linux/drivers/input/keyboard/pxa27x_keypad.c
Linus Torvalds d797da41b2 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
Pull input subsystem updates from Dmitry Torokhov:
 "Two new drivers for Elan hardware (for I2C touchpad and touchscreen
  found in several Chromebooks and other devices), a driver for Goodix
  touch panel, and small fixes to Cypress I2C trackpad and other input
  drivers.

  Also we switched to use __maybe_unused instead of gating suspend/
  resume code with #ifdef guards to get better compile coverage"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input: (27 commits)
  Input: gpio_keys - fix warning regarding uninitialized 'button' variable
  Input: add support for Elan eKTH I2C touchscreens
  Input: gpio_keys - fix warning regarding uninitialized  'irq' variable
  Input: cyapa - use 'error' for error codes
  Input: cyapa - fix resuming the device
  Input: gpio_keys - add device tree support for interrupt only keys
  Input: amikbd - allocate temporary keymap buffer on the stack
  Input: amikbd - fix build if !CONFIG_HW_CONSOLE
  Input: lm8323 - missing error check in lm8323_set_disable()
  Input: initialize device counter variables with -1
  Input: initialize input_no to -1 to avoid subtraction
  Input: i8042 - do not try to load on Intel NUC D54250WYK
  Input: atkbd - correct MSC_SCAN events for force_release keys
  Input: cyapa - switch to using managed resources
  Input: lifebook - use "static inline" instead of "inline" in lifebook.h
  Input: touchscreen - use __maybe_unused instead of ifdef around suspend/resume
  Input: mouse - use __maybe_unused instead of ifdef around suspend/resume
  Input: misc - use __maybe_unused instead of ifdef around suspend/resume
  Input: cap11xx - support for irq-active-high option
  Input: cap11xx - add support for various cap11xx devices
  ...
2014-12-17 10:06:02 -08:00

847 lines
22 KiB
C

/*
* linux/drivers/input/keyboard/pxa27x_keypad.c
*
* Driver for the pxa27x matrix keyboard controller.
*
* Created: Feb 22, 2007
* Author: Rodolfo Giometti <giometti@linux.it>
*
* Based on a previous implementations by Kevin O'Connor
* <kevin_at_koconnor.net> and Alex Osborne <bobofdoom@gmail.com> and
* on some suggestions by Nicolas Pitre <nico@fluxnic.net>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/input/matrix_keypad.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <asm/mach/arch.h>
#include <asm/mach/map.h>
#include <mach/hardware.h>
#include <linux/platform_data/keypad-pxa27x.h>
/*
* Keypad Controller registers
*/
#define KPC 0x0000 /* Keypad Control register */
#define KPDK 0x0008 /* Keypad Direct Key register */
#define KPREC 0x0010 /* Keypad Rotary Encoder register */
#define KPMK 0x0018 /* Keypad Matrix Key register */
#define KPAS 0x0020 /* Keypad Automatic Scan register */
/* Keypad Automatic Scan Multiple Key Presser register 0-3 */
#define KPASMKP0 0x0028
#define KPASMKP1 0x0030
#define KPASMKP2 0x0038
#define KPASMKP3 0x0040
#define KPKDI 0x0048
/* bit definitions */
#define KPC_MKRN(n) ((((n) - 1) & 0x7) << 26) /* matrix key row number */
#define KPC_MKCN(n) ((((n) - 1) & 0x7) << 23) /* matrix key column number */
#define KPC_DKN(n) ((((n) - 1) & 0x7) << 6) /* direct key number */
