linux/arch/arm/boot/dts/sun8i-r40.dtsi
Linus Torvalds 93335e5911 ARM: SoC device tree updates for 4.20
There are close to 800 indivudal changesets in this branch again, which
 feels like a lot. There are particularly many changes for the NVIDIA
 Tegra platform this time, in fact more than it has seen in the two years
 since the v4.9 merge window. Aside from this, it's been fairly normal,
 with lots of changes going into Renesas R-CAR, NXP i.MX, Allwinner Sunxi,
 Samsung Exynos, and TI OMAP.
 
 Most of the changes are for adding new features into existing boards,
 for brevity I'm only mentioning completely new machines and SoCs here.
 For the first time I think we have (slightly) more new 64-bit hardware
 than 32-bit:
 
 Two boards get added for TI OMAP: Moxa UC-2101 is an industrial
 computer, see https://www.moxa.com/product/UC-2100.htm; GTA04A5
 is a minor variation of the motherboards of the GTA04 phone, see
 https://shop.goldelico.com/wiki.php?page=GTA04A5
 
 Clearfog is a nice little board for quad-core
 Marvell Armada 8040 network processor, see
 https://www.solid-run.com/marvell-armada-family/clearfog-gt-8k/
 
 Two additional server boards come with the Aspeed baseboard management
 controllers: Stardragon4800 is an arm64 reference platform made by HXT
 (based on Qualcomm's server chips), and TiogaPass is an Open Compute
 mainboard with x86 CPUs. Both use the ARM11 based AST2500 chips in
 the BMC.
 
 NXP i.MX usually sees a lot of new boards each release. This time there
 we only add one minor variant: ConnectCore 6UL SBC Pro uses the same
 SoM design as the ConnectCore 6UL SBC Express added later. However,
 there is a new chip, the i.MX6ULZ, which is an even smaller variant
 of the i.MX6ULL, with features removed. There is also support for the
 reference board design, the i.MX6ULZ 14x14 EVK.
 
 A new Raspberry Pi variant gets added, this one is the CM3 compute module
 based on bcm2837, it was launched in early 2017 but only now added to
 the kernel, both as 32-bit and as 64-bit files, as we tend to do for
 Raspberry Pi.
 
 On the Allwinner side, everything is again about cheap development
 boards, usually of the "Fruit Pi" variety. The new ones this time
 are:
 Orange Pi Zero Plus2: http://www.orangepi.org/OrangePiZeroPlus2/
 Orange Pi One Plus: http://www.orangepi.org/OrangePiOneplus/
 Pine64 LTS: https://www.pine64.org/?product=pine-a64-lts
 Banana Pi M2+ H5: http://www.banana-pi.org/m2plus.html
 The last one of these is now a 64-bit version of the earlier Banana
 Pi M2+ H3, with the same board layout.
 
 Similarly, for Rockchips, get get another variant of the 32-bit
 Asus Tinker board, the model 'S' based on rk3288, and three now
 boards based on the popular RK3399 chip:
 ROC-RK3399-PC: https://libre.computer/products/boards/roc-rk3399-pc/
 Rock960: https://www.96boards.org/product/rock960/
 RockPro64: https://www.pine64.org/?page_id=61454
 These are all quite powerful boards with lots of RAM and I/O, and
 the RK3399 is the same chip used in several Chromebooks.  Finally,
 we get support for the PX30 (aka rk3326) chip, which is based on the
 low-end 64-bit Cortex-A35 CPU core. So far, only the evaluation board
 is supported.
 
 One more Banana Pi is added with a Mediatek chip: Banana Pi R64 is based
 on the MT7622 WiFi router platform, and the first product I've seen with
 a 64-bit Mediatek chip in that market: http://www.banana-pi.org/r64.html
 
 For HiSilicon, we gain support for the Hi3670 SoC and HiKey 370
 development board, which are similar to the Hi3660 and Hikey 360
 respectively, but add support for an NPU.
 
 Amlogic gets initial support for the Meson-G12A chip (S905D2),
 another quad-core Cortex-A53 SoC, and its evaluation platform.
 On the 32-bit side, we gain support for an actual end-user product,
 the Endless Computers Endless Mini based on Meson8b (S805), see
 https://endlessos.com/computers/
 
 Qualcomm adds support for their MSM8998 SoC and evaluation platform. This
 chip is commonly known as the Snapdragon 835, and is used in high-end
 phones as well as low-end laptops.
 
