mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-11 16:24:26 +08:00
15f757bb5a
According to the TODO file, this driver only landed in staging because of the way device nodes and data transfers are handled. Besides that this way (use of secX devices) has become sort of standard to date (ie. VDR supports this literally since ages via the ddci plugin, TVHeadend received this functionality lately, and minisatip being currently worked on regarding this), most importantly this I2C client only driver isn't even responsible for setting up device nodes, not for handling data transfer and so on, but only serves as interface for the dvb_ca_en50221 subsystem, just like every other DVB card out in the wild, with hard-wired or such flexible CA interfaces. And, it would even work with cards having the cxd2099 controller hard-wired. Also, this driver received quite some love and even is a proper I2C client driver by now. So, as this driver acts as a EN50221 frontend device, move it to dvb-frontends. There is no need to keep it buried in staging. This commit also updates all affected Kconfig and Makefile's, and adds MEDIA_AUTOSELECT depends to ddbridge and ngene. Signed-off-by: Daniel Scheller <d.scheller@gmx.net> Signed-off-by: Jasmin Jessich <jasmin@anw.at> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
705 lines
14 KiB
C
705 lines
14 KiB
C
/*
|
|
* cxd2099.c: Driver for the CXD2099AR Common Interface Controller
|
|
*
|
|
* Copyright (C) 2010-2013 Digital Devices GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 only, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "cxd2099.h"
|
|
|
|
static int buffermode;
|
|
module_param(buffermode, int, 0444);
|
|
MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)");
|
|
|
|
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
|
|
|
|
struct cxd {
|
|
struct dvb_ca_en50221 en;
|
|
|
|
struct cxd2099_cfg cfg;
|
|
struct i2c_client *client;
|
|
struct regmap *regmap;
|
|
|
|
u8 regs[0x23];
|
|
u8 lastaddress;
|
|
u8 clk_reg_f;
|
|
u8 clk_reg_b;
|
|
int mode;
|
|
int ready;
|
|
int dr;
|
|
int write_busy;
|
|
int slot_stat;
|
|
|
|
u8 amem[1024];
|
|
int amem_read;
|
|
|
|
int cammode;
|
|
struct mutex lock; /* device access lock */
|
|
|
|
u8 rbuf[1028];
|
|
u8 wbuf[1028];
|
|
};
|
|
|
|
static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
|
|
{
|
|
int status = 0;
|
|
|
|
if (ci->lastaddress != adr)
|
|
status = regmap_write(ci->regmap, 0, adr);
|
|
if (!status) {
|
|
ci->lastaddress = adr;
|
|
|
|
while (n) {
|
|
int len = n;
|
|
|
|
if (ci->cfg.max_i2c && len > ci->cfg.max_i2c)
|
|
len = ci->cfg.max_i2c;
|
|
status = regmap_raw_read(ci->regmap, 1, data, len);
|
|
if (status)
|
|
return status;
|
|
data += len;
|
|
n -= len;
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int read_reg(struct cxd *ci, u8 reg, u8 *val)
|
|
{
|
|
return read_block(ci, reg, val, 1);
|
|
}
|
|
|
|
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_raw_read(ci->regmap, 3, data, n);
|
|
return status;
|
|
}
|
|
|
|
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status) {
|
|
u8 buf[256];
|
|
|
|
memcpy(buf, data, n);
|
|
status = regmap_raw_write(ci->regmap, 3, buf, n);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int read_io(struct cxd *ci, u16 address, unsigned int *val)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_read(ci->regmap, 3, val);
|
|
return status;
|
|
}
|
|
|
|
static int write_io(struct cxd *ci, u16 address, u8 val)
|
|
{
|
|
int status;
|
|
u8 addr[2] = {address & 0xff, address >> 8};
|
|
|
|
status = regmap_raw_write(ci->regmap, 2, addr, 2);
|
|
if (!status)
|
|
status = regmap_write(ci->regmap, 3, val);
|
|
return status;
|
|
}
|
|
|
|
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
|
|
{
|
|
int status = 0;
|
|
unsigned int regval;
|
|
|
|
if (ci->lastaddress != reg)
|
|
status = regmap_write(ci->regmap, 0, reg);
|
|