#define KPC_AS (0x1 << 30) /* Automatic Scan bit */
#define KPC_ASACT (0x1 << 29) /* Automatic Scan on Activity */
#define KPC_MI (0x1 << 22) /* Matrix interrupt bit */
#define KPC_IMKP (0x1 << 21) /* Ignore Multiple Key Press */
#define KPC_MS(n) (0x1 << (13 + (n))) /* Matrix scan line 'n' */
#define KPC_MS_ALL (0xff << 13)
#define KPC_ME (0x1 << 12) /* Matrix Keypad Enable */
#define KPC_MIE (0x1 << 11) /* Matrix Interrupt Enable */
#define KPC_DK_DEB_SEL (0x1 << 9) /* Direct Keypad Debounce Select */
#define KPC_DI (0x1 << 5) /* Direct key interrupt bit */
#define KPC_RE_ZERO_DEB (0x1 << 4) /* Rotary Encoder Zero Debounce */
#define KPC_REE1 (0x1 << 3) /* Rotary Encoder1 Enable */
#define KPC_REE0 (0x1 << 2) /* Rotary Encoder0 Enable */
#define KPC_DE (0x1 << 1) /* Direct Keypad Enable */
#define KPC_DIE (0x1 << 0) /* Direct Keypad interrupt Enable */
#define KPDK_DKP (0x1 << 31)
#define KPDK_DK(n) ((n) & 0xff)
#define KPREC_OF1 (0x1 << 31)
#define kPREC_UF1 (0x1 << 30)
#define KPREC_OF0 (0x1 << 15)
#define KPREC_UF0 (0x1 << 14)
#define KPREC_RECOUNT0(n) ((n) & 0xff)
#define KPREC_RECOUNT1(n) (((n) >> 16) & 0xff)
#define KPMK_MKP (0x1 << 31)
#define KPAS_SO (0x1 << 31)
#define KPASMKPx_SO (0x1 << 31)
#define KPAS_MUKP(n) (((n) >> 26) & 0x1f)
#define KPAS_RP(n) (((n) >> 4) & 0xf)
#define KPAS_CP(n) ((n) & 0xf)
#define KPASMKP_MKC_MASK (0xff)
#define keypad_readl(off) __raw_readl(keypad->mmio_base + (off))
#define keypad_writel(off, v) __raw_writel((v), keypad->mmio_base + (off))
#define MAX_MATRIX_KEY_NUM (MAX_MATRIX_KEY_ROWS * MAX_MATRIX_KEY_COLS)
#define MAX_KEYPAD_KEYS (MAX_MATRIX_KEY_NUM + MAX_DIRECT_KEY_NUM)
struct pxa27x_keypad {
const struct pxa27x_keypad_platform_data *pdata;
struct clk *clk;
struct input_dev *input_dev;
void __iomem *mmio_base;
int irq;
unsigned short keycodes[MAX_KEYPAD_KEYS];
int rotary_rel_code[2];
unsigned int row_shift;
/* state row bits of each column scan */
uint32_t matrix_key_state[MAX_MATRIX_KEY_COLS];
uint32_t direct_key_state;
unsigned int direct_key_mask;
};
#ifdef CONFIG_OF
static int pxa27x_keypad_matrix_key_parse_dt(struct pxa27x_keypad *keypad,
struct pxa27x_keypad_platform_data *pdata)
{
struct input_dev *input_dev = keypad->input_dev;
struct device *dev = input_dev->dev.parent;
u32 rows, cols;
int error;
error = matrix_keypad_parse_of_params(dev, &rows, &cols);
if (error)
return error;
if (rows > MAX_MATRIX_KEY_ROWS || cols > MAX_MATRIX_KEY_COLS) {
dev_err(dev, "rows or cols exceeds maximum value\n");
return -EINVAL;
}
pdata->matrix_key_rows = rows;
pdata->matrix_key_cols = cols;
error = matrix_keypad_build_keymap(NULL, NULL,
pdata->matrix_key_rows,
pdata->matrix_key_cols,
keypad->keycodes, input_dev);
if (error)
return error;
return 0;
}
static int pxa27x_keypad_direct_key_parse_dt(struct pxa27x_keypad *keypad,
struct pxa27x_keypad_platform_data *pdata)
{
struct input_dev *input_dev = keypad->input_dev;
struct device *dev = input_dev->dev.parent;
struct device_node *np = dev->of_node;
const __be16 *prop;
unsigned short code;
unsigned int proplen, size;
int i;
int error;
error = of_property_read_u32(np, "marvell,direct-key-count",
&pdata->direct_key_num);
if (error) {
/*
* If do not have marvel,direct-key-count defined,
* it means direct key is not supported.