 For Renesas, a very bare support for the r8a774a1 (RZ/G2M) is added,
 but no boards for this one. However, we do add boards for the previously
 added r8a77965 (R-Car M3-N): the M3NULCB Kingfisher and the M3NULCB
 Starter Kit Pro.
 
 While we have lots of DT changes for NVIDIA to update the existing files,
 the only board that gets added is the Toradex Colibri T20 on Colibri
 Evaluation Board for the old Tegra2.
 
 Synaptics add support for their AS370 SoC, which is part of the (formerly
 Marvell) Berlin line of set-top-box chips used e.g.  in the various Google
 Chromecast. Only the .dtsi gets added at this point, no actual machines.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJb1224AAoJEGCrR//JCVIn9uYP/jLMoGkVQRS5L9sRjOci1l5b
 EHl8veJ+uNJaTStp5XAZk90MoBcSdXtnISSEiR7a3qKJw1mYfgAWyPtQCttRFUCo
 rDp4GJpJ96TBg1tyt5Lop3V9eIYbCh9epf2foKTTdpRiX022AFk1031jvnh2Teuy
 fKA2VNeoyyOZqxh0ysJq7G8kWt8PTQTKXDebYPWEbsu0AFmqQ84lz7oGNdPk0GPm
 krtQIO6rh+sJR/8wWGYfnTYAIOk6jNrPhiyjEcyu+x2525rwKxJNKVY8P9PuNhrl
 hzqld1dPtb3gfdcxWxZUznHmVUGkVEIa1QNC6csSmLzuxqJJE0/J5u2P8lIfrhVI
 c5C8r3eaTxFM0s5uKhNhhewlJ6uiDhUQy13AG0JXteujP23BGObYstnV10pJrH75
 xq7uSUiU04v95MocPjodJ2I7dIlAoFCd6ELnsmD/mz743gY9AZ6DHaOBMMwIzK3H
 EQifF5E/4PWOjBx7fonumBm0LebPjWGmv4CNyCK5Q93ylK7U/kFDdjiNjNhyks5E
 CVQBFhA7sshKJQRDOiaofMxOfKJHeKGU2PR7yGRpT3YWQD/apIL/elG4qUNjLX46
 2Dwdgq8nDdbY2SzPwwy7ncTtyDRYcsFCtScT5slu1I1UxIhwEYJurzCKDM4jJNZb
 Cg2D7a+AlZ8N5Vsr1ldV
 =yaED
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC device tree updates from Arnd Bergmann:
 "There are close to 800 indivudal changesets in this branch again,
  which feels like a lot. There are particularly many changes for the
  NVIDIA Tegra platform this time, in fact more than it has seen in the
  two years since the v4.9 merge window. Aside from this, it's been
  fairly normal, with lots of changes going into Renesas R-CAR, NXP
  i.MX, Allwinner Sunxi, Samsung Exynos, and TI OMAP.

  Most of the changes are for adding new features into existing boards,
  for brevity I'm only mentioning completely new machines and SoCs here.
  For the first time I think we have (slightly) more new 64-bit hardware
  than 32-bit:

  Two boards get added for TI OMAP: Moxa UC-2101 is an industrial
  computer, see https://www.moxa.com/product/UC-2100.htm; GTA04A5 is a
  minor variation of the motherboards of the GTA04 phone, see
  https://shop.goldelico.com/wiki.php?page=GTA04A5

  Clearfog is a nice little board for quad-core Marvell Armada 8040
  network processor, see
  https://www.solid-run.com/marvell-armada-family/clearfog-gt-8k/

  Two additional server boards come with the Aspeed baseboard management
  controllers: Stardragon4800 is an arm64 reference platform made by HXT
  (based on Qualcomm's server chips), and TiogaPass is an Open Compute
  mainboard with x86 CPUs. Both use the ARM11 based AST2500 chips in the
  BMC.

  NXP i.MX usually sees a lot of new boards each release. This time
  there we only add one minor variant: ConnectCore 6UL SBC Pro uses the
  same SoM design as the ConnectCore 6UL SBC Express added later.
  However, there is a new chip, the i.MX6ULZ, which is an even smaller
  variant of the i.MX6ULL, with features removed. There is also support
  for the reference board design, the i.MX6ULZ 14x14 EVK.

