mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 23:54:04 +08:00
d27afd7ae6
The dma framework will calculate the dma channels chancnt, setting it ourself is wrong. Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Acked-by: Lars-Peter Clausen <lars@metafoo.de> Link: https://lore.kernel.org/r/20230521100252.3197-3-jszhang@kernel.org Signed-off-by: Vinod Koul <vkoul@kernel.org>
1064 lines
28 KiB
C
1064 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Driver for the Analog Devices AXI-DMAC core
|
|
*
|
|
* Copyright 2013-2019 Analog Devices Inc.
|
|
* Author: Lars-Peter Clausen <lars@metafoo.de>
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fpga/adi-axi-common.h>
|
|
|
|
#include <dt-bindings/dma/axi-dmac.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/*
|
|
* The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
|
|
* various instantiation parameters which decided the exact feature set support
|
|
* by the core.
|
|
*
|
|
* Each channel of the core has a source interface and a destination interface.
|
|
* The number of channels and the type of the channel interfaces is selected at
|
|
* configuration time. A interface can either be a connected to a central memory
|
|
* interconnect, which allows access to system memory, or it can be connected to
|
|
* a dedicated bus which is directly connected to a data port on a peripheral.
|
|
* Given that those are configuration options of the core that are selected when
|
|
* it is instantiated this means that they can not be changed by software at
|
|
* runtime. By extension this means that each channel is uni-directional. It can
|
|
* either be device to memory or memory to device, but not both. Also since the
|
|
* device side is a dedicated data bus only connected to a single peripheral
|
|
* there is no address than can or needs to be configured for the device side.
|
|
*/
|
|
|
|
#define AXI_DMAC_REG_INTERFACE_DESC 0x10
|
|
#define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12)
|
|
#define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
|
|
#define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8)
|
|
#define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
|
|
#define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4)
|
|
#define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
|
|
#define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0)
|
|
#define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
|
|
#define AXI_DMAC_REG_COHERENCY_DESC 0x14
|
|
#define AXI_DMAC_DST_COHERENT_MSK BIT(0)
|
|
#define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
|
|
|
|
#define AXI_DMAC_REG_IRQ_MASK 0x80
|
|
#define AXI_DMAC_REG_IRQ_PENDING 0x84
|
|
#define AXI_DMAC_REG_IRQ_SOURCE 0x88
|
|
|
|
#define AXI_DMAC_REG_CTRL 0x400
|
|
#define AXI_DMAC_REG_TRANSFER_ID 0x404
|
|
#define AXI_DMAC_REG_START_TRANSFER 0x408
|
|
#define AXI_DMAC_REG_FLAGS 0x40c
|
|
#define AXI_DMAC_REG_DEST_ADDRESS 0x410
|
|
#define AXI_DMAC_REG_SRC_ADDRESS 0x414
|
|
#define AXI_DMAC_REG_X_LENGTH 0x418
|
|
#define AXI_DMAC_REG_Y_LENGTH 0x41c
|
|
#define AXI_DMAC_REG_DEST_STRIDE 0x420
|
|
#define AXI_DMAC_REG_SRC_STRIDE 0x424
|
|
#define AXI_DMAC_REG_TRANSFER_DONE 0x428
|
|
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
|
|
#define AXI_DMAC_REG_STATUS 0x430
|
|
#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
|
|
#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
|
|
#define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c
|
|
#define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450
|
|
|
|
#define AXI_DMAC_CTRL_ENABLE BIT(0)
|
|
#define AXI_DMAC_CTRL_PAUSE BIT(1)
|
|
|
|
#define AXI_DMAC_IRQ_SOT BIT(0)
|
|
#define AXI_DMAC_IRQ_EOT BIT(1)
|
|
|
|
#define AXI_DMAC_FLAG_CYCLIC BIT(0)
|
|
#define AXI_DMAC_FLAG_LAST BIT(1)
