linux/arch/s390/kernel/crash_dump.c
Michael Holzheu dcc00b79fc s390/kdump: Add final note
Since linux v3.14 with commit 38dfac843c ("vmcore: prevent PT_NOTE
p_memsz overflow during header update") on s390 we get the following
message in the kdump kernel:

  Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x6b6b6b6b,
  n_descsz=0x6b6b6b6b

The reason for this is that we don't create a final zero note in
the ELF header which the proc/vmcore code uses to find out the end
of the notes section (see also kernel/kexec_core.c:final_note()).

It still worked on s390 by chance because we (most of the time?) have the
byte pattern 0x6b6b6b6b after the notes section which also makes the notes
parsing code stop in update_note_header_size_elf64() because 0x6b6b6b6b is
interpreded as note size:

  if ((real_sz + sz) > max_sz) {
          pr_warn("Warning: Exceeded p_memsz, dropping P ...);
          break;
  }

So fix this and add the missing final note to the ELF header.
We don't have to adjust the memory size for ELF header ("alloc_size")
because the new ELF note still fits into the 0x1000 base memory.

Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2017-03-28 16:54:31 +02:00

621 lines
15 KiB
C

/*
* S390 kdump implementation
*
* Copyright IBM Corp. 2011
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
*/
#include <linux/crash_dump.h>
#include <asm/lowcore.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/bootmem.h>
#include <linux/elf.h>
#include <asm/asm-offsets.h>
#include <linux/memblock.h>
#include <asm/os_info.h>
#include <asm/elf.h>
#include <asm/ipl.h>
#include <asm/sclp.h>
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
static struct memblock_region oldmem_region;
static struct memblock_type oldmem_type = {
.cnt = 1,
.max = 1,
.total_size = 0,
.regions = &oldmem_region,
.name = "oldmem",
};
struct save_area {
struct list_head list;
u64 psw[2];
u64 ctrs[16];
u64 gprs[16];
u32 acrs[16];
u64 fprs[16];
u32 fpc;
u32 prefix;
u64 todpreg;
u64 timer;
u64 todcmp;
u64 vxrs_low[16];
__vector128 vxrs_high[16];
};
static LIST_HEAD(dump_save_areas);
/*
* Allocate a save area
*/
struct save_area * __init save_area_alloc(bool is_boot_cpu)
{
struct save_area *sa;
sa = (void *) memblock_alloc(sizeof(*sa), 8);
if (is_boot_cpu)
list_add(&sa->list, &dump_save_areas);
else
list_add_tail(&sa->list, &dump_save_areas);
return sa;
}
/*
* Return the address of the save area for the boot CPU
*/
struct save_area * __init save_area_boot_cpu(void)
{
return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
}
/*
* Copy CPU registers into the save area
*/
void __init save_area_add_regs(struct save_area *sa, void *regs)
{
struct lowcore *lc;
lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
}
/*
* Copy vector registers into the save area
*/
void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
{
int i;
/* Copy lower halves of vector registers 0-15 */
for (i = 0; i < 16; i++)
memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
/* Copy vector registers 16-31 */
memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
}
/*
* Return physical address for virtual address
*/
static inline void *load_real_addr(void *addr)
{
unsigned long real_addr;
asm volatile(
" lra %0,0(%1)\n"
" jz 0f\n"
" la %0,0\n"
"0:"
: "=a" (real_addr) : "a" (addr) : "cc");
return (void *)real_addr;
}
/*
* Copy memory of the old, dumped system to a kernel space virtual address
*/
int copy_oldmem_kernel(void *dst, void *src, size_t count)
{
unsigned long from, len;
void *ra;
int rc;
while (count) {
from = __pa(src);
if (!OLDMEM_BASE && from < sclp.hsa_size) {
/* Copy from zfcpdump HSA area */
len = min(count, sclp.hsa_size - from);
rc = memcpy_hsa_kernel(dst, from, len);
if (rc)
return rc;
} else {
/* Check for swapped kdump oldmem areas */
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
from -= OLDMEM_BASE;
len = min(count, OLDMEM_SIZE - from);
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
len = min(count, OLDMEM_SIZE - from);
from += OLDMEM_BASE;
} else {
len = count;
}
if (is_vmalloc_or_module_addr(dst)) {
ra = load_real_addr(dst);
len = min(PAGE_SIZE - offset_in_page(ra), len);
} else {
ra = dst;
}
if (memcpy_real(ra, (void *) from, len))
return -EFAULT;
}
dst += len;
src += len;
count -= len;
}
return 0;
}
/*
* Copy memory of the old, dumped system to a user space virtual address
*/
static int copy_oldmem_user(void __user *dst, void *src, size_t count)
{
unsigned long from, len;
int rc;
while (count) {
from = __pa(src);
if (!OLDMEM_BASE && from < sclp.hsa_size) {