  A new Raspberry Pi variant gets added, this one is the CM3 compute
  module based on bcm2837, it was launched in early 2017 but only now
  added to the kernel, both as 32-bit and as 64-bit files, as we tend to
  do for Raspberry Pi.

  On the Allwinner side, everything is again about cheap development
  boards, usually of the "Fruit Pi" variety. The new ones this time are:
   - Orange Pi Zero Plus2: http://www.orangepi.org/OrangePiZeroPlus2/
   - Orange Pi One Plus: http://www.orangepi.org/OrangePiOneplus/
   - Pine64 LTS: https://www.pine64.org/?product=pine-a64-lts
   - Banana Pi M2+ H5: http://www.banana-pi.org/m2plus.html
  The last one of these is now a 64-bit version of the earlier Banana Pi
  M2+ H3, with the same board layout.

  Similarly, for Rockchips, get get another variant of the 32-bit Asus
  Tinker board, the model 'S' based on rk3288, and three now boards
  based on the popular RK3399 chip:
   - ROC-RK3399-PC: https://libre.computer/products/boards/roc-rk3399-pc/
   - Rock960: https://www.96boards.org/product/rock960/
   - RockPro64: https://www.pine64.org/?page_id=61454
  These are all quite powerful boards with lots of RAM and I/O, and the
  RK3399 is the same chip used in several Chromebooks. Finally, we get
  support for the PX30 (aka rk3326) chip, which is based on the low-end
  64-bit Cortex-A35 CPU core. So far, only the evaluation board is
  supported.

  One more Banana Pi is added with a Mediatek chip: Banana Pi R64 is
  based on the MT7622 WiFi router platform, and the first product I've
  seen with a 64-bit Mediatek chip in that market:
  http://www.banana-pi.org/r64.html

  For HiSilicon, we gain support for the Hi3670 SoC and HiKey 370
  development board, which are similar to the Hi3660 and Hikey 360
  respectively, but add support for an NPU.

  Amlogic gets initial support for the Meson-G12A chip (S905D2), another
  quad-core Cortex-A53 SoC, and its evaluation platform. On the 32-bit
  side, we gain support for an actual end-user product, the Endless
  Computers Endless Mini based on Meson8b (S805), see
  https://endlessos.com/computers/

  Qualcomm adds support for their MSM8998 SoC and evaluation platform.
  This chip is commonly known as the Snapdragon 835, and is used in
  high-end phones as well as low-end laptops.

  For Renesas, a very bare support for the r8a774a1 (RZ/G2M) is added,
  but no boards for this one. However, we do add boards for the
  previously added r8a77965 (R-Car M3-N): the M3NULCB Kingfisher and the
  M3NULCB Starter Kit Pro.

  While we have lots of DT changes for NVIDIA to update the existing
  files, the only board that gets added is the Toradex Colibri T20 on
  Colibri Evaluation Board for the old Tegra2.

  Synaptics add support for their AS370 SoC, which is part of the
  (formerly Marvell) Berlin line of set-top-box chips used e.g. in the
  various Google Chromecast. Only the .dtsi gets added at this point, no
  actual machines"

* tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (721 commits)
  ARM: dts: socfgpa: remove ethernet aliases from dtsi
  arm64: dts: stratix10: add ethernet aliases
  dt-bindings: mediatek: Add bindig for MT7623 IOMMU and SMI
  dt-bindings: mediatek: Add JPEG Decoder binding for MT7623
  dt-bindings: iommu: mediatek: Add binding for MT7623
  dt-bindings: clock: mediatek: add support for MT7623
  ARM: dts: mvebu: armada-385-db-88f6820-amc: auto-detect nand ECC properites
  ARM: dts: da850-lego-ev3: slow down A/DC as much as possible
  ARM: dts: da850-evm: Enable tca6416 on baseboard
  arm64: dts: uniphier: Add USB2 PHY nodes
  arm64: dts: uniphier: Add USB3 controller nodes
  ARM: dts: uniphier: Add USB2 PHY nodes
  ARM: dts: uniphier: Add USB3 controller nodes
  arm64: dts: meson-axg: s400: disable emmc
  arm64: dts: meson-axg: s400: add missing emmc pwrseq
  arm64: dts: clearfog-gt-8k: add PCIe slot description
  ARM: dts: at91: sama5d4_xplained: even nand memory partitions
  ARM: dts: at91: sama5d3_xplained: even nand memory partitions
  ARM: dts: at91: at91sam9x5cm: even nand memory partitions
  ARM: dts: at91: sama5d2_ptc_ek: fix bootloader env offsets
  ...
2018-10-29 15:05:20 -07:00