|
|
#define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2)
|
|
|
|
#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
|
|
|
|
/* The maximum ID allocated by the hardware is 31 */
|
|
#define AXI_DMAC_SG_UNUSED 32U
|
|
|
|
struct axi_dmac_sg {
|
|
dma_addr_t src_addr;
|
|
dma_addr_t dest_addr;
|
|
unsigned int x_len;
|
|
unsigned int y_len;
|
|
unsigned int dest_stride;
|
|
unsigned int src_stride;
|
|
unsigned int id;
|
|
unsigned int partial_len;
|
|
bool schedule_when_free;
|
|
};
|
|
|
|
struct axi_dmac_desc {
|
|
struct virt_dma_desc vdesc;
|
|
bool cyclic;
|
|
bool have_partial_xfer;
|
|
|
|
unsigned int num_submitted;
|
|
unsigned int num_completed;
|
|
unsigned int num_sgs;
|
|
struct axi_dmac_sg sg[];
|
|
};
|
|
|
|
struct axi_dmac_chan {
|
|
struct virt_dma_chan vchan;
|
|
|
|
struct axi_dmac_desc *next_desc;
|
|
struct list_head active_descs;
|
|
enum dma_transfer_direction direction;
|
|
|
|
unsigned int src_width;
|
|
unsigned int dest_width;
|
|
unsigned int src_type;
|
|
unsigned int dest_type;
|
|
|
|
unsigned int max_length;
|
|
unsigned int address_align_mask;
|
|
unsigned int length_align_mask;
|
|
|
|
bool hw_partial_xfer;
|
|
bool hw_cyclic;
|
|
bool hw_2d;
|
|
};
|
|
|
|
struct axi_dmac {
|
|
void __iomem *base;
|
|
int irq;
|
|
|
|
struct clk *clk;
|
|
|
|
struct dma_device dma_dev;
|
|
struct axi_dmac_chan chan;
|
|
};
|
|
|
|
static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
|
|
{
|
|
return container_of(chan->vchan.chan.device, struct axi_dmac,
|
|
dma_dev);
|
|
}
|
|
|
|
static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct axi_dmac_chan, vchan.chan);
|
|
}
|
|
|
|
static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
|
|
{
|
|
return container_of(vdesc, struct axi_dmac_desc, vdesc);
|
|
}
|
|
|
|
static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
|
|
unsigned int val)
|
|
{
|
|
writel(val, axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
|
|
{
|
|
return readl(axi_dmac->base + reg);
|
|
}
|
|
|
|
static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
|
|
{
|
|
return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
|
|
}
|
|
|
|
static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
|
|
{
|
|
if (len == 0)
|
|
return false;
|
|
if ((len & chan->length_align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
|
|
{
|
|
if ((addr & chan->address_align_mask) != 0) /* Not aligned */
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
|
|
{
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *sg;
|
|
unsigned int flags = 0;
|
|
unsigned int val;
|
|
|
|
val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
|
|
if (val) /* Queue is full, wait for the next SOT IRQ */
|
|
return;
|
|
|
|
desc = chan->next_desc;
|
|
|
|
if (!desc) {
|
|
vdesc = vchan_next_desc(&chan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
list_move_tail(&vdesc->node, &chan->active_descs);
|
|
desc = to_axi_dmac_desc(vdesc);
|
|
}
|
|
sg = &desc->sg[desc->num_submitted];
|
|
|
|
/* Already queued in cyclic mode. Wait for it to finish */
|
|
if (sg->id != AXI_DMAC_SG_UNUSED) {
|
|
sg->schedule_when_free = true;
|
|
return;
|
|
}
|
|
|
|
desc->num_submitted++;
|
|
if (desc->num_submitted == desc->num_sgs ||
|
|
desc->have_partial_xfer) {
|
|
if (desc->cyclic)
|
|
desc->num_submitted = 0; /* Start again */
|
|
else
|
|
chan->next_desc = NULL;
|
|
flags |= AXI_DMAC_FLAG_LAST;
|
|
} else {
|
|
chan->next_desc = desc;
|
|
}
|
|
|
|
sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
|
|
}
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
|
|
}
|
|
|
|
/*
|
|
* If the hardware supports cyclic transfers and there is no callback to
|
|
* call and only a single segment, enable hw cyclic mode to avoid
|
|
* unnecessary interrupts.
