mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 16:24:13 +08:00
b96a3e9142
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZO1JUQAKCRDdBJ7gKXxA jrMwAP47r/fS8vAVT3zp/7fXmxaJYTK27CTAM881Gw1SDhFM/wEAv8o84mDenCg6 Nfio7afS1ncD+hPYT8947UnLxTgn+ww= =Afws -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Some swap cleanups from Ma Wupeng ("fix WARN_ON in add_to_avail_list") - Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which reduces the special-case code for handling hugetlb pages in GUP. It also speeds up GUP handling of transparent hugepages. - Peng Zhang provides some maple tree speedups ("Optimize the fast path of mas_store()"). - Sergey Senozhatsky has improved te performance of zsmalloc during compaction (zsmalloc: small compaction improvements"). - Domenico Cerasuolo has developed additional selftest code for zswap ("selftests: cgroup: add zswap test program"). - xu xin has doe some work on KSM's handling of zero pages. These changes are mainly to enable the user to better understand the effectiveness of KSM's treatment of zero pages ("ksm: support tracking KSM-placed zero-pages"). - Jeff Xu has fixes the behaviour of memfd's MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED"). - David Howells has fixed an fscache optimization ("mm, netfs, fscache: Stop read optimisation when folio removed from pagecache"). - Axel Rasmussen has given userfaultfd the ability to simulate memory poisoning ("add UFFDIO_POISON to simulate memory poisoning with UFFD"). - Miaohe Lin has contributed some routine maintenance work on the memory-failure code ("mm: memory-failure: remove unneeded PageHuge() check"). - Peng Zhang has contributed some maintenance work on the maple tree code ("Improve the validation for maple tree and some cleanup"). - Hugh Dickins has optimized the collapsing of shmem or file pages into THPs ("mm: free retracted page table by RCU"). - Jiaqi Yan has a patch series which permits us to use the healthy subpages within a hardware poisoned huge page for general purposes ("Improve hugetlbfs read on HWPOISON hugepages"). - Kemeng Shi has done some maintenance work on the pagetable-check code ("Remove unused parameters in page_table_check"). - More folioification work from Matthew Wilcox ("More filesystem folio conversions for 6.6"), ("Followup folio conversions for zswap"). And from ZhangPeng ("Convert several functions in page_io.c to use a folio"). - page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext"). - Baoquan He has converted some architectures to use the GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert architectures to take GENERIC_IOREMAP way"). - Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support batched/deferred tlb shootdown during page reclamation/migration"). - Better maple tree lockdep checking from Liam Howlett ("More strict maple tree lockdep"). Liam also developed some efficiency improvements ("Reduce preallocations for maple tree"). - Cleanup and optimization to the secondary IOMMU TLB invalidation, from Alistair Popple ("Invalidate secondary IOMMU TLB on permission upgrade"). - Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes for arm64"). - Kemeng Shi provides some maintenance work on the compaction code ("Two minor cleanups for compaction"). - Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle most file-backed faults under the VMA lock"). - Aneesh Kumar contributes code to use the vmemmap optimization for DAX on ppc64, under some circumstances ("Add support for DAX vmemmap optimization for ppc64"). - page-ext cleanups from Kemeng Shi ("add page_ext_data to get client data in page_ext"), ("minor cleanups to page_ext header"). - Some zswap cleanups from Johannes Weiner ("mm: zswap: three cleanups"). - kmsan cleanups from ZhangPeng ("minor cleanups for kmsan"). - VMA handling cleanups from Kefeng Wang ("mm: convert to vma_is_initial_heap/stack()"). - DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes: implement DAMOS tried total bytes file"), ("Extend DAMOS filters for address ranges and DAMON monitoring targets"). - Compaction work from Kemeng Shi ("Fixes and cleanups to compaction"). - Liam Howlett has improved the maple tree node replacement code ("maple_tree: Change replacement strategy"). - ZhangPeng has a general code cleanup - use the K() macro more widely ("cleanup with helper macro K()"). - Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for memmap on memory feature on ppc64"). - pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list in page_alloc"), ("Two minor cleanups for get pageblock migratetype"). - Vishal Moola introduces a memory descriptor for page table tracking, "struct ptdesc" ("Split ptdesc from struct page"). - memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups for vm.memfd_noexec"). - MM include file rationalization from Hugh Dickins ("arch: include asm/cacheflush.h in asm/hugetlb.h"). - THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text output"). - kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use object_cache instead of kmemleak_initialized"). - More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor and _folio_order"). - A VMA locking scalability improvement from Suren Baghdasaryan ("Per-VMA lock support for swap and userfaults"). - pagetable handling cleanups from Matthew Wilcox ("New page table range API"). - A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop using page->private on tail pages for THP_SWAP + cleanups"). - Cleanups and speedups to the hugetlb fault handling from Matthew Wilcox ("Change calling convention for ->huge_fault"). - Matthew Wilcox has also done some maintenance work on the MM subsystem documentation ("Improve mm documentation"). * tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits) maple_tree: shrink struct maple_tree maple_tree: clean up mas_wr_append() secretmem: convert page_is_secretmem() to folio_is_secretmem() nios2: fix flush_dcache_page() for usage from irq context hugetlb: add documentation for vma_kernel_pagesize() mm: add orphaned kernel-doc to the rst files. mm: fix clean_record_shared_mapping_range kernel-doc mm: fix get_mctgt_type() kernel-doc mm: fix kernel-doc warning from tlb_flush_rmaps() mm: remove enum page_entry_size mm: allow ->huge_fault() to be called without the mmap_lock held mm: move PMD_ORDER to pgtable.h mm: remove checks for pte_index memcg: remove duplication detection for mem_cgroup_uncharge_swap mm/huge_memory: work on folio->swap instead of page->private when splitting folio mm/swap: inline folio_set_swap_entry() and folio_swap_entry() mm/swap: use dedicated entry for swap in folio mm/swap: stop using page->private on tail pages for THP_SWAP selftests/mm: fix WARNING comparing pointer to 0 selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check ...
2804 lines
71 KiB
C
2804 lines
71 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/page_table_check.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/ksm.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
#include "mm_slot.h"
|
|
|
|
enum scan_result {
|
|
SCAN_FAIL,
|
|
SCAN_SUCCEED,
|
|
SCAN_PMD_NULL,
|
|
SCAN_PMD_NONE,
|
|
SCAN_PMD_MAPPED,
|
|
SCAN_EXCEED_NONE_PTE,
|
|
SCAN_EXCEED_SWAP_PTE,
|
|
SCAN_EXCEED_SHARED_PTE,
|
|
SCAN_PTE_NON_PRESENT,
|
|
SCAN_PTE_UFFD_WP,
|
|
SCAN_PTE_MAPPED_HUGEPAGE,
|
|
SCAN_PAGE_RO,
|
|
SCAN_LACK_REFERENCED_PAGE,
|
|
SCAN_PAGE_NULL,
|
|
SCAN_SCAN_ABORT,
|
|
SCAN_PAGE_COUNT,
|
|
SCAN_PAGE_LRU,
|
|
SCAN_PAGE_LOCK,
|
|
SCAN_PAGE_ANON,
|
|
SCAN_PAGE_COMPOUND,
|
|
SCAN_ANY_PROCESS,
|
|
SCAN_VMA_NULL,
|
|
SCAN_VMA_CHECK,
|
|
SCAN_ADDRESS_RANGE,
|
|
SCAN_DEL_PAGE_LRU,
|
|
SCAN_ALLOC_HUGE_PAGE_FAIL,
|
|
SCAN_CGROUP_CHARGE_FAIL,
|
|
SCAN_TRUNCATED,
|
|
SCAN_PAGE_HAS_PRIVATE,
|
|
SCAN_STORE_FAILED,
|
|
SCAN_COPY_MC,
|
|
SCAN_PAGE_FILLED,
|
|
};
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/huge_memory.h>
|
|
|
|
static struct task_struct *khugepaged_thread __read_mostly;
|
|
static DEFINE_MUTEX(khugepaged_mutex);
|
|
|
|
/* default scan 8*512 pte (or vmas) every 30 second */
|
|
static unsigned int khugepaged_pages_to_scan __read_mostly;
|
|
static unsigned int khugepaged_pages_collapsed;
|
|
static unsigned int khugepaged_full_scans;
|
|
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
|
|
/* during fragmentation poll the hugepage allocator once every minute */
|
|
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
|
|
static unsigned long khugepaged_sleep_expire;
|
|
static DEFINE_SPINLOCK(khugepaged_mm_lock);
|
|
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
|
|
/*
|
|
* default collapse hugepages if there is at least one pte mapped like
|
|
* it would have happened if the vma was large enough during page
|
|
* fault.
|
|
*
|
|
* Note that these are only respected if collapse was initiated by khugepaged.
|
|
*/
|
|
static unsigned int khugepaged_max_ptes_none __read_mostly;
|
|
static unsigned int khugepaged_max_ptes_swap __read_mostly;
|
|
static unsigned int khugepaged_max_ptes_shared __read_mostly;
|
|
|
|
#define MM_SLOTS_HASH_BITS 10
|
|
static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
|
|
|
|
static struct kmem_cache *mm_slot_cache __read_mostly;
|
|
|
|
struct collapse_control {
|
|
bool is_khugepaged;
|
|
|
|
/* Num pages scanned per node */
|
|
u32 node_load[MAX_NUMNODES];
|
|
|
|
/* nodemask for allocation fallback */
|
|
nodemask_t alloc_nmask;
|
|
};
|
|
|
|
/**
|
|
* struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
|
|
* @slot: hash lookup from mm to mm_slot
|
|
*/
|
|
struct khugepaged_mm_slot {
|
|
struct mm_slot slot;
|
|
};
|
|
|
|
/**
|
|
* struct khugepaged_scan - cursor for scanning
|
|
* @mm_head: the head of the mm list to scan
|
|
* @mm_slot: the current mm_slot we are scanning
|
|
* @address: the next address inside that to be scanned
|
|
*
|
|
* There is only the one khugepaged_scan instance of this cursor structure.
|
|
*/
|
|
struct khugepaged_scan {
|
|
struct list_head mm_head;
|
|
struct khugepaged_mm_slot *mm_slot;
|
|
unsigned long address;
|
|
};
|
|
|
|
static struct khugepaged_scan khugepaged_scan = {
|
|
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
|
|
};
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int msecs;
|
|
int err;
|
|
|
|
err = kstrtouint(buf, 10, &msecs);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
khugepaged_scan_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute scan_sleep_millisecs_attr =
|
|
__ATTR_RW(scan_sleep_millisecs);
|
|
|
|
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int msecs;
|
|
int err;
|
|
|
|
err = kstrtouint(buf, 10, &msecs);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
khugepaged_alloc_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute alloc_sleep_millisecs_attr =
|
|
__ATTR_RW(alloc_sleep_millisecs);
|
|
|
|
static ssize_t pages_to_scan_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
|
|
}
|
|
static ssize_t pages_to_scan_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int pages;
|
|
int err;
|
|
|
|
err = kstrtouint(buf, 10, &pages);
|
|
if (err || !pages)
|
|
return -EINVAL;
|
|
|
|
khugepaged_pages_to_scan = pages;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute pages_to_scan_attr =
|
|
__ATTR_RW(pages_to_scan);
|
|
|
|
static ssize_t pages_collapsed_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
|
|
}
|
|
static struct kobj_attribute pages_collapsed_attr =
|
|
__ATTR_RO(pages_collapsed);
|
|
|
|
static ssize_t full_scans_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
|
|
}
|
|
static struct kobj_attribute full_scans_attr =
|
|
__ATTR_RO(full_scans);
|
|
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static struct kobj_attribute khugepaged_defrag_attr =
|
|
__ATTR_RW(defrag);
|
|
|
|
/*
|
|
* max_ptes_none controls if khugepaged should collapse hugepages over
|
|
* any unmapped ptes in turn potentially increasing the memory
|
|
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
|
|
* reduce the available free memory in the system as it
|
|
* runs. Increasing max_ptes_none will instead potentially reduce the
|
|
* free memory in the system during the khugepaged scan.