/* Copy from zfcpdump HSA area */
len = min(count, sclp.hsa_size - from);
rc = memcpy_hsa_user(dst, from, len);
if (rc)
return rc;
} else {
/* Check for swapped kdump oldmem areas */
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
from -= OLDMEM_BASE;
len = min(count, OLDMEM_SIZE - from);
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
len = min(count, OLDMEM_SIZE - from);
from += OLDMEM_BASE;
} else {
len = count;
}
rc = copy_to_user_real(dst, (void *) from, count);
if (rc)
return rc;
}
dst += len;
src += len;
count -= len;
}
return 0;
}
/*
* Copy one page from "oldmem"
*/
ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
unsigned long offset, int userbuf)
{
void *src;
int rc;
if (!csize)
return 0;
src = (void *) (pfn << PAGE_SHIFT) + offset;
if (userbuf)
rc = copy_oldmem_user((void __force __user *) buf, src, csize);
else
rc = copy_oldmem_kernel((void *) buf, src, csize);
return rc;
}
/*
* Remap "oldmem" for kdump
*
* For the kdump reserved memory this functions performs a swap operation:
* [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
*/
static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
unsigned long from, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long size_old;
int rc;
if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
rc = remap_pfn_range(vma, from,
pfn + (OLDMEM_BASE >> PAGE_SHIFT),
size_old, prot);
if (rc || size == size_old)
return rc;
size -= size_old;
from += size_old;
pfn += size_old >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for zfcpdump
*
* We only map available memory above HSA size. Memory below HSA size
* is read on demand using the copy_oldmem_page() function.
*/
static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
unsigned long from,
unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long hsa_end = sclp.hsa_size;
unsigned long size_hsa;
if (pfn < hsa_end >> PAGE_SHIFT) {
size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
if (size == size_hsa)
return 0;
size -= size_hsa;
from += size_hsa;
pfn += size_hsa >> PAGE_SHIFT;
}
return remap_pfn_range(vma, from, pfn, size, prot);
}
/*
* Remap "oldmem" for kdump or zfcpdump
*/
int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
if (OLDMEM_BASE)
return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
else
return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
prot);
}
/*
* Alloc memory and panic in case of ENOMEM
*/
static void *kzalloc_panic(int len)
{
void *rc;
rc = kzalloc(len, GFP_KERNEL);
if (!rc)
panic("s390 kdump kzalloc (%d) failed", len);
return rc;
}
/*
* Initialize ELF note
*/
static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
const char *name)
{
Elf64_Nhdr *note;
u64 len;
note = (Elf64_Nhdr *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = d_len;
note->n_type = type;
len = sizeof(Elf64_Nhdr);
memcpy(buf + len, name, note->n_namesz);
len = roundup(len + note->n_namesz, 4);
memcpy(buf + len, desc, note->n_descsz);
len = roundup(len + note->n_descsz, 4);
return PTR_ADD(buf, len);
}
static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
{
const char *note_name = "LINUX";
if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
note_name = KEXEC_CORE_NOTE_NAME;
return nt_init_name(buf, type, desc, d_len, note_name);
}
/*
* Fill ELF notes for one CPU with save area registers
*/
static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
{
struct elf_prstatus nt_prstatus;
elf_fpregset_t nt_fpregset;
/* Prepare prstatus note */
memset(&nt_prstatus, 0, sizeof(nt_prstatus));
memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
nt_prstatus.pr_pid = cpu;
/* Prepare fpregset (floating point) note */
memset(&nt_fpregset, 0, sizeof(nt_fpregset));
memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
/* Create ELF notes for the CPU */
ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
if (MACHINE_HAS_VX) {
ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
&sa->vxrs_high, sizeof(sa->vxrs_high));
ptr = nt_init(ptr, NT_S390_VXRS_LOW,
&sa->vxrs_low, sizeof(sa->vxrs_low));
}
return ptr;
}
/*
* Initialize prpsinfo note (new kernel)
*/
static void *nt_prpsinfo(void *ptr)
{
struct elf_prpsinfo prpsinfo;
memset(&prpsinfo, 0, sizeof(prpsinfo));
prpsinfo.pr_sname = 'R';
strcpy(prpsinfo.pr_fname, "vmlinux");
return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
}
/*
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
*/
static void *get_vmcoreinfo_old(unsigned long *size)
{
char nt_name[11], *vmcoreinfo;
Elf64_Nhdr note;
void *addr;
if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
