
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_CMOS_UPDATE
|
|
bool
|
|
default y
|
|
|
|
config SCHED_OMIT_FRAME_POINTER
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_HARDIRQS_NO__DO_IRQ
|
|
def_bool y
|
|
|
|
#
|
|
# Select some configuration options automatically based on user selections.
|
|
#
|
|
config ARC
|
|
bool
|
|
|
|
config ARCH_MAY_HAVE_PC_FDC
|
|
bool
|
|
|
|
config BOOT_RAW
|
|
bool
|
|
|
|
config CEVT_BCM1480
|
|
bool
|
|
|
|
config CEVT_DS1287
|
|
bool
|
|
|
|
config CEVT_GT641XX
|
|
bool
|
|
|
|
config CEVT_R4K_LIB
|
|
bool
|
|
|
|
config CEVT_R4K
|
|
select CEVT_R4K_LIB
|
|
bool
|
|
|
|
config CEVT_SB1250
|
|
bool
|
|
|
|
config CEVT_TXX9
|
|
bool
|
|
|
|
config CSRC_BCM1480
|
|
bool
|
|
|
|
config CSRC_IOASIC
|
|
bool
|
|
|
|
config CSRC_R4K_LIB
|
|
bool
|
|
|
|
config CSRC_R4K
|
|
select CSRC_R4K_LIB
|
|
bool
|
|
|
|
config CSRC_SB1250
|
|
bool
|
|
|
|
config GPIO_TXX9
|
|
select GENERIC_GPIO
|
|
select ARCH_REQUIRE_GPIOLIB
|
|
bool
|
|
|
|
config CFE
|
|
bool
|
|
|
|
config DMA_COHERENT
|
|
bool
|
|
|
|
config DMA_NONCOHERENT
|
|
bool
|
|
select DMA_NEED_PCI_MAP_STATE
|
|
|
|
config DMA_NEED_PCI_MAP_STATE
|
|
bool
|
|
|
|
config EARLY_PRINTK
|
|
bool "Early printk" if EMBEDDED && DEBUG_KERNEL
|
|
depends on SYS_HAS_EARLY_PRINTK
|
|
default y
|
|
help
|
|
This option enables special console drivers which allow the kernel
|
|
to print messages very early in the bootup process.
|
|
|
|
This is useful for kernel debugging when your machine crashes very
|
|
early before the console code is initialized. For normal operation,
|
|
it is not recommended because it looks ugly on some machines and
|
|
doesn't cooperate with an X server. You should normally say N here,
|
|
unless you want to debug such a crash.
|
|
|
|
config SYS_HAS_EARLY_PRINTK
|
|
bool
|
|
|
|
config HOTPLUG_CPU
|
|
bool
|
|
default n
|
|
|
|
config I8259
|
|
bool
|
|
|
|
config MIPS_BONITO64
|
|
bool
|
|
|
|
config MIPS_MSC
|
|
bool
|
|
|
|
config MIPS_NILE4
|
|
bool
|
|
|
|
config MIPS_DISABLE_OBSOLETE_IDE
|
|
bool
|
|
|
|
config SYNC_R4K
|
|
bool
|
|
|
|
config NO_IOPORT
|
|
def_bool n
|
|
|
|
config GENERIC_ISA_DMA
|
|
bool
|
|
select ZONE_DMA if GENERIC_ISA_DMA_SUPPORT_BROKEN=n
|
|
|
|
config GENERIC_ISA_DMA_SUPPORT_BROKEN
|
|
bool
|
|
select GENERIC_ISA_DMA
|
|
|
|
config GENERIC_GPIO
|
|
bool
|
|
|
|
#
|
|
# Endianess selection. Sufficiently obscure so many users don't know what to
|
|
# answer,so we try hard to limit the available choices. Also the use of a
|
|
# choice statement should be more obvious to the user.
|
|
#
|
|
choice
|
|
prompt "Endianess selection"
|
|
help
|
|
Some MIPS machines can be configured for either little or big endian
|
|
byte order. These modes require different kernels and a different
|
|
Linux distribution. In general there is one preferred byteorder for a
|
|
particular system but some systems are just as commonly used in the
|
|
one or the other endianness.