|
|
*/
|
|
if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
|
|
desc->num_sgs == 1)
|
|
flags |= AXI_DMAC_FLAG_CYCLIC;
|
|
|
|
if (chan->hw_partial_xfer)
|
|
flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
|
|
{
|
|
return list_first_entry_or_null(&chan->active_descs,
|
|
struct axi_dmac_desc, vdesc.node);
|
|
}
|
|
|
|
static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
|
|
struct axi_dmac_sg *sg)
|
|
{
|
|
if (chan->hw_2d)
|
|
return sg->x_len * sg->y_len;
|
|
else
|
|
return sg->x_len;
|
|
}
|
|
|
|
static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
|
|
{
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *sg;
|
|
u32 xfer_done, len, id, i;
|
|
bool found_sg;
|
|
|
|
do {
|
|
len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
|
|
id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
|
|
|
|
found_sg = false;
|
|
list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
|
|
for (i = 0; i < desc->num_sgs; i++) {
|
|
sg = &desc->sg[i];
|
|
if (sg->id == AXI_DMAC_SG_UNUSED)
|
|
continue;
|
|
if (sg->id == id) {
|
|
desc->have_partial_xfer = true;
|
|
sg->partial_len = len;
|
|
found_sg = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found_sg)
|
|
break;
|
|
}
|
|
|
|
if (found_sg) {
|
|
dev_dbg(dmac->dma_dev.dev,
|
|
"Found partial segment id=%u, len=%u\n",
|
|
id, len);
|
|
} else {
|
|
dev_warn(dmac->dma_dev.dev,
|
|
"Not found partial segment id=%u, len=%u\n",
|
|
id, len);
|
|
}
|
|
|
|
/* Check if we have any more partial transfers */
|
|
xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
|
|
xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
|
|
|
|
} while (!xfer_done);
|
|
}
|
|
|
|
static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
|
|
struct axi_dmac_desc *active)
|
|
{
|
|
struct dmaengine_result *rslt = &active->vdesc.tx_result;
|
|
unsigned int start = active->num_completed - 1;
|
|
struct axi_dmac_sg *sg;
|
|
unsigned int i, total;
|
|
|
|
rslt->result = DMA_TRANS_NOERROR;
|
|
rslt->residue = 0;
|
|
|
|
/*
|
|
* We get here if the last completed segment is partial, which
|
|
* means we can compute the residue from that segment onwards
|
|
*/
|
|
for (i = start; i < active->num_sgs; i++) {
|
|
sg = &active->sg[i];
|
|
total = axi_dmac_total_sg_bytes(chan, sg);
|
|
rslt->residue += (total - sg->partial_len);
|
|
}
|
|
}
|
|
|
|
static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
|
|
unsigned int completed_transfers)
|
|
{
|
|
struct axi_dmac_desc *active;
|
|
struct axi_dmac_sg *sg;
|
|
bool start_next = false;
|
|
|
|
active = axi_dmac_active_desc(chan);
|
|
if (!active)
|
|
return false;
|
|
|
|
if (chan->hw_partial_xfer &&
|
|
(completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
|
|
axi_dmac_dequeue_partial_xfers(chan);
|
|
|
|
do {
|
|
sg = &active->sg[active->num_completed];
|
|
if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
|
|
break;
|
|
if (!(BIT(sg->id) & completed_transfers))
|
|
break;
|
|
active->num_completed++;
|
|
sg->id = AXI_DMAC_SG_UNUSED;
|
|
if (sg->schedule_when_free) {
|
|
sg->schedule_when_free = false;
|
|
start_next = true;
|
|
}
|
|
|
|
if (sg->partial_len)
|
|
axi_dmac_compute_residue(chan, active);
|
|
|
|
if (active->cyclic)
|
|
vchan_cyclic_callback(&active->vdesc);
|
|
|
|
if (active->num_completed == active->num_sgs ||
|
|
sg->partial_len) {
|
|
if (active->cyclic) {
|
|
active->num_completed = 0; /* wrap around */
|
|
} else {
|
|
list_del(&active->vdesc.node);
|
|
vchan_cookie_complete(&active->vdesc);
|
|
active = axi_dmac_active_desc(chan);
|
|
}
|
|
}
|
|
} while (active);
|
|
|
|
return start_next;
|
|
}
|
|
|
|
static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
|
|
{
|
|
struct axi_dmac *dmac = devid;
|
|
unsigned int pending;
|
|
bool start_next = false;
|
|
|
|
pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
|
|
if (!pending)
|
|
return IRQ_NONE;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
|
|
|
|
spin_lock(&dmac->chan.vchan.lock);
|
|
/* One or more transfers have finished */
