linux/drivers/net/wireless/spectrum_cs.c
Pavel Roskin e4f4f98efd [PATCH] orinoco: unregister network device before releasing PCMCIA resources
Hardware resources should not be made available to other devices while
the network device is still registered.  Also remove the related debug
statements.

Signed-off-by: Pavel Roskin <proski@gnu.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2006-05-05 17:10:40 -04:00

957 lines
26 KiB
C

/*
* Driver for 802.11b cards using RAM-loadable Symbol firmware, such as
* Symbol Wireless Networker LA4137, CompactFlash cards by Socket
* Communications and Intel PRO/Wireless 2011B.
*
* The driver implements Symbol firmware download. The rest is handled
* in hermes.c and orinoco.c.
*
* Utilities for downloading the Symbol firmware are available at
* http://sourceforge.net/projects/orinoco/
*
* Copyright (C) 2002-2005 Pavel Roskin <proski@gnu.org>
* Portions based on orinoco_cs.c:
* Copyright (C) David Gibson, Linuxcare Australia
* Portions based on Spectrum24tDnld.c from original spectrum24 driver:
* Copyright (C) Symbol Technologies.
*
* See copyright notice in file orinoco.c.
*/
#define DRIVER_NAME "spectrum_cs"
#define PFX DRIVER_NAME ": "
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <pcmcia/cs_types.h>
#include <pcmcia/cs.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/cisreg.h>
#include <pcmcia/ds.h>
#include "orinoco.h"
static unsigned char *primsym;
static unsigned char *secsym;
static const char primary_fw_name[] = "symbol_sp24t_prim_fw";
static const char secondary_fw_name[] = "symbol_sp24t_sec_fw";
/********************************************************************/
/* Module stuff */
/********************************************************************/
MODULE_AUTHOR("Pavel Roskin <proski@gnu.org>");
MODULE_DESCRIPTION("Driver for Symbol Spectrum24 Trilogy cards with firmware downloader");
MODULE_LICENSE("Dual MPL/GPL");
/* Module parameters */
/* Some D-Link cards have buggy CIS. They do work at 5v properly, but
* don't have any CIS entry for it. This workaround it... */
static int ignore_cis_vcc; /* = 0 */
module_param(ignore_cis_vcc, int, 0);
MODULE_PARM_DESC(ignore_cis_vcc, "Allow voltage mismatch between card and socket");
/********************************************************************/
/* Data structures */
/********************************************************************/
/* PCMCIA specific device information (goes in the card field of
* struct orinoco_private */
struct orinoco_pccard {
struct pcmcia_device *p_dev;
dev_node_t node;
};
/********************************************************************/
/* Function prototypes */
/********************************************************************/
static int spectrum_cs_config(struct pcmcia_device *link);
static void spectrum_cs_release(struct pcmcia_device *link);
/********************************************************************/
/* Firmware downloader */
/********************************************************************/
/* Position of PDA in the adapter memory */
#define EEPROM_ADDR 0x3000
#define EEPROM_LEN 0x200
#define PDA_OFFSET 0x100
#define PDA_ADDR (EEPROM_ADDR + PDA_OFFSET)
#define PDA_WORDS ((EEPROM_LEN - PDA_OFFSET) / 2)
/* Constants for the CISREG_CCSR register */
#define HCR_RUN 0x07 /* run firmware after reset */
#define HCR_IDLE 0x0E /* don't run firmware after reset */
#define HCR_MEM16 0x10 /* memory width bit, should be preserved */
/*
* AUX port access. To unlock the AUX port write the access keys to the
* PARAM0-2 registers, then write HERMES_AUX_ENABLE to the HERMES_CONTROL
* register. Then read it and make sure it's HERMES_AUX_ENABLED.