if (!status && reg >= 6 && reg <= 8 && mask != 0xff) {
|
|
status = regmap_read(ci->regmap, 1, ®val);
|
|
ci->regs[reg] = regval;
|
|
}
|
|
ci->lastaddress = reg;
|
|
ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
|
|
if (!status)
|
|
status = regmap_write(ci->regmap, 1, ci->regs[reg]);
|
|
if (reg == 0x20)
|
|
ci->regs[reg] &= 0x7f;
|
|
return status;
|
|
}
|
|
|
|
static int write_reg(struct cxd *ci, u8 reg, u8 val)
|
|
{
|
|
return write_regm(ci, reg, val, 0xff);
|
|
}
|
|
|
|
static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
|
|
{
|
|
int status = 0;
|
|
u8 *buf = ci->wbuf;
|
|
|
|
if (ci->lastaddress != adr)
|
|
status = regmap_write(ci->regmap, 0, adr);
|
|
if (status)
|
|
return status;
|
|
|
|
ci->lastaddress = adr;
|
|
while (n) {
|
|
int len = n;
|
|
|
|
if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c))
|
|
len = ci->cfg.max_i2c - 1;
|
|
memcpy(buf, data, len);
|
|
status = regmap_raw_write(ci->regmap, 1, buf, len);
|
|
if (status)
|
|
return status;
|
|
n -= len;
|
|
data += len;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static void set_mode(struct cxd *ci, int mode)
|
|
{
|
|
if (mode == ci->mode)
|
|
return;
|
|
|
|
switch (mode) {
|
|
case 0x00: /* IO mem */
|
|
write_regm(ci, 0x06, 0x00, 0x07);
|
|
break;
|
|
case 0x01: /* ATT mem */
|
|
write_regm(ci, 0x06, 0x02, 0x07);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ci->mode = mode;
|
|
}
|
|
|
|
static void cam_mode(struct cxd *ci, int mode)
|
|
{
|
|
u8 dummy;
|
|
|
|
if (mode == ci->cammode)
|
|
return;
|
|
|
|
switch (mode) {
|
|
case 0x00:
|
|
write_regm(ci, 0x20, 0x80, 0x80);
|
|
break;
|
|
case 0x01:
|
|
if (!ci->en.read_data)
|
|
return;
|
|
ci->write_busy = 0;
|
|
dev_info(&ci->client->dev, "enable cam buffer mode\n");
|
|
write_reg(ci, 0x0d, 0x00);
|
|
write_reg(ci, 0x0e, 0x01);
|
|
write_regm(ci, 0x08, 0x40, 0x40);
|
|
read_reg(ci, 0x12, &dummy);
|
|
write_regm(ci, 0x08, 0x80, 0x80);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ci->cammode = mode;
|
|
}
|
|
|
|
static int init(struct cxd *ci)
|
|
{
|
|
int status;
|
|
|
|
mutex_lock(&ci->lock);
|
|
ci->mode = -1;
|
|
do {
|
|
status = write_reg(ci, 0x00, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x01, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x02, 0x10);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x03, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x05, 0xFF);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x06, 0x1F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x07, 0x1F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x08, 0x28);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x14, 0x20);
|
|
if (status < 0)
|
|
break;
|
|
|
|
/* TOSTRT = 8, Mode B (gated clock), falling Edge,
|
|
* Serial, POL=HIGH, MSB
|
|
*/
|
|
status = write_reg(ci, 0x0A, 0xA7);
|
|
if (status < 0)
|
|
break;
|
|
|
|
status = write_reg(ci, 0x0B, 0x33);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x0C, 0x33);
|
|
if (status < 0)
|
|
break;
|
|
|
|
status = write_regm(ci, 0x14, 0x00, 0x0F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x15, ci->clk_reg_b);
|
|
if (status < 0)
|
|
break;
|
|
status = write_regm(ci, 0x16, 0x00, 0x0F);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x17, ci->clk_reg_f);
|
|
if (status < 0)
|
|
break;
|
|
|
|
if (ci->cfg.clock_mode == 2) {
|
|
/* bitrate*2^13/ 72000 */
|
|
u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
|
|
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x6f);
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x6d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x08);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, (reg >> 8) & 0xff);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, reg & 0xff);
|
|
if (status < 0)
|
|
break;
|
|
} else if (ci->cfg.clock_mode == 1) {
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x6f); /* D */
