mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 17:54:13 +08:00
f7bdf03a99
Rename the XFS log structure to xlog to help crash distinquish it from the other logs in Linux. Signed-off-by: Mark Tinguely <tinguely@sgi.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
3652 lines
100 KiB
C
3652 lines
100 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_log_priv.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_log_recover.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trace.h"
|
|
|
|
kmem_zone_t *xfs_log_ticket_zone;
|
|
|
|
/* Local miscellaneous function prototypes */
|
|
STATIC int
|
|
xlog_commit_record(
|
|
struct xlog *log,
|
|
struct xlog_ticket *ticket,
|
|
struct xlog_in_core **iclog,
|
|
xfs_lsn_t *commitlsnp);
|
|
|
|
STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks);
|
|
STATIC int
|
|
xlog_space_left(
|
|
struct xlog *log,
|
|
atomic64_t *head);
|
|
STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
|
|
STATIC void xlog_dealloc_log(xlog_t *log);
|
|
|
|
/* local state machine functions */
|
|
STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
|
|
STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
|
|
STATIC int xlog_state_get_iclog_space(xlog_t *log,
|
|
int len,
|
|
xlog_in_core_t **iclog,
|
|
xlog_ticket_t *ticket,
|
|
int *continued_write,
|
|
int *logoffsetp);
|
|
STATIC int xlog_state_release_iclog(xlog_t *log,
|
|
xlog_in_core_t *iclog);
|
|
STATIC void xlog_state_switch_iclogs(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int eventual_size);
|
|
STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
|
|
|
|
STATIC void
|
|
xlog_grant_push_ail(
|
|
struct xlog *log,
|
|
int need_bytes);
|
|
STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket);
|
|
STATIC void xlog_ungrant_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket);
|
|
|
|
#if defined(DEBUG)
|
|
STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
|
|
STATIC void
|
|
xlog_verify_grant_tail(
|
|
struct xlog *log);
|
|
STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
|
|
int count, boolean_t syncing);
|
|
STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
|
|
xfs_lsn_t tail_lsn);
|
|
#else
|
|
#define xlog_verify_dest_ptr(a,b)
|
|
#define xlog_verify_grant_tail(a)
|
|
#define xlog_verify_iclog(a,b,c,d)
|
|
#define xlog_verify_tail_lsn(a,b,c)
|
|
#endif
|
|
|
|
STATIC int xlog_iclogs_empty(xlog_t *log);
|
|
|
|
static void
|
|
xlog_grant_sub_space(
|
|
struct xlog *log,
|
|
atomic64_t *head,
|
|
int bytes)
|
|
{
|
|
int64_t head_val = atomic64_read(head);
|
|
int64_t new, old;
|
|
|
|
do {
|
|
int cycle, space;
|
|
|
|
xlog_crack_grant_head_val(head_val, &cycle, &space);
|
|
|
|
space -= bytes;
|
|
if (space < 0) {
|
|
space += log->l_logsize;
|
|
cycle--;
|
|
}
|
|
|
|
old = head_val;
|
|
new = xlog_assign_grant_head_val(cycle, space);
|
|
head_val = atomic64_cmpxchg(head, old, new);
|
|
} while (head_val != old);
|
|
}
|
|
|
|
static void
|
|
xlog_grant_add_space(
|
|
struct xlog *log,
|
|
atomic64_t *head,
|
|
int bytes)
|
|
{
|
|
int64_t head_val = atomic64_read(head);
|
|
int64_t new, old;
|
|
|
|
do {
|
|
int tmp;
|
|
int cycle, space;
|
|
|
|
xlog_crack_grant_head_val(head_val, &cycle, &space);
|
|
|
|
tmp = log->l_logsize - space;
|
|
if (tmp > bytes)
|
|
space += bytes;
|
|
else {
|
|
space = bytes - tmp;
|
|
cycle++;
|
|
}
|
|
|
|
old = head_val;
|
|
new = xlog_assign_grant_head_val(cycle, space);
|
|
head_val = atomic64_cmpxchg(head, old, new);
|
|
} while (head_val != old);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_grant_head_init(
|
|
struct xlog_grant_head *head)
|
|
{
|
|
xlog_assign_grant_head(&head->grant, 1, 0);
|
|
INIT_LIST_HEAD(&head->waiters);
|
|
spin_lock_init(&head->lock);
|
|
}
|
|
|
|
STATIC void
|
|
xlog_grant_head_wake_all(
|
|
struct xlog_grant_head *head)
|
|
{
|
|
struct xlog_ticket *tic;
|
|
|
|
spin_lock(&head->lock);
|
|
list_for_each_entry(tic, &head->waiters, t_queue)
|
|
wake_up_process(tic->t_task);
|
|
spin_unlock(&head->lock);
|
|
}
|
|
|
|
static inline int
|
|
xlog_ticket_reservation(
|
|
struct xlog *log,
|
|
struct xlog_grant_head *head,
|
|
struct xlog_ticket *tic)
|
|
{
|
|
if (head == &log->l_write_head) {
|
|
ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
|
|
return tic->t_unit_res;
|
|
} else {
|
|
if (tic->t_flags & XLOG_TIC_PERM_RESERV)
|
|
return tic->t_unit_res * tic->t_cnt;
|
|
else
|
|
return tic->t_unit_res;
|
|
}
|
|
}
|
|
|
|
STATIC bool
|
|
xlog_grant_head_wake(
|
|
struct xlog *log,
|
|
struct xlog_grant_head *head,
|
|
int *free_bytes)
|
|
{
|
|
struct xlog_ticket *tic;
|
|
int need_bytes;
|
|
|
|
list_for_each_entry(tic, &head->waiters, t_queue) {
|
|
need_bytes = xlog_ticket_reservation(log, head, tic);
|
|
if (*free_bytes < need_bytes)
|
|
return false;
|
|
|
|
*free_bytes -= need_bytes;
|
|
trace_xfs_log_grant_wake_up(log, tic);
|
|
wake_up_process(tic->t_task);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_grant_head_wait(
|
|
struct xlog *log,
|
|
struct xlog_grant_head *head,
|
|
struct xlog_ticket *tic,
|
|
int need_bytes)
|
|
{
|
|
list_add_tail(&tic->t_queue, &head->waiters);
|
|
|
|
do {
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto shutdown;
|
|
xlog_grant_push_ail(log, need_bytes);
|
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock(&head->lock);
|
|
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
|
|
trace_xfs_log_grant_sleep(log, tic);
|
|
schedule();
|
|
trace_xfs_log_grant_wake(log, tic);
|
|
|
|
spin_lock(&head->lock);
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
goto shutdown;
|
|
} while (xlog_space_left(log, &head->grant) < need_bytes);
|
|
|
|
list_del_init(&tic->t_queue);
|
|
return 0;
|
|
shutdown:
|
|
list_del_init(&tic->t_queue);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/*
|
|
* Atomically get the log space required for a log ticket.
|
|
*
|
|
* Once a ticket gets put onto head->waiters, it will only return after the
|
|
* needed reservation is satisfied.
|
|
*
|
|
* This function is structured so that it has a lock free fast path. This is
|
|
* necessary because every new transaction reservation will come through this
|
|
* path. Hence any lock will be globally hot if we take it unconditionally on
|
|
* every pass.
|
|
*
|
|
* As tickets are only ever moved on and off head->waiters under head->lock, we
|
|
* only need to take that lock if we are going to add the ticket to the queue
|
|
* and sleep. We can avoid taking the lock if the ticket was never added to
|
|
* head->waiters because the t_queue list head will be empty and we hold the
|
|
* only reference to it so it can safely be checked unlocked.
|
|
*/
|
|
STATIC int
|
|
xlog_grant_head_check(
|
|
struct xlog *log,
|
|
struct xlog_grant_head *head,
|
|
struct xlog_ticket *tic,
|
|
int *need_bytes)
|
|
{
|
|
int free_bytes;
|
|
int error = 0;
|
|
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
/*
|
|
* If there are other waiters on the queue then give them a chance at
|
|
* logspace before us. Wake up the first waiters, if we do not wake
|
|
* up all the waiters then go to sleep waiting for more free space,
|
|
* otherwise try to get some space for this transaction.
|
|
*/
|
|
*need_bytes = xlog_ticket_reservation(log, head, tic);
|
|
free_bytes = xlog_space_left(log, &head->grant);
|
|
if (!list_empty_careful(&head->waiters)) {
|
|
spin_lock(&head->lock);
|
|
if (!xlog_grant_head_wake(log, head, &free_bytes) ||
|
|
free_bytes < *need_bytes) {
|
|
error = xlog_grant_head_wait(log, head, tic,
|
|
*need_bytes);
|
|
}
|
|
spin_unlock(&head->lock);
|
|
} else if (free_bytes < *need_bytes) {
|
|
spin_lock(&head->lock);
|
|
error = xlog_grant_head_wait(log, head, tic, *need_bytes);
|
|
spin_unlock(&head->lock);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
xlog_tic_reset_res(xlog_ticket_t *tic)
|
|
{
|
|
tic->t_res_num = 0;
|
|
tic->t_res_arr_sum = 0;
|
|
tic->t_res_num_ophdrs = 0;
|
|
}
|
|
|
|
static void
|
|
xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
|
|
{
|
|
if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
|
|
/* add to overflow and start again */
|
|
tic->t_res_o_flow += tic->t_res_arr_sum;
|
|
tic->t_res_num = 0;
|
|
tic->t_res_arr_sum = 0;
|
|
}
|
|
|
|
tic->t_res_arr[tic->t_res_num].r_len = len;
|
|
tic->t_res_arr[tic->t_res_num].r_type = type;
|
|
tic->t_res_arr_sum += len;
|
|
tic->t_res_num++;
|
|
}
|
|
|
|
/*
|
|
* Replenish the byte reservation required by moving the grant write head.
|
|
*/
|
|
int
|
|
xfs_log_regrant(
|
|
struct xfs_mount *mp,
|
|
struct xlog_ticket *tic)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
int need_bytes;
|
|
int error = 0;
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return XFS_ERROR(EIO);
|
|
|
|
XFS_STATS_INC(xs_try_logspace);
|
|
|
|
/*
|
|
* This is a new transaction on the ticket, so we need to change the
|
|
* transaction ID so that the next transaction has a different TID in
|
|
* the log. Just add one to the existing tid so that we can see chains
|
|
* of rolling transactions in the log easily.
|
|
*/
|
|
tic->t_tid++;
|
|
|
|
xlog_grant_push_ail(log, tic->t_unit_res);
|
|
|
|
tic->t_curr_res = tic->t_unit_res;
|
|
xlog_tic_reset_res(tic);
|
|
|
|
if (tic->t_cnt > 0)
|
|
return 0;
|
|
|
|
trace_xfs_log_regrant(log, tic);
|
|
|
|
error = xlog_grant_head_check(log, &log->l_write_head, tic,
|
|
&need_bytes);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
|
|
trace_xfs_log_regrant_exit(log, tic);
|
|
xlog_verify_grant_tail(log);
|
|
return 0;
|
|
|
|
out_error:
|
|
/*
|
|
* If we are failing, make sure the ticket doesn't have any current
|
|
* reservations. We don't want to add this back when the ticket/
|
|
* transaction gets cancelled.
|
|
*/
|
|
tic->t_curr_res = 0;
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Reserve log space and return a ticket corresponding the reservation.
|
|
*
|
|
* Each reservation is going to reserve extra space for a log record header.
|
|
* When writes happen to the on-disk log, we don't subtract the length of the
|
|
* log record header from any reservation. By wasting space in each
|
|
* reservation, we prevent over allocation problems.
|
|
*/
|
|
int
|
|
xfs_log_reserve(
|
|
struct xfs_mount *mp,
|
|
int unit_bytes,
|
|
int cnt,
|
|
struct xlog_ticket **ticp,
|
|
__uint8_t client,
|
|
bool permanent,
|
|
uint t_type)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
struct xlog_ticket *tic;
|
|
int need_bytes;
|
|
int error = 0;
|
|
|
|
ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return XFS_ERROR(EIO);
|
|
|
|
XFS_STATS_INC(xs_try_logspace);
|
|
|
|
ASSERT(*ticp == NULL);
|
|
tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
|
|
KM_SLEEP | KM_MAYFAIL);
|
|
if (!tic)
|
|
return XFS_ERROR(ENOMEM);
|
|
|
|
tic->t_trans_type = t_type;
|
|
*ticp = tic;
|
|
|
|
xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
|
|
|
|
trace_xfs_log_reserve(log, tic);
|
|
|
|
error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
|
|
&need_bytes);
|
|
if (error)
|
|
goto out_error;
|
|
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
|
|
trace_xfs_log_reserve_exit(log, tic);
|
|
xlog_verify_grant_tail(log);
|
|
return 0;
|
|
|
|
out_error:
|
|
/*
|
|
* If we are failing, make sure the ticket doesn't have any current
|
|
* reservations. We don't want to add this back when the ticket/
|
|
* transaction gets cancelled.
|
|
*/
|
|
tic->t_curr_res = 0;
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* NOTES:
|
|
*
|
|
* 1. currblock field gets updated at startup and after in-core logs
|
|
* marked as with WANT_SYNC.