|
|
if (pending & AXI_DMAC_IRQ_EOT) {
|
|
unsigned int completed;
|
|
|
|
completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
|
|
start_next = axi_dmac_transfer_done(&dmac->chan, completed);
|
|
}
|
|
/* Space has become available in the descriptor queue */
|
|
if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
|
|
axi_dmac_start_transfer(&dmac->chan);
|
|
spin_unlock(&dmac->chan.vchan.lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int axi_dmac_terminate_all(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
|
|
chan->next_desc = NULL;
|
|
vchan_get_all_descriptors(&chan->vchan, &head);
|
|
list_splice_tail_init(&chan->active_descs, &head);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
|
|
vchan_dma_desc_free_list(&chan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void axi_dmac_synchronize(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
|
|
vchan_synchronize(&chan->vchan);
|
|
}
|
|
|
|
static void axi_dmac_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac *dmac = chan_to_axi_dmac(chan);
|
|
unsigned long flags;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
|
|
|
|
spin_lock_irqsave(&chan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&chan->vchan))
|
|
axi_dmac_start_transfer(chan);
|
|
spin_unlock_irqrestore(&chan->vchan.lock, flags);
|
|
}
|
|
|
|
static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
|
|
{
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int i;
|
|
|
|
desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
for (i = 0; i < num_sgs; i++)
|
|
desc->sg[i].id = AXI_DMAC_SG_UNUSED;
|
|
|
|
desc->num_sgs = num_sgs;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
|
|
enum dma_transfer_direction direction, dma_addr_t addr,
|
|
unsigned int num_periods, unsigned int period_len,
|
|
struct axi_dmac_sg *sg)
|
|
{
|
|
unsigned int num_segments, i;
|
|
unsigned int segment_size;
|
|
unsigned int len;
|
|
|
|
/* Split into multiple equally sized segments if necessary */
|
|
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
|
|
segment_size = DIV_ROUND_UP(period_len, num_segments);
|
|
/* Take care of alignment */
|
|
segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
|
|
|
|
for (i = 0; i < num_periods; i++) {
|
|
len = period_len;
|
|
|
|
while (len > segment_size) {
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
sg->dest_addr = addr;
|
|
else
|
|
sg->src_addr = addr;
|
|
sg->x_len = segment_size;
|
|
sg->y_len = 1;
|
|
sg++;
|
|
addr += segment_size;
|
|
len -= segment_size;
|
|
}
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
sg->dest_addr = addr;
|
|
else
|
|
sg->src_addr = addr;
|
|
sg->x_len = len;
|
|
sg->y_len = 1;
|
|
sg++;
|
|
addr += len;
|
|
}
|
|
|
|
return sg;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
|
|
struct dma_chan *c, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long flags, void *context)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
struct axi_dmac_sg *dsg;
|
|
struct scatterlist *sg;
|
|
unsigned int num_sgs;
|
|
unsigned int i;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
num_sgs = 0;
|
|
for_each_sg(sgl, sg, sg_len, i)
|
|
num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
|
|
|
|
desc = axi_dmac_alloc_desc(num_sgs);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
dsg = desc->sg;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
|
|
!axi_dmac_check_len(chan, sg_dma_len(sg))) {
|
|
kfree(desc);
|
|
return NULL;
|
|
}
|
|
|
|
dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
|
|
sg_dma_len(sg), dsg);
|
|
}
|
|
|
|
desc->cyclic = false;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
|
|
struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
unsigned int num_periods, num_segments;
|
|
|
|
if (direction != chan->direction)
|
|
return NULL;
|
|
|
|
if (!axi_dmac_check_len(chan, buf_len) ||
|
|
!axi_dmac_check_addr(chan, buf_addr))
|
|
return NULL;
|
|
|
|
if (period_len == 0 || buf_len % period_len)
|
|
return NULL;
|
|
|
|