|
|
|
|
config CPU_BIG_ENDIAN
|
|
bool "Big endian"
|
|
depends on SYS_SUPPORTS_BIG_ENDIAN
|
|
|
|
config CPU_LITTLE_ENDIAN
|
|
bool "Little endian"
|
|
depends on SYS_SUPPORTS_LITTLE_ENDIAN
|
|
help
|
|
|
|
endchoice
|
|
|
|
config SYS_SUPPORTS_APM_EMULATION
|
|
bool
|
|
|
|
config SYS_SUPPORTS_BIG_ENDIAN
|
|
bool
|
|
|
|
config SYS_SUPPORTS_LITTLE_ENDIAN
|
|
bool
|
|
|
|
config IRQ_CPU
|
|
bool
|
|
|
|
config IRQ_CPU_RM7K
|
|
bool
|
|
|
|
config IRQ_CPU_RM9K
|
|
bool
|
|
|
|
config IRQ_MSP_SLP
|
|
bool
|
|
|
|
config IRQ_MSP_CIC
|
|
bool
|
|
|
|
config IRQ_TXX9
|
|
bool
|
|
|
|
config IRQ_GT641XX
|
|
bool
|
|
|
|
config IRQ_GIC
|
|
bool
|
|
|
|
config IRQ_CPU_OCTEON
|
|
bool
|
|
|
|
config MIPS_BOARDS_GEN
|
|
bool
|
|
|
|
config PCI_GT64XXX_PCI0
|
|
bool
|
|
|
|
config NO_EXCEPT_FILL
|
|
bool
|
|
|
|
config MIPS_RM9122
|
|
bool
|
|
select SERIAL_RM9000
|
|
|
|
config SOC_EMMA2RH
|
|
bool
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select DMA_NONCOHERENT
|
|
select IRQ_CPU
|
|
select SWAP_IO_SPACE
|
|
select SYS_HAS_CPU_R5500
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
|
|
config SOC_PNX833X
|
|
bool
|
|
select CEVT_R4K
|
|
select CSRC_R4K
|
|
select IRQ_CPU
|
|
select DMA_NONCOHERENT
|
|
select SYS_HAS_CPU_MIPS32_R2
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select SYS_SUPPORTS_LITTLE_ENDIAN
|
|
select SYS_SUPPORTS_BIG_ENDIAN
|
|
select GENERIC_GPIO
|
|
select CPU_MIPSR2_IRQ_VI
|
|
|
|
config SOC_PNX8335
|
|
bool
|
|
select SOC_PNX833X
|
|
|
|
config PNX8550
|
|
bool
|
|
select SOC_PNX8550
|
|
|
|
config SOC_PNX8550
|
|
bool
|
|
select DMA_NONCOHERENT
|
|
select HW_HAS_PCI
|
|
select SYS_HAS_CPU_MIPS32_R1
|
|
select SYS_HAS_EARLY_PRINTK
|
|
select SYS_SUPPORTS_32BIT_KERNEL
|
|
select GENERIC_GPIO
|
|
|
|
config SWAP_IO_SPACE
|
|
bool
|
|
|
|
config SERIAL_RM9000
|
|
bool
|
|
|
|
config SGI_HAS_INDYDOG
|
|
bool
|
|
|
|
config SGI_HAS_HAL2
|
|
bool
|
|
|
|
config SGI_HAS_SEEQ
|
|
bool
|
|
|
|
config SGI_HAS_WD93
|
|
bool
|
|
|
|
config SGI_HAS_ZILOG
|
|
bool
|
|
|
|
config SGI_HAS_I8042
|
|
bool
|
|
|
|
config DEFAULT_SGI_PARTITION
|
|
bool
|
|
|
|
config ARC32
|
|
bool
|
|
|
|
config SNIPROM
|
|
bool
|
|
|
|
config BOOT_ELF32
|
|
bool
|
|
|
|
config MIPS_L1_CACHE_SHIFT
|
|
int
|
|
default "4" if MACH_DECSTATION || MIKROTIK_RB532
|
|
default "7" if SGI_IP22 || SGI_IP27 || SGI_IP28 || SNI_RM || CPU_CAVIUM_OCTEON
|
|
default "4" if PMC_MSP4200_EVAL
|
|
default "5"
|
|
|
|
config HAVE_STD_PC_SERIAL_PORT
|
|
bool
|
|
|
|
config ARC_CONSOLE
|
|
bool "ARC console support"
|
|
depends on SGI_IP22 || SGI_IP28 || (SNI_RM && CPU_LITTLE_ENDIAN)
|
|
|
|
config ARC_MEMORY
|
|
bool
|
|
depends on MACH_JAZZ || SNI_RM || SGI_IP32
|
|
default y
|
|
|
|
config ARC_PROMLIB
|
|
bool
|
|
depends on MACH_JAZZ || SNI_RM || SGI_IP22 || SGI_IP28 || SGI_IP32
|
|
default y
|
|
|
|
config ARC64
|
|
bool
|
|
|
|
config BOOT_ELF64
|
|
bool
|
|
|
|
menu "CPU selection"
|
|
|
|
choice
|
|
prompt "CPU type"
|
|
default CPU_R4X00
|
|
|
|
config CPU_LOONGSON2
|
|
bool "Loongson 2"
|
|
depends on SYS_HAS_CPU_LOONGSON2
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
The Loongson 2E processor implements the MIPS III instruction set
|
|
with many extensions.
|
|
|
|
config CPU_MIPS32_R1
|
|
bool "MIPS32 Release 1"
|
|
depends on SYS_HAS_CPU_MIPS32_R1
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Choose this option to build a kernel for release 1 or later of the
|
|
MIPS32 architecture. Most modern embedded systems with a 32-bit
|
|
MIPS processor are based on a MIPS32 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS32_R1 is a safe bet for any MIPS32 system.
|
|
Release 2 of the MIPS32 architecture is available since several
|
|
years so chances are you even have a MIPS32 Release 2 processor
|
|
in which case you should choose CPU_MIPS32_R2 instead for better
|
|
performance.
|
|
|
|
config CPU_MIPS32_R2
|
|
bool "MIPS32 Release 2"
|
|
depends on SYS_HAS_CPU_MIPS32_R2
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS32 architecture. Most modern embedded systems with a 32-bit
|
|
MIPS processor are based on a MIPS32 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS32_R1 is a safe bet for any MIPS32 system.
|
|
|
|
config CPU_MIPS64_R1
|
|
bool "MIPS64 Release 1"
|
|
depends on SYS_HAS_CPU_MIPS64_R1
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Choose this option to build a kernel for release 1 or later of the
|
|
MIPS64 architecture. Many modern embedded systems with a 64-bit
|
|
MIPS processor are based on a MIPS64 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS64_R1 is a safe bet for any MIPS64 system.
|
|
Release 2 of the MIPS64 architecture is available since several
|
|
years so chances are you even have a MIPS64 Release 2 processor
|
|
in which case you should choose CPU_MIPS64_R2 instead for better
|
|
performance.
|
|
|
|
config CPU_MIPS64_R2
|
|
bool "MIPS64 Release 2"
|
|
depends on SYS_HAS_CPU_MIPS64_R2
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Choose this option to build a kernel for release 2 or later of the
|
|
MIPS64 architecture. Many modern embedded systems with a 64-bit
|
|
MIPS processor are based on a MIPS64 processor. If you know the
|
|
specific type of processor in your system, choose those that one
|
|
otherwise CPU_MIPS64_R1 is a safe bet for any MIPS64 system.