|
|
*/
|
|
|
|
/*
|
|
* This routine is called when a user of a log manager ticket is done with
|
|
* the reservation. If the ticket was ever used, then a commit record for
|
|
* the associated transaction is written out as a log operation header with
|
|
* no data. The flag XLOG_TIC_INITED is set when the first write occurs with
|
|
* a given ticket. If the ticket was one with a permanent reservation, then
|
|
* a few operations are done differently. Permanent reservation tickets by
|
|
* default don't release the reservation. They just commit the current
|
|
* transaction with the belief that the reservation is still needed. A flag
|
|
* must be passed in before permanent reservations are actually released.
|
|
* When these type of tickets are not released, they need to be set into
|
|
* the inited state again. By doing this, a start record will be written
|
|
* out when the next write occurs.
|
|
*/
|
|
xfs_lsn_t
|
|
xfs_log_done(
|
|
struct xfs_mount *mp,
|
|
struct xlog_ticket *ticket,
|
|
struct xlog_in_core **iclog,
|
|
uint flags)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
xfs_lsn_t lsn = 0;
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log) ||
|
|
/*
|
|
* If nothing was ever written, don't write out commit record.
|
|
* If we get an error, just continue and give back the log ticket.
|
|
*/
|
|
(((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
|
|
(xlog_commit_record(log, ticket, iclog, &lsn)))) {
|
|
lsn = (xfs_lsn_t) -1;
|
|
if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
|
|
flags |= XFS_LOG_REL_PERM_RESERV;
|
|
}
|
|
}
|
|
|
|
|
|
if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
|
|
(flags & XFS_LOG_REL_PERM_RESERV)) {
|
|
trace_xfs_log_done_nonperm(log, ticket);
|
|
|
|
/*
|
|
* Release ticket if not permanent reservation or a specific
|
|
* request has been made to release a permanent reservation.
|
|
*/
|
|
xlog_ungrant_log_space(log, ticket);
|
|
xfs_log_ticket_put(ticket);
|
|
} else {
|
|
trace_xfs_log_done_perm(log, ticket);
|
|
|
|
xlog_regrant_reserve_log_space(log, ticket);
|
|
/* If this ticket was a permanent reservation and we aren't
|
|
* trying to release it, reset the inited flags; so next time
|
|
* we write, a start record will be written out.
|
|
*/
|
|
ticket->t_flags |= XLOG_TIC_INITED;
|
|
}
|
|
|
|
return lsn;
|
|
}
|
|
|
|
/*
|
|
* Attaches a new iclog I/O completion callback routine during
|
|
* transaction commit. If the log is in error state, a non-zero
|
|
* return code is handed back and the caller is responsible for
|
|
* executing the callback at an appropriate time.
|
|
*/
|
|
int
|
|
xfs_log_notify(
|
|
struct xfs_mount *mp,
|
|
struct xlog_in_core *iclog,
|
|
xfs_log_callback_t *cb)
|
|
{
|
|
int abortflg;
|
|
|
|
spin_lock(&iclog->ic_callback_lock);
|
|
abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
|
|
if (!abortflg) {
|
|
ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
|
|
(iclog->ic_state == XLOG_STATE_WANT_SYNC));
|
|
cb->cb_next = NULL;
|
|
*(iclog->ic_callback_tail) = cb;
|
|
iclog->ic_callback_tail = &(cb->cb_next);
|
|
}
|
|
spin_unlock(&iclog->ic_callback_lock);
|
|
return abortflg;
|
|
}
|
|
|
|
int
|
|
xfs_log_release_iclog(
|
|
struct xfs_mount *mp,
|
|
struct xlog_in_core *iclog)
|
|
{
|
|
if (xlog_state_release_iclog(mp->m_log, iclog)) {
|
|
xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
|
|
return EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mount a log filesystem
|
|
*
|
|
* mp - ubiquitous xfs mount point structure
|
|
* log_target - buftarg of on-disk log device
|
|
* blk_offset - Start block # where block size is 512 bytes (BBSIZE)
|
|
* num_bblocks - Number of BBSIZE blocks in on-disk log
|
|
*
|
|
* Return error or zero.
|
|
*/
|
|
int
|
|
xfs_log_mount(
|
|
xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks)
|
|
{
|
|
int error;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
|
xfs_notice(mp, "Mounting Filesystem");
|
|
else {
|
|
xfs_notice(mp,
|
|
"Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
|
|
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
|
|
}
|
|
|
|
mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
|
|
if (IS_ERR(mp->m_log)) {
|
|
error = -PTR_ERR(mp->m_log);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Initialize the AIL now we have a log.
|
|
*/
|
|
error = xfs_trans_ail_init(mp);
|
|
if (error) {
|
|
xfs_warn(mp, "AIL initialisation failed: error %d", error);
|
|
goto out_free_log;
|
|
}
|
|
mp->m_log->l_ailp = mp->m_ail;
|
|
|
|
/*
|
|
* skip log recovery on a norecovery mount. pretend it all
|
|
* just worked.
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
|
|
int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
|
|
|
|
if (readonly)
|
|
mp->m_flags &= ~XFS_MOUNT_RDONLY;
|
|
|
|
error = xlog_recover(mp->m_log);
|
|
|
|
if (readonly)
|
|
mp->m_flags |= XFS_MOUNT_RDONLY;
|
|
if (error) {
|
|
xfs_warn(mp, "log mount/recovery failed: error %d",
|
|
error);
|
|
goto out_destroy_ail;
|
|
}
|
|
}
|
|
|
|
/* Normal transactions can now occur */
|
|
mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
|
|
|
|
/*
|
|
* Now the log has been fully initialised and we know were our
|
|
* space grant counters are, we can initialise the permanent ticket
|
|
* needed for delayed logging to work.
|
|
*/
|
|
xlog_cil_init_post_recovery(mp->m_log);
|
|
|
|
return 0;
|
|
|
|
out_destroy_ail:
|
|
xfs_trans_ail_destroy(mp);
|
|
out_free_log:
|
|
xlog_dealloc_log(mp->m_log);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Finish the recovery of the file system. This is separate from
|
|
* the xfs_log_mount() call, because it depends on the code in
|
|
* xfs_mountfs() to read in the root and real-time bitmap inodes
|
|
* between calling xfs_log_mount() and here.
|
|
*
|
|
* mp - ubiquitous xfs mount point structure
|
|
*/
|
|
int
|
|
xfs_log_mount_finish(xfs_mount_t *mp)
|
|
{
|
|
int error;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
|
error = xlog_recover_finish(mp->m_log);
|
|
else {
|
|
error = 0;
|
|
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Final log writes as part of unmount.
|
|
*
|
|
* Mark the filesystem clean as unmount happens. Note that during relocation
|
|
* this routine needs to be executed as part of source-bag while the
|
|
* deallocation must not be done until source-end.
|
|
*/
|
|
|
|
/*
|
|
* Unmount record used to have a string "Unmount filesystem--" in the
|
|
* data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
|
|
* We just write the magic number now since that particular field isn't
|
|
* currently architecture converted and "nUmount" is a bit foo.
|
|
* As far as I know, there weren't any dependencies on the old behaviour.
|
|
*/
|
|
|
|
int
|
|
xfs_log_unmount_write(xfs_mount_t *mp)
|
|
{
|
|
xlog_t *log = mp->m_log;
|
|
xlog_in_core_t *iclog;
|
|
#ifdef DEBUG
|
|
xlog_in_core_t *first_iclog;
|
|
#endif
|
|
xlog_ticket_t *tic = NULL;
|
|
xfs_lsn_t lsn;
|
|
int error;
|
|
|
|
/*
|
|
* Don't write out unmount record on read-only mounts.
|
|
* Or, if we are doing a forced umount (typically because of IO errors).
|
|
*/
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
|
return 0;
|
|
|
|
error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
|
|
ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
|
|
|
|
#ifdef DEBUG
|
|
first_iclog = iclog = log->l_iclog;
|
|
do {
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
|
|
ASSERT(iclog->ic_offset == 0);
|
|
}
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != first_iclog);
|
|
#endif
|
|
if (! (XLOG_FORCED_SHUTDOWN(log))) {
|
|
error = xfs_log_reserve(mp, 600, 1, &tic,
|
|
XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
|
|
if (!error) {
|
|
/* the data section must be 32 bit size aligned */
|
|
struct {
|
|
__uint16_t magic;
|
|
__uint16_t pad1;
|
|
__uint32_t pad2; /* may as well make it 64 bits */
|
|
} magic = {
|
|
.magic = XLOG_UNMOUNT_TYPE,
|
|
};
|
|
struct xfs_log_iovec reg = {
|
|
.i_addr = &magic,
|
|
.i_len = sizeof(magic),
|
|
.i_type = XLOG_REG_TYPE_UNMOUNT,
|
|
};
|
|
struct xfs_log_vec vec = {
|
|
.lv_niovecs = 1,
|
|
.lv_iovecp = ®,
|
|
};
|
|
|
|
/* remove inited flag, and account for space used */
|
|
tic->t_flags = 0;
|
|
tic->t_curr_res -= sizeof(magic);
|
|
error = xlog_write(log, &vec, tic, &lsn,
|
|
NULL, XLOG_UNMOUNT_TRANS);
|
|
/*
|
|
* At this point, we're umounting anyway,
|
|
* so there's no point in transitioning log state
|
|
* to IOERROR. Just continue...
|
|
*/
|
|
}
|
|
|
|
if (error)
|
|
xfs_alert(mp, "%s: unmount record failed", __func__);
|
|
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
iclog = log->l_iclog;
|
|
atomic_inc(&iclog->ic_refcnt);
|
|
xlog_state_want_sync(log, iclog);
|
|
spin_unlock(&log->l_icloglock);
|
|
error = xlog_state_release_iclog(log, iclog);
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY)) {
|
|
if (!XLOG_FORCED_SHUTDOWN(log)) {
|
|
xlog_wait(&iclog->ic_force_wait,
|
|
&log->l_icloglock);
|
|
} else {
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
} else {
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
if (tic) {
|
|
trace_xfs_log_umount_write(log, tic);
|
|
xlog_ungrant_log_space(log, tic);
|
|
xfs_log_ticket_put(tic);
|
|
}
|
|
} else {
|
|
/*
|
|
* We're already in forced_shutdown mode, couldn't
|
|
* even attempt to write out the unmount transaction.
|
|
*
|
|
* Go through the motions of sync'ing and releasing
|
|
* the iclog, even though no I/O will actually happen,
|
|
* we need to wait for other log I/Os that may already
|
|
* be in progress. Do this as a separate section of
|
|
* code so we'll know if we ever get stuck here that
|
|
* we're in this odd situation of trying to unmount
|
|
* a file system that went into forced_shutdown as
|
|
* the result of an unmount..
|
|
*/
|
|
spin_lock(&log->l_icloglock);
|
|
iclog = log->l_iclog;
|
|
atomic_inc(&iclog->ic_refcnt);
|
|
|
|
xlog_state_want_sync(log, iclog);
|
|
spin_unlock(&log->l_icloglock);
|
|
error = xlog_state_release_iclog(log, iclog);
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
|
|
|| iclog->ic_state == XLOG_STATE_DIRTY
|
|
|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
|
|
|
|
xlog_wait(&iclog->ic_force_wait,
|
|
&log->l_icloglock);
|
|
} else {
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
}
|
|
|
|
return error;
|
|
} /* xfs_log_unmount_write */
|
|
|
|
/*
|
|
* Deallocate log structures for unmount/relocation.
|
|
*
|
|
* We need to stop the aild from running before we destroy
|
|
* and deallocate the log as the aild references the log.
|
|
*/
|
|
void
|
|
xfs_log_unmount(xfs_mount_t *mp)
|
|
{
|
|
cancel_delayed_work_sync(&mp->m_sync_work);
|
|
xfs_trans_ail_destroy(mp);
|
|
xlog_dealloc_log(mp->m_log);
|
|
}
|
|
|
|
void
|
|
xfs_log_item_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_log_item *item,
|
|
int type,
|
|
const struct xfs_item_ops *ops)
|
|
{
|
|
item->li_mountp = mp;
|
|
item->li_ailp = mp->m_ail;
|
|
item->li_type = type;
|
|
item->li_ops = ops;
|
|
item->li_lv = NULL;
|
|
|
|
INIT_LIST_HEAD(&item->li_ail);
|
|
INIT_LIST_HEAD(&item->li_cil);
|
|
}
|
|
|
|
/*
|
|
* Wake up processes waiting for log space after we have moved the log tail.
|
|
*/
|
|
void
|
|
xfs_log_space_wake(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
int free_bytes;
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
return;
|
|
|
|
if (!list_empty_careful(&log->l_write_head.waiters)) {
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
spin_lock(&log->l_write_head.lock);
|
|
free_bytes = xlog_space_left(log, &log->l_write_head.grant);
|
|
xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
|
|
spin_unlock(&log->l_write_head.lock);
|
|
}
|
|
|
|
if (!list_empty_careful(&log->l_reserve_head.waiters)) {
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
spin_lock(&log->l_reserve_head.lock);
|
|
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
|
|
xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
|
|
spin_unlock(&log->l_reserve_head.lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if we have a transaction that has gone to disk
|
|
* that needs to be covered. To begin the transition to the idle state
|
|
* firstly the log needs to be idle (no AIL and nothing in the iclogs).