num_periods = buf_len / period_len;
|
|
num_segments = DIV_ROUND_UP(period_len, chan->max_length);
|
|
|
|
desc = axi_dmac_alloc_desc(num_periods * num_segments);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
|
|
period_len, desc->sg);
|
|
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
|
|
struct dma_chan *c, struct dma_interleaved_template *xt,
|
|
unsigned long flags)
|
|
{
|
|
struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
|
|
struct axi_dmac_desc *desc;
|
|
size_t dst_icg, src_icg;
|
|
|
|
if (xt->frame_size != 1)
|
|
return NULL;
|
|
|
|
if (xt->dir != chan->direction)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
|
|
return NULL;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
|
|
return NULL;
|
|
}
|
|
|
|
dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
|
|
src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
|
|
|
|
if (chan->hw_2d) {
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
|
|
xt->numf == 0)
|
|
return NULL;
|
|
if (xt->sgl[0].size + dst_icg > chan->max_length ||
|
|
xt->sgl[0].size + src_icg > chan->max_length)
|
|
return NULL;
|
|
} else {
|
|
if (dst_icg != 0 || src_icg != 0)
|
|
return NULL;
|
|
if (chan->max_length / xt->sgl[0].size < xt->numf)
|
|
return NULL;
|
|
if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
|
|
return NULL;
|
|
}
|
|
|
|
desc = axi_dmac_alloc_desc(1);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
if (axi_dmac_src_is_mem(chan)) {
|
|
desc->sg[0].src_addr = xt->src_start;
|
|
desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
|
|
}
|
|
|
|
if (axi_dmac_dest_is_mem(chan)) {
|
|
desc->sg[0].dest_addr = xt->dst_start;
|
|
desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
|
|
}
|
|
|
|
if (chan->hw_2d) {
|
|
desc->sg[0].x_len = xt->sgl[0].size;
|
|
desc->sg[0].y_len = xt->numf;
|
|
} else {
|
|
desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
|
|
desc->sg[0].y_len = 1;
|
|
}
|
|
|
|
if (flags & DMA_CYCLIC)
|
|
desc->cyclic = true;
|
|
|
|
return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
|
|
}
|
|
|
|
static void axi_dmac_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
vchan_free_chan_resources(to_virt_chan(c));
|
|
}
|
|
|
|
static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
|
|
}
|
|
|
|
static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
|
|
{
|
|
switch (reg) {
|
|
case AXI_DMAC_REG_IRQ_MASK:
|
|
case AXI_DMAC_REG_IRQ_SOURCE:
|
|
case AXI_DMAC_REG_IRQ_PENDING:
|
|
case AXI_DMAC_REG_CTRL:
|
|
case AXI_DMAC_REG_TRANSFER_ID:
|
|
case AXI_DMAC_REG_START_TRANSFER:
|
|
case AXI_DMAC_REG_FLAGS:
|
|
case AXI_DMAC_REG_DEST_ADDRESS:
|
|
case AXI_DMAC_REG_SRC_ADDRESS:
|
|
case AXI_DMAC_REG_X_LENGTH:
|
|
case AXI_DMAC_REG_Y_LENGTH:
|
|
case AXI_DMAC_REG_DEST_STRIDE:
|
|
case AXI_DMAC_REG_SRC_STRIDE:
|
|
case AXI_DMAC_REG_TRANSFER_DONE:
|
|
case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
|
|
case AXI_DMAC_REG_STATUS:
|
|
case AXI_DMAC_REG_CURRENT_SRC_ADDR:
|
|
case AXI_DMAC_REG_CURRENT_DEST_ADDR:
|
|
case AXI_DMAC_REG_PARTIAL_XFER_LEN:
|
|
case AXI_DMAC_REG_PARTIAL_XFER_ID:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static const struct regmap_config axi_dmac_regmap_config = {
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
|
|
.readable_reg = axi_dmac_regmap_rdwr,
|
|
.writeable_reg = axi_dmac_regmap_rdwr,
|
|
};
|
|
|
|
static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
|
|
{
|
|
chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
|
|
|
|
if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_MEM;
|
|
else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_MEM_TO_DEV;
|
|
else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
|
|
chan->direction = DMA_DEV_TO_MEM;
|
|
else
|
|
chan->direction = DMA_DEV_TO_DEV;
|
|
}
|
|
|
|
/*
|
|
* The configuration stored in the devicetree matches the configuration
|
|
* parameters of the peripheral instance and allows the driver to know which
|
|
* features are implemented and how it should behave.
