linux/drivers/video/fbdev/via/via-core.c
Vaibhav Gupta ab5fe88aef fbdev: via-core: use generic power management
Drivers should do only device-specific jobs. But in general, drivers using
legacy PCI PM framework for .suspend()/.resume() have to manage many PCI
PM-related tasks themselves which can be done by PCI Core itself. This
brings extra load on the driver and it directly calls PCI helper functions
to handle them.

Switch to the new generic framework by updating function signatures and
define a "struct dev_pm_ops" variable to bind PM callbacks.

The via_suspend() is designed to function only in the case of Suspend.
Thus, the code checked for "if (state.event != PM_EVENT_SUSPEND)". This is
because, in the legacy framework, this callback was invoked even in the
event of Freeze and Hibernate. Hence, added the load of unnecessary
function-calls.

The goal can be achieved by binding the callback with only
"via_pm_ops.suspend" in the new framework. This also avoids the step of
checking "if (state.event != PM_EVENT_SUSPEND)" every time the callback is
invoked.

Signed-off-by: Vaibhav Gupta <vaibhavgupta40@gmail.com>
Cc: Bjorn Helgaas <helgaas@kernel.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Bjorn Helgaas <bjorn@helgaas.com>
Cc: Vaibhav Gupta <vaibhav.varodek@gmail.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Andres Salomon <dilinger@queued.net>
CC: Antonino Daplas <adaplas@gmail.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200819185654.151170-4-vaibhavgupta40@gmail.com
2020-09-08 13:33:11 +02:00

741 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 1998-2009 VIA Technologies, Inc. All Rights Reserved.
* Copyright 2001-2008 S3 Graphics, Inc. All Rights Reserved.
* Copyright 2009 Jonathan Corbet <corbet@lwn.net>
*/
/*
* Core code for the Via multifunction framebuffer device.
*/
#include <linux/via-core.h>
#include <linux/via_i2c.h>
#include <linux/via-gpio.h>
#include "global.h"
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/list.h>
#include <linux/pm.h>
/*
* The default port config.
*/
static struct via_port_cfg adap_configs[] = {
[VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
[VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
[VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
[VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_I2C, VIASR, 0x2c },
[VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
{ 0, 0, 0, 0 }
};
/*
* The OLPC XO-1.5 puts the camera power and reset lines onto
* GPIO 2C.
*/
static struct via_port_cfg olpc_adap_configs[] = {
[VIA_PORT_26] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x26 },
[VIA_PORT_31] = { VIA_PORT_I2C, VIA_MODE_I2C, VIASR, 0x31 },
[VIA_PORT_25] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x25 },
[VIA_PORT_2C] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x2c },
[VIA_PORT_3D] = { VIA_PORT_GPIO, VIA_MODE_GPIO, VIASR, 0x3d },
{ 0, 0, 0, 0 }
};
/*
* We currently only support one viafb device (will there ever be
* more than one?), so just declare it globally here.
*/
static struct viafb_dev global_dev;
/*
* Basic register access; spinlock required.
*/
static inline void viafb_mmio_write(int reg, u32 v)
{
iowrite32(v, global_dev.engine_mmio + reg);
}
static inline int viafb_mmio_read(int reg)
{
return ioread32(global_dev.engine_mmio + reg);
}
/* ---------------------------------------------------------------------- */
/*
* Interrupt management. We have a single IRQ line for a lot of
* different functions, so we need to share it. The design here
* is that we don't want to reimplement the shared IRQ code here;
* we also want to avoid having contention for a single handler thread.
* So each subdev driver which needs interrupts just requests
* them directly from the kernel. We just have what's needed for
* overall access to the interrupt control register.
*/
/*
* Which interrupts are enabled now?