835 lines
21 KiB
Plaintext

/*
* Copyright 2017 Chen-Yu Tsai <wens@csie.org>
* Copyright 2017 Icenowy Zheng <icenowy@aosc.io>
*
* This file is dual-licensed: you can use it either under the terms
* of the GPL or the X11 license, at your option. Note that this dual
* licensing only applies to this file, and not this project as a
* whole.
*
* a) This file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Or, alternatively,
*
* b) Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/sun8i-de2.h>
#include <dt-bindings/clock/sun8i-r40-ccu.h>
#include <dt-bindings/reset/sun8i-r40-ccu.h>
#include <dt-bindings/reset/sun8i-de2.h>
/ {
#address-cells = <1>;
#size-cells = <1>;
interrupt-parent = <&gic>;
clocks {
#address-cells = <1>;
#size-cells = <1>;
ranges;
osc24M: osc24M {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <24000000>;
clock-output-names = "osc24M";
};
osc32k: osc32k {
#clock-cells = <0>;
compatible = "fixed-clock";
clock-frequency = <32768>;
clock-output-names = "osc32k";
};
};
cpus {
#address-cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
};
cpu@1 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <1>;
};
cpu@2 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <2>;
};
cpu@3 {
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <3>;
};
};
de: display-engine {
compatible = "allwinner,sun8i-r40-display-engine";
allwinner,pipelines = <&mixer0>, <&mixer1>;
status = "disabled";
};
soc {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <1>;
ranges;
display_clocks: clock@1000000 {
compatible = "allwinner,sun8i-r40-de2-clk",
"allwinner,sun8i-h3-de2-clk";
reg = <0x01000000 0x100000>;
clocks = <&ccu CLK_DE>,
<&ccu CLK_BUS_DE>;
clock-names = "mod",
"bus";
resets = <&ccu RST_BUS_DE>;
#clock-cells = <1>;
#reset-cells = <1>;
};
mixer0: mixer@1100000 {
compatible = "allwinner,sun8i-r40-de2-mixer-0";
reg = <0x01100000 0x100000>;
clocks = <&display_clocks CLK_BUS_MIXER0>,
<&display_clocks CLK_MIXER0>;
clock-names = "bus",
"mod";
resets = <&display_clocks RST_MIXER0>;
ports {
#address-cells = <1>;
#size-cells = <0>;
mixer0_out: port@1 {
reg = <1>;
mixer0_out_tcon_top: endpoint {
remote-endpoint = <&tcon_top_mixer0_in_mixer0>;
};
};
};
};
mixer1: mixer@1200000 {
compatible = "allwinner,sun8i-r40-de2-mixer-1";
reg = <0x01200000 0x100000>;
clocks = <&display_clocks CLK_BUS_MIXER1>,
<&display_clocks CLK_MIXER1>;
clock-names = "bus",
"mod";
resets = <&display_clocks RST_WB>;
ports {
#address-cells = <1>;
#size-cells = <0>;
mixer1_out: port@1 {
reg = <1>;
mixer1_out_tcon_top: endpoint {
remote-endpoint = <&tcon_top_mixer1_in_mixer1>;
};
};
};
};
nmi_intc: interrupt-controller@1c00030 {
compatible = "allwinner,sun7i-a20-sc-nmi";
interrupt-controller;
#interrupt-cells = <2>;
reg = <0x01c00030 0x0c>;
interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>;
};
mmc0: mmc@1c0f000 {
compatible = "allwinner,sun8i-r40-mmc",
"allwinner,sun50i-a64-mmc";
reg = <0x01c0f000 0x1000>;
clocks = <&ccu CLK_BUS_MMC0>, <&ccu CLK_MMC0>;
clock-names = "ahb", "mmc";
resets = <&ccu RST_BUS_MMC0>;
reset-names = "ahb";
pinctrl-0 = <&mmc0_pins>;
pinctrl-names = "default";
interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
mmc1: mmc@1c10000 {
compatible = "allwinner,sun8i-r40-mmc",
"allwinner,sun50i-a64-mmc";
reg = <0x01c10000 0x1000>;