|
|
|
|
config CPU_R3000
|
|
bool "R3000"
|
|
depends on SYS_HAS_CPU_R3000
|
|
select CPU_HAS_WB
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
Please make sure to pick the right CPU type. Linux/MIPS is not
|
|
designed to be generic, i.e. Kernels compiled for R3000 CPUs will
|
|
*not* work on R4000 machines and vice versa. However, since most
|
|
of the supported machines have an R4000 (or similar) CPU, R4x00
|
|
might be a safe bet. If the resulting kernel does not work,
|
|
try to recompile with R3000.
|
|
|
|
config CPU_TX39XX
|
|
bool "R39XX"
|
|
depends on SYS_HAS_CPU_TX39XX
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
|
|
config CPU_VR41XX
|
|
bool "R41xx"
|
|
depends on SYS_HAS_CPU_VR41XX
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
The options selects support for the NEC VR4100 series of processors.
|
|
Only choose this option if you have one of these processors as a
|
|
kernel built with this option will not run on any other type of
|
|
processor or vice versa.
|
|
|
|
config CPU_R4300
|
|
bool "R4300"
|
|
depends on SYS_HAS_CPU_R4300
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
MIPS Technologies R4300-series processors.
|
|
|
|
config CPU_R4X00
|
|
bool "R4x00"
|
|
depends on SYS_HAS_CPU_R4X00
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
MIPS Technologies R4000-series processors other than 4300, including
|
|
the R4000, R4400, R4600, and 4700.
|
|
|
|
config CPU_TX49XX
|
|
bool "R49XX"
|
|
depends on SYS_HAS_CPU_TX49XX
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
|
|
config CPU_R5000
|
|
bool "R5000"
|
|
depends on SYS_HAS_CPU_R5000
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
MIPS Technologies R5000-series processors other than the Nevada.
|
|
|
|
config CPU_R5432
|
|
bool "R5432"
|
|
depends on SYS_HAS_CPU_R5432
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
|
|
config CPU_R5500
|
|
bool "R5500"
|
|
depends on SYS_HAS_CPU_R5500
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
NEC VR5500 and VR5500A series processors implement 64-bit MIPS IV
|
|
instruction set.
|
|
|
|
config CPU_R6000
|
|
bool "R6000"
|
|
depends on EXPERIMENTAL
|
|
select CPU_HAS_LLSC
|
|
depends on SYS_HAS_CPU_R6000
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
help
|
|
MIPS Technologies R6000 and R6000A series processors. Note these
|
|
processors are extremely rare and the support for them is incomplete.
|
|
|
|
config CPU_NEVADA
|
|
bool "RM52xx"
|
|
depends on SYS_HAS_CPU_NEVADA
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
QED / PMC-Sierra RM52xx-series ("Nevada") processors.
|
|
|
|
config CPU_R8000
|
|
bool "R8000"
|
|
depends on EXPERIMENTAL
|
|
depends on SYS_HAS_CPU_R8000
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
help
|
|
MIPS Technologies R8000 processors. Note these processors are
|
|
uncommon and the support for them is incomplete.
|
|
|
|
config CPU_R10000
|
|
bool "R10000"
|
|
depends on SYS_HAS_CPU_R10000
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
MIPS Technologies R10000-series processors.
|
|
|
|
config CPU_RM7000
|
|
bool "RM7000"
|
|
depends on SYS_HAS_CPU_RM7000
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
|
|
config CPU_RM9000
|
|
bool "RM9000"
|
|
depends on SYS_HAS_CPU_RM9000
|
|
select CPU_HAS_LLSC
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select WEAK_ORDERING
|
|
|
|
config CPU_SB1
|
|
bool "SB1"
|
|
depends on SYS_HAS_CPU_SB1
|
|
select CPU_HAS_LLSC
|
|
select CPU_SUPPORTS_32BIT_KERNEL
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
select WEAK_ORDERING
|
|
|
|
config CPU_CAVIUM_OCTEON
|
|
bool "Cavium Octeon processor"
|
|
depends on SYS_HAS_CPU_CAVIUM_OCTEON
|
|
select IRQ_CPU
|
|
select IRQ_CPU_OCTEON
|
|
select CPU_HAS_PREFETCH
|
|
select CPU_SUPPORTS_64BIT_KERNEL
|
|
select SYS_SUPPORTS_SMP
|
|
select NR_CPUS_DEFAULT_16
|
|
select WEAK_ORDERING
|
|
select WEAK_REORDERING_BEYOND_LLSC
|
|
select CPU_SUPPORTS_HIGHMEM
|
|
help
|
|
The Cavium Octeon processor is a highly integrated chip containing
|
|
many ethernet hardware widgets for networking tasks. The processor
|
|
can have up to 16 Mips64v2 cores and 8 integrated gigabit ethernets.
|
|
Full details can be found at http://www.caviumnetworks.com.