*/
#define HERMES_AUX_ENABLE 0x8000 /* Enable auxiliary port access */
#define HERMES_AUX_DISABLE 0x4000 /* Disable to auxiliary port access */
#define HERMES_AUX_ENABLED 0xC000 /* Auxiliary port is open */
#define HERMES_AUX_PW0 0xFE01
#define HERMES_AUX_PW1 0xDC23
#define HERMES_AUX_PW2 0xBA45
/* End markers */
#define PDI_END 0x00000000 /* End of PDA */
#define BLOCK_END 0xFFFFFFFF /* Last image block */
#define TEXT_END 0x1A /* End of text header */
/*
* The following structures have little-endian fields denoted by
* the leading underscore. Don't access them directly - use inline
* functions defined below.
*/
/*
* The binary image to be downloaded consists of series of data blocks.
* Each block has the following structure.
*/
struct dblock {
__le32 addr; /* adapter address where to write the block */
__le16 len; /* length of the data only, in bytes */
char data[0]; /* data to be written */
} __attribute__ ((packed));
/*
* Plug Data References are located in in the image after the last data
* block. They refer to areas in the adapter memory where the plug data
* items with matching ID should be written.
*/
struct pdr {
__le32 id; /* record ID */
__le32 addr; /* adapter address where to write the data */
__le32 len; /* expected length of the data, in bytes */
char next[0]; /* next PDR starts here */
} __attribute__ ((packed));
/*
* Plug Data Items are located in the EEPROM read from the adapter by
* primary firmware. They refer to the device-specific data that should
* be plugged into the secondary firmware.
*/
struct pdi {
__le16 len; /* length of ID and data, in words */
__le16 id; /* record ID */
char data[0]; /* plug data */
} __attribute__ ((packed));
/* Functions for access to little-endian data */
static inline u32
dblock_addr(const struct dblock *blk)
{
return le32_to_cpu(blk->addr);
}
static inline u32
dblock_len(const struct dblock *blk)
{
return le16_to_cpu(blk->len);
}
static inline u32
pdr_id(const struct pdr *pdr)
{
return le32_to_cpu(pdr->id);
}
static inline u32
pdr_addr(const struct pdr *pdr)
{
return le32_to_cpu(pdr->addr);
}
static inline u32
pdr_len(const struct pdr *pdr)
{
return le32_to_cpu(pdr->len);
}
static inline u32
pdi_id(const struct pdi *pdi)
{
return le16_to_cpu(pdi->id);
}
/* Return length of the data only, in bytes */
static inline u32
pdi_len(const struct pdi *pdi)
{
return 2 * (le16_to_cpu(pdi->len) - 1);
}
/* Set address of the auxiliary port */
static inline void
spectrum_aux_setaddr(hermes_t *hw, u32 addr)
{
hermes_write_reg(hw, HERMES_AUXPAGE, (u16) (addr >> 7));
hermes_write_reg(hw, HERMES_AUXOFFSET, (u16) (addr & 0x7F));
}
/* Open access to the auxiliary port */
static int
spectrum_aux_open(hermes_t *hw)
{
int i;
/* Already open? */
if (hermes_read_reg(hw, HERMES_CONTROL) == HERMES_AUX_ENABLED)
return 0;
hermes_write_reg(hw, HERMES_PARAM0, HERMES_AUX_PW0);
hermes_write_reg(hw, HERMES_PARAM1, HERMES_AUX_PW1);
hermes_write_reg(hw, HERMES_PARAM2, HERMES_AUX_PW2);
hermes_write_reg(hw, HERMES_CONTROL, HERMES_AUX_ENABLE);
for (i = 0; i < 20; i++) {
udelay(10);
if (hermes_read_reg(hw, HERMES_CONTROL) ==
HERMES_AUX_ENABLED)
return 0;
}
return -EBUSY;
}
#define CS_CHECK(fn, ret) \
do { last_fn = (fn); if ((last_ret = (ret)) != 0) goto cs_failed; } while (0)
/*
* Reset the card using configuration registers COR and CCSR.
* If IDLE is 1, stop the firmware, so that it can be safely rewritten.