*/
static u32 viafb_enabled_ints;
static void viafb_int_init(void)
{
viafb_enabled_ints = 0;
viafb_mmio_write(VDE_INTERRUPT, 0);
}
/*
* Allow subdevs to ask for specific interrupts to be enabled. These
* functions must be called with reg_lock held
*/
void viafb_irq_enable(u32 mask)
{
viafb_enabled_ints |= mask;
viafb_mmio_write(VDE_INTERRUPT, viafb_enabled_ints | VDE_I_ENABLE);
}
EXPORT_SYMBOL_GPL(viafb_irq_enable);
void viafb_irq_disable(u32 mask)
{
viafb_enabled_ints &= ~mask;
if (viafb_enabled_ints == 0)
viafb_mmio_write(VDE_INTERRUPT, 0); /* Disable entirely */
else
viafb_mmio_write(VDE_INTERRUPT,
viafb_enabled_ints | VDE_I_ENABLE);
}
EXPORT_SYMBOL_GPL(viafb_irq_disable);
/* ---------------------------------------------------------------------- */
/*
* Currently, the camera driver is the only user of the DMA code, so we
* only compile it in if the camera driver is being built. Chances are,
* most viafb systems will not need to have this extra code for a while.
* As soon as another user comes long, the ifdef can be removed.
*/
#if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
/*
* Access to the DMA engine. This currently provides what the camera
* driver needs (i.e. outgoing only) but is easily expandable if need
* be.
*/
/*
* There are four DMA channels in the vx855. For now, we only
* use one of them, though. Most of the time, the DMA channel
* will be idle, so we keep the IRQ handler unregistered except
* when some subsystem has indicated an interest.
*/
static int viafb_dma_users;
static DECLARE_COMPLETION(viafb_dma_completion);
/*
* This mutex protects viafb_dma_users and our global interrupt
* registration state; it also serializes access to the DMA
* engine.
*/
static DEFINE_MUTEX(viafb_dma_lock);
/*
* The VX855 DMA descriptor (used for s/g transfers) looks
* like this.
*/
struct viafb_vx855_dma_descr {
u32 addr_low; /* Low part of phys addr */
u32 addr_high; /* High 12 bits of addr */
u32 fb_offset; /* Offset into FB memory */
u32 seg_size; /* Size, 16-byte units */
u32 tile_mode; /* "tile mode" setting */
u32 next_desc_low; /* Next descriptor addr */
u32 next_desc_high;
u32 pad; /* Fill out to 64 bytes */
};
/*
* Flags added to the "next descriptor low" pointers
*/
#define VIAFB_DMA_MAGIC 0x01 /* ??? Just has to be there */
#define VIAFB_DMA_FINAL_SEGMENT 0x02 /* Final segment */
/*
* The completion IRQ handler.
*/
static irqreturn_t viafb_dma_irq(int irq, void *data)
{
int csr;
irqreturn_t ret = IRQ_NONE;
spin_lock(&global_dev.reg_lock);
csr = viafb_mmio_read(VDMA_CSR0);
if (csr & VDMA_C_DONE) {
viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
complete(&viafb_dma_completion);
ret = IRQ_HANDLED;
}
spin_unlock(&global_dev.reg_lock);
return ret;
}
/*
* Indicate a need for DMA functionality.
*/
int viafb_request_dma(void)
{
int ret = 0;
/*
* Only VX855 is supported currently.
*/
if (global_dev.chip_type != UNICHROME_VX855)
return -ENODEV;
/*
* Note the new user and set up our interrupt handler
* if need be.
*/
mutex_lock(&viafb_dma_lock);
viafb_dma_users++;
if (viafb_dma_users == 1) {
ret = request_irq(global_dev.pdev->irq, viafb_dma_irq,
IRQF_SHARED, "via-dma", &viafb_dma_users);
if (ret)
viafb_dma_users--;
else
viafb_irq_enable(VDE_I_DMA0TDEN);
}
mutex_unlock(&viafb_dma_lock);
return ret;
}
EXPORT_SYMBOL_GPL(viafb_request_dma);
void viafb_release_dma(void)
{
mutex_lock(&viafb_dma_lock);
viafb_dma_users--;
if (viafb_dma_users == 0) {
viafb_irq_disable(VDE_I_DMA0TDEN);
free_irq(global_dev.pdev->irq, &viafb_dma_users);
}
mutex_unlock(&viafb_dma_lock);
}
EXPORT_SYMBOL_GPL(viafb_release_dma);
/*
* Do a scatter/gather DMA copy from FB memory. You must have done
* a successful call to viafb_request_dma() first.