|
|
|
|
endchoice
|
|
|
|
config SYS_HAS_CPU_LOONGSON2
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS32_R2
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_MIPS64_R2
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R3000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_TX39XX
|
|
bool
|
|
|
|
config SYS_HAS_CPU_VR41XX
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R4300
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R4X00
|
|
bool
|
|
|
|
config SYS_HAS_CPU_TX49XX
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R5000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R5432
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R5500
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R6000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_NEVADA
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R8000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_R10000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_RM7000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_RM9000
|
|
bool
|
|
|
|
config SYS_HAS_CPU_SB1
|
|
bool
|
|
|
|
config SYS_HAS_CPU_CAVIUM_OCTEON
|
|
bool
|
|
|
|
#
|
|
# CPU may reorder R->R, R->W, W->R, W->W
|
|
# Reordering beyond LL and SC is handled in WEAK_REORDERING_BEYOND_LLSC
|
|
#
|
|
config WEAK_ORDERING
|
|
bool
|
|
|
|
#
|
|
# CPU may reorder reads and writes beyond LL/SC
|
|
# CPU may reorder R->LL, R->LL, W->LL, W->LL, R->SC, R->SC, W->SC, W->SC
|
|
#
|
|
config WEAK_REORDERING_BEYOND_LLSC
|
|
bool
|
|
endmenu
|
|
|
|
#
|
|
# These two indicate any level of the MIPS32 and MIPS64 architecture
|
|
#
|
|
config CPU_MIPS32
|
|
bool
|
|
default y if CPU_MIPS32_R1 || CPU_MIPS32_R2
|
|
|
|
config CPU_MIPS64
|
|
bool
|
|
default y if CPU_MIPS64_R1 || CPU_MIPS64_R2
|
|
|
|
#
|
|
# These two indicate the revision of the architecture, either Release 1 or Release 2
|
|
#
|
|
config CPU_MIPSR1
|
|
bool
|
|
default y if CPU_MIPS32_R1 || CPU_MIPS64_R1
|
|
|
|
config CPU_MIPSR2
|
|
bool
|
|
default y if CPU_MIPS32_R2 || CPU_MIPS64_R2 || CPU_CAVIUM_OCTEON
|
|
|
|
config SYS_SUPPORTS_32BIT_KERNEL
|
|
bool
|
|
config SYS_SUPPORTS_64BIT_KERNEL
|
|
bool
|
|
config CPU_SUPPORTS_32BIT_KERNEL
|
|
bool
|
|
config CPU_SUPPORTS_64BIT_KERNEL
|
|
bool
|
|
|
|
#
|
|
# Set to y for ptrace access to watch registers.
|
|
#
|
|
config HARDWARE_WATCHPOINTS
|
|
bool
|
|
default y if CPU_MIPSR1 || CPU_MIPSR2
|
|
|
|
menu "Kernel type"
|
|
|
|
choice
|
|
|
|
prompt "Kernel code model"
|
|
help
|
|
You should only select this option if you have a workload that
|
|
actually benefits from 64-bit processing or if your machine has
|
|
large memory. You will only be presented a single option in this
|
|
menu if your system does not support both 32-bit and 64-bit kernels.
|
|
|
|
config 32BIT
|
|
bool "32-bit kernel"
|
|
depends on CPU_SUPPORTS_32BIT_KERNEL && SYS_SUPPORTS_32BIT_KERNEL
|
|
select TRAD_SIGNALS
|
|
help
|
|
Select this option if you want to build a 32-bit kernel.
|
|
config 64BIT
|
|
bool "64-bit kernel"
|
|
depends on CPU_SUPPORTS_64BIT_KERNEL && SYS_SUPPORTS_64BIT_KERNEL
|
|
select HAVE_SYSCALL_WRAPPERS
|
|
help
|
|
Select this option if you want to build a 64-bit kernel.
|
|
|
|
endchoice
|
|
|
|
choice
|
|
prompt "Kernel page size"
|
|
default PAGE_SIZE_4KB
|
|
|
|
config PAGE_SIZE_4KB
|
|
bool "4kB"
|
|
help
|
|
This option select the standard 4kB Linux page size. On some
|
|
R3000-family processors this is the only available page size. Using
|
|
4kB page size will minimize memory consumption and is therefore
|
|
recommended for low memory systems.
|
|
|
|
config PAGE_SIZE_8KB
|
|
bool "8kB"
|
|
depends on (EXPERIMENTAL && CPU_R8000) || CPU_CAVIUM_OCTEON
|
|
help
|
|
Using 8kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available
|
|
only on R8000 and cnMIPS processors. Note that you will need a
|
|
suitable Linux distribution to support this.
|
|
|
|
config PAGE_SIZE_16KB
|
|
bool "16kB"
|
|
depends on !CPU_R3000 && !CPU_TX39XX
|
|
help
|
|
Using 16kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available on
|
|
all non-R3000 family processors. Note that you will need a suitable
|
|
Linux distribution to support this.
|
|
|
|
config PAGE_SIZE_32KB
|
|
bool "32kB"
|
|
depends on CPU_CAVIUM_OCTEON
|
|
help
|
|
Using 32kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available
|
|
only on cnMIPS cores. Note that you will need a suitable Linux
|
|
distribution to support this.
|
|
|
|
config PAGE_SIZE_64KB
|
|
bool "64kB"
|
|
depends on EXPERIMENTAL && !CPU_R3000 && !CPU_TX39XX
|
|
help
|
|
Using 64kB page size will result in higher performance kernel at
|
|
the price of higher memory consumption. This option is available on
|
|
all non-R3000 family processor. Not that at the time of this
|
|
writing this option is still high experimental.
|
|
|
|
endchoice
|
|
|
|
config BOARD_SCACHE
|
|
bool
|
|
|
|
config IP22_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
#
|
|
# Support for a MIPS32 / MIPS64 style S-caches
|
|
#
|
|
config MIPS_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config R5000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config RM7000_CPU_SCACHE
|
|
bool
|
|
select BOARD_SCACHE
|
|
|
|
config SIBYTE_DMA_PAGEOPS
|
|
bool "Use DMA to clear/copy pages"
|
|
depends on CPU_SB1
|
|
help
|
|
Instead of using the CPU to zero and copy pages, use a Data Mover
|
|
channel. These DMA channels are otherwise unused by the standard
|
|
SiByte Linux port. Seems to give a small performance benefit.
|
|
|
|
config CPU_HAS_PREFETCH
|
|
bool
|
|
|
|
choice
|
|
prompt "MIPS MT options"
|
|
|
|
config MIPS_MT_DISABLED
|
|
bool "Disable multithreading support."