|
|
*/
|
|
static ssize_t max_ptes_none_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
|
|
}
|
|
static ssize_t max_ptes_none_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_none;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_none);
|
|
if (err || max_ptes_none > HPAGE_PMD_NR - 1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_none = max_ptes_none;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute khugepaged_max_ptes_none_attr =
|
|
__ATTR_RW(max_ptes_none);
|
|
|
|
static ssize_t max_ptes_swap_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
|
|
}
|
|
|
|
static ssize_t max_ptes_swap_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_swap;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_swap);
|
|
if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_swap = max_ptes_swap;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute khugepaged_max_ptes_swap_attr =
|
|
__ATTR_RW(max_ptes_swap);
|
|
|
|
static ssize_t max_ptes_shared_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
|
|
}
|
|
|
|
static ssize_t max_ptes_shared_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_shared;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_shared);
|
|
if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_shared = max_ptes_shared;
|
|
|
|
return count;
|
|
}
|
|
|
|
static struct kobj_attribute khugepaged_max_ptes_shared_attr =
|
|
__ATTR_RW(max_ptes_shared);
|
|
|
|
static struct attribute *khugepaged_attr[] = {
|
|
&khugepaged_defrag_attr.attr,
|
|
&khugepaged_max_ptes_none_attr.attr,
|
|
&khugepaged_max_ptes_swap_attr.attr,
|
|
&khugepaged_max_ptes_shared_attr.attr,
|
|
&pages_to_scan_attr.attr,
|
|
&pages_collapsed_attr.attr,
|
|
&full_scans_attr.attr,
|
|
&scan_sleep_millisecs_attr.attr,
|
|
&alloc_sleep_millisecs_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
struct attribute_group khugepaged_attr_group = {
|
|
.attrs = khugepaged_attr,
|
|
.name = "khugepaged",
|
|
};
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
int hugepage_madvise(struct vm_area_struct *vma,
|
|
unsigned long *vm_flags, int advice)
|
|
{
|
|
switch (advice) {
|
|
case MADV_HUGEPAGE:
|
|
#ifdef CONFIG_S390
|
|
/*
|
|
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
|
|
* can't handle this properly after s390_enable_sie, so we simply
|
|
* ignore the madvise to prevent qemu from causing a SIGSEGV.
|
|
*/
|
|
if (mm_has_pgste(vma->vm_mm))
|
|
return 0;
|
|
#endif
|
|
*vm_flags &= ~VM_NOHUGEPAGE;
|
|
*vm_flags |= VM_HUGEPAGE;
|
|
/*
|
|
* If the vma become good for khugepaged to scan,
|
|
* register it here without waiting a page fault that
|
|
* may not happen any time soon.
|
|
*/
|
|
khugepaged_enter_vma(vma, *vm_flags);
|
|
break;
|
|
case MADV_NOHUGEPAGE:
|
|
*vm_flags &= ~VM_HUGEPAGE;
|
|
*vm_flags |= VM_NOHUGEPAGE;
|
|
/*
|
|
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
|
|
* this vma even if we leave the mm registered in khugepaged if
|
|
* it got registered before VM_NOHUGEPAGE was set.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init khugepaged_init(void)
|
|
{
|
|
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
|
|
sizeof(struct khugepaged_mm_slot),
|
|
__alignof__(struct khugepaged_mm_slot),
|
|
0, NULL);
|
|
if (!mm_slot_cache)
|
|
return -ENOMEM;
|
|
|
|
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
|
|
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
|
|
khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
|
|
khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init khugepaged_destroy(void)
|
|
{
|
|
kmem_cache_destroy(mm_slot_cache);
|
|
}
|
|
|
|
static inline int hpage_collapse_test_exit(struct mm_struct *mm)
|
|
{
|
|
return atomic_read(&mm->mm_users) == 0;
|
|
}
|
|
|
|
void __khugepaged_enter(struct mm_struct *mm)
|
|
{
|
|
struct khugepaged_mm_slot *mm_slot;
|
|
struct mm_slot *slot;
|
|
int wakeup;
|
|
|
|
/* __khugepaged_exit() must not run from under us */
|
|
VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
|
|
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
|
|
return;
|
|
|
|
mm_slot = mm_slot_alloc(mm_slot_cache);
|
|
if (!mm_slot)
|
|
return;
|
|
|
|
slot = &mm_slot->slot;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot_insert(mm_slots_hash, mm, slot);
|
|
/*
|
|
* Insert just behind the scanning cursor, to let the area settle
|
|
* down a little.
|
|
*/
|
|
wakeup = list_empty(&khugepaged_scan.mm_head);
|
|
list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mmgrab(mm);
|
|
if (wakeup)
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
}
|
|
|
|
void khugepaged_enter_vma(struct vm_area_struct *vma,
|
|
unsigned long vm_flags)
|
|
{
|
|
if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
|
|
hugepage_flags_enabled()) {
|
|
if (hugepage_vma_check(vma, vm_flags, false, false, true))
|
|
__khugepaged_enter(vma->vm_mm);
|
|
}
|
|
}
|
|
|
|
void __khugepaged_exit(struct mm_struct *mm)
|
|
{
|
|
struct khugepaged_mm_slot *mm_slot;
|
|
struct mm_slot *slot;
|
|
int free = 0;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
slot = mm_slot_lookup(mm_slots_hash, mm);
|
|
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
|
|
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
|
|
hash_del(&slot->hash);
|
|
list_del(&slot->mm_node);
|
|
free = 1;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
if (free) {
|
|
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
mm_slot_free(mm_slot_cache, mm_slot);
|
|
mmdrop(mm);
|
|
} else if (mm_slot) {
|
|
/*
|
|
* This is required to serialize against
|
|
* hpage_collapse_test_exit() (which is guaranteed to run
|
|
* under mmap sem read mode). Stop here (after we return all
|
|
* pagetables will be destroyed) until khugepaged has finished
|
|
* working on the pagetables under the mmap_lock.
|
|
*/
|
|
mmap_write_lock(mm);
|
|
mmap_write_unlock(mm);
|
|
}
|
|
}
|
|
|
|
static void release_pte_folio(struct folio *folio)
|
|
{
|
|
node_stat_mod_folio(folio,
|
|
NR_ISOLATED_ANON + folio_is_file_lru(folio),
|
|
-folio_nr_pages(folio));
|
|
folio_unlock(folio);
|
|
folio_putback_lru(folio);
|
|
}
|
|
|
|
static void release_pte_page(struct page *page)
|
|
{
|
|
release_pte_folio(page_folio(page));
|
|
}
|
|
|
|
static void release_pte_pages(pte_t *pte, pte_t *_pte,
|
|
struct list_head *compound_pagelist)
|
|
{
|
|
struct folio *folio, *tmp;
|
|
|
|
while (--_pte >= pte) {
|
|
pte_t pteval = ptep_get(_pte);
|
|
unsigned long pfn;
|
|
|
|
if (pte_none(pteval))
|
|
continue;
|
|
pfn = pte_pfn(pteval);
|
|
if (is_zero_pfn(pfn))
|
|
continue;
|
|
folio = pfn_folio(pfn);
|
|
if (folio_test_large(folio))
|
|
continue;
|
|
release_pte_folio(folio);
|
|
}
|
|
|
|
list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
|
|
list_del(&folio->lru);
|
|
release_pte_folio(folio);
|
|
}
|
|
}
|
|
|
|
static bool is_refcount_suitable(struct page *page)
|
|
{
|
|
int expected_refcount;
|
|
|
|
expected_refcount = total_mapcount(page);
|
|
if (PageSwapCache(page))
|
|
expected_refcount += compound_nr(page);
|
|
|
|
return page_count(page) == expected_refcount;
|
|
}
|
|
|
|
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *pte,
|
|
struct collapse_control *cc,
|
|
struct list_head *compound_pagelist)
|
|
{
|
|
struct page *page = NULL;
|
|
pte_t *_pte;
|
|
int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
|
|
bool writable = false;
|
|
|
|
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
|
|
_pte++, address += PAGE_SIZE) {
|
|
pte_t pteval = ptep_get(_pte);
|
|
if (pte_none(pteval) || (pte_present(pteval) &&
|
|
is_zero_pfn(pte_pfn(pteval)))) {
|
|
++none_or_zero;
|
|
if (!userfaultfd_armed(vma) &&
|
|
(!cc->is_khugepaged ||
|
|
none_or_zero <= khugepaged_max_ptes_none)) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
|
|
goto out;
|
|
}
|
|
}
|
|
if (!pte_present(pteval)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto out;
|
|
}
|
|
if (pte_uffd_wp(pteval)) {
|
|
result = SCAN_PTE_UFFD_WP;
|
|
goto out;
|
|
}
|
|
page = vm_normal_page(vma, address, pteval);
|
|
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(!PageAnon(page), page);
|
|
|
|
if (page_mapcount(page) > 1) {
|
|
++shared;
|
|
if (cc->is_khugepaged &&
|
|
shared > khugepaged_max_ptes_shared) {
|
|
result = SCAN_EXCEED_SHARED_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (PageCompound(page)) {
|
|
struct page *p;
|
|
page = compound_head(page);
|
|
|
|
/*
|
|
* Check if we have dealt with the compound page
|
|
* already
|
|
*/
|
|
list_for_each_entry(p, compound_pagelist, lru) {
|
|
if (page == p)
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We can do it before isolate_lru_page because the
|
|
* page can't be freed from under us. NOTE: PG_lock
|
|
* is needed to serialize against split_huge_page
|
|
* when invoked from the VM.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check if the page has any GUP (or other external) pins.
|
|
*
|
|
* The page table that maps the page has been already unlinked
|
|
* from the page table tree and this process cannot get
|
|
* an additional pin on the page.
|
|
*
|
|
* New pins can come later if the page is shared across fork,
|
|
* but not from this process. The other process cannot write to
|
|
* the page, only trigger CoW.
|
|
*/
|
|
if (!is_refcount_suitable(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Isolate the page to avoid collapsing an hugepage
|
|
* currently in use by the VM.