return NULL;
memset(nt_name, 0, sizeof(nt_name));
if (copy_oldmem_kernel(&note, addr, sizeof(note)))
return NULL;
if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
sizeof(nt_name) - 1))
return NULL;
if (strcmp(nt_name, "VMCOREINFO") != 0)
return NULL;
vmcoreinfo = kzalloc_panic(note.n_descsz);
if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
return NULL;
*size = note.n_descsz;
return vmcoreinfo;
}
/*
* Initialize vmcoreinfo note (new kernel)
*/
static void *nt_vmcoreinfo(void *ptr)
{
unsigned long size;
void *vmcoreinfo;
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
if (!vmcoreinfo)
vmcoreinfo = get_vmcoreinfo_old(&size);
if (!vmcoreinfo)
return ptr;
return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
}
/*
* Initialize final note (needed for /proc/vmcore code)
*/
static void *nt_final(void *ptr)
{
Elf64_Nhdr *note;
note = (Elf64_Nhdr *) ptr;
note->n_namesz = 0;
note->n_descsz = 0;
note->n_type = 0;
return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
}
/*
* Initialize ELF header (new kernel)
*/
static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
{
memset(ehdr, 0, sizeof(*ehdr));
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = EM_S390;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
ehdr->e_phnum = mem_chunk_cnt + 1;
return ehdr + 1;
}
/*
* Return CPU count for ELF header (new kernel)
*/
static int get_cpu_cnt(void)
{
struct save_area *sa;
int cpus = 0;
list_for_each_entry(sa, &dump_save_areas, list)
if (sa->prefix != 0)
cpus++;
return cpus;
}
/*
* Return memory chunk count for ELF header (new kernel)
*/
static int get_mem_chunk_cnt(void)
{
int cnt = 0;
u64 idx;
for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
MEMBLOCK_NONE, NULL, NULL, NULL)
cnt++;
return cnt;
}
/*
* Initialize ELF loads (new kernel)
*/
static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
{
phys_addr_t start, end;
u64 idx;
for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
MEMBLOCK_NONE, &start, &end, NULL) {
phdr->p_filesz = end - start;
phdr->p_type = PT_LOAD;
phdr->p_offset = start;
phdr->p_vaddr = start;
phdr->p_paddr = start;
phdr->p_memsz = end - start;
phdr->p_flags = PF_R | PF_W | PF_X;
phdr->p_align = PAGE_SIZE;
phdr++;
}
}
/*
* Initialize notes (new kernel)
*/
static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
{
struct save_area *sa;
void *ptr_start = ptr;
int cpu;
ptr = nt_prpsinfo(ptr);
cpu = 1;
list_for_each_entry(sa, &dump_save_areas, list)
if (sa->prefix != 0)
ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
ptr = nt_vmcoreinfo(ptr);
ptr = nt_final(ptr);
memset(phdr, 0, sizeof(*phdr));
phdr->p_type = PT_NOTE;
phdr->p_offset = notes_offset;
phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
phdr->p_memsz = phdr->p_filesz;
return ptr;
}
/*
* Create ELF core header (new kernel)
*/
int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
{
Elf64_Phdr *phdr_notes, *phdr_loads;
int mem_chunk_cnt;
void *ptr, *hdr;
u32 alloc_size;
u64 hdr_off;
/* If we are not in kdump or zfcpdump mode return */
if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
return 0;
/* If we cannot get HSA size for zfcpdump return error */
if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
return -ENODEV;
/* For kdump, exclude previous crashkernel memory */
if (OLDMEM_BASE) {
oldmem_region.base = OLDMEM_BASE;
oldmem_region.size = OLDMEM_SIZE;
oldmem_type.total_size = OLDMEM_SIZE;
}
mem_chunk_cnt = get_mem_chunk_cnt();
alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
mem_chunk_cnt * sizeof(Elf64_Phdr);
hdr = kzalloc_panic(alloc_size);
/* Init elf header */
ptr = ehdr_init(hdr, mem_chunk_cnt);
/* Init program headers */
phdr_notes = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
phdr_loads = ptr;
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
/* Init notes */
hdr_off = PTR_DIFF(ptr, hdr);
ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
/* Init loads */
hdr_off = PTR_DIFF(ptr, hdr);
loads_init(phdr_loads, hdr_off);
*addr = (unsigned long long) hdr;
*size = (unsigned long long) hdr_off;
BUG_ON(elfcorehdr_size > alloc_size);
return 0;
}
/*
* Free ELF core header (new kernel)
*/
void elfcorehdr_free(unsigned long long addr)
{
kfree((void *)(unsigned long)addr);
}
/*
* Read from ELF header
*/
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
memcpy(buf, src, count);
*ppos += count;
return count;
}
/*
* Read from ELF notes data
*/
ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
{
void *src = (void *)(unsigned long)*ppos;
memcpy(buf, src, count);
*ppos += count;
return count;
}