mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-28 21:45:01 +08:00
4e62d1d865
This patch adds support for kdump. In kdump case the normal kernel will reserve a region for the crash kernel and jump there on panic. Arch-specific functions are added to allow for implementing a crash dump file interface, /proc/vmcore, which can be viewed as a ELF file. A user-space tool, such as kexec-tools, is responsible for allocating a separate region for the core's ELF header within the crash kdump kernel memory and filling it in when executing kexec_load(). Then, its location will be advertised to the crash dump kernel via a command line argument "elfcorehdr=", and the crash dump kernel will preserve this region for later use with arch_reserve_vmcore() at boot time. At the same time, the crash kdump kernel is also limited within the "crashkernel" area via a command line argument "mem=", so as not to destroy the original kernel dump data. In the crash dump kernel environment, /proc/vmcore is used to access the primary kernel's memory with copy_oldmem_page(). I tested kdump on LoongArch machines (Loongson-3A5000) and it works as expected (suggested crashkernel parameter is "crashkernel=512M@2560M"), you may test it by triggering a crash through /proc/sysrq-trigger: $ sudo kexec -p /boot/vmlinux-kdump --reuse-cmdline --append="nr_cpus=1" # echo c > /proc/sysrq-trigger Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
305 lines
7.4 KiB
C
305 lines
7.4 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* machine_kexec.c for kexec
|
|
*
|
|
* Copyright (C) 2022 Loongson Technology Corporation Limited
|
|
*/
|
|
#include <linux/compiler.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task_stack.h>
|
|
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/page.h>
|
|
|
|
/* 0x100000 ~ 0x200000 is safe */
|
|
#define KEXEC_CONTROL_CODE TO_CACHE(0x100000UL)
|
|
#define KEXEC_CMDLINE_ADDR TO_CACHE(0x108000UL)
|
|
|
|
static unsigned long reboot_code_buffer;
|
|
static cpumask_t cpus_in_crash = CPU_MASK_NONE;
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void (*relocated_kexec_smp_wait)(void *);
|
|
atomic_t kexec_ready_to_reboot = ATOMIC_INIT(0);
|
|
#endif
|
|
|
|
static unsigned long efi_boot;
|
|
static unsigned long cmdline_ptr;
|
|
static unsigned long systable_ptr;
|
|
static unsigned long start_addr;
|
|
static unsigned long first_ind_entry;
|
|
|
|
static void kexec_image_info(const struct kimage *kimage)
|
|
{
|
|
unsigned long i;
|
|
|
|
pr_debug("kexec kimage info:\n");
|
|
pr_debug("\ttype: %d\n", kimage->type);
|
|
pr_debug("\tstart: %lx\n", kimage->start);
|
|
pr_debug("\thead: %lx\n", kimage->head);
|
|
pr_debug("\tnr_segments: %lu\n", kimage->nr_segments);
|
|
|
|
for (i = 0; i < kimage->nr_segments; i++) {
|
|
pr_debug("\t segment[%lu]: %016lx - %016lx", i,
|
|
kimage->segment[i].mem,
|
|
kimage->segment[i].mem + kimage->segment[i].memsz);
|
|
pr_debug("\t\t0x%lx bytes, %lu pages\n",
|
|
(unsigned long)kimage->segment[i].memsz,
|
|
(unsigned long)kimage->segment[i].memsz / PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
int machine_kexec_prepare(struct kimage *kimage)
|
|
{
|
|
int i;
|
|
char *bootloader = "kexec";
|
|
void *cmdline_ptr = (void *)KEXEC_CMDLINE_ADDR;
|
|
|
|
kexec_image_info(kimage);
|
|
|
|
kimage->arch.efi_boot = fw_arg0;
|
|
kimage->arch.systable_ptr = fw_arg2;
|
|
|
|
/* Find the command line */
|
|
for (i = 0; i < kimage->nr_segments; i++) {
|
|
if (!strncmp(bootloader, (char __user *)kimage->segment[i].buf, strlen(bootloader))) {