|
|
* If we are then in a state where covering is needed, the caller is informed
|
|
* that dummy transactions are required to move the log into the idle state.
|
|
*
|
|
* Because this is called as part of the sync process, we should also indicate
|
|
* that dummy transactions should be issued in anything but the covered or
|
|
* idle states. This ensures that the log tail is accurately reflected in
|
|
* the log at the end of the sync, hence if a crash occurrs avoids replay
|
|
* of transactions where the metadata is already on disk.
|
|
*/
|
|
int
|
|
xfs_log_need_covered(xfs_mount_t *mp)
|
|
{
|
|
int needed = 0;
|
|
xlog_t *log = mp->m_log;
|
|
|
|
if (!xfs_fs_writable(mp))
|
|
return 0;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
switch (log->l_covered_state) {
|
|
case XLOG_STATE_COVER_DONE:
|
|
case XLOG_STATE_COVER_DONE2:
|
|
case XLOG_STATE_COVER_IDLE:
|
|
break;
|
|
case XLOG_STATE_COVER_NEED:
|
|
case XLOG_STATE_COVER_NEED2:
|
|
if (!xfs_ail_min_lsn(log->l_ailp) &&
|
|
xlog_iclogs_empty(log)) {
|
|
if (log->l_covered_state == XLOG_STATE_COVER_NEED)
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE;
|
|
else
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE2;
|
|
}
|
|
/* FALLTHRU */
|
|
default:
|
|
needed = 1;
|
|
break;
|
|
}
|
|
spin_unlock(&log->l_icloglock);
|
|
return needed;
|
|
}
|
|
|
|
/*
|
|
* We may be holding the log iclog lock upon entering this routine.
|
|
*/
|
|
xfs_lsn_t
|
|
xlog_assign_tail_lsn_locked(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
struct xfs_log_item *lip;
|
|
xfs_lsn_t tail_lsn;
|
|
|
|
assert_spin_locked(&mp->m_ail->xa_lock);
|
|
|
|
/*
|
|
* To make sure we always have a valid LSN for the log tail we keep
|
|
* track of the last LSN which was committed in log->l_last_sync_lsn,
|
|
* and use that when the AIL was empty.
|
|
*/
|
|
lip = xfs_ail_min(mp->m_ail);
|
|
if (lip)
|
|
tail_lsn = lip->li_lsn;
|
|
else
|
|
tail_lsn = atomic64_read(&log->l_last_sync_lsn);
|
|
atomic64_set(&log->l_tail_lsn, tail_lsn);
|
|
return tail_lsn;
|
|
}
|
|
|
|
xfs_lsn_t
|
|
xlog_assign_tail_lsn(
|
|
struct xfs_mount *mp)
|
|
{
|
|
xfs_lsn_t tail_lsn;
|
|
|
|
spin_lock(&mp->m_ail->xa_lock);
|
|
tail_lsn = xlog_assign_tail_lsn_locked(mp);
|
|
spin_unlock(&mp->m_ail->xa_lock);
|
|
|
|
return tail_lsn;
|
|
}
|
|
|
|
/*
|
|
* Return the space in the log between the tail and the head. The head
|
|
* is passed in the cycle/bytes formal parms. In the special case where
|
|
* the reserve head has wrapped passed the tail, this calculation is no
|
|
* longer valid. In this case, just return 0 which means there is no space
|
|
* in the log. This works for all places where this function is called
|
|
* with the reserve head. Of course, if the write head were to ever
|
|
* wrap the tail, we should blow up. Rather than catch this case here,
|
|
* we depend on other ASSERTions in other parts of the code. XXXmiken
|
|
*
|
|
* This code also handles the case where the reservation head is behind
|
|
* the tail. The details of this case are described below, but the end
|
|
* result is that we return the size of the log as the amount of space left.
|
|
*/
|
|
STATIC int
|
|
xlog_space_left(
|
|
struct xlog *log,
|
|
atomic64_t *head)
|
|
{
|
|
int free_bytes;
|
|
int tail_bytes;
|
|
int tail_cycle;
|
|
int head_cycle;
|
|
int head_bytes;
|
|
|
|
xlog_crack_grant_head(head, &head_cycle, &head_bytes);
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
|
|
tail_bytes = BBTOB(tail_bytes);
|
|
if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
|
|
free_bytes = log->l_logsize - (head_bytes - tail_bytes);
|
|
else if (tail_cycle + 1 < head_cycle)
|
|
return 0;
|
|
else if (tail_cycle < head_cycle) {
|
|
ASSERT(tail_cycle == (head_cycle - 1));
|
|
free_bytes = tail_bytes - head_bytes;
|
|
} else {
|
|
/*
|
|
* The reservation head is behind the tail.
|
|
* In this case we just want to return the size of the
|
|
* log as the amount of space left.
|
|
*/
|
|
xfs_alert(log->l_mp,
|
|
"xlog_space_left: head behind tail\n"
|
|
" tail_cycle = %d, tail_bytes = %d\n"
|
|
" GH cycle = %d, GH bytes = %d",
|
|
tail_cycle, tail_bytes, head_cycle, head_bytes);
|
|
ASSERT(0);
|
|
free_bytes = log->l_logsize;
|
|
}
|
|
return free_bytes;
|
|
}
|
|
|
|
|
|
/*
|
|
* Log function which is called when an io completes.
|
|
*
|
|
* The log manager needs its own routine, in order to control what
|
|
* happens with the buffer after the write completes.
|
|
*/
|
|
void
|
|
xlog_iodone(xfs_buf_t *bp)
|
|
{
|
|
xlog_in_core_t *iclog = bp->b_fspriv;
|
|
xlog_t *l = iclog->ic_log;
|
|
int aborted = 0;
|
|
|
|
/*
|
|
* Race to shutdown the filesystem if we see an error.
|
|
*/
|
|
if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
|
|
XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
|
xfs_buf_stale(bp);
|
|
xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
|
|
/*
|
|
* This flag will be propagated to the trans-committed
|
|
* callback routines to let them know that the log-commit
|
|
* didn't succeed.
|
|
*/
|
|
aborted = XFS_LI_ABORTED;
|
|
} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
aborted = XFS_LI_ABORTED;
|
|
}
|
|
|
|
/* log I/O is always issued ASYNC */
|
|
ASSERT(XFS_BUF_ISASYNC(bp));
|
|
xlog_state_done_syncing(iclog, aborted);
|
|
/*
|
|
* do not reference the buffer (bp) here as we could race
|
|
* with it being freed after writing the unmount record to the
|
|
* log.
|
|
*/
|
|
|
|
} /* xlog_iodone */
|
|
|
|
/*
|
|
* Return size of each in-core log record buffer.
|
|
*
|
|
* All machines get 8 x 32kB buffers by default, unless tuned otherwise.
|
|
*
|
|
* If the filesystem blocksize is too large, we may need to choose a
|
|
* larger size since the directory code currently logs entire blocks.
|
|
*/
|
|
|
|
STATIC void
|
|
xlog_get_iclog_buffer_size(xfs_mount_t *mp,
|
|
xlog_t *log)
|
|
{
|
|
int size;
|
|
int xhdrs;
|
|
|
|
if (mp->m_logbufs <= 0)
|
|
log->l_iclog_bufs = XLOG_MAX_ICLOGS;
|
|
else
|
|
log->l_iclog_bufs = mp->m_logbufs;
|
|
|
|
/*
|
|
* Buffer size passed in from mount system call.
|
|
*/
|
|
if (mp->m_logbsize > 0) {
|
|
size = log->l_iclog_size = mp->m_logbsize;
|
|
log->l_iclog_size_log = 0;
|
|
while (size != 1) {
|
|
log->l_iclog_size_log++;
|
|
size >>= 1;
|
|
}
|
|
|
|
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
|
|
/* # headers = size / 32k
|
|
* one header holds cycles from 32k of data
|
|
*/
|
|
|
|
xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
|
|
if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
|
|
xhdrs++;
|
|
log->l_iclog_hsize = xhdrs << BBSHIFT;
|
|
log->l_iclog_heads = xhdrs;
|
|
} else {
|
|
ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
|
|
log->l_iclog_hsize = BBSIZE;
|
|
log->l_iclog_heads = 1;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
/* All machines use 32kB buffers by default. */
|
|
log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
|
|
log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
|
|
|
|
/* the default log size is 16k or 32k which is one header sector */
|
|
log->l_iclog_hsize = BBSIZE;
|
|
log->l_iclog_heads = 1;
|
|
|
|
done:
|
|
/* are we being asked to make the sizes selected above visible? */
|
|
if (mp->m_logbufs == 0)
|
|
mp->m_logbufs = log->l_iclog_bufs;
|
|
if (mp->m_logbsize == 0)
|
|
mp->m_logbsize = log->l_iclog_size;
|
|
} /* xlog_get_iclog_buffer_size */
|
|
|
|
|
|
/*
|
|
* This routine initializes some of the log structure for a given mount point.
|
|
* Its primary purpose is to fill in enough, so recovery can occur. However,
|
|
* some other stuff may be filled in too.
|
|
*/
|
|
STATIC xlog_t *
|
|
xlog_alloc_log(xfs_mount_t *mp,
|
|
xfs_buftarg_t *log_target,
|
|
xfs_daddr_t blk_offset,
|
|
int num_bblks)
|
|
{
|
|
xlog_t *log;
|
|
xlog_rec_header_t *head;
|
|
xlog_in_core_t **iclogp;
|
|
xlog_in_core_t *iclog, *prev_iclog=NULL;
|
|
xfs_buf_t *bp;
|
|
int i;
|
|
int error = ENOMEM;
|
|
uint log2_size = 0;
|
|
|
|
log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
|
|
if (!log) {
|
|
xfs_warn(mp, "Log allocation failed: No memory!");
|
|
goto out;
|
|
}
|
|
|
|
log->l_mp = mp;
|
|
log->l_targ = log_target;
|
|
log->l_logsize = BBTOB(num_bblks);
|
|
log->l_logBBstart = blk_offset;
|
|
log->l_logBBsize = num_bblks;
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
log->l_flags |= XLOG_ACTIVE_RECOVERY;
|
|
|
|
log->l_prev_block = -1;
|
|
/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
|
|
xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
|
|
xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
|
|
log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
|
|
|
|
xlog_grant_head_init(&log->l_reserve_head);
|
|
xlog_grant_head_init(&log->l_write_head);
|
|
|
|
error = EFSCORRUPTED;
|
|
if (xfs_sb_version_hassector(&mp->m_sb)) {
|
|
log2_size = mp->m_sb.sb_logsectlog;
|
|
if (log2_size < BBSHIFT) {
|
|
xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
|
|
log2_size, BBSHIFT);
|
|
goto out_free_log;
|
|
}
|
|
|
|
log2_size -= BBSHIFT;
|
|
if (log2_size > mp->m_sectbb_log) {
|
|
xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
|
|
log2_size, mp->m_sectbb_log);
|
|
goto out_free_log;
|
|
}
|
|
|
|
/* for larger sector sizes, must have v2 or external log */
|
|
if (log2_size && log->l_logBBstart > 0 &&
|
|
!xfs_sb_version_haslogv2(&mp->m_sb)) {
|
|
xfs_warn(mp,
|
|
"log sector size (0x%x) invalid for configuration.",
|
|
log2_size);
|
|
goto out_free_log;
|
|
}
|
|
}
|
|
log->l_sectBBsize = 1 << log2_size;
|
|
|
|
xlog_get_iclog_buffer_size(mp, log);
|
|
|
|
error = ENOMEM;
|
|
bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
|
|
if (!bp)
|
|
goto out_free_log;
|
|
bp->b_iodone = xlog_iodone;
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
log->l_xbuf = bp;
|
|
|
|
spin_lock_init(&log->l_icloglock);
|
|
init_waitqueue_head(&log->l_flush_wait);
|
|
|
|
iclogp = &log->l_iclog;
|
|
/*
|
|
* The amount of memory to allocate for the iclog structure is
|
|
* rather funky due to the way the structure is defined. It is
|
|
* done this way so that we can use different sizes for machines
|
|
* with different amounts of memory. See the definition of
|
|
* xlog_in_core_t in xfs_log_priv.h for details.