*/
int viafb_dma_copy_out_sg(unsigned int offset, struct scatterlist *sg, int nsg)
{
struct viafb_vx855_dma_descr *descr;
void *descrpages;
dma_addr_t descr_handle;
unsigned long flags;
int i;
struct scatterlist *sgentry;
dma_addr_t nextdesc;
/*
* Get a place to put the descriptors.
*/
descrpages = dma_alloc_coherent(&global_dev.pdev->dev,
nsg*sizeof(struct viafb_vx855_dma_descr),
&descr_handle, GFP_KERNEL);
if (descrpages == NULL) {
dev_err(&global_dev.pdev->dev, "Unable to get descr page.\n");
return -ENOMEM;
}
mutex_lock(&viafb_dma_lock);
/*
* Fill them in.
*/
descr = descrpages;
nextdesc = descr_handle + sizeof(struct viafb_vx855_dma_descr);
for_each_sg(sg, sgentry, nsg, i) {
dma_addr_t paddr = sg_dma_address(sgentry);
descr->addr_low = paddr & 0xfffffff0;
descr->addr_high = ((u64) paddr >> 32) & 0x0fff;
descr->fb_offset = offset;
descr->seg_size = sg_dma_len(sgentry) >> 4;
descr->tile_mode = 0;
descr->next_desc_low = (nextdesc&0xfffffff0) | VIAFB_DMA_MAGIC;
descr->next_desc_high = ((u64) nextdesc >> 32) & 0x0fff;
descr->pad = 0xffffffff; /* VIA driver does this */
offset += sg_dma_len(sgentry);
nextdesc += sizeof(struct viafb_vx855_dma_descr);
descr++;
}
descr[-1].next_desc_low = VIAFB_DMA_FINAL_SEGMENT|VIAFB_DMA_MAGIC;
/*
* Program the engine.
*/
spin_lock_irqsave(&global_dev.reg_lock, flags);
init_completion(&viafb_dma_completion);
viafb_mmio_write(VDMA_DQWCR0, 0);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_DONE);
viafb_mmio_write(VDMA_MR0, VDMA_MR_TDIE | VDMA_MR_CHAIN);
viafb_mmio_write(VDMA_DPRL0, descr_handle | VIAFB_DMA_MAGIC);
viafb_mmio_write(VDMA_DPRH0,
(((u64)descr_handle >> 32) & 0x0fff) | 0xf0000);
(void) viafb_mmio_read(VDMA_CSR0);
viafb_mmio_write(VDMA_CSR0, VDMA_C_ENABLE|VDMA_C_START);
spin_unlock_irqrestore(&global_dev.reg_lock, flags);
/*
* Now we just wait until the interrupt handler says
* we're done. Except that, actually, we need to wait a little
* longer: the interrupts seem to jump the gun a little and we
* get corrupted frames sometimes.
*/
wait_for_completion_timeout(&viafb_dma_completion, 1);
msleep(1);
if ((viafb_mmio_read(VDMA_CSR0)&VDMA_C_DONE) == 0)
printk(KERN_ERR "VIA DMA timeout!\n");
/*
* Clean up and we're done.
*/
viafb_mmio_write(VDMA_CSR0, VDMA_C_DONE);
viafb_mmio_write(VDMA_MR0, 0); /* Reset int enable */
mutex_unlock(&viafb_dma_lock);
dma_free_coherent(&global_dev.pdev->dev,
nsg*sizeof(struct viafb_vx855_dma_descr), descrpages,
descr_handle);
return 0;
}
EXPORT_SYMBOL_GPL(viafb_dma_copy_out_sg);
#endif /* CONFIG_VIDEO_VIA_CAMERA */
/* ---------------------------------------------------------------------- */
/*
* Figure out how big our framebuffer memory is. Kind of ugly,
* but evidently we can't trust the information found in the
* fbdev configuration area.