*/
static int
spectrum_reset(struct pcmcia_device *link, int idle)
{
int last_ret, last_fn;
conf_reg_t reg;
u_int save_cor;
/* Doing it if hardware is gone is guaranteed crash */
if (pcmcia_dev_present(link))
return -ENODEV;
/* Save original COR value */
reg.Function = 0;
reg.Action = CS_READ;
reg.Offset = CISREG_COR;
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link, &reg));
save_cor = reg.Value;
/* Soft-Reset card */
reg.Action = CS_WRITE;
reg.Offset = CISREG_COR;
reg.Value = (save_cor | COR_SOFT_RESET);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link, &reg));
udelay(1000);
/* Read CCSR */
reg.Action = CS_READ;
reg.Offset = CISREG_CCSR;
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link, &reg));
/*
* Start or stop the firmware. Memory width bit should be
* preserved from the value we've just read.
*/
reg.Action = CS_WRITE;
reg.Offset = CISREG_CCSR;
reg.Value = (idle ? HCR_IDLE : HCR_RUN) | (reg.Value & HCR_MEM16);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link, &reg));
udelay(1000);
/* Restore original COR configuration index */
reg.Action = CS_WRITE;
reg.Offset = CISREG_COR;
reg.Value = (save_cor & ~COR_SOFT_RESET);
CS_CHECK(AccessConfigurationRegister,
pcmcia_access_configuration_register(link, &reg));
udelay(1000);
return 0;
cs_failed:
cs_error(link, last_fn, last_ret);
return -ENODEV;
}
/*
* Scan PDR for the record with the specified RECORD_ID.
* If it's not found, return NULL.
*/
static struct pdr *
spectrum_find_pdr(struct pdr *first_pdr, u32 record_id)
{
struct pdr *pdr = first_pdr;
while (pdr_id(pdr) != PDI_END) {
/*
* PDR area is currently not terminated by PDI_END.
* It's followed by CRC records, which have the type
* field where PDR has length. The type can be 0 or 1.
*/
if (pdr_len(pdr) < 2)
return NULL;
/* If the record ID matches, we are done */
if (pdr_id(pdr) == record_id)
return pdr;
pdr = (struct pdr *) pdr->next;
}
return NULL;
}
/* Process one Plug Data Item - find corresponding PDR and plug it */
static int
spectrum_plug_pdi(hermes_t *hw, struct pdr *first_pdr, struct pdi *pdi)
{
struct pdr *pdr;
/* Find the PDI corresponding to this PDR */
pdr = spectrum_find_pdr(first_pdr, pdi_id(pdi));
/* No match is found, safe to ignore */
if (!pdr)
return 0;
/* Lengths of the data in PDI and PDR must match */
if (pdi_len(pdi) != pdr_len(pdr))
return -EINVAL;
/* do the actual plugging */
spectrum_aux_setaddr(hw, pdr_addr(pdr));
hermes_write_bytes(hw, HERMES_AUXDATA, pdi->data, pdi_len(pdi));
return 0;
}
/* Read PDA from the adapter */
static int
spectrum_read_pda(hermes_t *hw, __le16 *pda, int pda_len)
{
int ret;
int pda_size;
/* Issue command to read EEPROM */
ret = hermes_docmd_wait(hw, HERMES_CMD_READMIF, 0, NULL);
if (ret)
return ret;
/* Open auxiliary port */
ret = spectrum_aux_open(hw);
if (ret)
return ret;
/* read PDA from EEPROM */
spectrum_aux_setaddr(hw, PDA_ADDR);
hermes_read_words(hw, HERMES_AUXDATA, pda, pda_len / 2);
/* Check PDA length */
pda_size = le16_to_cpu(pda[0]);
if (pda_size > pda_len)
return -EINVAL;
return 0;
}
/* Parse PDA and write the records into the adapter */
static int
spectrum_apply_pda(hermes_t *hw, const struct dblock *first_block,
__le16 *pda)
{
int ret;
struct pdi *pdi;
struct pdr *first_pdr;
const struct dblock *blk = first_block;
/* Skip all blocks to locate Plug Data References */
while (dblock_addr(blk) != BLOCK_END)
blk = (struct dblock *) &blk->data[dblock_len(blk)];
first_pdr = (struct pdr *) blk;
/* Go through every PDI and plug them into the adapter */
pdi = (struct pdi *) (pda + 2);
while (pdi_id(pdi) != PDI_END) {
ret = spectrum_plug_pdi(hw, first_pdr, pdi);
if (ret)
return ret;
/* Increment to the next PDI */
pdi = (struct pdi *) &pdi->data[pdi_len(pdi)];
}
return 0;
}
/* Load firmware blocks into the adapter */
static int
spectrum_load_blocks(hermes_t *hw, const struct dblock *first_block)
{
const struct dblock *blk;
u32 blkaddr;
u32 blklen;
blk = first_block;
blkaddr = dblock_addr(blk);
blklen = dblock_len(blk);
while (dblock_addr(blk) != BLOCK_END) {
spectrum_aux_setaddr(hw, blkaddr);
hermes_write_bytes(hw, HERMES_AUXDATA, blk->data,
blklen);
blk = (struct dblock *) &blk->data[blklen];
blkaddr = dblock_addr(blk);
blklen = dblock_len(blk);
}
return 0;
}
/*
* Process a firmware image - stop the card, load the firmware, reset
* the card and make sure it responds. For the secondary firmware take
* care of the PDA - read it and then write it on top of the firmware.