*/
return error == -EINVAL ? 0 : error;
}
error = of_property_read_u32(np, "marvell,direct-key-mask",
&pdata->direct_key_mask);
if (error) {
if (error != -EINVAL)
return error;
/*
* If marvell,direct-key-mask is not defined, driver will use
* default value. Default value is set when configure the keypad.
*/
pdata->direct_key_mask = 0;
}
pdata->direct_key_low_active = of_property_read_bool(np,
"marvell,direct-key-low-active");
prop = of_get_property(np, "marvell,direct-key-map", &proplen);
if (!prop)
return -EINVAL;
if (proplen % sizeof(u16))
return -EINVAL;
size = proplen / sizeof(u16);
/* Only MAX_DIRECT_KEY_NUM is accepted.*/
if (size > MAX_DIRECT_KEY_NUM)
return -EINVAL;
for (i = 0; i < size; i++) {
code = be16_to_cpup(prop + i);
keypad->keycodes[MAX_MATRIX_KEY_NUM + i] = code;
__set_bit(code, input_dev->keybit);
}
return 0;
}
static int pxa27x_keypad_rotary_parse_dt(struct pxa27x_keypad *keypad,
struct pxa27x_keypad_platform_data *pdata)
{
const __be32 *prop;
int i, relkey_ret;
unsigned int code, proplen;
const char *rotaryname[2] = {
"marvell,rotary0", "marvell,rotary1"};
const char relkeyname[] = {"marvell,rotary-rel-key"};
struct input_dev *input_dev = keypad->input_dev;
struct device *dev = input_dev->dev.parent;
struct device_node *np = dev->of_node;
relkey_ret = of_property_read_u32(np, relkeyname, &code);
/* if can read correct rotary key-code, we do not need this. */
if (relkey_ret == 0) {
unsigned short relcode;
/* rotary0 taks lower half, rotary1 taks upper half. */
relcode = code & 0xffff;
pdata->rotary0_rel_code = (code & 0xffff);
__set_bit(relcode, input_dev->relbit);
relcode = code >> 16;
pdata->rotary1_rel_code = relcode;
__set_bit(relcode, input_dev->relbit);
}
for (i = 0; i < 2; i++) {
prop = of_get_property(np, rotaryname[i], &proplen);
/*
* If the prop is not set, it means keypad does not need
* initialize the rotaryX.
*/
if (!prop)
continue;
code = be32_to_cpup(prop);
/*
* Not all up/down key code are valid.
* Now we depends on direct-rel-code.
*/
if ((!(code & 0xffff) || !(code >> 16)) && relkey_ret) {
return relkey_ret;
} else {
unsigned int n = MAX_MATRIX_KEY_NUM + (i << 1);
unsigned short keycode;
keycode = code & 0xffff;
keypad->keycodes[n] = keycode;
__set_bit(keycode, input_dev->keybit);
keycode = code >> 16;
keypad->keycodes[n + 1] = keycode;
__set_bit(keycode, input_dev->keybit);
if (i == 0)
pdata->rotary0_rel_code = -1;
else
pdata->rotary1_rel_code = -1;
}
if (i == 0)
pdata->enable_rotary0 = 1;
else
pdata->enable_rotary1 = 1;
}
keypad->rotary_rel_code[0] = pdata->rotary0_rel_code;
keypad->rotary_rel_code[1] = pdata->rotary1_rel_code;
return 0;
}
static int pxa27x_keypad_build_keycode_from_dt(struct pxa27x_keypad *keypad)
{
struct input_dev *input_dev = keypad->input_dev;
struct device *dev = input_dev->dev.parent;
struct device_node *np = dev->of_node;
struct pxa27x_keypad_platform_data *pdata;
int error;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "failed to allocate memory for pdata\n");
return -ENOMEM;
}
error = pxa27x_keypad_matrix_key_parse_dt(keypad, pdata);
if (error) {
dev_err(dev, "failed to parse matrix key\n");
return error;
}
error = pxa27x_keypad_direct_key_parse_dt(keypad, pdata);
if (error) {
dev_err(dev, "failed to parse direct key\n");
return error;
}
error = pxa27x_keypad_rotary_parse_dt(keypad, pdata);
if (error) {
dev_err(dev, "failed to parse rotary key\n");
return error;
}
error = of_property_read_u32(np, "marvell,debounce-interval",
&pdata->debounce_interval);
if (error) {
dev_err(dev, "failed to parse debpunce-interval\n");
return error;
}
/*
* The keycodes may not only includes matrix key but also the direct
* key or rotary key.