|
|
*/
|
|
if (!isolate_lru_page(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_DEL_PAGE_LRU;
|
|
goto out;
|
|
}
|
|
mod_node_page_state(page_pgdat(page),
|
|
NR_ISOLATED_ANON + page_is_file_lru(page),
|
|
compound_nr(page));
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageLRU(page), page);
|
|
|
|
if (PageCompound(page))
|
|
list_add_tail(&page->lru, compound_pagelist);
|
|
next:
|
|
/*
|
|
* If collapse was initiated by khugepaged, check that there is
|
|
* enough young pte to justify collapsing the page
|
|
*/
|
|
if (cc->is_khugepaged &&
|
|
(pte_young(pteval) || page_is_young(page) ||
|
|
PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
|
|
address)))
|
|
referenced++;
|
|
|
|
if (pte_write(pteval))
|
|
writable = true;
|
|
}
|
|
|
|
if (unlikely(!writable)) {
|
|
result = SCAN_PAGE_RO;
|
|
} else if (unlikely(cc->is_khugepaged && !referenced)) {
|
|
result = SCAN_LACK_REFERENCED_PAGE;
|
|
} else {
|
|
result = SCAN_SUCCEED;
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return result;
|
|
}
|
|
out:
|
|
release_pte_pages(pte, _pte, compound_pagelist);
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return result;
|
|
}
|
|
|
|
static void __collapse_huge_page_copy_succeeded(pte_t *pte,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
spinlock_t *ptl,
|
|
struct list_head *compound_pagelist)
|
|
{
|
|
struct page *src_page;
|
|
struct page *tmp;
|
|
pte_t *_pte;
|
|
pte_t pteval;
|
|
|
|
for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
|
|
_pte++, address += PAGE_SIZE) {
|
|
pteval = ptep_get(_pte);
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
|
|
if (is_zero_pfn(pte_pfn(pteval))) {
|
|
/*
|
|
* ptl mostly unnecessary.
|
|
*/
|
|
spin_lock(ptl);
|
|
ptep_clear(vma->vm_mm, address, _pte);
|
|
spin_unlock(ptl);
|
|
ksm_might_unmap_zero_page(vma->vm_mm, pteval);
|
|
}
|
|
} else {
|
|
src_page = pte_page(pteval);
|
|
if (!PageCompound(src_page))
|
|
release_pte_page(src_page);
|
|
/*
|
|
* ptl mostly unnecessary, but preempt has to
|
|
* be disabled to update the per-cpu stats
|
|
* inside page_remove_rmap().
|
|
*/
|
|
spin_lock(ptl);
|
|
ptep_clear(vma->vm_mm, address, _pte);
|
|
page_remove_rmap(src_page, vma, false);
|
|
spin_unlock(ptl);
|
|
free_page_and_swap_cache(src_page);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
|
|
list_del(&src_page->lru);
|
|
mod_node_page_state(page_pgdat(src_page),
|
|
NR_ISOLATED_ANON + page_is_file_lru(src_page),
|
|
-compound_nr(src_page));
|
|
unlock_page(src_page);
|
|
free_swap_cache(src_page);
|
|
putback_lru_page(src_page);
|
|
}
|
|
}
|
|
|
|
static void __collapse_huge_page_copy_failed(pte_t *pte,
|
|
pmd_t *pmd,
|
|
pmd_t orig_pmd,
|
|
struct vm_area_struct *vma,
|
|
struct list_head *compound_pagelist)
|
|
{
|
|
spinlock_t *pmd_ptl;
|
|
|
|
/*
|
|
* Re-establish the PMD to point to the original page table
|
|
* entry. Restoring PMD needs to be done prior to releasing
|
|
* pages. Since pages are still isolated and locked here,
|
|
* acquiring anon_vma_lock_write is unnecessary.
|
|
*/
|
|
pmd_ptl = pmd_lock(vma->vm_mm, pmd);
|
|
pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
|
|
spin_unlock(pmd_ptl);
|
|
/*
|
|
* Release both raw and compound pages isolated
|
|
* in __collapse_huge_page_isolate.
|
|
*/
|
|
release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
|
|
}
|
|
|
|
/*
|
|
* __collapse_huge_page_copy - attempts to copy memory contents from raw
|
|
* pages to a hugepage. Cleans up the raw pages if copying succeeds;
|
|
* otherwise restores the original page table and releases isolated raw pages.
|
|
* Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
|
|
*
|
|
* @pte: starting of the PTEs to copy from
|
|
* @page: the new hugepage to copy contents to
|
|
* @pmd: pointer to the new hugepage's PMD
|
|
* @orig_pmd: the original raw pages' PMD
|
|
* @vma: the original raw pages' virtual memory area
|
|
* @address: starting address to copy
|
|
* @ptl: lock on raw pages' PTEs
|
|
* @compound_pagelist: list that stores compound pages
|
|
*/
|
|
static int __collapse_huge_page_copy(pte_t *pte,
|
|
struct page *page,
|
|
pmd_t *pmd,
|
|
pmd_t orig_pmd,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
spinlock_t *ptl,
|
|
struct list_head *compound_pagelist)
|
|
{
|
|
struct page *src_page;
|
|
pte_t *_pte;
|
|
pte_t pteval;
|
|
unsigned long _address;
|
|
int result = SCAN_SUCCEED;
|
|
|
|
/*
|
|
* Copying pages' contents is subject to memory poison at any iteration.
|
|
*/
|
|
for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
|
|
_pte++, page++, _address += PAGE_SIZE) {
|
|
pteval = ptep_get(_pte);
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
clear_user_highpage(page, _address);
|
|
continue;
|
|
}
|
|
src_page = pte_page(pteval);
|
|
if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
|
|
result = SCAN_COPY_MC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (likely(result == SCAN_SUCCEED))
|
|
__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
|
|
compound_pagelist);
|
|
else
|
|
__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
|
|
compound_pagelist);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void khugepaged_alloc_sleep(void)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
add_wait_queue(&khugepaged_wait, &wait);
|
|
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
|
|
schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
|
|
remove_wait_queue(&khugepaged_wait, &wait);
|
|
}
|
|
|
|
struct collapse_control khugepaged_collapse_control = {
|
|
.is_khugepaged = true,
|
|
};
|
|
|
|
static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* If node_reclaim_mode is disabled, then no extra effort is made to
|
|
* allocate memory locally.
|
|
*/
|
|
if (!node_reclaim_enabled())
|
|
return false;
|
|
|
|
/* If there is a count for this node already, it must be acceptable */
|
|
if (cc->node_load[nid])
|
|
return false;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (!cc->node_load[i])
|
|
continue;
|
|
if (node_distance(nid, i) > node_reclaim_distance)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#define khugepaged_defrag() \
|
|
(transparent_hugepage_flags & \
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
|
|
|
|
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
|
|
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
|
|
{
|
|
return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int hpage_collapse_find_target_node(struct collapse_control *cc)
|
|
{
|
|
int nid, target_node = 0, max_value = 0;
|
|
|
|
/* find first node with max normal pages hit */
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++)
|
|
if (cc->node_load[nid] > max_value) {
|
|
max_value = cc->node_load[nid];
|
|
target_node = nid;
|
|
}
|
|
|
|
for_each_online_node(nid) {
|
|
if (max_value == cc->node_load[nid])
|
|
node_set(nid, cc->alloc_nmask);
|
|
}
|
|
|
|
return target_node;
|
|
}
|
|
#else
|
|
static int hpage_collapse_find_target_node(struct collapse_control *cc)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
|
|
nodemask_t *nmask)
|
|
{
|
|
*hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
|
|
if (unlikely(!*hpage)) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
return false;
|
|
}
|
|
|
|
folio_prep_large_rmappable((struct folio *)*hpage);
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If mmap_lock temporarily dropped, revalidate vma
|
|
* before taking mmap_lock.
|
|
* Returns enum scan_result value.
|
|
*/
|
|
|
|
static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
|
|
bool expect_anon,
|
|
struct vm_area_struct **vmap,
|
|
struct collapse_control *cc)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if (unlikely(hpage_collapse_test_exit(mm)))
|
|
return SCAN_ANY_PROCESS;
|
|
|
|
*vmap = vma = find_vma(mm, address);
|
|
if (!vma)
|
|
return SCAN_VMA_NULL;
|
|
|
|
if (!transhuge_vma_suitable(vma, address))
|
|
return SCAN_ADDRESS_RANGE;
|
|
if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
|
|
cc->is_khugepaged))
|
|
return SCAN_VMA_CHECK;
|
|
/*
|
|
* Anon VMA expected, the address may be unmapped then
|
|
* remapped to file after khugepaged reaquired the mmap_lock.
|
|
*
|
|
* hugepage_vma_check may return true for qualified file
|
|
* vmas.
|
|
*/
|
|
if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
|
|
return SCAN_PAGE_ANON;
|
|
return SCAN_SUCCEED;
|
|
}
|
|
|
|
static int find_pmd_or_thp_or_none(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pmd_t **pmd)
|
|
{
|
|
pmd_t pmde;
|
|
|
|
*pmd = mm_find_pmd(mm, address);
|
|
if (!*pmd)
|
|
return SCAN_PMD_NULL;
|
|
|
|
pmde = pmdp_get_lockless(*pmd);
|
|
if (pmd_none(pmde))
|
|
return SCAN_PMD_NONE;
|
|
if (!pmd_present(pmde))
|
|
return SCAN_PMD_NULL;
|
|
if (pmd_trans_huge(pmde))
|
|
return SCAN_PMD_MAPPED;
|
|
if (pmd_devmap(pmde))
|
|
return SCAN_PMD_NULL;
|
|
if (pmd_bad(pmde))
|
|
return SCAN_PMD_NULL;
|
|
return SCAN_SUCCEED;
|
|
}
|
|
|
|
static int check_pmd_still_valid(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pmd_t *pmd)
|
|
{
|
|
pmd_t *new_pmd;
|
|
int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
|
|
|
|
if (result != SCAN_SUCCEED)
|
|
return result;
|
|
if (new_pmd != pmd)
|
|
return SCAN_FAIL;
|
|
return SCAN_SUCCEED;
|
|
}
|
|
|
|
/*
|
|
* Bring missing pages in from swap, to complete THP collapse.
|
|
* Only done if hpage_collapse_scan_pmd believes it is worthwhile.
|
|
*
|
|
* Called and returns without pte mapped or spinlocks held.
|
|
* Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
|
|
*/
|
|
static int __collapse_huge_page_swapin(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd,
|
|
int referenced)
|
|
{
|
|
int swapped_in = 0;
|
|
vm_fault_t ret = 0;
|
|
unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
|
|
int result;
|
|
pte_t *pte = NULL;
|
|
spinlock_t *ptl;
|
|
|
|
for (address = haddr; address < end; address += PAGE_SIZE) {
|
|
struct vm_fault vmf = {
|
|
.vma = vma,
|
|
.address = address,
|
|
.pgoff = linear_page_index(vma, address),
|
|
.flags = FAULT_FLAG_ALLOW_RETRY,
|
|
.pmd = pmd,
|
|
};
|
|
|
|
if (!pte++) {
|
|
pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
|
|
if (!pte) {
|
|
mmap_read_unlock(mm);
|
|
result = SCAN_PMD_NULL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
vmf.orig_pte = ptep_get_lockless(pte);
|
|
if (!is_swap_pte(vmf.orig_pte))
|
|
continue;
|
|
|
|
vmf.pte = pte;
|
|
vmf.ptl = ptl;
|
|
ret = do_swap_page(&vmf);
|
|
/* Which unmaps pte (after perhaps re-checking the entry) */
|
|
pte = NULL;
|
|
|
|
/*
|
|
* do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
|
|
* Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
|
|
* we do not retry here and swap entry will remain in pagetable
|
|
* resulting in later failure.