|
|
if (!copy_from_user(cmdline_ptr, kimage->segment[i].buf, COMMAND_LINE_SIZE))
|
|
kimage->arch.cmdline_ptr = (unsigned long)cmdline_ptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!kimage->arch.cmdline_ptr) {
|
|
pr_err("Command line not included in the provided image\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* kexec/kdump need a safe page to save reboot_code_buffer */
|
|
kimage->control_code_page = virt_to_page((void *)KEXEC_CONTROL_CODE);
|
|
|
|
reboot_code_buffer = (unsigned long)page_address(kimage->control_code_page);
|
|
memcpy((void *)reboot_code_buffer, relocate_new_kernel, relocate_new_kernel_size);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* All secondary cpus now may jump to kexec_smp_wait cycle */
|
|
relocated_kexec_smp_wait = reboot_code_buffer + (void *)(kexec_smp_wait - relocate_new_kernel);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
void machine_kexec_cleanup(struct kimage *kimage)
|
|
{
|
|
}
|
|
|
|
void kexec_reboot(void)
|
|
{
|
|
do_kexec_t do_kexec = NULL;
|
|
|
|
/*
|
|
* We know we were online, and there will be no incoming IPIs at
|
|
* this point. Mark online again before rebooting so that the crash
|
|
* analysis tool will see us correctly.
|
|
*/
|
|
set_cpu_online(smp_processor_id(), true);
|
|
|
|
/* Ensure remote CPUs observe that we're online before rebooting. */
|
|
smp_mb__after_atomic();
|
|
|
|
/*
|
|
* Make sure we get correct instructions written by the
|
|
* machine_kexec_prepare() CPU.
|
|
*/
|
|
__asm__ __volatile__ ("\tibar 0\n"::);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* All secondary cpus go to kexec_smp_wait */
|
|
if (smp_processor_id() > 0) {
|
|
relocated_kexec_smp_wait(NULL);
|
|
unreachable();
|
|
}
|
|
#endif
|
|
|
|
do_kexec = (void *)reboot_code_buffer;
|
|
do_kexec(efi_boot, cmdline_ptr, systable_ptr, start_addr, first_ind_entry);
|
|
|
|
unreachable();
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void kexec_shutdown_secondary(void *regs)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!cpu_online(cpu))
|
|
return;
|
|
|
|
/* We won't be sent IPIs any more. */
|
|
set_cpu_online(cpu, false);
|
|
|
|
local_irq_disable();
|
|
while (!atomic_read(&kexec_ready_to_reboot))
|
|
cpu_relax();
|
|
|
|
kexec_reboot();
|
|
}
|
|
|
|
static void crash_shutdown_secondary(void *passed_regs)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct pt_regs *regs = passed_regs;
|
|
|
|
/*
|
|
* If we are passed registers, use those. Otherwise get the
|
|
* regs from the last interrupt, which should be correct, as
|
|
* we are in an interrupt. But if the regs are not there,
|
|
* pull them from the top of the stack. They are probably
|
|
* wrong, but we need something to keep from crashing again.
|
|
*/
|
|
if (!regs)
|
|
regs = get_irq_regs();
|
|
if (!regs)
|
|
regs = task_pt_regs(current);
|
|
|
|
if (!cpu_online(cpu))
|
|
return;
|
|
|
|
/* We won't be sent IPIs any more. */
|
|
set_cpu_online(cpu, false);
|
|
|
|
local_irq_disable();
|
|
if (!cpumask_test_cpu(cpu, &cpus_in_crash))
|
|
crash_save_cpu(regs, cpu);
|
|
cpumask_set_cpu(cpu, &cpus_in_crash);
|
|
|
|
while (!atomic_read(&kexec_ready_to_reboot))
|
|
cpu_relax();
|
|
|
|
kexec_reboot();
|
|
}
|
|
|
|
void crash_smp_send_stop(void)
|
|
{
|
|
unsigned int ncpus;
|
|
unsigned long timeout;
|
|
static int cpus_stopped;
|
|
|
|
/*
|
|
* This function can be called twice in panic path, but obviously
|
|
* we should execute this only once.