*/
input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes);
keypad->pdata = pdata;
return 0;
}
#else
static int pxa27x_keypad_build_keycode_from_dt(struct pxa27x_keypad *keypad)
{
dev_info(keypad->input_dev->dev.parent, "missing platform data\n");
return -EINVAL;
}
#endif
static int pxa27x_keypad_build_keycode(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
struct input_dev *input_dev = keypad->input_dev;
const struct matrix_keymap_data *keymap_data =
pdata ? pdata->matrix_keymap_data : NULL;
unsigned short keycode;
int i;
int error;
error = matrix_keypad_build_keymap(keymap_data, NULL,
pdata->matrix_key_rows,
pdata->matrix_key_cols,
keypad->keycodes, input_dev);
if (error)
return error;
/*
* The keycodes may not only include matrix keys but also the direct
* or rotary keys.
*/
input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes);
/* For direct keys. */
for (i = 0; i < pdata->direct_key_num; i++) {
keycode = pdata->direct_key_map[i];
keypad->keycodes[MAX_MATRIX_KEY_NUM + i] = keycode;
__set_bit(keycode, input_dev->keybit);
}
if (pdata->enable_rotary0) {
if (pdata->rotary0_up_key && pdata->rotary0_down_key) {
keycode = pdata->rotary0_up_key;
keypad->keycodes[MAX_MATRIX_KEY_NUM + 0] = keycode;
__set_bit(keycode, input_dev->keybit);
keycode = pdata->rotary0_down_key;
keypad->keycodes[MAX_MATRIX_KEY_NUM + 1] = keycode;
__set_bit(keycode, input_dev->keybit);
keypad->rotary_rel_code[0] = -1;
} else {
keypad->rotary_rel_code[0] = pdata->rotary0_rel_code;
__set_bit(pdata->rotary0_rel_code, input_dev->relbit);
}
}
if (pdata->enable_rotary1) {
if (pdata->rotary1_up_key && pdata->rotary1_down_key) {
keycode = pdata->rotary1_up_key;
keypad->keycodes[MAX_MATRIX_KEY_NUM + 2] = keycode;
__set_bit(keycode, input_dev->keybit);
keycode = pdata->rotary1_down_key;
keypad->keycodes[MAX_MATRIX_KEY_NUM + 3] = keycode;
__set_bit(keycode, input_dev->keybit);
keypad->rotary_rel_code[1] = -1;
} else {
keypad->rotary_rel_code[1] = pdata->rotary1_rel_code;
__set_bit(pdata->rotary1_rel_code, input_dev->relbit);
}
}
__clear_bit(KEY_RESERVED, input_dev->keybit);
return 0;
}
static void pxa27x_keypad_scan_matrix(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
struct input_dev *input_dev = keypad->input_dev;
int row, col, num_keys_pressed = 0;
uint32_t new_state[MAX_MATRIX_KEY_COLS];
uint32_t kpas = keypad_readl(KPAS);
num_keys_pressed = KPAS_MUKP(kpas);
memset(new_state, 0, sizeof(new_state));
if (num_keys_pressed == 0)
goto scan;
if (num_keys_pressed == 1) {
col = KPAS_CP(kpas);
row = KPAS_RP(kpas);
/* if invalid row/col, treat as no key pressed */
if (col >= pdata->matrix_key_cols ||
row >= pdata->matrix_key_rows)
goto scan;
new_state[col] = (1 << row);
goto scan;
}
if (num_keys_pressed > 1) {
