mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-14 14:34:28 +08:00
fd080a01ec
The I2C-bus to the XPower AXP288 is shared between the Linux kernel and the SoCs P-Unit. The P-Unit has a semaphore which the kernel must "lock" before it may use the bus and while the kernel holds the semaphore the CPU and GPU power-states must not be changed otherwise the system will freeze. This is a complex process, which is quite expensive. This is all done by iosf_mbi_block_punit_i2c_access(). To ensure that no unguarded I2C-bus accesses happen, iosf_mbi_block_punit_i2c_access() gets called by the I2C-bus-driver for every I2C transfer. Because this is so expensive it is allowed to call iosf_mbi_block_punit_i2c_access() in a nested fashion, so that higher-level code which does multiple I2C-transfers can call it once for a group of transfers, turning the calls done by the I2C-bus-driver into no-ops. The default exec_mipi_pmic_seq_element implementation from drivers/acpi/pmic/intel_pmic.c does a regmap_update_bits() call and the involved registers are typically marked as volatile in the regmap, so this leads to 2 I2C-bus accesses. Add a XPower AXP288 specific implementation of exec_mipi_pmic_seq_element which calls iosf_mbi_block_punit_i2c_access() calls before the regmap_update_bits() call to avoid having to do the whole expensive acquire P-Unit semaphore dance twice. Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
346 lines
7.4 KiB
C
346 lines
7.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* XPower AXP288 PMIC operation region driver
|
|
*
|
|
* Copyright (C) 2014 Intel Corporation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mfd/axp20x.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/iosf_mbi.h>
|
|
#include "intel_pmic.h"
|
|
|
|
#define XPOWER_GPADC_LOW 0x5b
|
|
#define XPOWER_GPI1_CTRL 0x92
|
|
|
|
#define GPI1_LDO_MASK GENMASK(2, 0)
|
|
#define GPI1_LDO_ON (3 << 0)
|
|
#define GPI1_LDO_OFF (4 << 0)
|
|
|
|
#define AXP288_ADC_TS_CURRENT_ON_OFF_MASK GENMASK(1, 0)
|
|
#define AXP288_ADC_TS_CURRENT_OFF (0 << 0)
|
|
#define AXP288_ADC_TS_CURRENT_ON_WHEN_CHARGING (1 << 0)
|
|
#define AXP288_ADC_TS_CURRENT_ON_ONDEMAND (2 << 0)
|
|
#define AXP288_ADC_TS_CURRENT_ON (3 << 0)
|
|
|
|
static struct pmic_table power_table[] = {
|
|
{
|
|
.address = 0x00,
|
|
.reg = 0x13,
|
|
.bit = 0x05,
|
|
}, /* ALD1 */
|
|
{
|
|
.address = 0x04,
|
|
.reg = 0x13,
|
|
.bit = 0x06,
|
|
}, /* ALD2 */
|
|
{
|
|
.address = 0x08,
|
|
.reg = 0x13,
|
|
.bit = 0x07,
|
|
}, /* ALD3 */
|
|
{
|
|
.address = 0x0c,
|
|
.reg = 0x12,
|
|
.bit = 0x03,
|
|
}, /* DLD1 */
|
|
{
|
|
.address = 0x10,
|
|
.reg = 0x12,
|
|
.bit = 0x04,
|
|
}, /* DLD2 */
|
|
{
|
|
.address = 0x14,
|
|
.reg = 0x12,
|
|
.bit = 0x05,
|
|
}, /* DLD3 */
|
|
{
|
|
.address = 0x18,
|
|
.reg = 0x12,
|
|
.bit = 0x06,
|
|
}, /* DLD4 */
|
|
{
|
|
.address = 0x1c,
|
|
.reg = 0x12,
|
|
.bit = 0x00,
|
|
}, /* ELD1 */
|
|
{
|
|
.address = 0x20,
|
|
.reg = 0x12,
|
|
.bit = 0x01,
|
|
}, /* ELD2 */
|
|
{
|
|
.address = 0x24,
|
|
.reg = 0x12,
|
|
.bit = 0x02,
|
|
}, /* ELD3 */
|
|
{
|
|
.address = 0x28,
|
|
.reg = 0x13,
|
|
.bit = 0x02,
|
|
}, /* FLD1 */
|
|
{
|
|
.address = 0x2c,
|
|
.reg = 0x13,
|
|
.bit = 0x03,
|
|
}, /* FLD2 */
|
|
{
|
|
.address = 0x30,
|
|
.reg = 0x13,
|
|
.bit = 0x04,
|
|
}, /* FLD3 */
|
|
{
|
|
.address = 0x34,
|
|
.reg = 0x10,
|
|
.bit = 0x03,
|
|
}, /* BUC1 */
|
|
{
|
|
.address = 0x38,
|
|
.reg = 0x10,
|