clocks = <&ccu CLK_BUS_MMC1>, <&ccu CLK_MMC1>;
clock-names = "ahb", "mmc";
resets = <&ccu RST_BUS_MMC1>;
reset-names = "ahb";
interrupts = <GIC_SPI 33 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
mmc2: mmc@1c11000 {
compatible = "allwinner,sun8i-r40-emmc",
"allwinner,sun50i-a64-emmc";
reg = <0x01c11000 0x1000>;
clocks = <&ccu CLK_BUS_MMC2>, <&ccu CLK_MMC2>;
clock-names = "ahb", "mmc";
resets = <&ccu RST_BUS_MMC2>;
reset-names = "ahb";
pinctrl-0 = <&mmc2_pins>;
pinctrl-names = "default";
interrupts = <GIC_SPI 34 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
mmc3: mmc@1c12000 {
compatible = "allwinner,sun8i-r40-mmc",
"allwinner,sun50i-a64-mmc";
reg = <0x01c12000 0x1000>;
clocks = <&ccu CLK_BUS_MMC3>, <&ccu CLK_MMC3>;
clock-names = "ahb", "mmc";
resets = <&ccu RST_BUS_MMC3>;
reset-names = "ahb";
interrupts = <GIC_SPI 35 IRQ_TYPE_LEVEL_HIGH>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
usbphy: phy@1c13400 {
compatible = "allwinner,sun8i-r40-usb-phy";
reg = <0x01c13400 0x14>,
<0x01c14800 0x4>,
<0x01c19800 0x4>,
<0x01c1c800 0x4>;
reg-names = "phy_ctrl",
"pmu0",
"pmu1",
"pmu2";
clocks = <&ccu CLK_USB_PHY0>,
<&ccu CLK_USB_PHY1>,
<&ccu CLK_USB_PHY2>;
clock-names = "usb0_phy",
"usb1_phy",
"usb2_phy";
resets = <&ccu RST_USB_PHY0>,
<&ccu RST_USB_PHY1>,
<&ccu RST_USB_PHY2>;
reset-names = "usb0_reset",
"usb1_reset",
"usb2_reset";
status = "disabled";
#phy-cells = <1>;
};
ehci1: usb@1c19000 {
compatible = "allwinner,sun8i-r40-ehci", "generic-ehci";
reg = <0x01c19000 0x100>;
interrupts = <GIC_SPI 76 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_EHCI1>;
resets = <&ccu RST_BUS_EHCI1>;
phys = <&usbphy 1>;
phy-names = "usb";
status = "disabled";
};
ohci1: usb@1c19400 {
compatible = "allwinner,sun8i-r40-ohci", "generic-ohci";
reg = <0x01c19400 0x100>;
interrupts = <GIC_SPI 64 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_OHCI1>,
<&ccu CLK_USB_OHCI1>;
resets = <&ccu RST_BUS_OHCI1>;
phys = <&usbphy 1>;
phy-names = "usb";
status = "disabled";
};
ehci2: usb@1c1c000 {
compatible = "allwinner,sun8i-r40-ehci", "generic-ehci";
reg = <0x01c1c000 0x100>;
interrupts = <GIC_SPI 78 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_EHCI2>;
resets = <&ccu RST_BUS_EHCI2>;
phys = <&usbphy 2>;
phy-names = "usb";
status = "disabled";
};
ohci2: usb@1c1c400 {
compatible = "allwinner,sun8i-r40-ohci", "generic-ohci";
reg = <0x01c1c400 0x100>;
interrupts = <GIC_SPI 65 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_OHCI2>,
<&ccu CLK_USB_OHCI2>;
resets = <&ccu RST_BUS_OHCI2>;
phys = <&usbphy 2>;
phy-names = "usb";
status = "disabled";
};
ccu: clock@1c20000 {
compatible = "allwinner,sun8i-r40-ccu";
reg = <0x01c20000 0x400>;
clocks = <&osc24M>, <&osc32k>;
clock-names = "hosc", "losc";
#clock-cells = <1>;
#reset-cells = <1>;
};
pio: pinctrl@1c20800 {
compatible = "allwinner,sun8i-r40-pinctrl";
reg = <0x01c20800 0x400>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_PIO>, <&osc24M>, <&osc32k>;
clock-names = "apb", "hosc", "losc";
gpio-controller;
interrupt-controller;
#interrupt-cells = <3>;
#gpio-cells = <3>;
gmac_rgmii_pins: gmac-rgmii-pins {
pins = "PA0", "PA1", "PA2", "PA3",
"PA4", "PA5", "PA6", "PA7",
"PA8", "PA10", "PA11", "PA12",
"PA13", "PA15", "PA16";
function = "gmac";
/*
* data lines in RGMII mode use DDR mode