|
|
*/
|
|
if (ret & VM_FAULT_RETRY) {
|
|
/* Likely, but not guaranteed, that page lock failed */
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out;
|
|
}
|
|
if (ret & VM_FAULT_ERROR) {
|
|
mmap_read_unlock(mm);
|
|
result = SCAN_FAIL;
|
|
goto out;
|
|
}
|
|
swapped_in++;
|
|
}
|
|
|
|
if (pte)
|
|
pte_unmap(pte);
|
|
|
|
/* Drain LRU cache to remove extra pin on the swapped in pages */
|
|
if (swapped_in)
|
|
lru_add_drain();
|
|
|
|
result = SCAN_SUCCEED;
|
|
out:
|
|
trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
|
|
return result;
|
|
}
|
|
|
|
static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
|
|
struct collapse_control *cc)
|
|
{
|
|
gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
|
|
GFP_TRANSHUGE);
|
|
int node = hpage_collapse_find_target_node(cc);
|
|
struct folio *folio;
|
|
|
|
if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
|
|
return SCAN_ALLOC_HUGE_PAGE_FAIL;
|
|
|
|
folio = page_folio(*hpage);
|
|
if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
|
|
folio_put(folio);
|
|
*hpage = NULL;
|
|
return SCAN_CGROUP_CHARGE_FAIL;
|
|
}
|
|
count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
|
|
|
|
return SCAN_SUCCEED;
|
|
}
|
|
|
|
static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
|
|
int referenced, int unmapped,
|
|
struct collapse_control *cc)
|
|
{
|
|
LIST_HEAD(compound_pagelist);
|
|
pmd_t *pmd, _pmd;
|
|
pte_t *pte;
|
|
pgtable_t pgtable;
|
|
struct page *hpage;
|
|
spinlock_t *pmd_ptl, *pte_ptl;
|
|
int result = SCAN_FAIL;
|
|
struct vm_area_struct *vma;
|
|
struct mmu_notifier_range range;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
/*
|
|
* Before allocating the hugepage, release the mmap_lock read lock.
|
|
* The allocation can take potentially a long time if it involves
|
|
* sync compaction, and we do not need to hold the mmap_lock during
|
|
* that. We will recheck the vma after taking it again in write mode.
|
|
*/
|
|
mmap_read_unlock(mm);
|
|
|
|
result = alloc_charge_hpage(&hpage, mm, cc);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out_nolock;
|
|
|
|
mmap_read_lock(mm);
|
|
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
|
|
if (result != SCAN_SUCCEED) {
|
|
mmap_read_unlock(mm);
|
|
goto out_nolock;
|
|
}
|
|
|
|
result = find_pmd_or_thp_or_none(mm, address, &pmd);
|
|
if (result != SCAN_SUCCEED) {
|
|
mmap_read_unlock(mm);
|
|
goto out_nolock;
|
|
}
|
|
|
|
if (unmapped) {
|
|
/*
|
|
* __collapse_huge_page_swapin will return with mmap_lock
|
|
* released when it fails. So we jump out_nolock directly in
|
|
* that case. Continuing to collapse causes inconsistency.
|
|
*/
|
|
result = __collapse_huge_page_swapin(mm, vma, address, pmd,
|
|
referenced);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out_nolock;
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
/*
|
|
* Prevent all access to pagetables with the exception of
|
|
* gup_fast later handled by the ptep_clear_flush and the VM
|
|
* handled by the anon_vma lock + PG_lock.
|
|
*/
|
|
mmap_write_lock(mm);
|
|
result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out_up_write;
|
|
/* check if the pmd is still valid */
|
|
result = check_pmd_still_valid(mm, address, pmd);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out_up_write;
|
|
|
|
vma_start_write(vma);
|
|
anon_vma_lock_write(vma->anon_vma);
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
|
|
address + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
|
|
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
|
|
/*
|
|
* This removes any huge TLB entry from the CPU so we won't allow
|
|
* huge and small TLB entries for the same virtual address to
|
|
* avoid the risk of CPU bugs in that area.
|
|
*
|
|
* Parallel fast GUP is fine since fast GUP will back off when
|
|
* it detects PMD is changed.
|
|
*/
|
|
_pmd = pmdp_collapse_flush(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
tlb_remove_table_sync_one();
|
|
|
|
pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
|
|
if (pte) {
|
|
result = __collapse_huge_page_isolate(vma, address, pte, cc,
|
|
&compound_pagelist);
|
|
spin_unlock(pte_ptl);
|
|
} else {
|
|
result = SCAN_PMD_NULL;
|
|
}
|
|
|
|
if (unlikely(result != SCAN_SUCCEED)) {
|
|
if (pte)
|
|
pte_unmap(pte);
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
/*
|
|
* We can only use set_pmd_at when establishing
|
|
* hugepmds and never for establishing regular pmds that
|
|
* points to regular pagetables. Use pmd_populate for that
|
|
*/
|
|
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
|
|
spin_unlock(pmd_ptl);
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
goto out_up_write;
|
|
}
|
|
|
|
/*
|
|
* All pages are isolated and locked so anon_vma rmap
|
|
* can't run anymore.
|
|
*/
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
|
|
result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
|
|
vma, address, pte_ptl,
|
|
&compound_pagelist);
|
|
pte_unmap(pte);
|
|
if (unlikely(result != SCAN_SUCCEED))
|
|
goto out_up_write;
|
|
|
|
/*
|
|
* spin_lock() below is not the equivalent of smp_wmb(), but
|
|
* the smp_wmb() inside __SetPageUptodate() can be reused to
|
|
* avoid the copy_huge_page writes to become visible after
|
|
* the set_pmd_at() write.
|
|
*/
|
|
__SetPageUptodate(hpage);
|
|
pgtable = pmd_pgtable(_pmd);
|
|
|
|
_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
|
|
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
|
|
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
page_add_new_anon_rmap(hpage, vma, address);
|
|
lru_cache_add_inactive_or_unevictable(hpage, vma);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, address, pmd, _pmd);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
|
|
hpage = NULL;
|
|
|
|
result = SCAN_SUCCEED;
|
|
out_up_write:
|
|
mmap_write_unlock(mm);
|
|
out_nolock:
|
|
if (hpage)
|
|
put_page(hpage);
|
|
trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
|
|
return result;
|
|
}
|
|
|
|
static int hpage_collapse_scan_pmd(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address, bool *mmap_locked,
|
|
struct collapse_control *cc)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte, *_pte;
|
|
int result = SCAN_FAIL, referenced = 0;
|
|
int none_or_zero = 0, shared = 0;
|
|
struct page *page = NULL;
|
|
unsigned long _address;
|
|
spinlock_t *ptl;
|
|
int node = NUMA_NO_NODE, unmapped = 0;
|
|
bool writable = false;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
result = find_pmd_or_thp_or_none(mm, address, &pmd);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out;
|
|
|
|
memset(cc->node_load, 0, sizeof(cc->node_load));
|
|
nodes_clear(cc->alloc_nmask);
|
|
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
if (!pte) {
|
|
result = SCAN_PMD_NULL;
|
|
goto out;
|
|
}
|
|
|
|
for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
|
|
_pte++, _address += PAGE_SIZE) {
|
|
pte_t pteval = ptep_get(_pte);
|
|
if (is_swap_pte(pteval)) {
|
|
++unmapped;
|
|
if (!cc->is_khugepaged ||
|
|
unmapped <= khugepaged_max_ptes_swap) {
|
|
/*
|
|
* Always be strict with uffd-wp
|
|
* enabled swap entries. Please see
|
|
* comment below for pte_uffd_wp().
|
|
*/
|
|
if (pte_swp_uffd_wp_any(pteval)) {
|
|
result = SCAN_PTE_UFFD_WP;
|
|
goto out_unmap;
|
|
}
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_SWAP_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
++none_or_zero;
|
|
if (!userfaultfd_armed(vma) &&
|
|
(!cc->is_khugepaged ||
|
|
none_or_zero <= khugepaged_max_ptes_none)) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
if (pte_uffd_wp(pteval)) {
|
|
/*
|
|
* Don't collapse the page if any of the small
|
|
* PTEs are armed with uffd write protection.
|
|
* Here we can also mark the new huge pmd as
|
|
* write protected if any of the small ones is
|
|
* marked but that could bring unknown
|
|
* userfault messages that falls outside of
|
|
* the registered range. So, just be simple.
|
|
*/
|
|
result = SCAN_PTE_UFFD_WP;
|
|
goto out_unmap;
|
|
}
|
|
if (pte_write(pteval))
|
|
writable = true;
|
|
|
|
page = vm_normal_page(vma, _address, pteval);
|
|
if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (page_mapcount(page) > 1) {
|
|
++shared;
|
|
if (cc->is_khugepaged &&
|
|
shared > khugepaged_max_ptes_shared) {
|
|
result = SCAN_EXCEED_SHARED_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
|
|
page = compound_head(page);
|
|
|
|
/*
|
|
* Record which node the original page is from and save this
|
|
* information to cc->node_load[].
|
|
* Khugepaged will allocate hugepage from the node has the max
|
|
* hit record.
|
|
*/
|
|
node = page_to_nid(page);
|
|
if (hpage_collapse_scan_abort(node, cc)) {
|
|
result = SCAN_SCAN_ABORT;
|
|
goto out_unmap;
|
|
}
|
|
cc->node_load[node]++;
|
|
if (!PageLRU(page)) {
|
|
result = SCAN_PAGE_LRU;
|
|
goto out_unmap;
|
|
}
|
|
if (PageLocked(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out_unmap;
|
|
}
|
|
if (!PageAnon(page)) {
|
|
result = SCAN_PAGE_ANON;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* Check if the page has any GUP (or other external) pins.
|
|
*
|
|
* Here the check may be racy:
|
|
* it may see total_mapcount > refcount in some cases?
|
|
* But such case is ephemeral we could always retry collapse
|
|
* later. However it may report false positive if the page
|
|
* has excessive GUP pins (i.e. 512). Anyway the same check
|
|
* will be done again later the risk seems low.
|
|
*/
|
|
if (!is_refcount_suitable(page)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* If collapse was initiated by khugepaged, check that there is
|
|
* enough young pte to justify collapsing the page
|
|
*/
|
|
if (cc->is_khugepaged &&
|
|
(pte_young(pteval) || page_is_young(page) ||
|
|
PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
|
|
address)))
|
|
referenced++;
|
|
}
|
|
if (!writable) {
|
|
result = SCAN_PAGE_RO;
|
|
} else if (cc->is_khugepaged &&
|
|
(!referenced ||
|
|
(unmapped && referenced < HPAGE_PMD_NR / 2))) {
|
|
result = SCAN_LACK_REFERENCED_PAGE;
|
|
} else {
|
|
result = SCAN_SUCCEED;
|
|
}
|
|
out_unmap:
|
|
pte_unmap_unlock(pte, ptl);
|
|
if (result == SCAN_SUCCEED) {
|
|
result = collapse_huge_page(mm, address, referenced,
|
|
unmapped, cc);
|
|
/* collapse_huge_page will return with the mmap_lock released */
|
|
*mmap_locked = false;
|
|
}
|
|
out:
|
|
trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
|
|
none_or_zero, result, unmapped);
|
|
return result;
|
|
}
|
|
|
|
static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
|
|
{
|
|
struct mm_slot *slot = &mm_slot->slot;
|
|
struct mm_struct *mm = slot->mm;
|
|
|
|
lockdep_assert_held(&khugepaged_mm_lock);
|
|
|
|
if (hpage_collapse_test_exit(mm)) {
|
|
/* free mm_slot */
|
|
hash_del(&slot->hash);
|
|
list_del(&slot->mm_node);
|
|
|
|
/*
|
|
* Not strictly needed because the mm exited already.