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x6d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x68);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, 0x02);
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
if (ci->cfg.polarity) {
|
|
status = write_reg(ci, 0x09, 0x4f); /* C */
|
|
if (status < 0)
|
|
break;
|
|
} else {
|
|
status = write_reg(ci, 0x09, 0x4d);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
status = write_reg(ci, 0x20, 0x28);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x21, 0x00);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x22, 0x07);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
|
|
status = write_regm(ci, 0x20, 0x80, 0x80);
|
|
if (status < 0)
|
|
break;
|
|
status = write_regm(ci, 0x03, 0x02, 0x02);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x01, 0x04);
|
|
if (status < 0)
|
|
break;
|
|
status = write_reg(ci, 0x00, 0x31);
|
|
if (status < 0)
|
|
break;
|
|
|
|
/* Put TS in bypass */
|
|
status = write_regm(ci, 0x09, 0x08, 0x08);
|
|
if (status < 0)
|
|
break;
|
|
ci->cammode = -1;
|
|
cam_mode(ci, 0);
|
|
} while (0);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_attribute_mem(struct dvb_ca_en50221 *ca,
|
|
int slot, int address)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 val;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 1);
|
|
read_pccard(ci, address, &val, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return val;
|
|
}
|
|
|
|
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
|
|
int address, u8 value)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 1);
|
|
write_pccard(ci, address, &value, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int read_cam_control(struct dvb_ca_en50221 *ca,
|
|
int slot, u8 address)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
unsigned int val;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 0);
|
|
read_io(ci, address, &val);
|
|
mutex_unlock(&ci->lock);
|
|
return val;
|
|
}
|
|
|
|
static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
|
|
u8 address, u8 value)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
set_mode(ci, 0);
|
|
write_io(ci, address, value);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
if (ci->cammode)
|
|
read_data(ca, slot, ci->rbuf, 0);
|
|
|
|
mutex_lock(&ci->lock);
|
|
cam_mode(ci, 0);
|
|
write_reg(ci, 0x00, 0x21);
|
|
write_reg(ci, 0x06, 0x1F);
|
|
write_reg(ci, 0x00, 0x31);
|
|
write_regm(ci, 0x20, 0x80, 0x80);
|
|
write_reg(ci, 0x03, 0x02);
|
|
ci->ready = 0;
|
|
ci->mode = -1;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
usleep_range(10000, 11000);
|
|
if (ci->ready)
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
dev_dbg(&ci->client->dev, "%s\n", __func__);
|
|
if (ci->cammode)
|
|
read_data(ca, slot, ci->rbuf, 0);
|
|
mutex_lock(&ci->lock);
|
|
write_reg(ci, 0x00, 0x21);
|
|
write_reg(ci, 0x06, 0x1F);
|
|
msleep(300);
|
|
|
|
write_regm(ci, 0x09, 0x08, 0x08);
|
|
write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
|
|
write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
|
|
|
|
ci->mode = -1;
|
|
ci->write_busy = 0;
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
mutex_lock(&ci->lock);
|
|
write_regm(ci, 0x09, 0x00, 0x08);
|
|
set_mode(ci, 0);
|
|
cam_mode(ci, 1);
|
|
mutex_unlock(&ci->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int campoll(struct cxd *ci)
|
|
{
|
|
u8 istat;
|
|
|
|
read_reg(ci, 0x04, &istat);
|
|
if (!istat)
|
|
return 0;
|
|
write_reg(ci, 0x05, istat);
|
|
|
|
if (istat & 0x40)
|
|
ci->dr = 1;
|
|
if (istat & 0x20)
|
|
ci->write_busy = 0;
|
|
|
|
if (istat & 2) {
|
|
u8 slotstat;
|
|
|
|
read_reg(ci, 0x01, &slotstat);
|
|
if (!(2 & slotstat)) {
|
|
if (!ci->slot_stat) {
|
|
ci->slot_stat |=
|
|
DVB_CA_EN50221_POLL_CAM_PRESENT;
|
|
write_regm(ci, 0x03, 0x08, 0x08);
|
|
}
|
|
|
|
} else {
|
|
if (ci->slot_stat) {
|
|
ci->slot_stat = 0;
|
|
write_regm(ci, 0x03, 0x00, 0x08);
|
|