* and need a higher signal drive strength
*/
drive-strength = <40>;
};
i2c0_pins: i2c0-pins {
pins = "PB0", "PB1";
function = "i2c0";
};
mmc0_pins: mmc0-pins {
pins = "PF0", "PF1", "PF2",
"PF3", "PF4", "PF5";
function = "mmc0";
drive-strength = <30>;
bias-pull-up;
};
mmc1_pg_pins: mmc1-pg-pins {
pins = "PG0", "PG1", "PG2",
"PG3", "PG4", "PG5";
function = "mmc1";
drive-strength = <30>;
bias-pull-up;
};
mmc2_pins: mmc2-pins {
pins = "PC5", "PC6", "PC7", "PC8", "PC9",
"PC10", "PC11", "PC12", "PC13", "PC14",
"PC15", "PC24";
function = "mmc2";
drive-strength = <30>;
bias-pull-up;
};
uart0_pb_pins: uart0-pb-pins {
pins = "PB22", "PB23";
function = "uart0";
};
};
wdt: watchdog@1c20c90 {
compatible = "allwinner,sun4i-a10-wdt";
reg = <0x01c20c90 0x10>;
};
uart0: serial@1c28000 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28000 0x400>;
interrupts = <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART0>;
resets = <&ccu RST_BUS_UART0>;
status = "disabled";
};
uart1: serial@1c28400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28400 0x400>;
interrupts = <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART1>;
resets = <&ccu RST_BUS_UART1>;
status = "disabled";
};
uart2: serial@1c28800 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28800 0x400>;
interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART2>;
resets = <&ccu RST_BUS_UART2>;
status = "disabled";
};
uart3: serial@1c28c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c28c00 0x400>;
interrupts = <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART3>;
resets = <&ccu RST_BUS_UART3>;
status = "disabled";
};
uart4: serial@1c29000 {
compatible = "snps,dw-apb-uart";
reg = <0x01c29000 0x400>;
interrupts = <GIC_SPI 17 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART4>;
resets = <&ccu RST_BUS_UART4>;
status = "disabled";
};
uart5: serial@1c29400 {
compatible = "snps,dw-apb-uart";
reg = <0x01c29400 0x400>;
interrupts = <GIC_SPI 18 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART5>;
resets = <&ccu RST_BUS_UART5>;
status = "disabled";
};
uart6: serial@1c29800 {
compatible = "snps,dw-apb-uart";
reg = <0x01c29800 0x400>;
interrupts = <GIC_SPI 19 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART6>;
resets = <&ccu RST_BUS_UART6>;
status = "disabled";
};
uart7: serial@1c29c00 {
compatible = "snps,dw-apb-uart";
reg = <0x01c29c00 0x400>;
interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>;
reg-shift = <2>;
reg-io-width = <4>;
clocks = <&ccu CLK_BUS_UART7>;
resets = <&ccu RST_BUS_UART7>;
status = "disabled";
};
i2c0: i2c@1c2ac00 {
compatible = "allwinner,sun6i-a31-i2c";
reg = <0x01c2ac00 0x400>;
interrupts = <GIC_SPI 7 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_I2C0>;
resets = <&ccu RST_BUS_I2C0>;
pinctrl-0 = <&i2c0_pins>;
pinctrl-names = "default";
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c1: i2c@1c2b000 {
compatible = "allwinner,sun6i-a31-i2c";
reg = <0x01c2b000 0x400>;
interrupts = <GIC_SPI 8 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_I2C1>;
resets = <&ccu RST_BUS_I2C1>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c2: i2c@1c2b400 {
compatible = "allwinner,sun6i-a31-i2c";
reg = <0x01c2b400 0x400>;
interrupts = <GIC_SPI 9 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_I2C2>;