*/
static int
spectrum_dl_image(hermes_t *hw, struct pcmcia_device *link,
const unsigned char *image)
{
int ret;
const unsigned char *ptr;
const struct dblock *first_block;
/* Plug Data Area (PDA) */
__le16 pda[PDA_WORDS];
/* Binary block begins after the 0x1A marker */
ptr = image;
while (*ptr++ != TEXT_END);
first_block = (const struct dblock *) ptr;
/* Read the PDA */
if (image != primsym) {
ret = spectrum_read_pda(hw, pda, sizeof(pda));
if (ret)
return ret;
}
/* Stop the firmware, so that it can be safely rewritten */
ret = spectrum_reset(link, 1);
if (ret)
return ret;
/* Program the adapter with new firmware */
ret = spectrum_load_blocks(hw, first_block);
if (ret)
return ret;
/* Write the PDA to the adapter */
if (image != primsym) {
ret = spectrum_apply_pda(hw, first_block, pda);
if (ret)
return ret;
}
/* Run the firmware */
ret = spectrum_reset(link, 0);
if (ret)
return ret;
/* Reset hermes chip and make sure it responds */
ret = hermes_init(hw);
/* hermes_reset() should return 0 with the secondary firmware */
if (image != primsym && ret != 0)
return -ENODEV;
/* And this should work with any firmware */
if (!hermes_present(hw))
return -ENODEV;
return 0;
}
/*
* Download the firmware into the card, this also does a PCMCIA soft
* reset on the card, to make sure it's in a sane state.
*/
static int
spectrum_dl_firmware(hermes_t *hw, struct pcmcia_device *link)
{
int ret;
const struct firmware *fw_entry;
if (request_firmware(&fw_entry, primary_fw_name,
&handle_to_dev(link)) == 0) {
primsym = fw_entry->data;
} else {
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
primary_fw_name);
return -ENOENT;
}
if (request_firmware(&fw_entry, secondary_fw_name,
&handle_to_dev(link)) == 0) {
secsym = fw_entry->data;
} else {
printk(KERN_ERR PFX "Cannot find firmware: %s\n",
secondary_fw_name);
return -ENOENT;
}
/* Load primary firmware */
ret = spectrum_dl_image(hw, link, primsym);
if (ret) {
printk(KERN_ERR PFX "Primary firmware download failed\n");
return ret;
}
/* Load secondary firmware */
ret = spectrum_dl_image(hw, link, secsym);
if (ret) {
printk(KERN_ERR PFX "Secondary firmware download failed\n");
}
return ret;
}
/********************************************************************/
/* Device methods */
/********************************************************************/
static int
spectrum_cs_hard_reset(struct orinoco_private *priv)
{
struct orinoco_pccard *card = priv->card;
struct pcmcia_device *link = card->p_dev;
int err;
if (!hermes_present(&priv->hw)) {
/* The firmware needs to be reloaded */
if (spectrum_dl_firmware(&priv->hw, link) != 0) {
printk(KERN_ERR PFX "Firmware download failed\n");
err = -ENODEV;
}
} else {
/* Soft reset using COR and HCR */
spectrum_reset(link, 0);
}
return 0;
}
/********************************************************************/
/* PCMCIA stuff */
/********************************************************************/
/*
* This creates an "instance" of the driver, allocating local data
* structures for one device. The device is registered with Card
* Services.