|
.bit = 0x06,
|
|
}, /* BUC2 */
|
|
{
|
|
.address = 0x3c,
|
|
.reg = 0x10,
|
|
.bit = 0x05,
|
|
}, /* BUC3 */
|
|
{
|
|
.address = 0x40,
|
|
.reg = 0x10,
|
|
.bit = 0x04,
|
|
}, /* BUC4 */
|
|
{
|
|
.address = 0x44,
|
|
.reg = 0x10,
|
|
.bit = 0x01,
|
|
}, /* BUC5 */
|
|
{
|
|
.address = 0x48,
|
|
.reg = 0x10,
|
|
.bit = 0x00
|
|
}, /* BUC6 */
|
|
{
|
|
.address = 0x4c,
|
|
.reg = 0x92,
|
|
}, /* GPI1 */
|
|
};
|
|
|
|
/* TMP0 - TMP5 are the same, all from GPADC */
|
|
static struct pmic_table thermal_table[] = {
|
|
{
|
|
.address = 0x00,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
{
|
|
.address = 0x0c,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
{
|
|
.address = 0x18,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
{
|
|
.address = 0x24,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
{
|
|
.address = 0x30,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
{
|
|
.address = 0x3c,
|
|
.reg = XPOWER_GPADC_LOW
|
|
},
|
|
};
|
|
|
|
static int intel_xpower_pmic_get_power(struct regmap *regmap, int reg,
|
|
int bit, u64 *value)
|
|
{
|
|
int data;
|
|
|
|
if (regmap_read(regmap, reg, &data))
|
|
return -EIO;
|
|
|
|
/* GPIO1 LDO regulator needs special handling */
|
|
if (reg == XPOWER_GPI1_CTRL)
|
|
*value = ((data & GPI1_LDO_MASK) == GPI1_LDO_ON);
|
|
else
|
|
*value = (data & BIT(bit)) ? 1 : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_xpower_pmic_update_power(struct regmap *regmap, int reg,
|
|
int bit, bool on)
|
|
{
|
|
int data, ret;
|
|
|
|
ret = iosf_mbi_block_punit_i2c_access();
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* GPIO1 LDO regulator needs special handling */
|
|
if (reg == XPOWER_GPI1_CTRL) {
|
|
ret = regmap_update_bits(regmap, reg, GPI1_LDO_MASK,
|
|
on ? GPI1_LDO_ON : GPI1_LDO_OFF);
|
|
goto out;
|
|
}
|
|
|
|
if (regmap_read(regmap, reg, &data)) {
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (on)
|
|
data |= BIT(bit);
|
|
else
|
|
data &= ~BIT(bit);
|
|
|
|
if (regmap_write(regmap, reg, data))
|
|
ret = -EIO;
|
|
out:
|
|
iosf_mbi_unblock_punit_i2c_access();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_xpower_pmic_get_raw_temp(): Get raw temperature reading from the PMIC
|
|
*
|
|
* @regmap: regmap of the PMIC device
|
|
* @reg: register to get the reading
|
|
*
|
|
* Return a positive value on success, errno on failure.
|
|
*/
|
|
static int intel_xpower_pmic_get_raw_temp(struct regmap *regmap, int reg)
|
|
{
|
|
int ret, adc_ts_pin_ctrl;
|
|
u8 buf[2];
|
|
|
|
/*
|
|
* The current-source used for the battery temp-sensor (TS) is shared
|
|
* with the GPADC. For proper fuel-gauge and charger operation the TS
|
|
* current-source needs to be permanently on. But to read the GPADC we
|
|
* need to temporary switch the TS current-source to ondemand, so that
|
|
* the GPADC can use it, otherwise we will always read an all 0 value.
|
|
*
|
|
* Note that the switching from on to on-ondemand is not necessary
|
|
* when the TS current-source is off (this happens on devices which
|
|
* do not use the TS-pin).
|
|
*/
|
|
ret = regmap_read(regmap, AXP288_ADC_TS_PIN_CTRL, &adc_ts_pin_ctrl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (adc_ts_pin_ctrl & AXP288_ADC_TS_CURRENT_ON_OFF_MASK) {
|
|
/*
|
|
* AXP288_ADC_TS_PIN_CTRL reads are cached by the regmap, so
|
|
* this does to a single I2C-transfer, and thus there is no
|
|
* need to explicitly call iosf_mbi_block_punit_i2c_access().