|
|
*/
|
|
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
|
|
struct axi_dmac_chan *chan)
|
|
{
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(of_chan, "reg", &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* We only support 1 channel for now */
|
|
if (val != 0)
|
|
return -EINVAL;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->src_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
|
|
if (ret)
|
|
return ret;
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO)
|
|
return -EINVAL;
|
|
chan->dest_type = val;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->src_width = val / 8;
|
|
|
|
ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
|
|
if (ret)
|
|
return ret;
|
|
chan->dest_width = val / 8;
|
|
|
|
axi_dmac_adjust_chan_params(chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
|
|
{
|
|
struct device_node *of_channels, *of_chan;
|
|
int ret;
|
|
|
|
of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
|
|
if (of_channels == NULL)
|
|
return -ENODEV;
|
|
|
|
for_each_child_of_node(of_channels, of_chan) {
|
|
ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
|
|
if (ret) {
|
|
of_node_put(of_chan);
|
|
of_node_put(of_channels);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
of_node_put(of_channels);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
|
|
{
|
|
struct axi_dmac_chan *chan = &dmac->chan;
|
|
unsigned int val, desc;
|
|
|
|
desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
|
|
if (desc == 0) {
|
|
dev_err(dev, "DMA interface register reads zero\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
|
|
dev_err(dev, "Invalid source bus type read: %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
chan->src_type = val;
|
|
|
|
val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
|
|
if (val > AXI_DMAC_BUS_TYPE_FIFO) {
|
|
dev_err(dev, "Invalid destination bus type read: %d\n", val);
|
|
return -EINVAL;
|
|
}
|
|
chan->dest_type = val;
|
|
|
|
val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
|
|
if (val == 0) {
|
|
dev_err(dev, "Source bus width is zero\n");
|
|
return -EINVAL;
|
|
}
|
|
/* widths are stored in log2 */
|
|
chan->src_width = 1 << val;
|
|
|
|
val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
|
|
if (val == 0) {
|
|
dev_err(dev, "Destination bus width is zero\n");
|
|
return -EINVAL;
|
|
}
|
|
chan->dest_width = 1 << val;
|
|
|
|
axi_dmac_adjust_chan_params(chan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
|
|
{
|
|
struct axi_dmac_chan *chan = &dmac->chan;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
|
|
chan->hw_cyclic = true;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
|
|
chan->hw_2d = true;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
|
|
chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
|
|
if (chan->max_length != UINT_MAX)
|
|
chan->max_length++;
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
|
|
chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
|
|
dev_err(dmac->dma_dev.dev,
|
|
"Destination memory-mapped interface not supported.");
|
|
return -ENODEV;
|
|
}
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
|
|
if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
|
|
chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
|
|
dev_err(dmac->dma_dev.dev,
|
|
"Source memory-mapped interface not supported.");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
|
|
chan->hw_partial_xfer = true;
|
|
|
|
if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
|
|
chan->length_align_mask =
|
|
axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
|
|
} else {
|
|
chan->length_align_mask = chan->address_align_mask;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int axi_dmac_probe(struct platform_device *pdev)
|
|
{
|
|
struct dma_device *dma_dev;
|
|
struct axi_dmac *dmac;
|
|
struct regmap *regmap;
|
|
unsigned int version;
|
|
int ret;
|
|
|
|
dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
|
|
if (!dmac)
|
|
return -ENOMEM;
|
|
|
|
dmac->irq = platform_get_irq(pdev, 0);
|
|
if (dmac->irq < 0)
|
|