resets = <&ccu RST_BUS_I2C2>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c3: i2c@1c2b800 {
compatible = "allwinner,sun6i-a31-i2c";
reg = <0x01c2b800 0x400>;
interrupts = <GIC_SPI 88 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_I2C3>;
resets = <&ccu RST_BUS_I2C3>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
i2c4: i2c@1c2c000 {
compatible = "allwinner,sun6i-a31-i2c";
reg = <0x01c2c000 0x400>;
interrupts = <GIC_SPI 89 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_I2C4>;
resets = <&ccu RST_BUS_I2C4>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
ahci: sata@1c18000 {
compatible = "allwinner,sun8i-r40-ahci";
reg = <0x01c18000 0x1000>;
interrupts = <GIC_SPI 56 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_SATA>, <&ccu CLK_SATA>;
resets = <&ccu RST_BUS_SATA>;
resets-name = "ahci";
#address-cells = <1>;
#size-cells = <0>;
status = "disabled";
};
gmac: ethernet@1c50000 {
compatible = "allwinner,sun8i-r40-gmac";
syscon = <&ccu>;
reg = <0x01c50000 0x10000>;
interrupts = <GIC_SPI 85 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "macirq";
resets = <&ccu RST_BUS_GMAC>;
reset-names = "stmmaceth";
clocks = <&ccu CLK_BUS_GMAC>;
clock-names = "stmmaceth";
status = "disabled";
gmac_mdio: mdio {
compatible = "snps,dwmac-mdio";
#address-cells = <1>;
#size-cells = <0>;
};
};
tcon_top: tcon-top@1c70000 {
compatible = "allwinner,sun8i-r40-tcon-top";
reg = <0x01c70000 0x1000>;
clocks = <&ccu CLK_BUS_TCON_TOP>,
<&ccu CLK_TCON_TV0>,
<&ccu CLK_TVE0>,
<&ccu CLK_TCON_TV1>,
<&ccu CLK_TVE1>,
<&ccu CLK_DSI_DPHY>;
clock-names = "bus",
"tcon-tv0",
"tve0",
"tcon-tv1",
"tve1",
"dsi";
clock-output-names = "tcon-top-tv0",
"tcon-top-tv1",
"tcon-top-dsi";
resets = <&ccu RST_BUS_TCON_TOP>;
#clock-cells = <1>;
ports {
#address-cells = <1>;
#size-cells = <0>;
tcon_top_mixer0_in: port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
tcon_top_mixer0_in_mixer0: endpoint@0 {
reg = <0>;
remote-endpoint = <&mixer0_out_tcon_top>;
};
};
tcon_top_mixer0_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
tcon_top_mixer0_out_tcon_lcd0: endpoint@0 {
reg = <0>;
};
tcon_top_mixer0_out_tcon_lcd1: endpoint@1 {
reg = <1>;
};
tcon_top_mixer0_out_tcon_tv0: endpoint@2 {
reg = <2>;
remote-endpoint = <&tcon_tv0_in_tcon_top_mixer0>;
};
tcon_top_mixer0_out_tcon_tv1: endpoint@3 {
reg = <3>;
remote-endpoint = <&tcon_tv1_in_tcon_top_mixer0>;
};
};
tcon_top_mixer1_in: port@2 {
#address-cells = <1>;
#size-cells = <0>;
reg = <2>;
tcon_top_mixer1_in_mixer1: endpoint@1 {
reg = <1>;
remote-endpoint = <&mixer1_out_tcon_top>;
};
};
tcon_top_mixer1_out: port@3 {
#address-cells = <1>;
#size-cells = <0>;
reg = <3>;
tcon_top_mixer1_out_tcon_lcd0: endpoint@0 {
reg = <0>;
};
tcon_top_mixer1_out_tcon_lcd1: endpoint@1 {
reg = <1>;
};
tcon_top_mixer1_out_tcon_tv0: endpoint@2 {
reg = <2>;
remote-endpoint = <&tcon_tv0_in_tcon_top_mixer1>;
};
tcon_top_mixer1_out_tcon_tv1: endpoint@3 {
reg = <3>;
remote-endpoint = <&tcon_tv1_in_tcon_top_mixer1>;
};
};
tcon_top_hdmi_in: port@4 {
#address-cells = <1>;
#size-cells = <0>;
reg = <4>;
tcon_top_hdmi_in_tcon_tv0: endpoint@0 {
reg = <0>;
remote-endpoint = <&tcon_tv0_out_tcon_top>;
};
tcon_top_hdmi_in_tcon_tv1: endpoint@1 {
reg = <1>;
remote-endpoint = <&tcon_tv1_out_tcon_top>;
};
};
tcon_top_hdmi_out: port@5 {