dev_info(&ci->client->dev, "NO CAM\n");
|
|
ci->ready = 0;
|
|
}
|
|
}
|
|
if ((istat & 8) &&
|
|
ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
|
|
ci->ready = 1;
|
|
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 slotstat;
|
|
|
|
mutex_lock(&ci->lock);
|
|
campoll(ci);
|
|
read_reg(ci, 0x01, &slotstat);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
return ci->slot_stat;
|
|
}
|
|
|
|
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
u8 msb, lsb;
|
|
u16 len;
|
|
|
|
mutex_lock(&ci->lock);
|
|
campoll(ci);
|
|
mutex_unlock(&ci->lock);
|
|
|
|
if (!ci->dr)
|
|
return 0;
|
|
|
|
mutex_lock(&ci->lock);
|
|
read_reg(ci, 0x0f, &msb);
|
|
read_reg(ci, 0x10, &lsb);
|
|
len = ((u16)msb << 8) | lsb;
|
|
if (len > ecount || len < 2) {
|
|
/* read it anyway or cxd may hang */
|
|
read_block(ci, 0x12, ci->rbuf, len);
|
|
mutex_unlock(&ci->lock);
|
|
return -EIO;
|
|
}
|
|
read_block(ci, 0x12, ebuf, len);
|
|
ci->dr = 0;
|
|
mutex_unlock(&ci->lock);
|
|
return len;
|
|
}
|
|
|
|
static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
|
|
{
|
|
struct cxd *ci = ca->data;
|
|
|
|
if (ci->write_busy)
|
|
return -EAGAIN;
|
|
mutex_lock(&ci->lock);
|
|
write_reg(ci, 0x0d, ecount >> 8);
|
|
write_reg(ci, 0x0e, ecount & 0xff);
|
|
write_block(ci, 0x11, ebuf, ecount);
|
|
ci->write_busy = 1;
|
|
mutex_unlock(&ci->lock);
|
|
return ecount;
|
|
}
|
|
|
|
static struct dvb_ca_en50221 en_templ = {
|
|
.read_attribute_mem = read_attribute_mem,
|
|
.write_attribute_mem = write_attribute_mem,
|
|
.read_cam_control = read_cam_control,
|
|
.write_cam_control = write_cam_control,
|
|
.slot_reset = slot_reset,
|
|
.slot_shutdown = slot_shutdown,
|
|
.slot_ts_enable = slot_ts_enable,
|
|
.poll_slot_status = poll_slot_status,
|
|
.read_data = read_data,
|
|
.write_data = write_data,
|
|
};
|
|
|
|
static int cxd2099_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct cxd *ci;
|
|
struct cxd2099_cfg *cfg = client->dev.platform_data;
|
|
static const struct regmap_config rm_cfg = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
};
|
|
unsigned int val;
|
|
int ret;
|
|
|
|
ci = kzalloc(sizeof(*ci), GFP_KERNEL);
|
|
if (!ci) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ci->client = client;
|
|
memcpy(&ci->cfg, cfg, sizeof(ci->cfg));
|
|
|
|
ci->regmap = regmap_init_i2c(client, &rm_cfg);
|
|
if (IS_ERR(ci->regmap)) {
|
|
ret = PTR_ERR(ci->regmap);
|
|
goto err_kfree;
|
|
}
|
|
|
|
ret = regmap_read(ci->regmap, 0x00, &val);
|
|
if (ret < 0) {
|
|
dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n",
|
|
client->addr);
|
|
goto err_rmexit;
|
|
}
|
|
|
|
mutex_init(&ci->lock);
|
|
ci->lastaddress = 0xff;
|
|
ci->clk_reg_b = 0x4a;
|
|
ci->clk_reg_f = 0x1b;
|
|
|
|
ci->en = en_templ;
|
|
ci->en.data = ci;
|
|
init(ci);
|
|
dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr);
|
|
|
|
*cfg->en = &ci->en;
|
|
|
|
if (!buffermode) {
|
|
ci->en.read_data = NULL;
|
|
ci->en.write_data = NULL;
|
|
} else {
|
|
dev_info(&client->dev, "Using CXD2099AR buffer mode");
|
|
}
|
|
|
|
i2c_set_clientdata(client, ci);
|
|
|
|
return 0;
|
|
|
|
err_rmexit:
|
|
regmap_exit(ci->regmap);
|
|
err_kfree:
|
|
kfree(ci);
|
|
err:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cxd2099_remove(struct i2c_client *client)
|
|
{
|
|
struct cxd *ci = i2c_get_clientdata(client);
|
|
|
|
regmap_exit(ci->regmap);
|
|
kfree(ci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2c_device_id cxd2099_id[] = {
|
|
{"cxd2099", 0},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, cxd2099_id);
|
|
|
|
static struct i2c_driver cxd2099_driver = {
|
|
.driver = {
|
|
.name = "cxd2099",
|
|
},
|
|
.probe = cxd2099_probe,
|
|
.remove = cxd2099_remove,
|
|
.id_table = cxd2099_id,
|
|
};
|
|
|
|
module_i2c_driver(cxd2099_driver);
|
|
|
|
MODULE_DESCRIPTION("CXD2099AR Common Interface controller driver");
|
|
MODULE_AUTHOR("Ralph Metzler");
|
|
MODULE_LICENSE("GPL");
|