uint32_t kpasmkp0 = keypad_readl(KPASMKP0);
uint32_t kpasmkp1 = keypad_readl(KPASMKP1);
uint32_t kpasmkp2 = keypad_readl(KPASMKP2);
uint32_t kpasmkp3 = keypad_readl(KPASMKP3);
new_state[0] = kpasmkp0 & KPASMKP_MKC_MASK;
new_state[1] = (kpasmkp0 >> 16) & KPASMKP_MKC_MASK;
new_state[2] = kpasmkp1 & KPASMKP_MKC_MASK;
new_state[3] = (kpasmkp1 >> 16) & KPASMKP_MKC_MASK;
new_state[4] = kpasmkp2 & KPASMKP_MKC_MASK;
new_state[5] = (kpasmkp2 >> 16) & KPASMKP_MKC_MASK;
new_state[6] = kpasmkp3 & KPASMKP_MKC_MASK;
new_state[7] = (kpasmkp3 >> 16) & KPASMKP_MKC_MASK;
}
scan:
for (col = 0; col < pdata->matrix_key_cols; col++) {
uint32_t bits_changed;
int code;
bits_changed = keypad->matrix_key_state[col] ^ new_state[col];
if (bits_changed == 0)
continue;
for (row = 0; row < pdata->matrix_key_rows; row++) {
if ((bits_changed & (1 << row)) == 0)
continue;
code = MATRIX_SCAN_CODE(row, col, keypad->row_shift);
input_event(input_dev, EV_MSC, MSC_SCAN, code);
input_report_key(input_dev, keypad->keycodes[code],
new_state[col] & (1 << row));
}
}
input_sync(input_dev);
memcpy(keypad->matrix_key_state, new_state, sizeof(new_state));
}
#define DEFAULT_KPREC (0x007f007f)
static inline int rotary_delta(uint32_t kprec)
{
if (kprec & KPREC_OF0)
return (kprec & 0xff) + 0x7f;
else if (kprec & KPREC_UF0)
return (kprec & 0xff) - 0x7f - 0xff;
else
return (kprec & 0xff) - 0x7f;
}
static void report_rotary_event(struct pxa27x_keypad *keypad, int r, int delta)
{
struct input_dev *dev = keypad->input_dev;
if (delta == 0)
return;
if (keypad->rotary_rel_code[r] == -1) {
int code = MAX_MATRIX_KEY_NUM + 2 * r + (delta > 0 ? 0 : 1);
unsigned char keycode = keypad->keycodes[code];
/* simulate a press-n-release */
input_event(dev, EV_MSC, MSC_SCAN, code);
input_report_key(dev, keycode, 1);
input_sync(dev);
input_event(dev, EV_MSC, MSC_SCAN, code);
input_report_key(dev, keycode, 0);
input_sync(dev);
} else {
input_report_rel(dev, keypad->rotary_rel_code[r], delta);
input_sync(dev);
}
}
static void pxa27x_keypad_scan_rotary(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
uint32_t kprec;
/* read and reset to default count value */
kprec = keypad_readl(KPREC);
keypad_writel(KPREC, DEFAULT_KPREC);
if (pdata->enable_rotary0)
report_rotary_event(keypad, 0, rotary_delta(kprec));
if (pdata->enable_rotary1)
report_rotary_event(keypad, 1, rotary_delta(kprec >> 16));
}
static void pxa27x_keypad_scan_direct(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
struct input_dev *input_dev = keypad->input_dev;
unsigned int new_state;
uint32_t kpdk, bits_changed;
int i;
kpdk = keypad_readl(KPDK);
if (pdata->enable_rotary0 || pdata->enable_rotary1)
pxa27x_keypad_scan_rotary(keypad);
/*
* The KPDR_DK only output the key pin level, so it relates to board,
* and low level may be active.