*/
static u16 via_function3[] = {
CLE266_FUNCTION3, KM400_FUNCTION3, CN400_FUNCTION3, CN700_FUNCTION3,
CX700_FUNCTION3, KM800_FUNCTION3, KM890_FUNCTION3, P4M890_FUNCTION3,
P4M900_FUNCTION3, VX800_FUNCTION3, VX855_FUNCTION3, VX900_FUNCTION3,
};
/* Get the BIOS-configured framebuffer size from PCI configuration space
* of function 3 in the respective chipset */
static int viafb_get_fb_size_from_pci(int chip_type)
{
int i;
u8 offset = 0;
u32 FBSize;
u32 VideoMemSize;
/* search for the "FUNCTION3" device in this chipset */
for (i = 0; i < ARRAY_SIZE(via_function3); i++) {
struct pci_dev *pdev;
pdev = pci_get_device(PCI_VENDOR_ID_VIA, via_function3[i],
NULL);
if (!pdev)
continue;
DEBUG_MSG(KERN_INFO "Device ID = %x\n", pdev->device);
switch (pdev->device) {
case CLE266_FUNCTION3:
case KM400_FUNCTION3:
offset = 0xE0;
break;
case CN400_FUNCTION3:
case CN700_FUNCTION3:
case CX700_FUNCTION3:
case KM800_FUNCTION3:
case KM890_FUNCTION3:
case P4M890_FUNCTION3:
case P4M900_FUNCTION3:
case VX800_FUNCTION3:
case VX855_FUNCTION3:
case VX900_FUNCTION3:
/*case CN750_FUNCTION3: */
offset = 0xA0;
break;
}
if (!offset)
break;
pci_read_config_dword(pdev, offset, &FBSize);
pci_dev_put(pdev);
}
if (!offset) {
printk(KERN_ERR "cannot determine framebuffer size\n");
return -EIO;
}
FBSize = FBSize & 0x00007000;
DEBUG_MSG(KERN_INFO "FB Size = %x\n", FBSize);
if (chip_type < UNICHROME_CX700) {
switch (FBSize) {
case 0x00004000:
VideoMemSize = (16 << 20); /*16M */
break;
case 0x00005000:
VideoMemSize = (32 << 20); /*32M */
break;
case 0x00006000:
VideoMemSize = (64 << 20); /*64M */
break;
default:
VideoMemSize = (32 << 20); /*32M */
break;
}
} else {
switch (FBSize) {
case 0x00001000:
VideoMemSize = (8 << 20); /*8M */
break;
case 0x00002000:
VideoMemSize = (16 << 20); /*16M */
break;
case 0x00003000:
VideoMemSize = (32 << 20); /*32M */
break;
case 0x00004000:
VideoMemSize = (64 << 20); /*64M */
break;
case 0x00005000:
VideoMemSize = (128 << 20); /*128M */
break;
case 0x00006000:
VideoMemSize = (256 << 20); /*256M */
break;
case 0x00007000: /* Only on VX855/875 */
VideoMemSize = (512 << 20); /*512M */
break;
default:
VideoMemSize = (32 << 20); /*32M */
break;
}
}
return VideoMemSize;
}
/*
* Figure out and map our MMIO regions.
*/
static int via_pci_setup_mmio(struct viafb_dev *vdev)
{
int ret;
/*
* Hook up to the device registers. Note that we soldier
* on if it fails; the framebuffer can operate (without
* acceleration) without this region.
*/
vdev->engine_start = pci_resource_start(vdev->pdev, 1);
vdev->engine_len = pci_resource_len(vdev->pdev, 1);
vdev->engine_mmio = ioremap(vdev->engine_start,
vdev->engine_len);
if (vdev->engine_mmio == NULL)
dev_err(&vdev->pdev->dev,
"Unable to map engine MMIO; operation will be "
"slow and crippled.\n");
/*
* Map in framebuffer memory. For now, failure here is
* fatal. Unfortunately, in the absence of significant
* vmalloc space, failure here is also entirely plausible.