*
* The dev_link structure is initialized, but we don't actually
* configure the card at this point -- we wait until we receive a card
* insertion event. */
static int
spectrum_cs_probe(struct pcmcia_device *link)
{
struct net_device *dev;
struct orinoco_private *priv;
struct orinoco_pccard *card;
dev = alloc_orinocodev(sizeof(*card), spectrum_cs_hard_reset);
if (! dev)
return -ENOMEM;
priv = netdev_priv(dev);
card = priv->card;
/* Link both structures together */
card->p_dev = link;
link->priv = dev;
/* Interrupt setup */
link->irq.Attributes = IRQ_TYPE_EXCLUSIVE | IRQ_HANDLE_PRESENT;
link->irq.IRQInfo1 = IRQ_LEVEL_ID;
link->irq.Handler = orinoco_interrupt;
link->irq.Instance = dev;
/* General socket configuration defaults can go here. In this
* client, we assume very little, and rely on the CIS for
* almost everything. In most clients, many details (i.e.,
* number, sizes, and attributes of IO windows) are fixed by
* the nature of the device, and can be hard-wired here. */
link->conf.Attributes = 0;
link->conf.IntType = INT_MEMORY_AND_IO;
return spectrum_cs_config(link);
} /* spectrum_cs_attach */
/*
* This deletes a driver "instance". The device is de-registered with
* Card Services. If it has been released, all local data structures
* are freed. Otherwise, the structures will be freed when the device
* is released.
*/
static void spectrum_cs_detach(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
if (link->dev_node)
unregister_netdev(dev);
spectrum_cs_release(link);
free_orinocodev(dev);
} /* spectrum_cs_detach */
/*
* spectrum_cs_config() is scheduled to run after a CARD_INSERTION
* event is received, to configure the PCMCIA socket, and to make the
* device available to the system.
*/
static int
spectrum_cs_config(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
struct orinoco_pccard *card = priv->card;
hermes_t *hw = &priv->hw;
int last_fn, last_ret;
u_char buf[64];
config_info_t conf;
tuple_t tuple;
cisparse_t parse;
void __iomem *mem;
/*
* This reads the card's CONFIG tuple to find its
* configuration registers.
*/
tuple.DesiredTuple = CISTPL_CONFIG;
tuple.Attributes = 0;
tuple.TupleData = buf;
tuple.TupleDataMax = sizeof(buf);
tuple.TupleOffset = 0;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
CS_CHECK(GetTupleData, pcmcia_get_tuple_data(link, &tuple));
CS_CHECK(ParseTuple, pcmcia_parse_tuple(link, &tuple, &parse));
link->conf.ConfigBase = parse.config.base;
link->conf.Present = parse.config.rmask[0];
/* Look up the current Vcc */
CS_CHECK(GetConfigurationInfo,
pcmcia_get_configuration_info(link, &conf));
/*
* In this loop, we scan the CIS for configuration table
* entries, each of which describes a valid card
* configuration, including voltage, IO window, memory window,
* and interrupt settings.
*
* We make no assumptions about the card to be configured: we
* use just the information available in the CIS. In an ideal
* world, this would work for any PCMCIA card, but it requires
* a complete and accurate CIS. In practice, a driver usually
* "knows" most of these things without consulting the CIS,
* and most client drivers will only use the CIS to fill in
* implementation-defined details.