reg = <5>;
tcon_top_hdmi_out_hdmi: endpoint {
remote-endpoint = <&hdmi_in_tcon_top>;
};
};
};
};
tcon_tv0: lcd-controller@1c73000 {
compatible = "allwinner,sun8i-r40-tcon-tv";
reg = <0x01c73000 0x1000>;
interrupts = <GIC_SPI 51 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_TCON_TV0>, <&tcon_top 0>;
clock-names = "ahb", "tcon-ch1";
resets = <&ccu RST_BUS_TCON_TV0>;
reset-names = "lcd";
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
tcon_tv0_in: port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
tcon_tv0_in_tcon_top_mixer0: endpoint@0 {
reg = <0>;
remote-endpoint = <&tcon_top_mixer0_out_tcon_tv0>;
};
tcon_tv0_in_tcon_top_mixer1: endpoint@1 {
reg = <1>;
remote-endpoint = <&tcon_top_mixer1_out_tcon_tv0>;
};
};
tcon_tv0_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
tcon_tv0_out_tcon_top: endpoint@1 {
reg = <1>;
remote-endpoint = <&tcon_top_hdmi_in_tcon_tv0>;
};
};
};
};
tcon_tv1: lcd-controller@1c74000 {
compatible = "allwinner,sun8i-r40-tcon-tv";
reg = <0x01c74000 0x1000>;
interrupts = <GIC_SPI 52 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_TCON_TV1>, <&tcon_top 1>;
clock-names = "ahb", "tcon-ch1";
resets = <&ccu RST_BUS_TCON_TV1>;
reset-names = "lcd";
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
tcon_tv1_in: port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
tcon_tv1_in_tcon_top_mixer0: endpoint@0 {
reg = <0>;
remote-endpoint = <&tcon_top_mixer0_out_tcon_tv1>;
};
tcon_tv1_in_tcon_top_mixer1: endpoint@1 {
reg = <1>;
remote-endpoint = <&tcon_top_mixer1_out_tcon_tv1>;
};
};
tcon_tv1_out: port@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <1>;
tcon_tv1_out_tcon_top: endpoint@1 {
reg = <1>;
remote-endpoint = <&tcon_top_hdmi_in_tcon_tv1>;
};
};
};
};
gic: interrupt-controller@1c81000 {
compatible = "arm,gic-400";
reg = <0x01c81000 0x1000>,
<0x01c82000 0x1000>,
<0x01c84000 0x2000>,
<0x01c86000 0x2000>;
interrupt-controller;
#interrupt-cells = <3>;
interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
};
hdmi: hdmi@1ee0000 {
compatible = "allwinner,sun8i-r40-dw-hdmi",
"allwinner,sun8i-a83t-dw-hdmi";
reg = <0x01ee0000 0x10000>;
reg-io-width = <1>;
interrupts = <GIC_SPI 58 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_HDMI0>, <&ccu CLK_HDMI_SLOW>,
<&ccu CLK_HDMI>;
clock-names = "iahb", "isfr", "tmds";
resets = <&ccu RST_BUS_HDMI1>;
reset-names = "ctrl";
phys = <&hdmi_phy>;
phy-names = "hdmi-phy";
status = "disabled";
ports {
#address-cells = <1>;
#size-cells = <0>;
hdmi_in: port@0 {
reg = <0>;
hdmi_in_tcon_top: endpoint {
remote-endpoint = <&tcon_top_hdmi_out_hdmi>;
};
};
hdmi_out: port@1 {
reg = <1>;
};
};
};
hdmi_phy: hdmi-phy@1ef0000 {
compatible = "allwinner,sun8i-r40-hdmi-phy";
reg = <0x01ef0000 0x10000>;
clocks = <&ccu CLK_BUS_HDMI1>, <&ccu CLK_HDMI_SLOW>,
<&ccu 7>, <&ccu 16>;
clock-names = "bus", "mod", "pll-0", "pll-1";
resets = <&ccu RST_BUS_HDMI0>;
reset-names = "phy";
#phy-cells = <0>;
};
};
timer {
compatible = "arm,armv7-timer";
interrupts = <GIC_PPI 13 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_LOW)>,
<GIC_PPI 14 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_LOW)>,
<GIC_PPI 11 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_LOW)>,
<GIC_PPI 10 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_LOW)>;
};
};