|
|
help
|
|
Use this option if your workload can't take advantage of
|
|
MIPS hardware multithreading support. On systems that don't have
|
|
the option of an MT-enabled processor this option will be the only
|
|
option in this menu.
|
|
|
|
config MIPS_MT_SMP
|
|
bool "Use 1 TC on each available VPE for SMP"
|
|
depends on SYS_SUPPORTS_MULTITHREADING
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select MIPS_MT
|
|
select NR_CPUS_DEFAULT_2
|
|
select SMP
|
|
select SYS_SUPPORTS_SCHED_SMT if SMP
|
|
select SYS_SUPPORTS_SMP
|
|
select SMP_UP
|
|
help
|
|
This is a kernel model which is also known a VSMP or lately
|
|
has been marketesed into SMVP.
|
|
|
|
config MIPS_MT_SMTC
|
|
bool "SMTC: Use all TCs on all VPEs for SMP"
|
|
depends on CPU_MIPS32_R2
|
|
#depends on CPU_MIPS64_R2 # once there is hardware ...
|
|
depends on SYS_SUPPORTS_MULTITHREADING
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select MIPS_MT
|
|
select NR_CPUS_DEFAULT_8
|
|
select SMP
|
|
select SYS_SUPPORTS_SMP
|
|
select SMP_UP
|
|
help
|
|
This is a kernel model which is known a SMTC or lately has been
|
|
marketesed into SMVP.
|
|
|
|
endchoice
|
|
|
|
config MIPS_MT
|
|
bool
|
|
|
|
config SCHED_SMT
|
|
bool "SMT (multithreading) scheduler support"
|
|
depends on SYS_SUPPORTS_SCHED_SMT
|
|
default n
|
|
help
|
|
SMT scheduler support improves the CPU scheduler's decision making
|
|
when dealing with MIPS MT enabled cores at a cost of slightly
|
|
increased overhead in some places. If unsure say N here.
|
|
|
|
config SYS_SUPPORTS_SCHED_SMT
|
|
bool
|
|
|
|
|
|
config SYS_SUPPORTS_MULTITHREADING
|
|
bool
|
|
|
|
config MIPS_MT_FPAFF
|
|
bool "Dynamic FPU affinity for FP-intensive threads"
|
|
default y
|
|
depends on MIPS_MT_SMP || MIPS_MT_SMTC
|
|
|
|
config MIPS_VPE_LOADER
|
|
bool "VPE loader support."
|
|
depends on SYS_SUPPORTS_MULTITHREADING
|
|
select CPU_MIPSR2_IRQ_VI
|
|
select CPU_MIPSR2_IRQ_EI
|
|
select MIPS_MT
|
|
help
|
|
Includes a loader for loading an elf relocatable object
|
|
onto another VPE and running it.
|
|
|
|
config MIPS_MT_SMTC_IM_BACKSTOP
|
|
bool "Use per-TC register bits as backstop for inhibited IM bits"
|
|
depends on MIPS_MT_SMTC
|
|
default n
|
|
help
|
|
To support multiple TC microthreads acting as "CPUs" within
|
|
a VPE, VPE-wide interrupt mask bits must be specially manipulated
|
|
during interrupt handling. To support legacy drivers and interrupt
|
|
controller management code, SMTC has a "backstop" to track and
|
|
if necessary restore the interrupt mask. This has some performance
|
|
impact on interrupt service overhead.
|
|
|
|
config MIPS_MT_SMTC_IRQAFF
|
|
bool "Support IRQ affinity API"
|
|
depends on MIPS_MT_SMTC
|
|
default n
|
|
help
|
|
Enables SMP IRQ affinity API (/proc/irq/*/smp_affinity, etc.)
|
|
for SMTC Linux kernel. Requires platform support, of which
|
|
an example can be found in the MIPS kernel i8259 and Malta
|
|
platform code. Adds some overhead to interrupt dispatch, and
|
|
should be used only if you know what you are doing.
|
|
|
|
config MIPS_VPE_LOADER_TOM
|
|
bool "Load VPE program into memory hidden from linux"
|
|
depends on MIPS_VPE_LOADER
|
|
default y
|
|
help
|
|
The loader can use memory that is present but has been hidden from
|
|
Linux using the kernel command line option "mem=xxMB". It's up to
|
|
you to ensure the amount you put in the option and the space your
|
|
program requires is less or equal to the amount physically present.
|
|
|
|
# this should possibly be in drivers/char, but it is rather cpu related. Hmmm
|
|
config MIPS_VPE_APSP_API
|
|
bool "Enable support for AP/SP API (RTLX)"
|
|
depends on MIPS_VPE_LOADER
|
|
help
|
|
|
|
config MIPS_APSP_KSPD
|
|
bool "Enable KSPD"
|
|
depends on MIPS_VPE_APSP_API
|
|
default y
|
|
help
|
|
KSPD is a kernel daemon that accepts syscall requests from the SP
|
|
side, actions them and returns the results. It also handles the
|
|
"exit" syscall notifying other kernel modules the SP program is
|
|
exiting. You probably want to say yes here.
|
|
|
|
config MIPS_CMP
|
|
bool "MIPS CMP framework support"
|
|
depends on SYS_SUPPORTS_MIPS_CMP
|
|
select SYNC_R4K if BROKEN
|
|
select SYS_SUPPORTS_SMP
|
|
select SYS_SUPPORTS_SCHED_SMT if SMP
|
|
select WEAK_ORDERING
|
|
default n
|
|
help
|
|
This is a placeholder option for the GCMP work. It will need to
|
|
be handled differently...