|
|
*
|
|
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
*/
|
|
|
|
/* khugepaged_mm_lock actually not necessary for the below */
|
|
mm_slot_free(mm_slot_cache, mm_slot);
|
|
mmdrop(mm);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SHMEM
|
|
/* hpage must be locked, and mmap_lock must be held */
|
|
static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmdp, struct page *hpage)
|
|
{
|
|
struct vm_fault vmf = {
|
|
.vma = vma,
|
|
.address = addr,
|
|
.flags = 0,
|
|
.pmd = pmdp,
|
|
};
|
|
|
|
VM_BUG_ON(!PageTransHuge(hpage));
|
|
mmap_assert_locked(vma->vm_mm);
|
|
|
|
if (do_set_pmd(&vmf, hpage))
|
|
return SCAN_FAIL;
|
|
|
|
get_page(hpage);
|
|
return SCAN_SUCCEED;
|
|
}
|
|
|
|
/**
|
|
* collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
|
|
* address haddr.
|
|
*
|
|
* @mm: process address space where collapse happens
|
|
* @addr: THP collapse address
|
|
* @install_pmd: If a huge PMD should be installed
|
|
*
|
|
* This function checks whether all the PTEs in the PMD are pointing to the
|
|
* right THP. If so, retract the page table so the THP can refault in with
|
|
* as pmd-mapped. Possibly install a huge PMD mapping the THP.
|
|
*/
|
|
int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
|
|
bool install_pmd)
|
|
{
|
|
struct mmu_notifier_range range;
|
|
bool notified = false;
|
|
unsigned long haddr = addr & HPAGE_PMD_MASK;
|
|
struct vm_area_struct *vma = vma_lookup(mm, haddr);
|
|
struct page *hpage;
|
|
pte_t *start_pte, *pte;
|
|
pmd_t *pmd, pgt_pmd;
|
|
spinlock_t *pml = NULL, *ptl;
|
|
int nr_ptes = 0, result = SCAN_FAIL;
|
|
int i;
|
|
|
|
mmap_assert_locked(mm);
|
|
|
|
/* First check VMA found, in case page tables are being torn down */
|
|
if (!vma || !vma->vm_file ||
|
|
!range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
|
|
return SCAN_VMA_CHECK;
|
|
|
|
/* Fast check before locking page if already PMD-mapped */
|
|
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
|
|
if (result == SCAN_PMD_MAPPED)
|
|
return result;
|
|
|
|
/*
|
|
* If we are here, we've succeeded in replacing all the native pages
|
|
* in the page cache with a single hugepage. If a mm were to fault-in
|
|
* this memory (mapped by a suitably aligned VMA), we'd get the hugepage
|
|
* and map it by a PMD, regardless of sysfs THP settings. As such, let's
|
|
* analogously elide sysfs THP settings here.
|
|
*/
|
|
if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
|
|
return SCAN_VMA_CHECK;
|
|
|
|
/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
|
|
if (userfaultfd_wp(vma))
|
|
return SCAN_PTE_UFFD_WP;
|
|
|
|
hpage = find_lock_page(vma->vm_file->f_mapping,
|
|
linear_page_index(vma, haddr));
|
|
if (!hpage)
|
|
return SCAN_PAGE_NULL;
|
|
|
|
if (!PageHead(hpage)) {
|
|
result = SCAN_FAIL;
|
|
goto drop_hpage;
|
|
}
|
|
|
|
if (compound_order(hpage) != HPAGE_PMD_ORDER) {
|
|
result = SCAN_PAGE_COMPOUND;
|
|
goto drop_hpage;
|
|
}
|
|
|
|
result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
|
|
switch (result) {
|
|
case SCAN_SUCCEED:
|
|
break;
|
|
case SCAN_PMD_NONE:
|
|
/*
|
|
* All pte entries have been removed and pmd cleared.
|
|
* Skip all the pte checks and just update the pmd mapping.
|
|
*/
|
|
goto maybe_install_pmd;
|
|
default:
|
|
goto drop_hpage;
|
|
}
|
|
|
|
result = SCAN_FAIL;
|
|
start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
|
|
if (!start_pte) /* mmap_lock + page lock should prevent this */
|
|
goto drop_hpage;
|
|
|
|
/* step 1: check all mapped PTEs are to the right huge page */
|
|
for (i = 0, addr = haddr, pte = start_pte;
|
|
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
|
|
struct page *page;
|
|
pte_t ptent = ptep_get(pte);
|
|
|
|
/* empty pte, skip */
|
|
if (pte_none(ptent))
|
|
continue;
|
|
|
|
/* page swapped out, abort */
|
|
if (!pte_present(ptent)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto abort;
|
|
}
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (WARN_ON_ONCE(page && is_zone_device_page(page)))
|
|
page = NULL;
|
|
/*
|
|
* Note that uprobe, debugger, or MAP_PRIVATE may change the
|
|
* page table, but the new page will not be a subpage of hpage.
|
|
*/
|
|
if (hpage + i != page)
|
|
goto abort;
|
|
}
|
|
|
|
pte_unmap_unlock(start_pte, ptl);
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
|
|
haddr, haddr + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
notified = true;
|
|
|
|
/*
|
|
* pmd_lock covers a wider range than ptl, and (if split from mm's
|
|
* page_table_lock) ptl nests inside pml. The less time we hold pml,
|
|
* the better; but userfaultfd's mfill_atomic_pte() on a private VMA
|
|
* inserts a valid as-if-COWed PTE without even looking up page cache.
|
|
* So page lock of hpage does not protect from it, so we must not drop
|
|
* ptl before pgt_pmd is removed, so uffd private needs pml taken now.
|
|
*/
|
|
if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
|
|
pml = pmd_lock(mm, pmd);
|
|
|
|
start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
|
|
if (!start_pte) /* mmap_lock + page lock should prevent this */
|
|
goto abort;
|
|
if (!pml)
|
|
spin_lock(ptl);
|
|
else if (ptl != pml)
|
|
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
/* step 2: clear page table and adjust rmap */
|
|
for (i = 0, addr = haddr, pte = start_pte;
|
|
i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
|
|
struct page *page;
|
|
pte_t ptent = ptep_get(pte);
|
|
|
|
if (pte_none(ptent))
|
|
continue;
|
|
/*
|
|
* We dropped ptl after the first scan, to do the mmu_notifier:
|
|
* page lock stops more PTEs of the hpage being faulted in, but
|
|
* does not stop write faults COWing anon copies from existing
|
|
* PTEs; and does not stop those being swapped out or migrated.
|
|
*/
|
|
if (!pte_present(ptent)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto abort;
|
|
}
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (hpage + i != page)
|
|
goto abort;
|
|
|
|
/*
|
|
* Must clear entry, or a racing truncate may re-remove it.
|
|
* TLB flush can be left until pmdp_collapse_flush() does it.
|
|
* PTE dirty? Shmem page is already dirty; file is read-only.
|
|
*/
|
|
ptep_clear(mm, addr, pte);
|
|
page_remove_rmap(page, vma, false);
|
|
nr_ptes++;
|
|
}
|
|
|
|
pte_unmap(start_pte);
|
|
if (!pml)
|
|
spin_unlock(ptl);
|
|
|
|
/* step 3: set proper refcount and mm_counters. */
|
|
if (nr_ptes) {
|
|
page_ref_sub(hpage, nr_ptes);
|
|
add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
|
|
}
|
|
|
|
/* step 4: remove empty page table */
|
|
if (!pml) {
|
|
pml = pmd_lock(mm, pmd);
|
|
if (ptl != pml)
|
|
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
|
|
}
|
|
pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
|
|
pmdp_get_lockless_sync();
|
|
if (ptl != pml)
|
|
spin_unlock(ptl);
|
|
spin_unlock(pml);
|
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
|
|
mm_dec_nr_ptes(mm);
|
|
page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
|
|
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
|
|
|
|
maybe_install_pmd:
|
|
/* step 5: install pmd entry */
|
|
result = install_pmd
|
|
? set_huge_pmd(vma, haddr, pmd, hpage)
|
|
: SCAN_SUCCEED;
|
|
goto drop_hpage;
|
|
abort:
|
|
if (nr_ptes) {
|
|
flush_tlb_mm(mm);
|
|
page_ref_sub(hpage, nr_ptes);
|
|
add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
|
|
}
|
|
if (start_pte)
|
|
pte_unmap_unlock(start_pte, ptl);
|
|
if (pml && pml != ptl)
|
|
spin_unlock(pml);
|
|
if (notified)
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
drop_hpage:
|
|
unlock_page(hpage);
|
|
put_page(hpage);
|
|
return result;
|
|
}
|
|
|
|
static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
i_mmap_lock_read(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
|
|
struct mmu_notifier_range range;
|
|
struct mm_struct *mm;
|
|
unsigned long addr;
|
|
pmd_t *pmd, pgt_pmd;
|
|
spinlock_t *pml;
|
|
spinlock_t *ptl;
|
|
bool skipped_uffd = false;
|
|
|
|
/*
|
|
* Check vma->anon_vma to exclude MAP_PRIVATE mappings that
|
|
* got written to. These VMAs are likely not worth removing
|
|
* page tables from, as PMD-mapping is likely to be split later.
|
|
*/
|
|
if (READ_ONCE(vma->anon_vma))
|
|
continue;
|
|
|
|
addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
if (addr & ~HPAGE_PMD_MASK ||
|
|
vma->vm_end < addr + HPAGE_PMD_SIZE)
|
|
continue;
|
|
|
|
mm = vma->vm_mm;
|
|
if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
|
|
continue;
|
|
|
|
if (hpage_collapse_test_exit(mm))
|
|
continue;
|
|
/*
|
|
* When a vma is registered with uffd-wp, we cannot recycle
|
|
* the page table because there may be pte markers installed.
|
|
* Other vmas can still have the same file mapped hugely, but
|
|
* skip this one: it will always be mapped in small page size
|
|
* for uffd-wp registered ranges.
|
|
*/
|
|
if (userfaultfd_wp(vma))
|
|
continue;
|
|
|
|
/* PTEs were notified when unmapped; but now for the PMD? */
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
|
|
addr, addr + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
|
|
pml = pmd_lock(mm, pmd);
|
|
ptl = pte_lockptr(mm, pmd);
|
|
if (ptl != pml)
|
|
spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
/*
|
|
* Huge page lock is still held, so normally the page table
|
|
* must remain empty; and we have already skipped anon_vma
|
|
* and userfaultfd_wp() vmas. But since the mmap_lock is not
|
|
* held, it is still possible for a racing userfaultfd_ioctl()
|
|
* to have inserted ptes or markers. Now that we hold ptlock,
|
|
* repeating the anon_vma check protects from one category,
|
|
* and repeating the userfaultfd_wp() check from another.