* Eventually we want to move away from mapping this
* entire region.
*/
if (vdev->chip_type == UNICHROME_VX900)
vdev->fbmem_start = pci_resource_start(vdev->pdev, 2);
else
vdev->fbmem_start = pci_resource_start(vdev->pdev, 0);
ret = vdev->fbmem_len = viafb_get_fb_size_from_pci(vdev->chip_type);
if (ret < 0)
goto out_unmap;
/* try to map less memory on failure, 8 MB should be still enough */
for (; vdev->fbmem_len >= 8 << 20; vdev->fbmem_len /= 2) {
vdev->fbmem = ioremap_wc(vdev->fbmem_start, vdev->fbmem_len);
if (vdev->fbmem)
break;
}
if (vdev->fbmem == NULL) {
ret = -ENOMEM;
goto out_unmap;
}
return 0;
out_unmap:
iounmap(vdev->engine_mmio);
return ret;
}
static void via_pci_teardown_mmio(struct viafb_dev *vdev)
{
iounmap(vdev->fbmem);
iounmap(vdev->engine_mmio);
}
/*
* Create our subsidiary devices.
*/
static struct viafb_subdev_info {
char *name;
struct platform_device *platdev;
} viafb_subdevs[] = {
{
.name = "viafb-gpio",
},
{
.name = "viafb-i2c",
},
#if IS_ENABLED(CONFIG_VIDEO_VIA_CAMERA)
{
.name = "viafb-camera",
},
#endif
};
#define N_SUBDEVS ARRAY_SIZE(viafb_subdevs)
static int via_create_subdev(struct viafb_dev *vdev,
struct viafb_subdev_info *info)
{
int ret;
info->platdev = platform_device_alloc(info->name, -1);
if (!info->platdev) {
dev_err(&vdev->pdev->dev, "Unable to allocate pdev %s\n",
info->name);
return -ENOMEM;
}
info->platdev->dev.parent = &vdev->pdev->dev;
info->platdev->dev.platform_data = vdev;
ret = platform_device_add(info->platdev);
if (ret) {
dev_err(&vdev->pdev->dev, "Unable to add pdev %s\n",
info->name);
platform_device_put(info->platdev);
info->platdev = NULL;
}
return ret;
}
static int via_setup_subdevs(struct viafb_dev *vdev)
{
int i;
/*
* Ignore return values. Even if some of the devices
* fail to be created, we'll still be able to use some
* of the rest.
*/
for (i = 0; i < N_SUBDEVS; i++)
via_create_subdev(vdev, viafb_subdevs + i);
return 0;
}
static void via_teardown_subdevs(void)
{
int i;
for (i = 0; i < N_SUBDEVS; i++)
if (viafb_subdevs[i].platdev) {
viafb_subdevs[i].platdev->dev.platform_data = NULL;
platform_device_unregister(viafb_subdevs[i].platdev);
}
}
/*
* Power management functions
*/
static __maybe_unused LIST_HEAD(viafb_pm_hooks);
static __maybe_unused DEFINE_MUTEX(viafb_pm_hooks_lock);
void viafb_pm_register(struct viafb_pm_hooks *hooks)
{
INIT_LIST_HEAD(&hooks->list);
mutex_lock(&viafb_pm_hooks_lock);
list_add_tail(&hooks->list, &viafb_pm_hooks);
mutex_unlock(&viafb_pm_hooks_lock);
}
EXPORT_SYMBOL_GPL(viafb_pm_register);
void viafb_pm_unregister(struct viafb_pm_hooks *hooks)
{
mutex_lock(&viafb_pm_hooks_lock);
list_del(&hooks->list);
mutex_unlock(&viafb_pm_hooks_lock);
}
EXPORT_SYMBOL_GPL(viafb_pm_unregister);
static int __maybe_unused via_suspend(struct device *dev)
{
struct viafb_pm_hooks *hooks;
/*
* "I've occasionally hit a few drivers that caused suspend
* failures, and each and every time it was a driver bug, and
* the right thing to do was to just ignore the error and suspend
* anyway - returning an error code and trying to undo the suspend
* is not what anybody ever really wants, even if our model
*_allows_ for it."