|
|
*/
|
|
ASSERT(log->l_iclog_size >= 4096);
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
|
*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
|
|
if (!*iclogp)
|
|
goto out_free_iclog;
|
|
|
|
iclog = *iclogp;
|
|
iclog->ic_prev = prev_iclog;
|
|
prev_iclog = iclog;
|
|
|
|
bp = xfs_buf_get_uncached(mp->m_logdev_targp,
|
|
BTOBB(log->l_iclog_size), 0);
|
|
if (!bp)
|
|
goto out_free_iclog;
|
|
|
|
bp->b_iodone = xlog_iodone;
|
|
iclog->ic_bp = bp;
|
|
iclog->ic_data = bp->b_addr;
|
|
#ifdef DEBUG
|
|
log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
|
|
#endif
|
|
head = &iclog->ic_header;
|
|
memset(head, 0, sizeof(xlog_rec_header_t));
|
|
head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
|
|
head->h_version = cpu_to_be32(
|
|
xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
|
|
head->h_size = cpu_to_be32(log->l_iclog_size);
|
|
/* new fields */
|
|
head->h_fmt = cpu_to_be32(XLOG_FMT);
|
|
memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
|
|
|
|
iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
iclog->ic_log = log;
|
|
atomic_set(&iclog->ic_refcnt, 0);
|
|
spin_lock_init(&iclog->ic_callback_lock);
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
|
iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
|
|
|
|
ASSERT(xfs_buf_islocked(iclog->ic_bp));
|
|
init_waitqueue_head(&iclog->ic_force_wait);
|
|
init_waitqueue_head(&iclog->ic_write_wait);
|
|
|
|
iclogp = &iclog->ic_next;
|
|
}
|
|
*iclogp = log->l_iclog; /* complete ring */
|
|
log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
|
|
|
|
error = xlog_cil_init(log);
|
|
if (error)
|
|
goto out_free_iclog;
|
|
return log;
|
|
|
|
out_free_iclog:
|
|
for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
|
|
prev_iclog = iclog->ic_next;
|
|
if (iclog->ic_bp)
|
|
xfs_buf_free(iclog->ic_bp);
|
|
kmem_free(iclog);
|
|
}
|
|
spinlock_destroy(&log->l_icloglock);
|
|
xfs_buf_free(log->l_xbuf);
|
|
out_free_log:
|
|
kmem_free(log);
|
|
out:
|
|
return ERR_PTR(-error);
|
|
} /* xlog_alloc_log */
|
|
|
|
|
|
/*
|
|
* Write out the commit record of a transaction associated with the given
|
|
* ticket. Return the lsn of the commit record.
|
|
*/
|
|
STATIC int
|
|
xlog_commit_record(
|
|
struct xlog *log,
|
|
struct xlog_ticket *ticket,
|
|
struct xlog_in_core **iclog,
|
|
xfs_lsn_t *commitlsnp)
|
|
{
|
|
struct xfs_mount *mp = log->l_mp;
|
|
int error;
|
|
struct xfs_log_iovec reg = {
|
|
.i_addr = NULL,
|
|
.i_len = 0,
|
|
.i_type = XLOG_REG_TYPE_COMMIT,
|
|
};
|
|
struct xfs_log_vec vec = {
|
|
.lv_niovecs = 1,
|
|
.lv_iovecp = ®,
|
|
};
|
|
|
|
ASSERT_ALWAYS(iclog);
|
|
error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
|
|
XLOG_COMMIT_TRANS);
|
|
if (error)
|
|
xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Push on the buffer cache code if we ever use more than 75% of the on-disk
|
|
* log space. This code pushes on the lsn which would supposedly free up
|
|
* the 25% which we want to leave free. We may need to adopt a policy which
|
|
* pushes on an lsn which is further along in the log once we reach the high
|
|
* water mark. In this manner, we would be creating a low water mark.
|
|
*/
|
|
STATIC void
|
|
xlog_grant_push_ail(
|
|
struct xlog *log,
|
|
int need_bytes)
|
|
{
|
|
xfs_lsn_t threshold_lsn = 0;
|
|
xfs_lsn_t last_sync_lsn;
|
|
int free_blocks;
|
|
int free_bytes;
|
|
int threshold_block;
|
|
int threshold_cycle;
|
|
int free_threshold;
|
|
|
|
ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
|
|
|
|
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
|
|
free_blocks = BTOBBT(free_bytes);
|
|
|
|
/*
|
|
* Set the threshold for the minimum number of free blocks in the
|
|
* log to the maximum of what the caller needs, one quarter of the
|
|
* log, and 256 blocks.
|
|
*/
|
|
free_threshold = BTOBB(need_bytes);
|
|
free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
|
|
free_threshold = MAX(free_threshold, 256);
|
|
if (free_blocks >= free_threshold)
|
|
return;
|
|
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
|
|
&threshold_block);
|
|
threshold_block += free_threshold;
|
|
if (threshold_block >= log->l_logBBsize) {
|
|
threshold_block -= log->l_logBBsize;
|
|
threshold_cycle += 1;
|
|
}
|
|
threshold_lsn = xlog_assign_lsn(threshold_cycle,
|
|
threshold_block);
|
|
/*
|
|
* Don't pass in an lsn greater than the lsn of the last
|
|
* log record known to be on disk. Use a snapshot of the last sync lsn
|
|
* so that it doesn't change between the compare and the set.
|
|
*/
|
|
last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
|
|
if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
|
|
threshold_lsn = last_sync_lsn;
|
|
|
|
/*
|
|
* Get the transaction layer to kick the dirty buffers out to
|
|
* disk asynchronously. No point in trying to do this if
|
|
* the filesystem is shutting down.
|
|
*/
|
|
if (!XLOG_FORCED_SHUTDOWN(log))
|
|
xfs_ail_push(log->l_ailp, threshold_lsn);
|
|
}
|
|
|
|
/*
|
|
* The bdstrat callback function for log bufs. This gives us a central
|
|
* place to trap bufs in case we get hit by a log I/O error and need to
|
|
* shutdown. Actually, in practice, even when we didn't get a log error,
|
|
* we transition the iclogs to IOERROR state *after* flushing all existing
|
|
* iclogs to disk. This is because we don't want anymore new transactions to be
|
|
* started or completed afterwards.
|
|
*/
|
|
STATIC int
|
|
xlog_bdstrat(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xlog_in_core *iclog = bp->b_fspriv;
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
xfs_buf_ioerror(bp, EIO);
|
|
xfs_buf_stale(bp);
|
|
xfs_buf_ioend(bp, 0);
|
|
/*
|
|
* It would seem logical to return EIO here, but we rely on
|
|
* the log state machine to propagate I/O errors instead of
|
|
* doing it here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
xfs_buf_iorequest(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Flush out the in-core log (iclog) to the on-disk log in an asynchronous
|
|
* fashion. Previously, we should have moved the current iclog
|
|
* ptr in the log to point to the next available iclog. This allows further
|
|
* write to continue while this code syncs out an iclog ready to go.
|
|
* Before an in-core log can be written out, the data section must be scanned
|
|
* to save away the 1st word of each BBSIZE block into the header. We replace
|
|
* it with the current cycle count. Each BBSIZE block is tagged with the
|
|
* cycle count because there in an implicit assumption that drives will
|
|
* guarantee that entire 512 byte blocks get written at once. In other words,
|
|
* we can't have part of a 512 byte block written and part not written. By
|
|
* tagging each block, we will know which blocks are valid when recovering
|
|
* after an unclean shutdown.
|
|
*
|
|
* This routine is single threaded on the iclog. No other thread can be in
|
|
* this routine with the same iclog. Changing contents of iclog can there-
|
|
* fore be done without grabbing the state machine lock. Updating the global
|
|
* log will require grabbing the lock though.
|
|
*
|
|
* The entire log manager uses a logical block numbering scheme. Only
|
|
* log_sync (and then only bwrite()) know about the fact that the log may
|
|
* not start with block zero on a given device. The log block start offset
|
|
* is added immediately before calling bwrite().
|
|
*/
|
|
|
|
STATIC int
|
|
xlog_sync(xlog_t *log,
|
|
xlog_in_core_t *iclog)
|
|
{
|
|
xfs_caddr_t dptr; /* pointer to byte sized element */
|
|
xfs_buf_t *bp;
|
|
int i;
|
|
uint count; /* byte count of bwrite */
|
|
uint count_init; /* initial count before roundup */
|
|
int roundoff; /* roundoff to BB or stripe */
|
|
int split = 0; /* split write into two regions */
|
|
int error;
|
|
int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
|
|
|
|
XFS_STATS_INC(xs_log_writes);
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
|
|
|
|
/* Add for LR header */
|
|
count_init = log->l_iclog_hsize + iclog->ic_offset;
|
|
|
|
/* Round out the log write size */
|
|
if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
|
|
/* we have a v2 stripe unit to use */
|
|
count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
|
|
} else {
|
|
count = BBTOB(BTOBB(count_init));
|
|
}
|
|
roundoff = count - count_init;
|
|
ASSERT(roundoff >= 0);
|
|
ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
|
|
roundoff < log->l_mp->m_sb.sb_logsunit)
|
|
||
|
|
(log->l_mp->m_sb.sb_logsunit <= 1 &&
|
|
roundoff < BBTOB(1)));
|
|
|
|
/* move grant heads by roundoff in sync */
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
|
|
|
|
/* put cycle number in every block */
|
|
xlog_pack_data(log, iclog, roundoff);
|
|
|
|
/* real byte length */
|
|
if (v2) {
|
|
iclog->ic_header.h_len =
|
|
cpu_to_be32(iclog->ic_offset + roundoff);
|
|
} else {
|
|
iclog->ic_header.h_len =
|
|
cpu_to_be32(iclog->ic_offset);
|
|
}
|
|
|
|
bp = iclog->ic_bp;
|
|
XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
|
|
|
|
XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
|
|
|
|
/* Do we need to split this write into 2 parts? */
|
|
if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
|
|
split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
|
|
count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
|
|
iclog->ic_bwritecnt = 2; /* split into 2 writes */
|
|
} else {
|
|
iclog->ic_bwritecnt = 1;
|
|
}
|
|
bp->b_io_length = BTOBB(count);
|
|
bp->b_fspriv = iclog;
|
|
XFS_BUF_ZEROFLAGS(bp);
|
|
XFS_BUF_ASYNC(bp);
|
|
bp->b_flags |= XBF_SYNCIO;
|
|
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
|
|
bp->b_flags |= XBF_FUA;
|
|
|
|
/*
|
|
* Flush the data device before flushing the log to make
|
|
* sure all meta data written back from the AIL actually made
|
|
* it to disk before stamping the new log tail LSN into the
|
|
* log buffer. For an external log we need to issue the
|
|
* flush explicitly, and unfortunately synchronously here;
|
|
* for an internal log we can simply use the block layer
|
|
* state machine for preflushes.
|
|
*/
|
|
if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
|
|
xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
|
|
else
|
|
bp->b_flags |= XBF_FLUSH;
|
|
}
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
xlog_verify_iclog(log, iclog, count, B_TRUE);
|
|
|
|
/* account for log which doesn't start at block #0 */
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
/*
|
|
* Don't call xfs_bwrite here. We do log-syncs even when the filesystem
|
|
* is shutting down.
|
|
*/
|
|
XFS_BUF_WRITE(bp);
|
|
|
|
error = xlog_bdstrat(bp);
|
|
if (error) {
|
|
xfs_buf_ioerror_alert(bp, "xlog_sync");
|
|
return error;
|
|
}
|
|
if (split) {
|
|
bp = iclog->ic_log->l_xbuf;
|
|
XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
|
|
xfs_buf_associate_memory(bp,
|
|
(char *)&iclog->ic_header + count, split);
|
|
bp->b_fspriv = iclog;
|
|
XFS_BUF_ZEROFLAGS(bp);
|
|
XFS_BUF_ASYNC(bp);
|
|
bp->b_flags |= XBF_SYNCIO;
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
|
|
bp->b_flags |= XBF_FUA;
|
|
dptr = bp->b_addr;
|
|
/*
|
|
* Bump the cycle numbers at the start of each block
|
|
* since this part of the buffer is at the start of
|
|
* a new cycle. Watch out for the header magic number
|
|
* case, though.
|
|
*/
|
|
for (i = 0; i < split; i += BBSIZE) {
|
|
be32_add_cpu((__be32 *)dptr, 1);
|
|
if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
|
|
be32_add_cpu((__be32 *)dptr, 1);
|
|
dptr += BBSIZE;
|
|
}
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
/* account for internal log which doesn't start at block #0 */
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
XFS_BUF_WRITE(bp);
|
|
error = xlog_bdstrat(bp);
|
|
if (error) {
|
|
xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
|
|
return error;
|
|
}
|
|
}
|
|
return 0;
|
|
} /* xlog_sync */
|
|
|
|
|
|
/*
|
|
* Deallocate a log structure
|
|
*/
|
|
STATIC void
|
|
xlog_dealloc_log(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog, *next_iclog;
|
|
int i;
|
|
|
|
xlog_cil_destroy(log);
|
|
|
|
/*
|
|
* always need to ensure that the extra buffer does not point to memory
|
|
* owned by another log buffer before we free it.
|
|
*/
|
|
xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
|
|
xfs_buf_free(log->l_xbuf);
|
|
|
|
iclog = log->l_iclog;
|
|
for (i=0; i<log->l_iclog_bufs; i++) {
|
|
xfs_buf_free(iclog->ic_bp);
|
|
next_iclog = iclog->ic_next;
|
|
kmem_free(iclog);
|
|
iclog = next_iclog;
|
|
}
|
|
spinlock_destroy(&log->l_icloglock);
|
|
|
|
log->l_mp->m_log = NULL;
|
|
kmem_free(log);
|
|
} /* xlog_dealloc_log */
|
|
|
|
/*
|
|
* Update counters atomically now that memcpy is done.