*/
tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;
CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));
while (1) {
cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);
cistpl_cftable_entry_t dflt = { .index = 0 };
if ( (pcmcia_get_tuple_data(link, &tuple) != 0)
|| (pcmcia_parse_tuple(link, &tuple, &parse) != 0))
goto next_entry;
if (cfg->flags & CISTPL_CFTABLE_DEFAULT)
dflt = *cfg;
if (cfg->index == 0)
goto next_entry;
link->conf.ConfigIndex = cfg->index;
/* Use power settings for Vcc and Vpp if present */
/* Note that the CIS values need to be rescaled */
if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, cfg->vcc.param[CISTPL_POWER_VNOM] / 10000);
if (!ignore_cis_vcc)
goto next_entry;
}
} else if (dflt.vcc.present & (1 << CISTPL_POWER_VNOM)) {
if (conf.Vcc != dflt.vcc.param[CISTPL_POWER_VNOM] / 10000) {
DEBUG(2, "spectrum_cs_config: Vcc mismatch (conf.Vcc = %d, CIS = %d)\n", conf.Vcc, dflt.vcc.param[CISTPL_POWER_VNOM] / 10000);
if(!ignore_cis_vcc)
goto next_entry;
}
}
if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp =
cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000;
else if (dflt.vpp1.present & (1 << CISTPL_POWER_VNOM))
link->conf.Vpp =
dflt.vpp1.param[CISTPL_POWER_VNOM] / 10000;
/* Do we need to allocate an interrupt? */
link->conf.Attributes |= CONF_ENABLE_IRQ;
/* IO window settings */
link->io.NumPorts1 = link->io.NumPorts2 = 0;
if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {
cistpl_io_t *io =
(cfg->io.nwin) ? &cfg->io : &dflt.io;
link->io.Attributes1 = IO_DATA_PATH_WIDTH_AUTO;
if (!(io->flags & CISTPL_IO_8BIT))
link->io.Attributes1 =
IO_DATA_PATH_WIDTH_16;
if (!(io->flags & CISTPL_IO_16BIT))
link->io.Attributes1 =
IO_DATA_PATH_WIDTH_8;
link->io.IOAddrLines =
io->flags & CISTPL_IO_LINES_MASK;
link->io.BasePort1 = io->win[0].base;
link->io.NumPorts1 = io->win[0].len;
if (io->nwin > 1) {
link->io.Attributes2 =
link->io.Attributes1;
link->io.BasePort2 = io->win[1].base;
link->io.NumPorts2 = io->win[1].len;
}
/* This reserves IO space but doesn't actually enable it */
if (pcmcia_request_io(link, &link->io) != 0)
goto next_entry;
}
/* If we got this far, we're cool! */
break;
next_entry:
pcmcia_disable_device(link);
last_ret = pcmcia_get_next_tuple(link, &tuple);
if (last_ret == CS_NO_MORE_ITEMS) {
printk(KERN_ERR PFX "GetNextTuple(): No matching "
"CIS configuration. Maybe you need the "
"ignore_cis_vcc=1 parameter.\n");
goto cs_failed;
}
}
/*
* Allocate an interrupt line. Note that this does not assign
* a handler to the interrupt, unless the 'Handler' member of
* the irq structure is initialized.
*/
CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));
/* We initialize the hermes structure before completing PCMCIA
* configuration just in case the interrupt handler gets
* called. */
mem = ioport_map(link->io.BasePort1, link->io.NumPorts1);
if (!mem)
goto cs_failed;
hermes_struct_init(hw, mem, HERMES_16BIT_REGSPACING);
/*
* This actually configures the PCMCIA socket -- setting up
* the I/O windows and the interrupt mapping, and putting the
* card and host interface into "Memory and IO" mode.