* -- Linus Torvalds, Dec. 7, 2009
*/
mutex_lock(&viafb_pm_hooks_lock);
list_for_each_entry_reverse(hooks, &viafb_pm_hooks, list)
hooks->suspend(hooks->private);
mutex_unlock(&viafb_pm_hooks_lock);
return 0;
}
static int __maybe_unused via_resume(struct device *dev)
{
struct viafb_pm_hooks *hooks;
/* Now bring back any subdevs */
mutex_lock(&viafb_pm_hooks_lock);
list_for_each_entry(hooks, &viafb_pm_hooks, list)
hooks->resume(hooks->private);
mutex_unlock(&viafb_pm_hooks_lock);
return 0;
}
static int via_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret;
ret = pci_enable_device(pdev);
if (ret)
return ret;
/*
* Global device initialization.
*/
memset(&global_dev, 0, sizeof(global_dev));
global_dev.pdev = pdev;
global_dev.chip_type = ent->driver_data;
global_dev.port_cfg = adap_configs;
if (machine_is_olpc())
global_dev.port_cfg = olpc_adap_configs;
spin_lock_init(&global_dev.reg_lock);
ret = via_pci_setup_mmio(&global_dev);
if (ret)
goto out_disable;
/*
* Set up interrupts and create our subdevices. Continue even if
* some things fail.
*/
viafb_int_init();
via_setup_subdevs(&global_dev);
/*
* Set up the framebuffer device
*/
ret = via_fb_pci_probe(&global_dev);
if (ret)
goto out_subdevs;
return 0;
out_subdevs:
via_teardown_subdevs();
via_pci_teardown_mmio(&global_dev);
out_disable:
pci_disable_device(pdev);
return ret;
}
static void via_pci_remove(struct pci_dev *pdev)
{
via_teardown_subdevs();
via_fb_pci_remove(pdev);
via_pci_teardown_mmio(&global_dev);
pci_disable_device(pdev);
}
static const struct pci_device_id via_pci_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CLE266_DID),
.driver_data = UNICHROME_CLE266 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K400_DID),
.driver_data = UNICHROME_K400 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K800_DID),
.driver_data = UNICHROME_K800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_PM800_DID),
.driver_data = UNICHROME_PM800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN700_DID),
.driver_data = UNICHROME_CN700 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CX700_DID),
.driver_data = UNICHROME_CX700 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_CN750_DID),
.driver_data = UNICHROME_CN750 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_K8M890_DID),
.driver_data = UNICHROME_K8M890 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M890_DID),
.driver_data = UNICHROME_P4M890 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_P4M900_DID),
.driver_data = UNICHROME_P4M900 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX800_DID),
.driver_data = UNICHROME_VX800 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX855_DID),
.driver_data = UNICHROME_VX855 },
{ PCI_DEVICE(PCI_VENDOR_ID_VIA, UNICHROME_VX900_DID),
.driver_data = UNICHROME_VX900 },
{ }
};
MODULE_DEVICE_TABLE(pci, via_pci_table);
static const struct dev_pm_ops via_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend = via_suspend,
.resume = via_resume,
.freeze = NULL,
.thaw = via_resume,
.poweroff = NULL,
.restore = via_resume,
#endif
};
static struct pci_driver via_driver = {
.name = "viafb",
.id_table = via_pci_table,
.probe = via_pci_probe,
.remove = via_pci_remove,
.driver.pm = &via_pm_ops,
};
static int __init via_core_init(void)
{
int ret;
ret = viafb_init();
if (ret)
return ret;
viafb_i2c_init();
viafb_gpio_init();
return pci_register_driver(&via_driver);
}
static void __exit via_core_exit(void)
{
pci_unregister_driver(&via_driver);
viafb_gpio_exit();
viafb_i2c_exit();
viafb_exit();
}
module_init(via_core_init);
module_exit(via_core_exit);