|
|
*/
|
|
if (cpus_stopped)
|
|
return;
|
|
|
|
cpus_stopped = 1;
|
|
|
|
/* Excluding the panic cpu */
|
|
ncpus = num_online_cpus() - 1;
|
|
|
|
smp_call_function(crash_shutdown_secondary, NULL, 0);
|
|
smp_wmb();
|
|
|
|
/*
|
|
* The crash CPU sends an IPI and wait for other CPUs to
|
|
* respond. Delay of at least 10 seconds.
|
|
*/
|
|
timeout = MSEC_PER_SEC * 10;
|
|
pr_emerg("Sending IPI to other cpus...\n");
|
|
while ((cpumask_weight(&cpus_in_crash) < ncpus) && timeout--) {
|
|
mdelay(1);
|
|
cpu_relax();
|
|
}
|
|
}
|
|
#endif /* defined(CONFIG_SMP) */
|
|
|
|
void machine_shutdown(void)
|
|
{
|
|
int cpu;
|
|
|
|
/* All CPUs go to reboot_code_buffer */
|
|
for_each_possible_cpu(cpu)
|
|
if (!cpu_online(cpu))
|
|
cpu_device_up(get_cpu_device(cpu));
|
|
|
|
#ifdef CONFIG_SMP
|
|
smp_call_function(kexec_shutdown_secondary, NULL, 0);
|
|
#endif
|
|
}
|
|
|
|
void machine_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
int crashing_cpu;
|
|
|
|
local_irq_disable();
|
|
|
|
crashing_cpu = smp_processor_id();
|
|
crash_save_cpu(regs, crashing_cpu);
|
|
|
|
#ifdef CONFIG_SMP
|
|
crash_smp_send_stop();
|
|
#endif
|
|
cpumask_set_cpu(crashing_cpu, &cpus_in_crash);
|
|
|
|
pr_info("Starting crashdump kernel...\n");
|
|
}
|
|
|
|
void machine_kexec(struct kimage *image)
|
|
{
|
|
unsigned long entry, *ptr;
|
|
struct kimage_arch *internal = &image->arch;
|
|
|
|
efi_boot = internal->efi_boot;
|
|
cmdline_ptr = internal->cmdline_ptr;
|
|
systable_ptr = internal->systable_ptr;
|
|
|
|
start_addr = (unsigned long)phys_to_virt(image->start);
|
|
|
|
first_ind_entry = (image->type == KEXEC_TYPE_DEFAULT) ?
|
|
(unsigned long)phys_to_virt(image->head & PAGE_MASK) : 0;
|
|
|
|
/*
|
|
* The generic kexec code builds a page list with physical
|
|
* addresses. they are directly accessible through XKPRANGE
|
|
* hence the phys_to_virt() call.
|
|
*/
|
|
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE);
|
|
ptr = (entry & IND_INDIRECTION) ?
|
|
phys_to_virt(entry & PAGE_MASK) : ptr + 1) {
|
|
if (*ptr & IND_SOURCE || *ptr & IND_INDIRECTION ||
|
|
*ptr & IND_DESTINATION)
|
|
*ptr = (unsigned long) phys_to_virt(*ptr);
|
|
}
|
|
|
|
/* Mark offline before disabling local irq. */
|
|
set_cpu_online(smp_processor_id(), false);
|
|
|
|
/* We do not want to be bothered. */
|
|
local_irq_disable();
|
|
|
|
pr_notice("EFI boot flag 0x%lx\n", efi_boot);
|
|
pr_notice("Command line at 0x%lx\n", cmdline_ptr);
|
|
pr_notice("System table at 0x%lx\n", systable_ptr);
|
|
pr_notice("We will call new kernel at 0x%lx\n", start_addr);
|
|
pr_notice("Bye ...\n");
|
|
|
|
/* Make reboot code buffer available to the boot CPU. */
|
|
flush_cache_all();
|
|
|
|
#ifdef CONFIG_SMP
|
|
atomic_set(&kexec_ready_to_reboot, 1);
|
|
#endif
|
|
|
|
kexec_reboot();
|
|
}
|