|
|
|
|
config SB1_PASS_1_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1_PASS_1
|
|
default y
|
|
|
|
config SB1_PASS_2_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && (CPU_SB1_PASS_2_2 || CPU_SB1_PASS_2)
|
|
default y
|
|
|
|
config SB1_PASS_2_1_WORKAROUNDS
|
|
bool
|
|
depends on CPU_SB1 && CPU_SB1_PASS_2
|
|
default y
|
|
|
|
config 64BIT_PHYS_ADDR
|
|
bool
|
|
|
|
config CPU_HAS_LLSC
|
|
bool
|
|
|
|
config CPU_HAS_SMARTMIPS
|
|
depends on SYS_SUPPORTS_SMARTMIPS
|
|
bool "Support for the SmartMIPS ASE"
|
|
help
|
|
SmartMIPS is a extension of the MIPS32 architecture aimed at
|
|
increased security at both hardware and software level for
|
|
smartcards. Enabling this option will allow proper use of the
|
|
SmartMIPS instructions by Linux applications. However a kernel with
|
|
this option will not work on a MIPS core without SmartMIPS core. If
|
|
you don't know you probably don't have SmartMIPS and should say N
|
|
here.
|
|
|
|
config CPU_HAS_WB
|
|
bool
|
|
|
|
#
|
|
# Vectored interrupt mode is an R2 feature
|
|
#
|
|
config CPU_MIPSR2_IRQ_VI
|
|
bool
|
|
|
|
#
|
|
# Extended interrupt mode is an R2 feature
|
|
#
|
|
config CPU_MIPSR2_IRQ_EI
|
|
bool
|
|
|
|
config CPU_HAS_SYNC
|
|
bool
|
|
depends on !CPU_R3000
|
|
default y
|
|
|
|
config GENERIC_CLOCKEVENTS_BROADCAST
|
|
bool
|
|
|
|
#
|
|
# CPU non-features
|
|
#
|
|
config CPU_DADDI_WORKAROUNDS
|
|
bool
|
|
|
|
config CPU_R4000_WORKAROUNDS
|
|
bool
|
|
select CPU_R4400_WORKAROUNDS
|
|
|
|
config CPU_R4400_WORKAROUNDS
|
|
bool
|
|
|
|
#
|
|
# Use the generic interrupt handling code in kernel/irq/:
|
|
#
|
|
config GENERIC_HARDIRQS
|
|
bool
|
|
default y
|
|
|
|
config GENERIC_IRQ_PROBE
|
|
bool
|
|
default y
|
|
|
|
config IRQ_PER_CPU
|
|
bool
|
|
|
|
#
|
|
# - Highmem only makes sense for the 32-bit kernel.
|
|
# - The current highmem code will only work properly on physically indexed
|
|
# caches such as R3000, SB1, R7000 or those that look like they're virtually
|
|
# indexed such as R4000/R4400 SC and MC versions or R10000. So for the
|
|
# moment we protect the user and offer the highmem option only on machines
|
|
# where it's known to be safe. This will not offer highmem on a few systems
|
|
# such as MIPS32 and MIPS64 CPUs which may have virtual and physically
|
|
# indexed CPUs but we're playing safe.
|
|
# - We use SYS_SUPPORTS_HIGHMEM to offer highmem only for systems where we
|
|
# know they might have memory configurations that could make use of highmem
|
|
# support.
|
|
#
|
|
config HIGHMEM
|
|
bool "High Memory Support"
|
|
depends on 32BIT && CPU_SUPPORTS_HIGHMEM && SYS_SUPPORTS_HIGHMEM
|
|
|
|
config CPU_SUPPORTS_HIGHMEM
|
|
bool
|
|
|
|
config SYS_SUPPORTS_HIGHMEM
|
|
bool
|
|
|
|
config SYS_SUPPORTS_SMARTMIPS
|
|
bool
|
|
|
|
config ARCH_FLATMEM_ENABLE
|
|
def_bool y
|
|
depends on !NUMA
|
|
|
|
config ARCH_DISCONTIGMEM_ENABLE
|
|
bool
|
|
default y if SGI_IP27
|
|
help
|
|
Say Y to support efficient handling of discontiguous physical memory,
|
|
for architectures which are either NUMA (Non-Uniform Memory Access)
|
|
or have huge holes in the physical address space for other reasons.
|
|
See <file:Documentation/vm/numa> for more.
|
|
|
|
config ARCH_POPULATES_NODE_MAP
|
|
def_bool y
|
|
|
|
config ARCH_SPARSEMEM_ENABLE
|
|
bool
|
|
select SPARSEMEM_STATIC
|
|
|
|
config NUMA
|
|
bool "NUMA Support"
|
|
depends on SYS_SUPPORTS_NUMA
|
|
help
|
|
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
|
|
Access). This option improves performance on systems with more
|
|
than two nodes; on two node systems it is generally better to
|
|
leave it disabled; on single node systems disable this option
|
|
disabled.
|
|
|
|
config SYS_SUPPORTS_NUMA
|
|
bool
|
|
|
|
config NODES_SHIFT
|
|
int
|
|
default "6"
|
|
depends on NEED_MULTIPLE_NODES
|
|
|
|
source "mm/Kconfig"
|
|
|
|
config SMP
|
|
bool "Multi-Processing support"
|
|
depends on SYS_SUPPORTS_SMP
|
|
select IRQ_PER_CPU
|
|
select USE_GENERIC_SMP_HELPERS
|
|
help
|
|
This enables support for systems with more than one CPU. If you have
|
|
a system with only one CPU, like most personal computers, say N. If
|
|
you have a system with more than one CPU, say Y.
|
|
|
|
If you say N here, the kernel will run on single and multiprocessor
|
|
machines, but will use only one CPU of a multiprocessor machine. If
|
|
you say Y here, the kernel will run on many, but not all,
|
|
singleprocessor machines. On a singleprocessor machine, the kernel
|
|
will run faster if you say N here.