|
|
*/
|
|
/* ARGSUSED */
|
|
static inline void
|
|
xlog_state_finish_copy(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int record_cnt,
|
|
int copy_bytes)
|
|
{
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
|
|
iclog->ic_offset += copy_bytes;
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
} /* xlog_state_finish_copy */
|
|
|
|
|
|
|
|
|
|
/*
|
|
* print out info relating to regions written which consume
|
|
* the reservation
|
|
*/
|
|
void
|
|
xlog_print_tic_res(
|
|
struct xfs_mount *mp,
|
|
struct xlog_ticket *ticket)
|
|
{
|
|
uint i;
|
|
uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
|
|
|
|
/* match with XLOG_REG_TYPE_* in xfs_log.h */
|
|
static char *res_type_str[XLOG_REG_TYPE_MAX] = {
|
|
"bformat",
|
|
"bchunk",
|
|
"efi_format",
|
|
"efd_format",
|
|
"iformat",
|
|
"icore",
|
|
"iext",
|
|
"ibroot",
|
|
"ilocal",
|
|
"iattr_ext",
|
|
"iattr_broot",
|
|
"iattr_local",
|
|
"qformat",
|
|
"dquot",
|
|
"quotaoff",
|
|
"LR header",
|
|
"unmount",
|
|
"commit",
|
|
"trans header"
|
|
};
|
|
static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
|
|
"SETATTR_NOT_SIZE",
|
|
"SETATTR_SIZE",
|
|
"INACTIVE",
|
|
"CREATE",
|
|
"CREATE_TRUNC",
|
|
"TRUNCATE_FILE",
|
|
"REMOVE",
|
|
"LINK",
|
|
"RENAME",
|
|
"MKDIR",
|
|
"RMDIR",
|
|
"SYMLINK",
|
|
"SET_DMATTRS",
|
|
"GROWFS",
|
|
"STRAT_WRITE",
|
|
"DIOSTRAT",
|
|
"WRITE_SYNC",
|
|
"WRITEID",
|
|
"ADDAFORK",
|
|
"ATTRINVAL",
|
|
"ATRUNCATE",
|
|
"ATTR_SET",
|
|
"ATTR_RM",
|
|
"ATTR_FLAG",
|
|
"CLEAR_AGI_BUCKET",
|
|
"QM_SBCHANGE",
|
|
"DUMMY1",
|
|
"DUMMY2",
|
|
"QM_QUOTAOFF",
|
|
"QM_DQALLOC",
|
|
"QM_SETQLIM",
|
|
"QM_DQCLUSTER",
|
|
"QM_QINOCREATE",
|
|
"QM_QUOTAOFF_END",
|
|
"SB_UNIT",
|
|
"FSYNC_TS",
|
|
"GROWFSRT_ALLOC",
|
|
"GROWFSRT_ZERO",
|
|
"GROWFSRT_FREE",
|
|
"SWAPEXT"
|
|
};
|
|
|
|
xfs_warn(mp,
|
|
"xlog_write: reservation summary:\n"
|
|
" trans type = %s (%u)\n"
|
|
" unit res = %d bytes\n"
|
|
" current res = %d bytes\n"
|
|
" total reg = %u bytes (o/flow = %u bytes)\n"
|
|
" ophdrs = %u (ophdr space = %u bytes)\n"
|
|
" ophdr + reg = %u bytes\n"
|
|
" num regions = %u\n",
|
|
((ticket->t_trans_type <= 0 ||
|
|
ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
|
|
"bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
|
|
ticket->t_trans_type,
|
|
ticket->t_unit_res,
|
|
ticket->t_curr_res,
|
|
ticket->t_res_arr_sum, ticket->t_res_o_flow,
|
|
ticket->t_res_num_ophdrs, ophdr_spc,
|
|
ticket->t_res_arr_sum +
|
|
ticket->t_res_o_flow + ophdr_spc,
|
|
ticket->t_res_num);
|
|
|
|
for (i = 0; i < ticket->t_res_num; i++) {
|
|
uint r_type = ticket->t_res_arr[i].r_type;
|
|
xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
|
|
((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
|
|
"bad-rtype" : res_type_str[r_type-1]),
|
|
ticket->t_res_arr[i].r_len);
|
|
}
|
|
|
|
xfs_alert_tag(mp, XFS_PTAG_LOGRES,
|
|
"xlog_write: reservation ran out. Need to up reservation");
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
|
|
/*
|
|
* Calculate the potential space needed by the log vector. Each region gets
|
|
* its own xlog_op_header_t and may need to be double word aligned.
|
|
*/
|
|
static int
|
|
xlog_write_calc_vec_length(
|
|
struct xlog_ticket *ticket,
|
|
struct xfs_log_vec *log_vector)
|
|
{
|
|
struct xfs_log_vec *lv;
|
|
int headers = 0;
|
|
int len = 0;
|
|
int i;
|
|
|
|
/* acct for start rec of xact */
|
|
if (ticket->t_flags & XLOG_TIC_INITED)
|
|
headers++;
|
|
|
|
for (lv = log_vector; lv; lv = lv->lv_next) {
|
|
headers += lv->lv_niovecs;
|
|
|
|
for (i = 0; i < lv->lv_niovecs; i++) {
|
|
struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
|
|
|
|
len += vecp->i_len;
|
|
xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
|
|
}
|
|
}
|
|
|
|
ticket->t_res_num_ophdrs += headers;
|
|
len += headers * sizeof(struct xlog_op_header);
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* If first write for transaction, insert start record We can't be trying to
|
|
* commit if we are inited. We can't have any "partial_copy" if we are inited.
|
|
*/
|
|
static int
|
|
xlog_write_start_rec(
|
|
struct xlog_op_header *ophdr,
|
|
struct xlog_ticket *ticket)
|
|
{
|
|
if (!(ticket->t_flags & XLOG_TIC_INITED))
|
|
return 0;
|
|
|
|
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
|
|
ophdr->oh_clientid = ticket->t_clientid;
|
|
ophdr->oh_len = 0;
|
|
ophdr->oh_flags = XLOG_START_TRANS;
|
|
ophdr->oh_res2 = 0;
|
|
|
|
ticket->t_flags &= ~XLOG_TIC_INITED;
|
|
|
|
return sizeof(struct xlog_op_header);
|
|
}
|
|
|
|
static xlog_op_header_t *
|
|
xlog_write_setup_ophdr(
|
|
struct xlog *log,
|
|
struct xlog_op_header *ophdr,
|
|
struct xlog_ticket *ticket,
|
|
uint flags)
|
|
{
|
|
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
|
|
ophdr->oh_clientid = ticket->t_clientid;
|
|
ophdr->oh_res2 = 0;
|
|
|
|
/* are we copying a commit or unmount record? */
|
|
ophdr->oh_flags = flags;
|
|
|
|
/*
|
|
* We've seen logs corrupted with bad transaction client ids. This
|
|
* makes sure that XFS doesn't generate them on. Turn this into an EIO
|
|
* and shut down the filesystem.
|
|
*/
|
|
switch (ophdr->oh_clientid) {
|
|
case XFS_TRANSACTION:
|
|
case XFS_VOLUME:
|
|
case XFS_LOG:
|
|
break;
|
|
default:
|
|
xfs_warn(log->l_mp,
|
|
"Bad XFS transaction clientid 0x%x in ticket 0x%p",
|
|
ophdr->oh_clientid, ticket);
|
|
return NULL;
|
|
}
|
|
|
|
return ophdr;
|
|
}
|
|
|
|
/*
|
|
* Set up the parameters of the region copy into the log. This has
|
|
* to handle region write split across multiple log buffers - this
|
|
* state is kept external to this function so that this code can
|
|
* can be written in an obvious, self documenting manner.
|
|
*/
|
|
static int
|
|
xlog_write_setup_copy(
|
|
struct xlog_ticket *ticket,
|
|
struct xlog_op_header *ophdr,
|
|
int space_available,
|
|
int space_required,
|
|
int *copy_off,
|
|
int *copy_len,
|
|
int *last_was_partial_copy,
|
|
int *bytes_consumed)
|
|
{
|
|
int still_to_copy;
|
|
|
|
still_to_copy = space_required - *bytes_consumed;
|
|
*copy_off = *bytes_consumed;
|
|
|
|
if (still_to_copy <= space_available) {
|
|
/* write of region completes here */
|
|
*copy_len = still_to_copy;
|
|
ophdr->oh_len = cpu_to_be32(*copy_len);
|
|
if (*last_was_partial_copy)
|
|
ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
|
|
*last_was_partial_copy = 0;
|
|
*bytes_consumed = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* partial write of region, needs extra log op header reservation */
|
|
*copy_len = space_available;
|
|
ophdr->oh_len = cpu_to_be32(*copy_len);
|
|
ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
|
|
if (*last_was_partial_copy)
|
|
ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
|
|
*bytes_consumed += *copy_len;
|
|
(*last_was_partial_copy)++;
|
|
|
|
/* account for new log op header */
|
|
ticket->t_curr_res -= sizeof(struct xlog_op_header);
|
|
ticket->t_res_num_ophdrs++;
|
|
|
|
return sizeof(struct xlog_op_header);
|
|
}
|
|
|
|
static int
|
|
xlog_write_copy_finish(
|
|
struct xlog *log,
|
|
struct xlog_in_core *iclog,
|
|
uint flags,
|
|
int *record_cnt,
|
|
int *data_cnt,
|
|
int *partial_copy,
|
|
int *partial_copy_len,
|
|
int log_offset,
|
|
struct xlog_in_core **commit_iclog)
|
|
{
|
|
if (*partial_copy) {
|
|
/*
|
|
* This iclog has already been marked WANT_SYNC by
|
|
* xlog_state_get_iclog_space.
|
|
*/
|
|
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
|
|
*record_cnt = 0;
|
|
*data_cnt = 0;
|
|
return xlog_state_release_iclog(log, iclog);
|
|
}
|
|
|
|
*partial_copy = 0;
|
|
*partial_copy_len = 0;
|
|
|
|
if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
|
|
/* no more space in this iclog - push it. */
|
|
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
|
|
*record_cnt = 0;
|
|
*data_cnt = 0;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
xlog_state_want_sync(log, iclog);
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
if (!commit_iclog)
|
|
return xlog_state_release_iclog(log, iclog);
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
*commit_iclog = iclog;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write some region out to in-core log
|
|
*
|
|
* This will be called when writing externally provided regions or when
|
|
* writing out a commit record for a given transaction.
|
|
*
|
|
* General algorithm:
|
|
* 1. Find total length of this write. This may include adding to the
|
|
* lengths passed in.
|
|
* 2. Check whether we violate the tickets reservation.
|
|
* 3. While writing to this iclog
|
|
* A. Reserve as much space in this iclog as can get
|
|
* B. If this is first write, save away start lsn
|
|
* C. While writing this region:
|
|
* 1. If first write of transaction, write start record
|
|
* 2. Write log operation header (header per region)
|
|
* 3. Find out if we can fit entire region into this iclog
|
|
* 4. Potentially, verify destination memcpy ptr
|
|
* 5. Memcpy (partial) region
|
|
* 6. If partial copy, release iclog; otherwise, continue
|
|
* copying more regions into current iclog
|
|
* 4. Mark want sync bit (in simulation mode)
|
|
* 5. Release iclog for potential flush to on-disk log.
|
|
*
|
|
* ERRORS:
|
|
* 1. Panic if reservation is overrun. This should never happen since
|
|
* reservation amounts are generated internal to the filesystem.
|
|
* NOTES:
|
|
* 1. Tickets are single threaded data structures.
|
|
* 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
|
|
* syncing routine. When a single log_write region needs to span
|
|
* multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
|
|
* on all log operation writes which don't contain the end of the
|
|
* region. The XLOG_END_TRANS bit is used for the in-core log
|
|
* operation which contains the end of the continued log_write region.
|
|
* 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
|
|
* we don't really know exactly how much space will be used. As a result,
|
|
* we don't update ic_offset until the end when we know exactly how many
|
|
* bytes have been written out.
|
|
*/
|
|
int
|
|
xlog_write(
|
|
struct xlog *log,
|
|
struct xfs_log_vec *log_vector,
|
|
struct xlog_ticket *ticket,
|
|
xfs_lsn_t *start_lsn,
|
|
struct xlog_in_core **commit_iclog,
|
|
uint flags)
|
|
{
|
|
struct xlog_in_core *iclog = NULL;
|
|
struct xfs_log_iovec *vecp;
|
|
struct xfs_log_vec *lv;
|
|
int len;
|
|
int index;
|
|
int partial_copy = 0;
|
|
int partial_copy_len = 0;
|
|
int contwr = 0;
|
|
int record_cnt = 0;
|
|
int data_cnt = 0;
|
|
int error;
|
|
|
|
*start_lsn = 0;
|
|
|
|
len = xlog_write_calc_vec_length(ticket, log_vector);
|
|
|
|
/*
|
|
* Region headers and bytes are already accounted for.
|
|
* We only need to take into account start records and
|
|
* split regions in this function.
|
|
*/
|
|
if (ticket->t_flags & XLOG_TIC_INITED)
|
|
ticket->t_curr_res -= sizeof(xlog_op_header_t);
|
|
|
|
/*
|
|
* Commit record headers need to be accounted for. These
|
|
* come in as separate writes so are easy to detect.