*/
CS_CHECK(RequestConfiguration,
pcmcia_request_configuration(link, &link->conf));
/* Ok, we have the configuration, prepare to register the netdev */
dev->base_addr = link->io.BasePort1;
dev->irq = link->irq.AssignedIRQ;
SET_MODULE_OWNER(dev);
card->node.major = card->node.minor = 0;
/* Reset card and download firmware */
if (spectrum_cs_hard_reset(priv) != 0) {
goto failed;
}
SET_NETDEV_DEV(dev, &handle_to_dev(link));
/* Tell the stack we exist */
if (register_netdev(dev) != 0) {
printk(KERN_ERR PFX "register_netdev() failed\n");
goto failed;
}
/* At this point, the dev_node_t structure(s) needs to be
* initialized and arranged in a linked list at link->dev_node. */
strcpy(card->node.dev_name, dev->name);
link->dev_node = &card->node; /* link->dev_node being non-NULL is also
used to indicate that the
net_device has been registered */
/* Finally, report what we've done */
printk(KERN_DEBUG "%s: index 0x%02x: ",
dev->name, link->conf.ConfigIndex);
if (link->conf.Vpp)
printk(", Vpp %d.%d", link->conf.Vpp / 10,
link->conf.Vpp % 10);
printk(", irq %d", link->irq.AssignedIRQ);
if (link->io.NumPorts1)
printk(", io 0x%04x-0x%04x", link->io.BasePort1,
link->io.BasePort1 + link->io.NumPorts1 - 1);
if (link->io.NumPorts2)
printk(" & 0x%04x-0x%04x", link->io.BasePort2,
link->io.BasePort2 + link->io.NumPorts2 - 1);
printk("\n");
return 0;
cs_failed:
cs_error(link, last_fn, last_ret);
failed:
spectrum_cs_release(link);
return -ENODEV;
} /* spectrum_cs_config */
/*
* After a card is removed, spectrum_cs_release() will unregister the
* device, and release the PCMCIA configuration. If the device is
* still open, this will be postponed until it is closed.
*/
static void
spectrum_cs_release(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
unsigned long flags;
/* We're committed to taking the device away now, so mark the
* hardware as unavailable */
spin_lock_irqsave(&priv->lock, flags);
priv->hw_unavailable++;
spin_unlock_irqrestore(&priv->lock, flags);
pcmcia_disable_device(link);
if (priv->hw.iobase)
ioport_unmap(priv->hw.iobase);
} /* spectrum_cs_release */
static int
spectrum_cs_suspend(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
unsigned long flags;
int err = 0;
/* Mark the device as stopped, to block IO until later */
spin_lock_irqsave(&priv->lock, flags);
err = __orinoco_down(dev);
if (err)
printk(KERN_WARNING "%s: Error %d downing interface\n",
dev->name, err);
netif_device_detach(dev);
priv->hw_unavailable++;
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int
spectrum_cs_resume(struct pcmcia_device *link)
{
struct net_device *dev = link->priv;
struct orinoco_private *priv = netdev_priv(dev);
netif_device_attach(dev);
priv->hw_unavailable--;
schedule_work(&priv->reset_work);
return 0;
}
/********************************************************************/
/* Module initialization */
/********************************************************************/
/* Can't be declared "const" or the whole __initdata section will
* become const */
static char version[] __initdata = DRIVER_NAME " " DRIVER_VERSION
" (Pavel Roskin <proski@gnu.org>,"
" David Gibson <hermes@gibson.dropbear.id.au>, et al)";
static struct pcmcia_device_id spectrum_cs_ids[] = {
PCMCIA_DEVICE_MANF_CARD(0x026c, 0x0001), /* Symbol Spectrum24 LA4137 */
PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0001), /* Socket Communications CF */
PCMCIA_DEVICE_PROD_ID12("Intel", "PRO/Wireless LAN PC Card", 0x816cc815, 0x6fbf459a), /* 2011B, not 2011 */
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, spectrum_cs_ids);
static struct pcmcia_driver orinoco_driver = {
.owner = THIS_MODULE,
.drv = {
.name = DRIVER_NAME,
},
.probe = spectrum_cs_probe,
.remove = spectrum_cs_detach,
.suspend = spectrum_cs_suspend,
.resume = spectrum_cs_resume,
.id_table = spectrum_cs_ids,
};
static int __init
init_spectrum_cs(void)
{
printk(KERN_DEBUG "%s\n", version);
return pcmcia_register_driver(&orinoco_driver);
}
static void __exit
exit_spectrum_cs(void)
{
pcmcia_unregister_driver(&orinoco_driver);
}
module_init(init_spectrum_cs);
module_exit(exit_spectrum_cs);