|
|
|
|
People using multiprocessor machines who say Y here should also say
|
|
Y to "Enhanced Real Time Clock Support", below.
|
|
|
|
See also the SMP-HOWTO available at
|
|
<http://www.tldp.org/docs.html#howto>.
|
|
|
|
If you don't know what to do here, say N.
|
|
|
|
config SMP_UP
|
|
bool
|
|
|
|
config SYS_SUPPORTS_MIPS_CMP
|
|
bool
|
|
|
|
config SYS_SUPPORTS_SMP
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_1
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_2
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_4
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_8
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_16
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_32
|
|
bool
|
|
|
|
config NR_CPUS_DEFAULT_64
|
|
bool
|
|
|
|
config NR_CPUS
|
|
int "Maximum number of CPUs (2-64)"
|
|
range 1 64 if NR_CPUS_DEFAULT_1
|
|
depends on SMP
|
|
default "1" if NR_CPUS_DEFAULT_1
|
|
default "2" if NR_CPUS_DEFAULT_2
|
|
default "4" if NR_CPUS_DEFAULT_4
|
|
default "8" if NR_CPUS_DEFAULT_8
|
|
default "16" if NR_CPUS_DEFAULT_16
|
|
default "32" if NR_CPUS_DEFAULT_32
|
|
default "64" if NR_CPUS_DEFAULT_64
|
|
help
|
|
This allows you to specify the maximum number of CPUs which this
|
|
kernel will support. The maximum supported value is 32 for 32-bit
|
|
kernel and 64 for 64-bit kernels; the minimum value which makes
|
|
sense is 1 for Qemu (useful only for kernel debugging purposes)
|
|
and 2 for all others.
|
|
|
|
This is purely to save memory - each supported CPU adds
|
|
approximately eight kilobytes to the kernel image. For best
|
|
performance should round up your number of processors to the next
|
|
power of two.
|
|
|
|
source "kernel/time/Kconfig"
|
|
|
|
#
|
|
# Timer Interrupt Frequency Configuration
|
|
#
|
|
|
|
choice
|
|
prompt "Timer frequency"
|
|
default HZ_250
|
|
help
|
|
Allows the configuration of the timer frequency.
|
|
|
|
config HZ_48
|
|
bool "48 HZ" if SYS_SUPPORTS_48HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_100
|
|
bool "100 HZ" if SYS_SUPPORTS_100HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_128
|
|
bool "128 HZ" if SYS_SUPPORTS_128HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_250
|
|
bool "250 HZ" if SYS_SUPPORTS_250HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_256
|
|
bool "256 HZ" if SYS_SUPPORTS_256HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_1000
|
|
bool "1000 HZ" if SYS_SUPPORTS_1000HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
config HZ_1024
|
|
bool "1024 HZ" if SYS_SUPPORTS_1024HZ || SYS_SUPPORTS_ARBIT_HZ
|
|
|
|
endchoice
|
|
|
|
config SYS_SUPPORTS_48HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_100HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_128HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_250HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_256HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_1000HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_1024HZ
|
|
bool
|
|
|
|
config SYS_SUPPORTS_ARBIT_HZ
|
|
bool
|
|
default y if !SYS_SUPPORTS_48HZ && !SYS_SUPPORTS_100HZ && \
|
|
!SYS_SUPPORTS_128HZ && !SYS_SUPPORTS_250HZ && \
|
|
!SYS_SUPPORTS_256HZ && !SYS_SUPPORTS_1000HZ && \
|
|
!SYS_SUPPORTS_1024HZ
|
|
|
|
config HZ
|
|
int
|
|
default 48 if HZ_48
|
|
default 100 if HZ_100
|
|
default 128 if HZ_128
|
|
default 250 if HZ_250
|
|
default 256 if HZ_256
|
|
default 1000 if HZ_1000
|
|
default 1024 if HZ_1024
|
|
|
|
source "kernel/Kconfig.preempt"
|
|
|
|
config MIPS_INSANE_LARGE
|
|
bool "Support for large 64-bit configurations"
|
|
depends on CPU_R10000 && 64BIT
|
|
help
|
|
MIPS R10000 does support a 44 bit / 16TB address space as opposed to
|
|
previous 64-bit processors which only supported 40 bit / 1TB. If you
|
|
need processes of more than 1TB virtual address space, say Y here.
|
|
This will result in additional memory usage, so it is not
|
|
recommended for normal users.
|
|
|
|
config KEXEC
|
|
bool "Kexec system call (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
help
|
|
kexec is a system call that implements the ability to shutdown your
|
|
current kernel, and to start another kernel. It is like a reboot
|
|
but it is independent of the system firmware. And like a reboot
|
|
you can start any kernel with it, not just Linux.
|
|
|
|
The name comes from the similarity to the exec system call.
|
|
|
|
It is an ongoing process to be certain the hardware in a machine
|
|
is properly shutdown, so do not be surprised if this code does not
|
|
initially work for you. It may help to enable device hotplugging
|
|
support. As of this writing the exact hardware interface is
|
|
strongly in flux, so no good recommendation can be made.
|
|
|
|
config SECCOMP
|
|
bool "Enable seccomp to safely compute untrusted bytecode"
|
|
depends on PROC_FS
|
|
default y
|
|
help
|
|
This kernel feature is useful for number crunching applications
|
|
that may need to compute untrusted bytecode during their
|
|
execution. By using pipes or other transports made available to
|
|
the process as file descriptors supporting the read/write
|
|
syscalls, it's possible to isolate those applications in
|
|
their own address space using seccomp. Once seccomp is
|
|
enabled via /proc/<pid>/seccomp, it cannot be disabled
|
|
and the task is only allowed to execute a few safe syscalls
|
|
defined by each seccomp mode.