|
|
*/
|
|
if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
|
|
ticket->t_curr_res -= sizeof(xlog_op_header_t);
|
|
|
|
if (ticket->t_curr_res < 0)
|
|
xlog_print_tic_res(log->l_mp, ticket);
|
|
|
|
index = 0;
|
|
lv = log_vector;
|
|
vecp = lv->lv_iovecp;
|
|
while (lv && index < lv->lv_niovecs) {
|
|
void *ptr;
|
|
int log_offset;
|
|
|
|
error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
|
|
&contwr, &log_offset);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(log_offset <= iclog->ic_size - 1);
|
|
ptr = iclog->ic_datap + log_offset;
|
|
|
|
/* start_lsn is the first lsn written to. That's all we need. */
|
|
if (!*start_lsn)
|
|
*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
|
|
|
|
/*
|
|
* This loop writes out as many regions as can fit in the amount
|
|
* of space which was allocated by xlog_state_get_iclog_space().
|
|
*/
|
|
while (lv && index < lv->lv_niovecs) {
|
|
struct xfs_log_iovec *reg = &vecp[index];
|
|
struct xlog_op_header *ophdr;
|
|
int start_rec_copy;
|
|
int copy_len;
|
|
int copy_off;
|
|
|
|
ASSERT(reg->i_len % sizeof(__int32_t) == 0);
|
|
ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
|
|
|
|
start_rec_copy = xlog_write_start_rec(ptr, ticket);
|
|
if (start_rec_copy) {
|
|
record_cnt++;
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset,
|
|
start_rec_copy);
|
|
}
|
|
|
|
ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
|
|
if (!ophdr)
|
|
return XFS_ERROR(EIO);
|
|
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset,
|
|
sizeof(struct xlog_op_header));
|
|
|
|
len += xlog_write_setup_copy(ticket, ophdr,
|
|
iclog->ic_size-log_offset,
|
|
reg->i_len,
|
|
©_off, ©_len,
|
|
&partial_copy,
|
|
&partial_copy_len);
|
|
xlog_verify_dest_ptr(log, ptr);
|
|
|
|
/* copy region */
|
|
ASSERT(copy_len >= 0);
|
|
memcpy(ptr, reg->i_addr + copy_off, copy_len);
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
|
|
|
|
copy_len += start_rec_copy + sizeof(xlog_op_header_t);
|
|
record_cnt++;
|
|
data_cnt += contwr ? copy_len : 0;
|
|
|
|
error = xlog_write_copy_finish(log, iclog, flags,
|
|
&record_cnt, &data_cnt,
|
|
&partial_copy,
|
|
&partial_copy_len,
|
|
log_offset,
|
|
commit_iclog);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* if we had a partial copy, we need to get more iclog
|
|
* space but we don't want to increment the region
|
|
* index because there is still more is this region to
|
|
* write.
|
|
*
|
|
* If we completed writing this region, and we flushed
|
|
* the iclog (indicated by resetting of the record
|
|
* count), then we also need to get more log space. If
|
|
* this was the last record, though, we are done and
|
|
* can just return.
|
|
*/
|
|
if (partial_copy)
|
|
break;
|
|
|
|
if (++index == lv->lv_niovecs) {
|
|
lv = lv->lv_next;
|
|
index = 0;
|
|
if (lv)
|
|
vecp = lv->lv_iovecp;
|
|
}
|
|
if (record_cnt == 0) {
|
|
if (!lv)
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ASSERT(len == 0);
|
|
|
|
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
|
|
if (!commit_iclog)
|
|
return xlog_state_release_iclog(log, iclog);
|
|
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
*commit_iclog = iclog;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* State Machine functions
|
|
*
|
|
*****************************************************************************
|
|
*/
|
|
|
|
/* Clean iclogs starting from the head. This ordering must be
|
|
* maintained, so an iclog doesn't become ACTIVE beyond one that
|
|
* is SYNCING. This is also required to maintain the notion that we use
|
|
* a ordered wait queue to hold off would be writers to the log when every
|
|
* iclog is trying to sync to disk.
|
|
*
|
|
* State Change: DIRTY -> ACTIVE
|
|
*/
|
|
STATIC void
|
|
xlog_state_clean_log(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
int changed = 0;
|
|
|
|
iclog = log->l_iclog;
|
|
do {
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
iclog->ic_offset = 0;
|
|
ASSERT(iclog->ic_callback == NULL);
|
|
/*
|
|
* If the number of ops in this iclog indicate it just
|
|
* contains the dummy transaction, we can
|
|
* change state into IDLE (the second time around).
|
|
* Otherwise we should change the state into
|
|
* NEED a dummy.
|
|
* We don't need to cover the dummy.
|
|
*/
|
|
if (!changed &&
|
|
(be32_to_cpu(iclog->ic_header.h_num_logops) ==
|
|
XLOG_COVER_OPS)) {
|
|
changed = 1;
|
|
} else {
|
|
/*
|
|
* We have two dirty iclogs so start over
|
|
* This could also be num of ops indicates
|
|
* this is not the dummy going out.
|
|
*/
|
|
changed = 2;
|
|
}
|
|
iclog->ic_header.h_num_logops = 0;
|
|
memset(iclog->ic_header.h_cycle_data, 0,
|
|
sizeof(iclog->ic_header.h_cycle_data));
|
|
iclog->ic_header.h_lsn = 0;
|
|
} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
|
|
/* do nothing */;
|
|
else
|
|
break; /* stop cleaning */
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
|
|
/* log is locked when we are called */
|
|
/*
|
|
* Change state for the dummy log recording.
|
|
* We usually go to NEED. But we go to NEED2 if the changed indicates
|
|
* we are done writing the dummy record.
|
|
* If we are done with the second dummy recored (DONE2), then
|
|
* we go to IDLE.
|
|
*/
|
|
if (changed) {
|
|
switch (log->l_covered_state) {
|
|
case XLOG_STATE_COVER_IDLE:
|
|
case XLOG_STATE_COVER_NEED:
|
|
case XLOG_STATE_COVER_NEED2:
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
case XLOG_STATE_COVER_DONE:
|
|
if (changed == 1)
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED2;
|
|
else
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
case XLOG_STATE_COVER_DONE2:
|
|
if (changed == 1)
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
else
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
break;
|
|
|
|
default:
|
|
ASSERT(0);
|
|
}
|
|
}
|
|
} /* xlog_state_clean_log */
|
|
|
|
STATIC xfs_lsn_t
|
|
xlog_get_lowest_lsn(
|
|
xlog_t *log)
|
|
{
|
|
xlog_in_core_t *lsn_log;
|
|
xfs_lsn_t lowest_lsn, lsn;
|
|
|
|
lsn_log = log->l_iclog;
|
|
lowest_lsn = 0;
|
|
do {
|
|
if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
|
|
lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
|
|
if ((lsn && !lowest_lsn) ||
|
|
(XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
|
|
lowest_lsn = lsn;
|
|
}
|
|
}
|
|
lsn_log = lsn_log->ic_next;
|
|
} while (lsn_log != log->l_iclog);
|
|
return lowest_lsn;
|
|
}
|
|
|
|
|
|
STATIC void
|
|
xlog_state_do_callback(
|
|
xlog_t *log,
|
|
int aborted,
|
|
xlog_in_core_t *ciclog)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
xlog_in_core_t *first_iclog; /* used to know when we've
|
|
* processed all iclogs once */
|
|
xfs_log_callback_t *cb, *cb_next;
|
|
int flushcnt = 0;
|
|
xfs_lsn_t lowest_lsn;
|
|
int ioerrors; /* counter: iclogs with errors */
|
|
int loopdidcallbacks; /* flag: inner loop did callbacks*/
|
|
int funcdidcallbacks; /* flag: function did callbacks */
|
|
int repeats; /* for issuing console warnings if
|
|
* looping too many times */
|
|
int wake = 0;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
first_iclog = iclog = log->l_iclog;
|
|
ioerrors = 0;
|
|
funcdidcallbacks = 0;
|
|
repeats = 0;
|
|
|
|
do {
|
|
/*
|
|
* Scan all iclogs starting with the one pointed to by the
|
|
* log. Reset this starting point each time the log is
|
|
* unlocked (during callbacks).
|
|
*
|
|
* Keep looping through iclogs until one full pass is made
|
|
* without running any callbacks.
|
|
*/
|
|
first_iclog = log->l_iclog;
|
|
iclog = log->l_iclog;
|
|
loopdidcallbacks = 0;
|
|
repeats++;
|
|
|
|
do {
|
|
|
|
/* skip all iclogs in the ACTIVE & DIRTY states */
|
|
if (iclog->ic_state &
|
|
(XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
|
|
iclog = iclog->ic_next;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Between marking a filesystem SHUTDOWN and stopping
|
|
* the log, we do flush all iclogs to disk (if there
|
|
* wasn't a log I/O error). So, we do want things to
|
|
* go smoothly in case of just a SHUTDOWN w/o a
|
|
* LOG_IO_ERROR.
|
|
*/
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
/*
|
|
* Can only perform callbacks in order. Since
|
|
* this iclog is not in the DONE_SYNC/
|
|
* DO_CALLBACK state, we skip the rest and
|
|
* just try to clean up. If we set our iclog
|
|
* to DO_CALLBACK, we will not process it when
|
|
* we retry since a previous iclog is in the
|
|
* CALLBACK and the state cannot change since
|
|
* we are holding the l_icloglock.
|
|
*/
|
|
if (!(iclog->ic_state &
|
|
(XLOG_STATE_DONE_SYNC |
|
|
XLOG_STATE_DO_CALLBACK))) {
|
|
if (ciclog && (ciclog->ic_state ==
|
|
XLOG_STATE_DONE_SYNC)) {
|
|
ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* We now have an iclog that is in either the
|
|
* DO_CALLBACK or DONE_SYNC states. The other
|
|
* states (WANT_SYNC, SYNCING, or CALLBACK were
|
|
* caught by the above if and are going to
|
|
* clean (i.e. we aren't doing their callbacks)
|
|
* see the above if.
|
|
*/
|
|
|
|
/*
|
|
* We will do one more check here to see if we
|
|
* have chased our tail around.
|
|
*/
|
|
|
|
lowest_lsn = xlog_get_lowest_lsn(log);
|
|
if (lowest_lsn &&
|
|
XFS_LSN_CMP(lowest_lsn,
|
|
be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
|
|
iclog = iclog->ic_next;
|
|
continue; /* Leave this iclog for
|
|
* another thread */
|
|
}
|
|
|
|
iclog->ic_state = XLOG_STATE_CALLBACK;
|
|
|
|
|
|
/*
|
|
* update the last_sync_lsn before we drop the
|
|
* icloglock to ensure we are the only one that
|
|
* can update it.
|
|
*/
|
|
ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
|
|
be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
|
|
atomic64_set(&log->l_last_sync_lsn,
|
|
be64_to_cpu(iclog->ic_header.h_lsn));
|
|
|
|
} else
|
|
ioerrors++;
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
/*
|
|
* Keep processing entries in the callback list until
|
|
* we come around and it is empty. We need to
|
|
* atomically see that the list is empty and change the
|
|
* state to DIRTY so that we don't miss any more
|
|
* callbacks being added.
|
|
*/
|
|
spin_lock(&iclog->ic_callback_lock);
|
|
cb = iclog->ic_callback;
|
|
while (cb) {
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
|
iclog->ic_callback = NULL;
|
|
spin_unlock(&iclog->ic_callback_lock);
|
|
|
|
/* perform callbacks in the order given */
|
|
for (; cb; cb = cb_next) {
|
|
cb_next = cb->cb_next;
|
|
cb->cb_func(cb->cb_arg, aborted);
|
|
}
|
|
spin_lock(&iclog->ic_callback_lock);
|
|
cb = iclog->ic_callback;
|
|
}
|
|
|
|
loopdidcallbacks++;
|
|
funcdidcallbacks++;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
ASSERT(iclog->ic_callback == NULL);
|
|
spin_unlock(&iclog->ic_callback_lock);
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR))
|
|
iclog->ic_state = XLOG_STATE_DIRTY;
|
|
|
|
/*
|
|
* Transition from DIRTY to ACTIVE if applicable.
|
|
* NOP if STATE_IOERROR.
|
|
*/
|
|
xlog_state_clean_log(log);
|
|
|
|
/* wake up threads waiting in xfs_log_force() */
|
|
wake_up_all(&iclog->ic_force_wait);
|
|
|
|
iclog = iclog->ic_next;
|
|
} while (first_iclog != iclog);
|
|
|
|
if (repeats > 5000) {
|
|
flushcnt += repeats;
|
|
repeats = 0;
|
|
xfs_warn(log->l_mp,
|
|
"%s: possible infinite loop (%d iterations)",
|
|
__func__, flushcnt);
|
|
}
|
|
} while (!ioerrors && loopdidcallbacks);
|
|
|
|
/*
|
|
* make one last gasp attempt to see if iclogs are being left in
|
|
* limbo..
|
|
*/
|
|
#ifdef DEBUG
|
|
if (funcdidcallbacks) {
|
|
first_iclog = iclog = log->l_iclog;
|
|
do {
|
|
ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
|
|
/*
|
|
* Terminate the loop if iclogs are found in states
|
|
* which will cause other threads to clean up iclogs.