|
|
*/
|
|
ret = regmap_update_bits(regmap, AXP288_ADC_TS_PIN_CTRL,
|
|
AXP288_ADC_TS_CURRENT_ON_OFF_MASK,
|
|
AXP288_ADC_TS_CURRENT_ON_ONDEMAND);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Wait a bit after switching the current-source */
|
|
usleep_range(6000, 10000);
|
|
}
|
|
|
|
ret = iosf_mbi_block_punit_i2c_access();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_bulk_read(regmap, AXP288_GP_ADC_H, buf, 2);
|
|
if (ret == 0)
|
|
ret = (buf[0] << 4) + ((buf[1] >> 4) & 0x0f);
|
|
|
|
if (adc_ts_pin_ctrl & AXP288_ADC_TS_CURRENT_ON_OFF_MASK) {
|
|
regmap_update_bits(regmap, AXP288_ADC_TS_PIN_CTRL,
|
|
AXP288_ADC_TS_CURRENT_ON_OFF_MASK,
|
|
AXP288_ADC_TS_CURRENT_ON);
|
|
}
|
|
|
|
iosf_mbi_unblock_punit_i2c_access();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int intel_xpower_exec_mipi_pmic_seq_element(struct regmap *regmap,
|
|
u16 i2c_address, u32 reg_address,
|
|
u32 value, u32 mask)
|
|
{
|
|
int ret;
|
|
|
|
if (i2c_address != 0x34) {
|
|
pr_err("%s: Unexpected i2c-addr: 0x%02x (reg-addr 0x%x value 0x%x mask 0x%x)\n",
|
|
__func__, i2c_address, reg_address, value, mask);
|
|
return -ENXIO;
|
|
}
|
|
|
|
ret = iosf_mbi_block_punit_i2c_access();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regmap_update_bits(regmap, reg_address, mask, value);
|
|
|
|
iosf_mbi_unblock_punit_i2c_access();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct intel_pmic_opregion_data intel_xpower_pmic_opregion_data = {
|
|
.get_power = intel_xpower_pmic_get_power,
|
|
.update_power = intel_xpower_pmic_update_power,
|
|
.get_raw_temp = intel_xpower_pmic_get_raw_temp,
|
|
.exec_mipi_pmic_seq_element = intel_xpower_exec_mipi_pmic_seq_element,
|
|
.power_table = power_table,
|
|
.power_table_count = ARRAY_SIZE(power_table),
|
|
.thermal_table = thermal_table,
|
|
.thermal_table_count = ARRAY_SIZE(thermal_table),
|
|
.pmic_i2c_address = 0x34,
|
|
};
|
|
|
|
static acpi_status intel_xpower_pmic_gpio_handler(u32 function,
|
|
acpi_physical_address address, u32 bit_width, u64 *value,
|
|
void *handler_context, void *region_context)
|
|
{
|
|
return AE_OK;
|
|
}
|
|
|
|
static int intel_xpower_pmic_opregion_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *parent = pdev->dev.parent;
|
|
struct axp20x_dev *axp20x = dev_get_drvdata(parent);
|
|
acpi_status status;
|
|
int result;
|
|
|
|
status = acpi_install_address_space_handler(ACPI_HANDLE(parent),
|
|
ACPI_ADR_SPACE_GPIO, intel_xpower_pmic_gpio_handler,
|
|
NULL, NULL);
|
|
if (ACPI_FAILURE(status))
|
|
return -ENODEV;
|
|
|
|
result = intel_pmic_install_opregion_handler(&pdev->dev,
|
|
ACPI_HANDLE(parent), axp20x->regmap,
|
|
&intel_xpower_pmic_opregion_data);
|
|
if (result)
|
|
acpi_remove_address_space_handler(ACPI_HANDLE(parent),
|
|
ACPI_ADR_SPACE_GPIO,
|
|
intel_xpower_pmic_gpio_handler);
|
|
|
|
return result;
|
|
}
|
|
|
|
static struct platform_driver intel_xpower_pmic_opregion_driver = {
|
|
.probe = intel_xpower_pmic_opregion_probe,
|
|
.driver = {
|
|
.name = "axp288_pmic_acpi",
|
|
},
|
|
};
|
|
builtin_platform_driver(intel_xpower_pmic_opregion_driver);
|