return dmac->irq;
|
|
if (dmac->irq == 0)
|
|
return -EINVAL;
|
|
|
|
dmac->base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(dmac->base))
|
|
return PTR_ERR(dmac->base);
|
|
|
|
dmac->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(dmac->clk))
|
|
return PTR_ERR(dmac->clk);
|
|
|
|
ret = clk_prepare_enable(dmac->clk);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
|
|
|
|
if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
|
|
ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
|
|
else
|
|
ret = axi_dmac_parse_dt(&pdev->dev, dmac);
|
|
|
|
if (ret < 0)
|
|
goto err_clk_disable;
|
|
|
|
INIT_LIST_HEAD(&dmac->chan.active_descs);
|
|
|
|
dma_set_max_seg_size(&pdev->dev, UINT_MAX);
|
|
|
|
dma_dev = &dmac->dma_dev;
|
|
dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
|
|
dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
|
|
dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
|
|
dma_dev->device_tx_status = dma_cookie_status;
|
|
dma_dev->device_issue_pending = axi_dmac_issue_pending;
|
|
dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
|
|
dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
|
|
dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
|
|
dma_dev->device_terminate_all = axi_dmac_terminate_all;
|
|
dma_dev->device_synchronize = axi_dmac_synchronize;
|
|
dma_dev->dev = &pdev->dev;
|
|
dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
|
|
dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
|
|
dma_dev->directions = BIT(dmac->chan.direction);
|
|
dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
|
|
INIT_LIST_HEAD(&dma_dev->channels);
|
|
|
|
dmac->chan.vchan.desc_free = axi_dmac_desc_free;
|
|
vchan_init(&dmac->chan.vchan, dma_dev);
|
|
|
|
ret = axi_dmac_detect_caps(dmac, version);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
|
|
|
|
axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
|
|
|
|
if (of_dma_is_coherent(pdev->dev.of_node)) {
|
|
ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
|
|
|
|
if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
|
|
!AXI_DMAC_DST_COHERENT_GET(ret)) {
|
|
dev_err(dmac->dma_dev.dev,
|
|
"Coherent DMA not supported in hardware");
|
|
ret = -EINVAL;
|
|
goto err_clk_disable;
|
|
}
|
|
}
|
|
|
|
ret = dma_async_device_register(dma_dev);
|
|
if (ret)
|
|
goto err_clk_disable;
|
|
|
|
ret = of_dma_controller_register(pdev->dev.of_node,
|
|
of_dma_xlate_by_chan_id, dma_dev);
|
|
if (ret)
|
|
goto err_unregister_device;
|
|
|
|
ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
|
|
dev_name(&pdev->dev), dmac);
|
|
if (ret)
|
|
goto err_unregister_of;
|
|
|
|
platform_set_drvdata(pdev, dmac);
|
|
|
|
regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
|
|
&axi_dmac_regmap_config);
|
|
if (IS_ERR(regmap)) {
|
|
ret = PTR_ERR(regmap);
|
|
goto err_free_irq;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_irq:
|
|
free_irq(dmac->irq, dmac);
|
|
err_unregister_of:
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
err_unregister_device:
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
err_clk_disable:
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int axi_dmac_remove(struct platform_device *pdev)
|
|
{
|
|
struct axi_dmac *dmac = platform_get_drvdata(pdev);
|
|
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
free_irq(dmac->irq, dmac);
|
|
tasklet_kill(&dmac->chan.vchan.task);
|
|
dma_async_device_unregister(&dmac->dma_dev);
|
|
clk_disable_unprepare(dmac->clk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id axi_dmac_of_match_table[] = {
|
|
{ .compatible = "adi,axi-dmac-1.00.a" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
|
|
|
|
static struct platform_driver axi_dmac_driver = {
|
|
.driver = {
|
|
.name = "dma-axi-dmac",
|
|
.of_match_table = axi_dmac_of_match_table,
|
|
},
|
|
.probe = axi_dmac_probe,
|
|
.remove = axi_dmac_remove,
|
|
};
|
|
module_platform_driver(axi_dmac_driver);
|
|
|
|
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
|
|
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
|
|
MODULE_LICENSE("GPL v2");
|