|
|
*
|
|
* SYNCING - i/o completion will go through logs
|
|
* DONE_SYNC - interrupt thread should be waiting for
|
|
* l_icloglock
|
|
* IOERROR - give up hope all ye who enter here
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
|
|
iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
iclog->ic_state == XLOG_STATE_DONE_SYNC ||
|
|
iclog->ic_state == XLOG_STATE_IOERROR )
|
|
break;
|
|
iclog = iclog->ic_next;
|
|
} while (first_iclog != iclog);
|
|
}
|
|
#endif
|
|
|
|
if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
|
|
wake = 1;
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
if (wake)
|
|
wake_up_all(&log->l_flush_wait);
|
|
}
|
|
|
|
|
|
/*
|
|
* Finish transitioning this iclog to the dirty state.
|
|
*
|
|
* Make sure that we completely execute this routine only when this is
|
|
* the last call to the iclog. There is a good chance that iclog flushes,
|
|
* when we reach the end of the physical log, get turned into 2 separate
|
|
* calls to bwrite. Hence, one iclog flush could generate two calls to this
|
|
* routine. By using the reference count bwritecnt, we guarantee that only
|
|
* the second completion goes through.
|
|
*
|
|
* Callbacks could take time, so they are done outside the scope of the
|
|
* global state machine log lock.
|
|
*/
|
|
STATIC void
|
|
xlog_state_done_syncing(
|
|
xlog_in_core_t *iclog,
|
|
int aborted)
|
|
{
|
|
xlog_t *log = iclog->ic_log;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
iclog->ic_state == XLOG_STATE_IOERROR);
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
|
|
ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
|
|
|
|
|
|
/*
|
|
* If we got an error, either on the first buffer, or in the case of
|
|
* split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
|
|
* and none should ever be attempted to be written to disk
|
|
* again.
|
|
*/
|
|
if (iclog->ic_state != XLOG_STATE_IOERROR) {
|
|
if (--iclog->ic_bwritecnt == 1) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return;
|
|
}
|
|
iclog->ic_state = XLOG_STATE_DONE_SYNC;
|
|
}
|
|
|
|
/*
|
|
* Someone could be sleeping prior to writing out the next
|
|
* iclog buffer, we wake them all, one will get to do the
|
|
* I/O, the others get to wait for the result.
|
|
*/
|
|
wake_up_all(&iclog->ic_write_wait);
|
|
spin_unlock(&log->l_icloglock);
|
|
xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
|
|
} /* xlog_state_done_syncing */
|
|
|
|
|
|
/*
|
|
* If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
|
|
* sleep. We wait on the flush queue on the head iclog as that should be
|
|
* the first iclog to complete flushing. Hence if all iclogs are syncing,
|
|
* we will wait here and all new writes will sleep until a sync completes.
|
|
*
|
|
* The in-core logs are used in a circular fashion. They are not used
|
|
* out-of-order even when an iclog past the head is free.
|
|
*
|
|
* return:
|
|
* * log_offset where xlog_write() can start writing into the in-core
|
|
* log's data space.
|
|
* * in-core log pointer to which xlog_write() should write.
|
|
* * boolean indicating this is a continued write to an in-core log.
|
|
* If this is the last write, then the in-core log's offset field
|
|
* needs to be incremented, depending on the amount of data which
|
|
* is copied.
|
|
*/
|
|
STATIC int
|
|
xlog_state_get_iclog_space(xlog_t *log,
|
|
int len,
|
|
xlog_in_core_t **iclogp,
|
|
xlog_ticket_t *ticket,
|
|
int *continued_write,
|
|
int *logoffsetp)
|
|
{
|
|
int log_offset;
|
|
xlog_rec_header_t *head;
|
|
xlog_in_core_t *iclog;
|
|
int error;
|
|
|
|
restart:
|
|
spin_lock(&log->l_icloglock);
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
iclog = log->l_iclog;
|
|
if (iclog->ic_state != XLOG_STATE_ACTIVE) {
|
|
XFS_STATS_INC(xs_log_noiclogs);
|
|
|
|
/* Wait for log writes to have flushed */
|
|
xlog_wait(&log->l_flush_wait, &log->l_icloglock);
|
|
goto restart;
|
|
}
|
|
|
|
head = &iclog->ic_header;
|
|
|
|
atomic_inc(&iclog->ic_refcnt); /* prevents sync */
|
|
log_offset = iclog->ic_offset;
|
|
|
|
/* On the 1st write to an iclog, figure out lsn. This works
|
|
* if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
|
|
* committing to. If the offset is set, that's how many blocks
|
|
* must be written.
|
|
*/
|
|
if (log_offset == 0) {
|
|
ticket->t_curr_res -= log->l_iclog_hsize;
|
|
xlog_tic_add_region(ticket,
|
|
log->l_iclog_hsize,
|
|
XLOG_REG_TYPE_LRHEADER);
|
|
head->h_cycle = cpu_to_be32(log->l_curr_cycle);
|
|
head->h_lsn = cpu_to_be64(
|
|
xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
|
|
ASSERT(log->l_curr_block >= 0);
|
|
}
|
|
|
|
/* If there is enough room to write everything, then do it. Otherwise,
|
|
* claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
|
|
* bit is on, so this will get flushed out. Don't update ic_offset
|
|
* until you know exactly how many bytes get copied. Therefore, wait
|
|
* until later to update ic_offset.
|
|
*
|
|
* xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
|
|
* can fit into remaining data section.
|
|
*/
|
|
if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
|
|
/*
|
|
* If I'm the only one writing to this iclog, sync it to disk.
|
|
* We need to do an atomic compare and decrement here to avoid
|
|
* racing with concurrent atomic_dec_and_lock() calls in
|
|
* xlog_state_release_iclog() when there is more than one
|
|
* reference to the iclog.
|
|
*/
|
|
if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
|
|
/* we are the only one */
|
|
spin_unlock(&log->l_icloglock);
|
|
error = xlog_state_release_iclog(log, iclog);
|
|
if (error)
|
|
return error;
|
|
} else {
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
goto restart;
|
|
}
|
|
|
|
/* Do we have enough room to write the full amount in the remainder
|
|
* of this iclog? Or must we continue a write on the next iclog and
|
|
* mark this iclog as completely taken? In the case where we switch
|
|
* iclogs (to mark it taken), this particular iclog will release/sync
|
|
* to disk in xlog_write().
|
|
*/
|
|
if (len <= iclog->ic_size - iclog->ic_offset) {
|
|
*continued_write = 0;
|
|
iclog->ic_offset += len;
|
|
} else {
|
|
*continued_write = 1;
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
}
|
|
*iclogp = iclog;
|
|
|
|
ASSERT(iclog->ic_offset <= iclog->ic_size);
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
*logoffsetp = log_offset;
|
|
return 0;
|
|
} /* xlog_state_get_iclog_space */
|
|
|
|
/* The first cnt-1 times through here we don't need to
|
|
* move the grant write head because the permanent
|
|
* reservation has reserved cnt times the unit amount.
|
|
* Release part of current permanent unit reservation and
|
|
* reset current reservation to be one units worth. Also
|
|
* move grant reservation head forward.
|
|
*/
|
|
STATIC void
|
|
xlog_regrant_reserve_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
trace_xfs_log_regrant_reserve_enter(log, ticket);
|
|
|
|
if (ticket->t_cnt > 0)
|
|
ticket->t_cnt--;
|
|
|
|
xlog_grant_sub_space(log, &log->l_reserve_head.grant,
|
|
ticket->t_curr_res);
|
|
xlog_grant_sub_space(log, &log->l_write_head.grant,
|
|
ticket->t_curr_res);
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
|
xlog_tic_reset_res(ticket);
|
|
|
|
trace_xfs_log_regrant_reserve_sub(log, ticket);
|
|
|
|
/* just return if we still have some of the pre-reserved space */
|
|
if (ticket->t_cnt > 0)
|
|
return;
|
|
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant,
|
|
ticket->t_unit_res);
|
|
|
|
trace_xfs_log_regrant_reserve_exit(log, ticket);
|
|
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
|
xlog_tic_reset_res(ticket);
|
|
} /* xlog_regrant_reserve_log_space */
|
|
|
|
|
|
/*
|
|
* Give back the space left from a reservation.
|
|
*
|
|
* All the information we need to make a correct determination of space left
|
|
* is present. For non-permanent reservations, things are quite easy. The
|
|
* count should have been decremented to zero. We only need to deal with the
|
|
* space remaining in the current reservation part of the ticket. If the
|
|
* ticket contains a permanent reservation, there may be left over space which
|
|
* needs to be released. A count of N means that N-1 refills of the current
|
|
* reservation can be done before we need to ask for more space. The first
|
|
* one goes to fill up the first current reservation. Once we run out of
|
|
* space, the count will stay at zero and the only space remaining will be
|
|
* in the current reservation field.
|
|
*/
|
|
STATIC void
|
|
xlog_ungrant_log_space(xlog_t *log,
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
int bytes;
|
|
|
|
if (ticket->t_cnt > 0)
|
|
ticket->t_cnt--;
|
|
|
|
trace_xfs_log_ungrant_enter(log, ticket);
|
|
trace_xfs_log_ungrant_sub(log, ticket);
|
|
|
|
/*
|
|
* If this is a permanent reservation ticket, we may be able to free
|
|
* up more space based on the remaining count.
|
|
*/
|
|
bytes = ticket->t_curr_res;
|
|
if (ticket->t_cnt > 0) {
|
|
ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
|
|
bytes += ticket->t_unit_res*ticket->t_cnt;
|
|
}
|
|
|
|
xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
|
|
xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
|
|
|
|
trace_xfs_log_ungrant_exit(log, ticket);
|
|
|
|
xfs_log_space_wake(log->l_mp);
|
|
}
|
|
|
|
/*
|
|
* Flush iclog to disk if this is the last reference to the given iclog and
|
|
* the WANT_SYNC bit is set.
|
|
*
|
|
* When this function is entered, the iclog is not necessarily in the
|
|
* WANT_SYNC state. It may be sitting around waiting to get filled.
|
|
*
|
|
*
|
|
*/
|
|
STATIC int
|
|
xlog_state_release_iclog(
|
|
xlog_t *log,
|
|
xlog_in_core_t *iclog)
|
|
{
|
|
int sync = 0; /* do we sync? */
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
return XFS_ERROR(EIO);
|
|
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
|
|
if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
|
|
return 0;
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_WANT_SYNC);
|
|
|
|
if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
|
|
/* update tail before writing to iclog */
|
|
xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
|
|
sync++;
|
|
iclog->ic_state = XLOG_STATE_SYNCING;
|
|
iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
|
|
xlog_verify_tail_lsn(log, iclog, tail_lsn);
|
|
/* cycle incremented when incrementing curr_block */
|
|
}
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
/*
|
|
* We let the log lock go, so it's possible that we hit a log I/O
|
|
* error or some other SHUTDOWN condition that marks the iclog
|
|
* as XLOG_STATE_IOERROR before the bwrite. However, we know that
|
|
* this iclog has consistent data, so we ignore IOERROR
|
|
* flags after this point.
|
|
*/
|
|
if (sync)
|
|
return xlog_sync(log, iclog);
|
|
return 0;
|
|
} /* xlog_state_release_iclog */
|
|
|
|
|
|
/*
|
|
* This routine will mark the current iclog in the ring as WANT_SYNC
|
|
* and move the current iclog pointer to the next iclog in the ring.
|
|
* When this routine is called from xlog_state_get_iclog_space(), the
|
|
* exact size of the iclog has not yet been determined. All we know is
|
|
* that every data block. We have run out of space in this log record.
|
|
*/
|
|
STATIC void
|
|
xlog_state_switch_iclogs(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int eventual_size)
|
|
{
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
|
|
if (!eventual_size)
|
|
eventual_size = iclog->ic_offset;
|
|
iclog->ic_state = XLOG_STATE_WANT_SYNC;
|
|
iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
|
|
log->l_prev_block = log->l_curr_block;
|
|
log->l_prev_cycle = log->l_curr_cycle;
|
|
|
|
/* roll log?: ic_offset changed later */
|
|
log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
|
|
|
|
/* Round up to next log-sunit */
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
|
__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
|
|
log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
|
|
}
|
|
|
|
if (log->l_curr_block >= log->l_logBBsize) {
|
|
log->l_curr_cycle++;
|
|
if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
|
|
log->l_curr_cycle++;
|
|
log->l_curr_block -= log->l_logBBsize;
|
|
ASSERT(log->l_curr_block >= 0);
|
|
}
|
|
ASSERT(iclog == log->l_iclog);
|
|
log->l_iclog = iclog->ic_next;
|
|
} /* xlog_state_switch_iclogs */
|
|
|
|
/*
|
|
* Write out all data in the in-core log as of this exact moment in time.
|
|
*
|
|
* Data may be written to the in-core log during this call. However,
|
|
* we don't guarantee this data will be written out. A change from past
|
|
* implementation means this routine will *not* write out zero length LRs.
|
|
*
|
|
* Basically, we try and perform an intelligent scan of the in-core logs.
|
|
* If we determine there is no flushable data, we just return. There is no
|
|
* flushable data if:
|
|
*
|
|
* 1. the current iclog is active and has no data; the previous iclog
|
|
* is in the active or dirty state.
|
|
* 2. the current iclog is drity, and the previous iclog is in the
|
|
* active or dirty state.
|
|
*
|
|
* We may sleep if:
|
|
*
|
|
* 1. the current iclog is not in the active nor dirty state.
|
|
* 2. the current iclog dirty, and the previous iclog is not in the
|
|
* active nor dirty state.
|
|
* 3. the current iclog is active, and there is another thread writing
|
|
* to this particular iclog.
|
|
* 4. a) the current iclog is active and has no other writers
|
|
* b) when we return from flushing out this iclog, it is still
|
|
* not in the active nor dirty state.
|
|
*/
|
|
int
|
|
_xfs_log_force(
|
|
struct xfs_mount *mp,
|
|
uint flags,
|
|
int *log_flushed)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
struct xlog_in_core *iclog;
|
|
xfs_lsn_t lsn;
|
|
|
|
XFS_STATS_INC(xs_log_force);
|
|
|
|
xlog_cil_force(log);
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
iclog = log->l_iclog;
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* If the head iclog is not active nor dirty, we just attach
|
|
* ourselves to the head and go to sleep.