|
|
*/
|
|
if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
|
|
skipped_uffd = true;
|
|
} else {
|
|
pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
|
|
pmdp_get_lockless_sync();
|
|
}
|
|
|
|
if (ptl != pml)
|
|
spin_unlock(ptl);
|
|
spin_unlock(pml);
|
|
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
|
|
if (!skipped_uffd) {
|
|
mm_dec_nr_ptes(mm);
|
|
page_table_check_pte_clear_range(mm, addr, pgt_pmd);
|
|
pte_free_defer(mm, pmd_pgtable(pgt_pmd));
|
|
}
|
|
}
|
|
i_mmap_unlock_read(mapping);
|
|
}
|
|
|
|
/**
|
|
* collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
|
|
*
|
|
* @mm: process address space where collapse happens
|
|
* @addr: virtual collapse start address
|
|
* @file: file that collapse on
|
|
* @start: collapse start address
|
|
* @cc: collapse context and scratchpad
|
|
*
|
|
* Basic scheme is simple, details are more complex:
|
|
* - allocate and lock a new huge page;
|
|
* - scan page cache, locking old pages
|
|
* + swap/gup in pages if necessary;
|
|
* - copy data to new page
|
|
* - handle shmem holes
|
|
* + re-validate that holes weren't filled by someone else
|
|
* + check for userfaultfd
|
|
* - finalize updates to the page cache;
|
|
* - if replacing succeeds:
|
|
* + unlock huge page;
|
|
* + free old pages;
|
|
* - if replacing failed;
|
|
* + unlock old pages
|
|
* + unlock and free huge page;
|
|
*/
|
|
static int collapse_file(struct mm_struct *mm, unsigned long addr,
|
|
struct file *file, pgoff_t start,
|
|
struct collapse_control *cc)
|
|
{
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct page *hpage;
|
|
struct page *page;
|
|
struct page *tmp;
|
|
struct folio *folio;
|
|
pgoff_t index = 0, end = start + HPAGE_PMD_NR;
|
|
LIST_HEAD(pagelist);
|
|
XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
|
|
int nr_none = 0, result = SCAN_SUCCEED;
|
|
bool is_shmem = shmem_file(file);
|
|
int nr = 0;
|
|
|
|
VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
|
|
VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
|
|
|
|
result = alloc_charge_hpage(&hpage, mm, cc);
|
|
if (result != SCAN_SUCCEED)
|
|
goto out;
|
|
|
|
__SetPageLocked(hpage);
|
|
if (is_shmem)
|
|
__SetPageSwapBacked(hpage);
|
|
hpage->index = start;
|
|
hpage->mapping = mapping;
|
|
|
|
/*
|
|
* Ensure we have slots for all the pages in the range. This is
|
|
* almost certainly a no-op because most of the pages must be present
|
|
*/
|
|
do {
|
|
xas_lock_irq(&xas);
|
|
xas_create_range(&xas);
|
|
if (!xas_error(&xas))
|
|
break;
|
|
xas_unlock_irq(&xas);
|
|
if (!xas_nomem(&xas, GFP_KERNEL)) {
|
|
result = SCAN_FAIL;
|
|
goto rollback;
|
|
}
|
|
} while (1);
|
|
|
|
for (index = start; index < end; index++) {
|
|
xas_set(&xas, index);
|
|
page = xas_load(&xas);
|
|
|
|
VM_BUG_ON(index != xas.xa_index);
|
|
if (is_shmem) {
|
|
if (!page) {
|
|
/*
|
|
* Stop if extent has been truncated or
|
|
* hole-punched, and is now completely
|
|
* empty.
|
|
*/
|
|
if (index == start) {
|
|
if (!xas_next_entry(&xas, end - 1)) {
|
|
result = SCAN_TRUNCATED;
|
|
goto xa_locked;
|
|
}
|
|
}
|
|
nr_none++;
|
|
continue;
|
|
}
|
|
|
|
if (xa_is_value(page) || !PageUptodate(page)) {
|
|
xas_unlock_irq(&xas);
|
|
/* swap in or instantiate fallocated page */
|
|
if (shmem_get_folio(mapping->host, index,
|
|
&folio, SGP_NOALLOC)) {
|
|
result = SCAN_FAIL;
|
|
goto xa_unlocked;
|
|
}
|
|
/* drain lru cache to help isolate_lru_page() */
|
|
lru_add_drain();
|
|
page = folio_file_page(folio, index);
|
|
} else if (trylock_page(page)) {
|
|
get_page(page);
|
|
xas_unlock_irq(&xas);
|
|
} else {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto xa_locked;
|
|
}
|
|
} else { /* !is_shmem */
|
|
if (!page || xa_is_value(page)) {
|
|
xas_unlock_irq(&xas);
|
|
page_cache_sync_readahead(mapping, &file->f_ra,
|
|
file, index,
|
|
end - index);
|
|
/* drain lru cache to help isolate_lru_page() */
|
|
lru_add_drain();
|
|
page = find_lock_page(mapping, index);
|
|
if (unlikely(page == NULL)) {
|
|
result = SCAN_FAIL;
|
|
goto xa_unlocked;
|
|
}
|
|
} else if (PageDirty(page)) {
|
|
/*
|
|
* khugepaged only works on read-only fd,
|
|
* so this page is dirty because it hasn't
|
|
* been flushed since first write. There
|
|
* won't be new dirty pages.
|
|
*
|
|
* Trigger async flush here and hope the
|
|
* writeback is done when khugepaged
|
|
* revisits this page.
|
|
*
|
|
* This is a one-off situation. We are not
|
|
* forcing writeback in loop.
|
|
*/
|
|
xas_unlock_irq(&xas);
|
|
filemap_flush(mapping);
|
|
result = SCAN_FAIL;
|
|
goto xa_unlocked;
|
|
} else if (PageWriteback(page)) {
|
|
xas_unlock_irq(&xas);
|
|
result = SCAN_FAIL;
|
|
goto xa_unlocked;
|
|
} else if (trylock_page(page)) {
|
|
get_page(page);
|
|
xas_unlock_irq(&xas);
|
|
} else {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto xa_locked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The page must be locked, so we can drop the i_pages lock
|
|
* without racing with truncate.
|
|
*/
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
|
|
/* make sure the page is up to date */
|
|
if (unlikely(!PageUptodate(page))) {
|
|
result = SCAN_FAIL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If file was truncated then extended, or hole-punched, before
|
|
* we locked the first page, then a THP might be there already.
|
|
* This will be discovered on the first iteration.
|
|
*/
|
|
if (PageTransCompound(page)) {
|
|
struct page *head = compound_head(page);
|
|
|
|
result = compound_order(head) == HPAGE_PMD_ORDER &&
|
|
head->index == start
|
|
/* Maybe PMD-mapped */
|
|
? SCAN_PTE_MAPPED_HUGEPAGE
|
|
: SCAN_PAGE_COMPOUND;
|
|
goto out_unlock;
|
|
}
|
|
|
|
folio = page_folio(page);
|
|
|
|
if (folio_mapping(folio) != mapping) {
|
|
result = SCAN_TRUNCATED;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!is_shmem && (folio_test_dirty(folio) ||
|
|
folio_test_writeback(folio))) {
|
|
/*
|
|
* khugepaged only works on read-only fd, so this
|
|
* page is dirty because it hasn't been flushed
|
|
* since first write.
|
|
*/
|
|
result = SCAN_FAIL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!folio_isolate_lru(folio)) {
|
|
result = SCAN_DEL_PAGE_LRU;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!filemap_release_folio(folio, GFP_KERNEL)) {
|
|
result = SCAN_PAGE_HAS_PRIVATE;
|
|
folio_putback_lru(folio);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (folio_mapped(folio))
|
|
try_to_unmap(folio,
|
|
TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
|
|
|
|
xas_lock_irq(&xas);
|
|
|
|
VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
|
|
|
|
/*
|
|
* We control three references to the page:
|
|
* - we hold a pin on it;
|
|
* - one reference from page cache;
|
|
* - one from isolate_lru_page;
|
|
* If those are the only references, then any new usage of the
|
|
* page will have to fetch it from the page cache. That requires
|
|
* locking the page to handle truncate, so any new usage will be
|
|
* blocked until we unlock page after collapse/during rollback.
|
|
*/
|
|
if (page_count(page) != 3) {
|
|
result = SCAN_PAGE_COUNT;
|
|
xas_unlock_irq(&xas);
|
|
putback_lru_page(page);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Accumulate the pages that are being collapsed.
|
|
*/
|
|
list_add_tail(&page->lru, &pagelist);
|
|
continue;
|
|
out_unlock:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto xa_unlocked;
|
|
}
|
|
|
|
if (!is_shmem) {
|
|
filemap_nr_thps_inc(mapping);
|
|
/*
|
|
* Paired with smp_mb() in do_dentry_open() to ensure
|
|
* i_writecount is up to date and the update to nr_thps is
|
|
* visible. Ensures the page cache will be truncated if the
|
|
* file is opened writable.
|
|
*/
|
|
smp_mb();
|
|
if (inode_is_open_for_write(mapping->host)) {
|
|
result = SCAN_FAIL;
|
|
filemap_nr_thps_dec(mapping);
|
|
}
|
|
}
|
|
|
|
xa_locked:
|
|
xas_unlock_irq(&xas);
|
|
xa_unlocked:
|
|
|
|
/*
|
|
* If collapse is successful, flush must be done now before copying.
|
|
* If collapse is unsuccessful, does flush actually need to be done?
|
|
* Do it anyway, to clear the state.
|
|
*/
|
|
try_to_unmap_flush();
|
|
|
|
if (result == SCAN_SUCCEED && nr_none &&
|
|
!shmem_charge(mapping->host, nr_none))
|
|
result = SCAN_FAIL;
|
|
if (result != SCAN_SUCCEED) {
|
|
nr_none = 0;
|
|
goto rollback;
|
|
}
|
|
|
|
/*
|
|
* The old pages are locked, so they won't change anymore.
|
|
*/
|
|
index = start;
|
|
list_for_each_entry(page, &pagelist, lru) {
|
|
while (index < page->index) {
|
|
clear_highpage(hpage + (index % HPAGE_PMD_NR));
|
|
index++;
|
|
}
|
|
if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
|
|
result = SCAN_COPY_MC;
|
|
goto rollback;
|
|
}
|
|
index++;
|
|
}
|
|
while (index < end) {
|
|
clear_highpage(hpage + (index % HPAGE_PMD_NR));
|
|
index++;
|
|
}
|
|
|
|
if (nr_none) {
|
|
struct vm_area_struct *vma;
|
|
int nr_none_check = 0;
|
|
|
|
i_mmap_lock_read(mapping);
|
|
xas_lock_irq(&xas);
|
|
|
|
xas_set(&xas, start);
|
|
for (index = start; index < end; index++) {
|
|
if (!xas_next(&xas)) {
|
|
xas_store(&xas, XA_RETRY_ENTRY);
|
|
if (xas_error(&xas)) {
|
|
result = SCAN_STORE_FAILED;
|
|
goto immap_locked;
|
|
}
|
|
nr_none_check++;
|
|
}
|
|
}
|
|
|
|
if (nr_none != nr_none_check) {
|
|
result = SCAN_PAGE_FILLED;
|
|
goto immap_locked;
|
|
}
|
|
|
|
/*
|
|
* If userspace observed a missing page in a VMA with a MODE_MISSING
|
|
* userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
|
|
* page. If so, we need to roll back to avoid suppressing such an
|
|
* event. Since wp/minor userfaultfds don't give userspace any
|
|
* guarantees that the kernel doesn't fill a missing page with a zero
|
|
* page, so they don't matter here.