*/
if (pdata->direct_key_low_active)
new_state = ~KPDK_DK(kpdk) & keypad->direct_key_mask;
else
new_state = KPDK_DK(kpdk) & keypad->direct_key_mask;
bits_changed = keypad->direct_key_state ^ new_state;
if (bits_changed == 0)
return;
for (i = 0; i < pdata->direct_key_num; i++) {
if (bits_changed & (1 << i)) {
int code = MAX_MATRIX_KEY_NUM + i;
input_event(input_dev, EV_MSC, MSC_SCAN, code);
input_report_key(input_dev, keypad->keycodes[code],
new_state & (1 << i));
}
}
input_sync(input_dev);
keypad->direct_key_state = new_state;
}
static void clear_wakeup_event(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
if (pdata->clear_wakeup_event)
(pdata->clear_wakeup_event)();
}
static irqreturn_t pxa27x_keypad_irq_handler(int irq, void *dev_id)
{
struct pxa27x_keypad *keypad = dev_id;
unsigned long kpc = keypad_readl(KPC);
clear_wakeup_event(keypad);
if (kpc & KPC_DI)
pxa27x_keypad_scan_direct(keypad);
if (kpc & KPC_MI)
pxa27x_keypad_scan_matrix(keypad);
return IRQ_HANDLED;
}
static void pxa27x_keypad_config(struct pxa27x_keypad *keypad)
{
const struct pxa27x_keypad_platform_data *pdata = keypad->pdata;
unsigned int mask = 0, direct_key_num = 0;
unsigned long kpc = 0;
/* clear pending interrupt bit */
keypad_readl(KPC);
/* enable matrix keys with automatic scan */
if (pdata->matrix_key_rows && pdata->matrix_key_cols) {
kpc |= KPC_ASACT | KPC_MIE | KPC_ME | KPC_MS_ALL;
kpc |= KPC_MKRN(pdata->matrix_key_rows) |
KPC_MKCN(pdata->matrix_key_cols);
}
/* enable rotary key, debounce interval same as direct keys */
if (pdata->enable_rotary0) {
mask |= 0x03;
direct_key_num = 2;
kpc |= KPC_REE0;
}
if (pdata->enable_rotary1) {
mask |= 0x0c;
direct_key_num = 4;
kpc |= KPC_REE1;
}
if (pdata->direct_key_num > direct_key_num)
direct_key_num = pdata->direct_key_num;
/*
* Direct keys usage may not start from KP_DKIN0, check the platfrom
* mask data to config the specific.
*/
if (pdata->direct_key_mask)
keypad->direct_key_mask = pdata->direct_key_mask;
else
keypad->direct_key_mask = ((1 << direct_key_num) - 1) & ~mask;
/* enable direct key */
if (direct_key_num)
kpc |= KPC_DE | KPC_DIE | KPC_DKN(direct_key_num);
keypad_writel(KPC, kpc | KPC_RE_ZERO_DEB);
keypad_writel(KPREC, DEFAULT_KPREC);
keypad_writel(KPKDI, pdata->debounce_interval);
}
static int pxa27x_keypad_open(struct input_dev *dev)
{
struct pxa27x_keypad *keypad = input_get_drvdata(dev);
/* Enable unit clock */
clk_prepare_enable(keypad->clk);
pxa27x_keypad_config(keypad);
return 0;
}
static void pxa27x_keypad_close(struct input_dev *dev)
{
struct pxa27x_keypad *keypad = input_get_drvdata(dev);
/* Disable clock unit */
clk_disable_unprepare(keypad->clk);
}
#ifdef CONFIG_PM_SLEEP
static int pxa27x_keypad_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct pxa27x_keypad *keypad = platform_get_drvdata(pdev);
/*
* If the keypad is used a wake up source, clock can not be disabled.
* Or it can not detect the key pressing.
*/
if (device_may_wakeup(&pdev->dev))
enable_irq_wake(keypad->irq);
else
clk_disable_unprepare(keypad->clk);
return 0;
}
static int pxa27x_keypad_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct pxa27x_keypad *keypad = platform_get_drvdata(pdev);
struct input_dev *input_dev = keypad->input_dev;
/*
* If the keypad is used as wake up source, the clock is not turned
* off. So do not need configure it again.