|
|
|
|
If unsure, say Y. Only embedded should say N here.
|
|
|
|
endmenu
|
|
|
|
config LOCKDEP_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
config STACKTRACE_SUPPORT
|
|
bool
|
|
default y
|
|
|
|
source "init/Kconfig"
|
|
|
|
config PROBE_INITRD_HEADER
|
|
bool "Probe initrd header created by addinitrd"
|
|
depends on BLK_DEV_INITRD
|
|
help
|
|
Probe initrd header at the last page of kernel image.
|
|
Say Y here if you are using arch/mips/boot/addinitrd.c to
|
|
add initrd or initramfs image to the kernel image.
|
|
Otherwise, say N.
|
|
|
|
source "kernel/Kconfig.freezer"
|
|
|
|
menu "Bus options (PCI, PCMCIA, EISA, ISA, TC)"
|
|
|
|
config HW_HAS_EISA
|
|
bool
|
|
config HW_HAS_PCI
|
|
bool
|
|
|
|
config PCI
|
|
bool "Support for PCI controller"
|
|
depends on HW_HAS_PCI
|
|
select PCI_DOMAINS
|
|
help
|
|
Find out whether you have a PCI motherboard. PCI is the name of a
|
|
bus system, i.e. the way the CPU talks to the other stuff inside
|
|
your box. Other bus systems are ISA, EISA, or VESA. If you have PCI,
|
|
say Y, otherwise N.
|
|
|
|
config PCI_DOMAINS
|
|
bool
|
|
|
|
source "drivers/pci/Kconfig"
|
|
|
|
#
|
|
# ISA support is now enabled via select. Too many systems still have the one
|
|
# or other ISA chip on the board that users don't know about so don't expect
|
|
# users to choose the right thing ...
|
|
#
|
|
config ISA
|
|
bool
|
|
|
|
config EISA
|
|
bool "EISA support"
|
|
depends on HW_HAS_EISA
|
|
select ISA
|
|
select GENERIC_ISA_DMA
|
|
---help---
|
|
The Extended Industry Standard Architecture (EISA) bus was
|
|
developed as an open alternative to the IBM MicroChannel bus.
|
|
|
|
The EISA bus provided some of the features of the IBM MicroChannel
|
|
bus while maintaining backward compatibility with cards made for
|
|
the older ISA bus. The EISA bus saw limited use between 1988 and
|
|
1995 when it was made obsolete by the PCI bus.
|
|
|
|
Say Y here if you are building a kernel for an EISA-based machine.
|
|
|
|
Otherwise, say N.
|
|
|
|
source "drivers/eisa/Kconfig"
|
|
|
|
config TC
|
|
bool "TURBOchannel support"
|
|
depends on MACH_DECSTATION
|
|
help
|
|
TurboChannel is a DEC (now Compaq (now HP)) bus for Alpha and MIPS
|
|
processors. Documentation on writing device drivers for TurboChannel
|
|
is available at:
|
|
<http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-PS3HD-TET1_html/TITLE.html>.
|
|
|
|
#config ACCESSBUS
|
|
# bool "Access.Bus support"
|
|
# depends on TC
|
|
|
|
config MMU
|
|
bool
|
|
default y
|
|
|
|
config I8253
|
|
bool
|
|
|
|
config ZONE_DMA32
|
|
bool
|
|
|
|
source "drivers/pcmcia/Kconfig"
|
|
|
|
source "drivers/pci/hotplug/Kconfig"
|
|
|
|
endmenu
|
|
|
|
menu "Executable file formats"
|
|
|
|
source "fs/Kconfig.binfmt"
|
|
|
|
config TRAD_SIGNALS
|
|
bool
|
|
|
|
config MIPS32_COMPAT
|
|
bool "Kernel support for Linux/MIPS 32-bit binary compatibility"
|
|
depends on 64BIT
|
|
help
|
|
Select this option if you want Linux/MIPS 32-bit binary
|
|
compatibility. Since all software available for Linux/MIPS is
|
|
currently 32-bit you should say Y here.
|
|
|
|
config COMPAT
|
|
bool
|
|
depends on MIPS32_COMPAT
|
|
default y
|
|
|
|
config SYSVIPC_COMPAT
|
|
bool
|
|
depends on COMPAT && SYSVIPC
|
|
default y
|
|
|
|
config MIPS32_O32
|
|
bool "Kernel support for o32 binaries"
|
|
depends on MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run o32 binaries. These are pure
|
|
32-bit binaries as used by the 32-bit Linux/MIPS port. Most of
|
|
existing binaries are in this format.
|
|
|
|
If unsure, say Y.
|
|
|
|
config MIPS32_N32
|
|
bool "Kernel support for n32 binaries"
|
|
depends on MIPS32_COMPAT
|
|
help
|
|
Select this option if you want to run n32 binaries. These are
|
|
64-bit binaries using 32-bit quantities for addressing and certain
|
|
data that would normally be 64-bit. They are used in special
|
|
cases.
|
|
|
|
If unsure, say N.
|
|
|
|
config BINFMT_ELF32
|
|
bool
|
|
default y if MIPS32_O32 || MIPS32_N32
|
|
|
|
endmenu
|
|
|
|
menu "Power management options"
|
|
|
|
config ARCH_SUSPEND_POSSIBLE
|
|
def_bool y
|
|
depends on !SMP
|
|
|
|
source "kernel/power/Kconfig"
|
|
|
|
endmenu
|
|
|
|
source "net/Kconfig"
|
|
|
|
source "drivers/Kconfig"
|
|
|
|
source "fs/Kconfig"
|
|
|
|
source "arch/mips/Kconfig.debug"
|
|
|
|
source "security/Kconfig"
|
|
|
|
source "crypto/Kconfig"
|
|
|
|
source "lib/Kconfig"
|