|
|
*
|
|
* Any userfaultfds registered after this point will not be able to
|
|
* observe any missing pages due to the previously inserted retry
|
|
* entries.
|
|
*/
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
|
|
if (userfaultfd_missing(vma)) {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
goto immap_locked;
|
|
}
|
|
}
|
|
|
|
immap_locked:
|
|
i_mmap_unlock_read(mapping);
|
|
if (result != SCAN_SUCCEED) {
|
|
xas_set(&xas, start);
|
|
for (index = start; index < end; index++) {
|
|
if (xas_next(&xas) == XA_RETRY_ENTRY)
|
|
xas_store(&xas, NULL);
|
|
}
|
|
|
|
xas_unlock_irq(&xas);
|
|
goto rollback;
|
|
}
|
|
} else {
|
|
xas_lock_irq(&xas);
|
|
}
|
|
|
|
nr = thp_nr_pages(hpage);
|
|
if (is_shmem)
|
|
__mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
|
|
else
|
|
__mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
|
|
|
|
if (nr_none) {
|
|
__mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
|
|
/* nr_none is always 0 for non-shmem. */
|
|
__mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
|
|
}
|
|
|
|
/*
|
|
* Mark hpage as uptodate before inserting it into the page cache so
|
|
* that it isn't mistaken for an fallocated but unwritten page.
|
|
*/
|
|
folio = page_folio(hpage);
|
|
folio_mark_uptodate(folio);
|
|
folio_ref_add(folio, HPAGE_PMD_NR - 1);
|
|
|
|
if (is_shmem)
|
|
folio_mark_dirty(folio);
|
|
folio_add_lru(folio);
|
|
|
|
/* Join all the small entries into a single multi-index entry. */
|
|
xas_set_order(&xas, start, HPAGE_PMD_ORDER);
|
|
xas_store(&xas, hpage);
|
|
WARN_ON_ONCE(xas_error(&xas));
|
|
xas_unlock_irq(&xas);
|
|
|
|
/*
|
|
* Remove pte page tables, so we can re-fault the page as huge.
|
|
* If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
|
|
*/
|
|
retract_page_tables(mapping, start);
|
|
if (cc && !cc->is_khugepaged)
|
|
result = SCAN_PTE_MAPPED_HUGEPAGE;
|
|
unlock_page(hpage);
|
|
|
|
/*
|
|
* The collapse has succeeded, so free the old pages.
|
|
*/
|
|
list_for_each_entry_safe(page, tmp, &pagelist, lru) {
|
|
list_del(&page->lru);
|
|
page->mapping = NULL;
|
|
ClearPageActive(page);
|
|
ClearPageUnevictable(page);
|
|
unlock_page(page);
|
|
folio_put_refs(page_folio(page), 3);
|
|
}
|
|
|
|
goto out;
|
|
|
|
rollback:
|
|
/* Something went wrong: roll back page cache changes */
|
|
if (nr_none) {
|
|
xas_lock_irq(&xas);
|
|
mapping->nrpages -= nr_none;
|
|
xas_unlock_irq(&xas);
|
|
shmem_uncharge(mapping->host, nr_none);
|
|
}
|
|
|
|
list_for_each_entry_safe(page, tmp, &pagelist, lru) {
|
|
list_del(&page->lru);
|
|
unlock_page(page);
|
|
putback_lru_page(page);
|
|
put_page(page);
|
|
}
|
|
/*
|
|
* Undo the updates of filemap_nr_thps_inc for non-SHMEM
|
|
* file only. This undo is not needed unless failure is
|
|
* due to SCAN_COPY_MC.
|
|
*/
|
|
if (!is_shmem && result == SCAN_COPY_MC) {
|
|
filemap_nr_thps_dec(mapping);
|
|
/*
|
|
* Paired with smp_mb() in do_dentry_open() to
|
|
* ensure the update to nr_thps is visible.
|
|
*/
|
|
smp_mb();
|
|
}
|
|
|
|
hpage->mapping = NULL;
|
|
|
|
unlock_page(hpage);
|
|
put_page(hpage);
|
|
out:
|
|
VM_BUG_ON(!list_empty(&pagelist));
|
|
trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
|
|
return result;
|
|
}
|
|
|
|
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
|
|
struct file *file, pgoff_t start,
|
|
struct collapse_control *cc)
|
|
{
|
|
struct page *page = NULL;
|
|
struct address_space *mapping = file->f_mapping;
|
|
XA_STATE(xas, &mapping->i_pages, start);
|
|
int present, swap;
|
|
int node = NUMA_NO_NODE;
|
|
int result = SCAN_SUCCEED;
|
|
|
|
present = 0;
|
|
swap = 0;
|
|
memset(cc->node_load, 0, sizeof(cc->node_load));
|
|
nodes_clear(cc->alloc_nmask);
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
|
|
if (xas_retry(&xas, page))
|
|
continue;
|
|
|
|
if (xa_is_value(page)) {
|
|
++swap;
|
|
if (cc->is_khugepaged &&
|
|
swap > khugepaged_max_ptes_swap) {
|
|
result = SCAN_EXCEED_SWAP_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* TODO: khugepaged should compact smaller compound pages
|
|
* into a PMD sized page
|
|
*/
|
|
if (PageTransCompound(page)) {
|
|
struct page *head = compound_head(page);
|
|
|
|
result = compound_order(head) == HPAGE_PMD_ORDER &&
|
|
head->index == start
|
|
/* Maybe PMD-mapped */
|
|
? SCAN_PTE_MAPPED_HUGEPAGE
|
|
: SCAN_PAGE_COMPOUND;
|
|
/*
|
|
* For SCAN_PTE_MAPPED_HUGEPAGE, further processing
|
|
* by the caller won't touch the page cache, and so
|
|
* it's safe to skip LRU and refcount checks before
|
|
* returning.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
node = page_to_nid(page);
|
|
if (hpage_collapse_scan_abort(node, cc)) {
|
|
result = SCAN_SCAN_ABORT;
|
|
break;
|
|
}
|
|
cc->node_load[node]++;
|
|
|
|
if (!PageLRU(page)) {
|
|
result = SCAN_PAGE_LRU;
|
|
break;
|
|
}
|
|
|
|
if (page_count(page) !=
|
|
1 + page_mapcount(page) + page_has_private(page)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We probably should check if the page is referenced here, but
|
|
* nobody would transfer pte_young() to PageReferenced() for us.
|
|
* And rmap walk here is just too costly...
|
|
*/
|
|
|
|
present++;
|
|
|
|
if (need_resched()) {
|
|
xas_pause(&xas);
|
|
cond_resched_rcu();
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (result == SCAN_SUCCEED) {
|
|
if (cc->is_khugepaged &&
|
|
present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
|
|
} else {
|
|
result = collapse_file(mm, addr, file, start, cc);
|
|
}
|
|
}
|
|
|
|
trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
|
|
return result;
|
|
}
|
|
#else
|
|
static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
|
|
struct file *file, pgoff_t start,
|
|
struct collapse_control *cc)
|
|
{
|
|
BUILD_BUG();
|
|
}
|
|
#endif
|
|
|
|
static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
|
|
struct collapse_control *cc)
|
|
__releases(&khugepaged_mm_lock)
|
|
__acquires(&khugepaged_mm_lock)
|
|
{
|
|
struct vma_iterator vmi;
|
|
struct khugepaged_mm_slot *mm_slot;
|
|
struct mm_slot *slot;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
int progress = 0;
|
|
|
|
VM_BUG_ON(!pages);
|
|
lockdep_assert_held(&khugepaged_mm_lock);
|
|
*result = SCAN_FAIL;
|
|
|
|
if (khugepaged_scan.mm_slot) {
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
slot = &mm_slot->slot;
|
|
} else {
|
|
slot = list_entry(khugepaged_scan.mm_head.next,
|
|
struct mm_slot, mm_node);
|
|
mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
|
|
khugepaged_scan.address = 0;
|
|
khugepaged_scan.mm_slot = mm_slot;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mm = slot->mm;
|
|
/*
|
|
* Don't wait for semaphore (to avoid long wait times). Just move to
|
|
* the next mm on the list.
|
|
*/
|
|
vma = NULL;
|
|
if (unlikely(!mmap_read_trylock(mm)))
|
|
goto breakouterloop_mmap_lock;
|
|
|
|
progress++;
|
|
if (unlikely(hpage_collapse_test_exit(mm)))
|
|
goto breakouterloop;
|
|
|
|
vma_iter_init(&vmi, mm, khugepaged_scan.address);
|
|
for_each_vma(vmi, vma) {
|
|
unsigned long hstart, hend;
|
|
|
|
cond_resched();
|
|
if (unlikely(hpage_collapse_test_exit(mm))) {
|
|
progress++;
|
|
break;
|
|
}
|
|
if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
|
|
skip:
|
|
progress++;
|
|
continue;
|
|
}
|
|
hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
|
|
hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
|
|
if (khugepaged_scan.address > hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address < hstart)
|
|
khugepaged_scan.address = hstart;
|
|
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
|
|
|
|
while (khugepaged_scan.address < hend) {
|
|
bool mmap_locked = true;
|
|
|
|
cond_resched();
|
|
if (unlikely(hpage_collapse_test_exit(mm)))
|
|
goto breakouterloop;
|
|
|
|
VM_BUG_ON(khugepaged_scan.address < hstart ||
|
|
khugepaged_scan.address + HPAGE_PMD_SIZE >
|
|
hend);
|
|
if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
|
|
struct file *file = get_file(vma->vm_file);
|
|
pgoff_t pgoff = linear_page_index(vma,
|
|
khugepaged_scan.address);
|
|
|
|
mmap_read_unlock(mm);
|
|
mmap_locked = false;
|
|
*result = hpage_collapse_scan_file(mm,
|
|
khugepaged_scan.address, file, pgoff, cc);
|
|
fput(file);
|
|
if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
|
|
mmap_read_lock(mm);
|
|
if (hpage_collapse_test_exit(mm))
|
|
goto breakouterloop;
|
|
*result = collapse_pte_mapped_thp(mm,
|
|
khugepaged_scan.address, false);
|
|
if (*result == SCAN_PMD_MAPPED)
|
|
*result = SCAN_SUCCEED;
|
|
mmap_read_unlock(mm);
|
|
}
|
|
} else {
|
|
*result = hpage_collapse_scan_pmd(mm, vma,
|
|
khugepaged_scan.address, &mmap_locked, cc);
|
|
}
|
|
|
|
if (*result == SCAN_SUCCEED)
|
|
++khugepaged_pages_collapsed;
|
|
|
|
/* move to next address */
|
|
khugepaged_scan.address += HPAGE_PMD_SIZE;
|
|
progress += HPAGE_PMD_NR;
|
|
if (!mmap_locked)
|
|
/*
|
|
* We released mmap_lock so break loop. Note
|
|
* that we drop mmap_lock before all hugepage
|
|
* allocations, so if allocation fails, we are
|
|
* guaranteed to break here and report the
|
|
* correct result back to caller.
|
|
*/
|
|
goto breakouterloop_mmap_lock;
|
|
if (progress >= pages)
|
|
goto breakouterloop;
|
|
}
|
|
}
|
|
breakouterloop:
|
|
mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
|
|
breakouterloop_mmap_lock:
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
|
|
/*
|
|
* Release the current mm_slot if this mm is about to die, or
|
|
* if we scanned all vmas of this mm.