*/
if (device_may_wakeup(&pdev->dev)) {
disable_irq_wake(keypad->irq);
} else {
mutex_lock(&input_dev->mutex);
if (input_dev->users) {
/* Enable unit clock */
clk_prepare_enable(keypad->clk);
pxa27x_keypad_config(keypad);
}
mutex_unlock(&input_dev->mutex);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(pxa27x_keypad_pm_ops,
pxa27x_keypad_suspend, pxa27x_keypad_resume);
static int pxa27x_keypad_probe(struct platform_device *pdev)
{
const struct pxa27x_keypad_platform_data *pdata =
dev_get_platdata(&pdev->dev);
struct device_node *np = pdev->dev.of_node;
struct pxa27x_keypad *keypad;
struct input_dev *input_dev;
struct resource *res;
int irq, error;
/* Driver need build keycode from device tree or pdata */
if (!np && !pdata)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to get keypad irq\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "failed to get I/O memory\n");
return -ENXIO;
}
keypad = devm_kzalloc(&pdev->dev, sizeof(*keypad),
GFP_KERNEL);
if (!keypad)
return -ENOMEM;
input_dev = devm_input_allocate_device(&pdev->dev);
if (!input_dev)
return -ENOMEM;
keypad->pdata = pdata;
keypad->input_dev = input_dev;
keypad->irq = irq;
keypad->mmio_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(keypad->mmio_base))
return PTR_ERR(keypad->mmio_base);
keypad->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(keypad->clk)) {
dev_err(&pdev->dev, "failed to get keypad clock\n");
return PTR_ERR(keypad->clk);
}
input_dev->name = pdev->name;
input_dev->id.bustype = BUS_HOST;
input_dev->open = pxa27x_keypad_open;
input_dev->close = pxa27x_keypad_close;
input_dev->dev.parent = &pdev->dev;
input_dev->keycode = keypad->keycodes;
input_dev->keycodesize = sizeof(keypad->keycodes[0]);
input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes);
input_set_drvdata(input_dev, keypad);
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
input_set_capability(input_dev, EV_MSC, MSC_SCAN);
if (pdata) {
error = pxa27x_keypad_build_keycode(keypad);
} else {
error = pxa27x_keypad_build_keycode_from_dt(keypad);
/*
* Data that we get from DT resides in dynamically
* allocated memory so we need to update our pdata
* pointer.
*/
pdata = keypad->pdata;
}
if (error) {
dev_err(&pdev->dev, "failed to build keycode\n");
return error;
}
keypad->row_shift = get_count_order(pdata->matrix_key_cols);
if ((pdata->enable_rotary0 && keypad->rotary_rel_code[0] != -1) ||
(pdata->enable_rotary1 && keypad->rotary_rel_code[1] != -1)) {
input_dev->evbit[0] |= BIT_MASK(EV_REL);
}
error = devm_request_irq(&pdev->dev, irq, pxa27x_keypad_irq_handler,
0, pdev->name, keypad);
if (error) {
dev_err(&pdev->dev, "failed to request IRQ\n");
return error;
}
/* Register the input device */
error = input_register_device(input_dev);
if (error) {
dev_err(&pdev->dev, "failed to register input device\n");
return error;
}
platform_set_drvdata(pdev, keypad);
device_init_wakeup(&pdev->dev, 1);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id pxa27x_keypad_dt_match[] = {
{ .compatible = "marvell,pxa27x-keypad" },
{},
};
MODULE_DEVICE_TABLE(of, pxa27x_keypad_dt_match);
#endif
static struct platform_driver pxa27x_keypad_driver = {
.probe = pxa27x_keypad_probe,
.driver = {
.name = "pxa27x-keypad",
.of_match_table = of_match_ptr(pxa27x_keypad_dt_match),
.pm = &pxa27x_keypad_pm_ops,
},
};
module_platform_driver(pxa27x_keypad_driver);
MODULE_DESCRIPTION("PXA27x Keypad Controller Driver");
MODULE_LICENSE("GPL");
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:pxa27x-keypad");