|
|
*/
|
|
if (hpage_collapse_test_exit(mm) || !vma) {
|
|
/*
|
|
* Make sure that if mm_users is reaching zero while
|
|
* khugepaged runs here, khugepaged_exit will find
|
|
* mm_slot not pointing to the exiting mm.
|
|
*/
|
|
if (slot->mm_node.next != &khugepaged_scan.mm_head) {
|
|
slot = list_entry(slot->mm_node.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.mm_slot =
|
|
mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
|
|
khugepaged_scan.address = 0;
|
|
} else {
|
|
khugepaged_scan.mm_slot = NULL;
|
|
khugepaged_full_scans++;
|
|
}
|
|
|
|
collect_mm_slot(mm_slot);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static int khugepaged_has_work(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) &&
|
|
hugepage_flags_enabled();
|
|
}
|
|
|
|
static int khugepaged_wait_event(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) ||
|
|
kthread_should_stop();
|
|
}
|
|
|
|
static void khugepaged_do_scan(struct collapse_control *cc)
|
|
{
|
|
unsigned int progress = 0, pass_through_head = 0;
|
|
unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
|
|
bool wait = true;
|
|
int result = SCAN_SUCCEED;
|
|
|
|
lru_add_drain_all();
|
|
|
|
while (true) {
|
|
cond_resched();
|
|
|
|
if (unlikely(kthread_should_stop() || try_to_freeze()))
|
|
break;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
if (!khugepaged_scan.mm_slot)
|
|
pass_through_head++;
|
|
if (khugepaged_has_work() &&
|
|
pass_through_head < 2)
|
|
progress += khugepaged_scan_mm_slot(pages - progress,
|
|
&result, cc);
|
|
else
|
|
progress = pages;
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
if (progress >= pages)
|
|
break;
|
|
|
|
if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
|
|
/*
|
|
* If fail to allocate the first time, try to sleep for
|
|
* a while. When hit again, cancel the scan.
|
|
*/
|
|
if (!wait)
|
|
break;
|
|
wait = false;
|
|
khugepaged_alloc_sleep();
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool khugepaged_should_wakeup(void)
|
|
{
|
|
return kthread_should_stop() ||
|
|
time_after_eq(jiffies, khugepaged_sleep_expire);
|
|
}
|
|
|
|
static void khugepaged_wait_work(void)
|
|
{
|
|
if (khugepaged_has_work()) {
|
|
const unsigned long scan_sleep_jiffies =
|
|
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
|
|
|
|
if (!scan_sleep_jiffies)
|
|
return;
|
|
|
|
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
|
|
wait_event_freezable_timeout(khugepaged_wait,
|
|
khugepaged_should_wakeup(),
|
|
scan_sleep_jiffies);
|
|
return;
|
|
}
|
|
|
|
if (hugepage_flags_enabled())
|
|
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
|
|
}
|
|
|
|
static int khugepaged(void *none)
|
|
{
|
|
struct khugepaged_mm_slot *mm_slot;
|
|
|
|
set_freezable();
|
|
set_user_nice(current, MAX_NICE);
|
|
|
|
while (!kthread_should_stop()) {
|
|
khugepaged_do_scan(&khugepaged_collapse_control);
|
|
khugepaged_wait_work();
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
khugepaged_scan.mm_slot = NULL;
|
|
if (mm_slot)
|
|
collect_mm_slot(mm_slot);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void set_recommended_min_free_kbytes(void)
|
|
{
|
|
struct zone *zone;
|
|
int nr_zones = 0;
|
|
unsigned long recommended_min;
|
|
|
|
if (!hugepage_flags_enabled()) {
|
|
calculate_min_free_kbytes();
|
|
goto update_wmarks;
|
|
}
|
|
|
|
for_each_populated_zone(zone) {
|
|
/*
|
|
* We don't need to worry about fragmentation of
|
|
* ZONE_MOVABLE since it only has movable pages.
|
|
*/
|
|
if (zone_idx(zone) > gfp_zone(GFP_USER))
|
|
continue;
|
|
|
|
nr_zones++;
|
|
}
|
|
|
|
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
|
|
recommended_min = pageblock_nr_pages * nr_zones * 2;
|
|
|
|
/*
|
|
* Make sure that on average at least two pageblocks are almost free
|
|
* of another type, one for a migratetype to fall back to and a
|
|
* second to avoid subsequent fallbacks of other types There are 3
|
|
* MIGRATE_TYPES we care about.
|
|
*/
|
|
recommended_min += pageblock_nr_pages * nr_zones *
|
|
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
|
|
|
|
/* don't ever allow to reserve more than 5% of the lowmem */
|
|
recommended_min = min(recommended_min,
|
|
(unsigned long) nr_free_buffer_pages() / 20);
|
|
recommended_min <<= (PAGE_SHIFT-10);
|
|
|
|
if (recommended_min > min_free_kbytes) {
|
|
if (user_min_free_kbytes >= 0)
|
|
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
|
|
min_free_kbytes, recommended_min);
|
|
|
|
min_free_kbytes = recommended_min;
|
|
}
|
|
|
|
update_wmarks:
|
|
setup_per_zone_wmarks();
|
|
}
|
|
|
|
int start_stop_khugepaged(void)
|
|
{
|
|
int err = 0;
|
|
|
|
mutex_lock(&khugepaged_mutex);
|
|
if (hugepage_flags_enabled()) {
|
|
if (!khugepaged_thread)
|
|
khugepaged_thread = kthread_run(khugepaged, NULL,
|
|
"khugepaged");
|
|
if (IS_ERR(khugepaged_thread)) {
|
|
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
|
|
err = PTR_ERR(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
if (!list_empty(&khugepaged_scan.mm_head))
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
} else if (khugepaged_thread) {
|
|
kthread_stop(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
}
|
|
set_recommended_min_free_kbytes();
|
|
fail:
|
|
mutex_unlock(&khugepaged_mutex);
|
|
return err;
|
|
}
|
|
|
|
void khugepaged_min_free_kbytes_update(void)
|
|
{
|
|
mutex_lock(&khugepaged_mutex);
|
|
if (hugepage_flags_enabled() && khugepaged_thread)
|
|
set_recommended_min_free_kbytes();
|
|
mutex_unlock(&khugepaged_mutex);
|
|
}
|
|
|
|
bool current_is_khugepaged(void)
|
|
{
|
|
return kthread_func(current) == khugepaged;
|
|
}
|
|
|
|
static int madvise_collapse_errno(enum scan_result r)
|
|
{
|
|
/*
|
|
* MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
|
|
* actionable feedback to caller, so they may take an appropriate
|
|
* fallback measure depending on the nature of the failure.
|
|
*/
|
|
switch (r) {
|
|
case SCAN_ALLOC_HUGE_PAGE_FAIL:
|
|
return -ENOMEM;
|
|
case SCAN_CGROUP_CHARGE_FAIL:
|
|
case SCAN_EXCEED_NONE_PTE:
|
|
return -EBUSY;
|
|
/* Resource temporary unavailable - trying again might succeed */
|
|
case SCAN_PAGE_COUNT:
|
|
case SCAN_PAGE_LOCK:
|
|
case SCAN_PAGE_LRU:
|
|
case SCAN_DEL_PAGE_LRU:
|
|
case SCAN_PAGE_FILLED:
|
|
return -EAGAIN;
|
|
/*
|
|
* Other: Trying again likely not to succeed / error intrinsic to
|
|
* specified memory range. khugepaged likely won't be able to collapse
|
|
* either.
|
|
*/
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct collapse_control *cc;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long hstart, hend, addr;
|
|
int thps = 0, last_fail = SCAN_FAIL;
|
|
bool mmap_locked = true;
|
|
|
|
BUG_ON(vma->vm_start > start);
|
|
BUG_ON(vma->vm_end < end);
|
|
|
|
*prev = vma;
|
|
|
|
if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
|
|
return -EINVAL;
|
|
|
|
cc = kmalloc(sizeof(*cc), GFP_KERNEL);
|
|
if (!cc)
|
|
return -ENOMEM;
|
|
cc->is_khugepaged = false;
|
|
|
|
mmgrab(mm);
|
|
lru_add_drain_all();
|
|
|
|
hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = end & HPAGE_PMD_MASK;
|
|
|
|
for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
|
|
int result = SCAN_FAIL;
|
|
|
|
if (!mmap_locked) {
|
|
cond_resched();
|
|
mmap_read_lock(mm);
|
|
mmap_locked = true;
|
|
result = hugepage_vma_revalidate(mm, addr, false, &vma,
|
|
cc);
|
|
if (result != SCAN_SUCCEED) {
|
|
last_fail = result;
|
|
goto out_nolock;
|
|
}
|
|
|
|
hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
|
|
}
|
|
mmap_assert_locked(mm);
|
|
memset(cc->node_load, 0, sizeof(cc->node_load));
|
|
nodes_clear(cc->alloc_nmask);
|
|
if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
|
|
struct file *file = get_file(vma->vm_file);
|
|
pgoff_t pgoff = linear_page_index(vma, addr);
|
|
|
|
mmap_read_unlock(mm);
|
|
mmap_locked = false;
|
|
result = hpage_collapse_scan_file(mm, addr, file, pgoff,
|
|
cc);
|
|
fput(file);
|
|
} else {
|
|
result = hpage_collapse_scan_pmd(mm, vma, addr,
|
|
&mmap_locked, cc);
|
|
}
|
|
if (!mmap_locked)
|
|
*prev = NULL; /* Tell caller we dropped mmap_lock */
|
|
|
|
handle_result:
|
|
switch (result) {
|
|
case SCAN_SUCCEED:
|
|
case SCAN_PMD_MAPPED:
|
|
++thps;
|
|
break;
|
|
case SCAN_PTE_MAPPED_HUGEPAGE:
|
|
BUG_ON(mmap_locked);
|
|
BUG_ON(*prev);
|
|
mmap_read_lock(mm);
|
|
result = collapse_pte_mapped_thp(mm, addr, true);
|
|
mmap_read_unlock(mm);
|
|
goto handle_result;
|
|
/* Whitelisted set of results where continuing OK */
|
|
case SCAN_PMD_NULL:
|
|
case SCAN_PTE_NON_PRESENT:
|
|
case SCAN_PTE_UFFD_WP:
|
|
case SCAN_PAGE_RO:
|
|
case SCAN_LACK_REFERENCED_PAGE:
|
|
case SCAN_PAGE_NULL:
|
|
case SCAN_PAGE_COUNT:
|
|
case SCAN_PAGE_LOCK:
|
|
case SCAN_PAGE_COMPOUND:
|
|
case SCAN_PAGE_LRU:
|
|
case SCAN_DEL_PAGE_LRU:
|
|
last_fail = result;
|
|
break;
|
|
default:
|
|
last_fail = result;
|
|
/* Other error, exit */
|
|
goto out_maybelock;
|
|
}
|
|
}
|
|
|
|
out_maybelock:
|
|
/* Caller expects us to hold mmap_lock on return */
|
|
if (!mmap_locked)
|
|
mmap_read_lock(mm);
|
|
out_nolock:
|
|
mmap_assert_locked(mm);
|
|
mmdrop(mm);
|
|
kfree(cc);
|
|
|
|
return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
|
|
: madvise_collapse_errno(last_fail);
|
|
}
|