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
/*
|
|
* If the head is dirty or (active and empty), then
|
|
* we need to look at the previous iclog. If the previous
|
|
* iclog is active or dirty we are done. There is nothing
|
|
* to sync out. Otherwise, we attach ourselves to the
|
|
* previous iclog and go to sleep.
|
|
*/
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY ||
|
|
(atomic_read(&iclog->ic_refcnt) == 0
|
|
&& iclog->ic_offset == 0)) {
|
|
iclog = iclog->ic_prev;
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
iclog->ic_state == XLOG_STATE_DIRTY)
|
|
goto no_sleep;
|
|
else
|
|
goto maybe_sleep;
|
|
} else {
|
|
if (atomic_read(&iclog->ic_refcnt) == 0) {
|
|
/* We are the only one with access to this
|
|
* iclog. Flush it out now. There should
|
|
* be a roundoff of zero to show that someone
|
|
* has already taken care of the roundoff from
|
|
* the previous sync.
|
|
*/
|
|
atomic_inc(&iclog->ic_refcnt);
|
|
lsn = be64_to_cpu(iclog->ic_header.h_lsn);
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
return XFS_ERROR(EIO);
|
|
|
|
if (log_flushed)
|
|
*log_flushed = 1;
|
|
spin_lock(&log->l_icloglock);
|
|
if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
|
|
iclog->ic_state != XLOG_STATE_DIRTY)
|
|
goto maybe_sleep;
|
|
else
|
|
goto no_sleep;
|
|
} else {
|
|
/* Someone else is writing to this iclog.
|
|
* Use its call to flush out the data. However,
|
|
* the other thread may not force out this LR,
|
|
* so we mark it WANT_SYNC.
|
|
*/
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
goto maybe_sleep;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* By the time we come around again, the iclog could've been filled
|
|
* which would give it another lsn. If we have a new lsn, just
|
|
* return because the relevant data has been flushed.
|
|
*/
|
|
maybe_sleep:
|
|
if (flags & XFS_LOG_SYNC) {
|
|
/*
|
|
* We must check if we're shutting down here, before
|
|
* we wait, while we're holding the l_icloglock.
|
|
* Then we check again after waking up, in case our
|
|
* sleep was disturbed by a bad news.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
|
|
/*
|
|
* No need to grab the log lock here since we're
|
|
* only deciding whether or not to return EIO
|
|
* and the memory read should be atomic.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
return XFS_ERROR(EIO);
|
|
if (log_flushed)
|
|
*log_flushed = 1;
|
|
} else {
|
|
|
|
no_sleep:
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper for _xfs_log_force(), to be used when caller doesn't care
|
|
* about errors or whether the log was flushed or not. This is the normal
|
|
* interface to use when trying to unpin items or move the log forward.
|
|
*/
|
|
void
|
|
xfs_log_force(
|
|
xfs_mount_t *mp,
|
|
uint flags)
|
|
{
|
|
int error;
|
|
|
|
trace_xfs_log_force(mp, 0);
|
|
error = _xfs_log_force(mp, flags, NULL);
|
|
if (error)
|
|
xfs_warn(mp, "%s: error %d returned.", __func__, error);
|
|
}
|
|
|
|
/*
|
|
* Force the in-core log to disk for a specific LSN.
|
|
*
|
|
* Find in-core log with lsn.
|
|
* If it is in the DIRTY state, just return.
|
|
* If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
|
|
* state and go to sleep or return.
|
|
* If it is in any other state, go to sleep or return.
|
|
*
|
|
* Synchronous forces are implemented with a signal variable. All callers
|
|
* to force a given lsn to disk will wait on a the sv attached to the
|
|
* specific in-core log. When given in-core log finally completes its
|
|
* write to disk, that thread will wake up all threads waiting on the
|
|
* sv.
|
|
*/
|
|
int
|
|
_xfs_log_force_lsn(
|
|
struct xfs_mount *mp,
|
|
xfs_lsn_t lsn,
|
|
uint flags,
|
|
int *log_flushed)
|
|
{
|
|
struct xlog *log = mp->m_log;
|
|
struct xlog_in_core *iclog;
|
|
int already_slept = 0;
|
|
|
|
ASSERT(lsn != 0);
|
|
|
|
XFS_STATS_INC(xs_log_force);
|
|
|
|
lsn = xlog_cil_force_lsn(log, lsn);
|
|
if (lsn == NULLCOMMITLSN)
|
|
return 0;
|
|
|
|
try_again:
|
|
spin_lock(&log->l_icloglock);
|
|
iclog = log->l_iclog;
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
do {
|
|
if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
|
|
iclog = iclog->ic_next;
|
|
continue;
|
|
}
|
|
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return 0;
|
|
}
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
/*
|
|
* We sleep here if we haven't already slept (e.g.
|
|
* this is the first time we've looked at the correct
|
|
* iclog buf) and the buffer before us is going to
|
|
* be sync'ed. The reason for this is that if we
|
|
* are doing sync transactions here, by waiting for
|
|
* the previous I/O to complete, we can allow a few
|
|
* more transactions into this iclog before we close
|
|
* it down.
|
|
*
|
|
* Otherwise, we mark the buffer WANT_SYNC, and bump
|
|
* up the refcnt so we can release the log (which
|
|
* drops the ref count). The state switch keeps new
|
|
* transaction commits from using this buffer. When
|
|
* the current commits finish writing into the buffer,
|
|
* the refcount will drop to zero and the buffer will
|
|
* go out then.
|
|
*/
|
|
if (!already_slept &&
|
|
(iclog->ic_prev->ic_state &
|
|
(XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
|
|
ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
|
|
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
|
|
xlog_wait(&iclog->ic_prev->ic_write_wait,
|
|
&log->l_icloglock);
|
|
if (log_flushed)
|
|
*log_flushed = 1;
|
|
already_slept = 1;
|
|
goto try_again;
|
|
}
|
|
atomic_inc(&iclog->ic_refcnt);
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
spin_unlock(&log->l_icloglock);
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
return XFS_ERROR(EIO);
|
|
if (log_flushed)
|
|
*log_flushed = 1;
|
|
spin_lock(&log->l_icloglock);
|
|
}
|
|
|
|
if ((flags & XFS_LOG_SYNC) && /* sleep */
|
|
!(iclog->ic_state &
|
|
(XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
|
|
/*
|
|
* Don't wait on completion if we know that we've
|
|
* gotten a log write error.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
spin_unlock(&log->l_icloglock);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
|
|
/*
|
|
* No need to grab the log lock here since we're
|
|
* only deciding whether or not to return EIO
|
|
* and the memory read should be atomic.
|
|
*/
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
return XFS_ERROR(EIO);
|
|
|
|
if (log_flushed)
|
|
*log_flushed = 1;
|
|
} else { /* just return */
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
|
|
return 0;
|
|
} while (iclog != log->l_iclog);
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
|
|
* about errors or whether the log was flushed or not. This is the normal
|
|
* interface to use when trying to unpin items or move the log forward.
|
|
*/
|
|
void
|
|
xfs_log_force_lsn(
|
|
xfs_mount_t *mp,
|
|
xfs_lsn_t lsn,
|
|
uint flags)
|
|
{
|
|
int error;
|
|
|
|
trace_xfs_log_force(mp, lsn);
|
|
error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
|
|
if (error)
|
|
xfs_warn(mp, "%s: error %d returned.", __func__, error);
|
|
}
|
|
|
|
/*
|
|
* Called when we want to mark the current iclog as being ready to sync to
|
|
* disk.
|
|
*/
|
|
STATIC void
|
|
xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
|
|
{
|
|
assert_spin_locked(&log->l_icloglock);
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
} else {
|
|
ASSERT(iclog->ic_state &
|
|
(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
|
|
}
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* TICKET functions
|
|
*
|
|
*****************************************************************************
|
|
*/
|
|
|
|
/*
|
|
* Free a used ticket when its refcount falls to zero.
|
|
*/
|
|
void
|
|
xfs_log_ticket_put(
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
ASSERT(atomic_read(&ticket->t_ref) > 0);
|
|
if (atomic_dec_and_test(&ticket->t_ref))
|
|
kmem_zone_free(xfs_log_ticket_zone, ticket);
|
|
}
|
|
|
|
xlog_ticket_t *
|
|
xfs_log_ticket_get(
|
|
xlog_ticket_t *ticket)
|
|
{
|
|
ASSERT(atomic_read(&ticket->t_ref) > 0);
|
|
atomic_inc(&ticket->t_ref);
|
|
return ticket;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialise a new log ticket.
|
|
*/
|
|
xlog_ticket_t *
|
|
xlog_ticket_alloc(
|
|
struct xlog *log,
|
|
int unit_bytes,
|
|
int cnt,
|
|
char client,
|
|
bool permanent,
|
|
xfs_km_flags_t alloc_flags)
|
|
{
|
|
struct xlog_ticket *tic;
|
|
uint num_headers;
|
|
int iclog_space;
|
|
|
|
tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
|
|
if (!tic)
|
|
return NULL;
|
|
|
|
/*
|
|
* Permanent reservations have up to 'cnt'-1 active log operations
|
|
* in the log. A unit in this case is the amount of space for one
|
|
* of these log operations. Normal reservations have a cnt of 1
|
|
* and their unit amount is the total amount of space required.
|
|
*
|
|
* The following lines of code account for non-transaction data
|
|
* which occupy space in the on-disk log.
|
|
*
|
|
* Normal form of a transaction is:
|
|
* <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
|
|
* and then there are LR hdrs, split-recs and roundoff at end of syncs.
|
|
*
|
|
* We need to account for all the leadup data and trailer data
|
|
* around the transaction data.
|
|
* And then we need to account for the worst case in terms of using
|
|
* more space.
|
|
* The worst case will happen if:
|
|
* - the placement of the transaction happens to be such that the
|
|
* roundoff is at its maximum
|
|
* - the transaction data is synced before the commit record is synced
|
|
* i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
|
|
* Therefore the commit record is in its own Log Record.
|
|
* This can happen as the commit record is called with its
|
|
* own region to xlog_write().
|
|
* This then means that in the worst case, roundoff can happen for
|
|
* the commit-rec as well.
|
|
* The commit-rec is smaller than padding in this scenario and so it is
|
|
* not added separately.
|
|
*/
|
|
|
|
/* for trans header */
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
unit_bytes += sizeof(xfs_trans_header_t);
|
|
|
|
/* for start-rec */
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
|
|
/*
|
|
* for LR headers - the space for data in an iclog is the size minus
|
|
* the space used for the headers. If we use the iclog size, then we
|
|
* undercalculate the number of headers required.
|
|
*
|
|
* Furthermore - the addition of op headers for split-recs might
|
|
* increase the space required enough to require more log and op
|
|
* headers, so take that into account too.
|
|
*
|
|
* IMPORTANT: This reservation makes the assumption that if this
|
|
* transaction is the first in an iclog and hence has the LR headers
|
|
* accounted to it, then the remaining space in the iclog is
|
|
* exclusively for this transaction. i.e. if the transaction is larger
|
|
* than the iclog, it will be the only thing in that iclog.
|
|
* Fundamentally, this means we must pass the entire log vector to
|
|
* xlog_write to guarantee this.
|
|
*/
|
|
iclog_space = log->l_iclog_size - log->l_iclog_hsize;
|
|
num_headers = howmany(unit_bytes, iclog_space);
|
|
|
|
/* for split-recs - ophdrs added when data split over LRs */
|
|
unit_bytes += sizeof(xlog_op_header_t) * num_headers;
|
|
|
|
/* add extra header reservations if we overrun */
|
|
while (!num_headers ||
|
|
howmany(unit_bytes, iclog_space) > num_headers) {
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
num_headers++;
|
|
}
|
|
unit_bytes += log->l_iclog_hsize * num_headers;
|
|
|
|
/* for commit-rec LR header - note: padding will subsume the ophdr */
|
|
unit_bytes += log->l_iclog_hsize;
|
|
|
|
/* for roundoff padding for transaction data and one for commit record */
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
|
/* log su roundoff */
|
|
unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
|
|
} else {
|
|
/* BB roundoff */
|
|
unit_bytes += 2*BBSIZE;
|
|
}
|
|
|
|
atomic_set(&tic->t_ref, 1);
|
|
tic->t_task = current;
|
|
INIT_LIST_HEAD(&tic->t_queue);
|
|
tic->t_unit_res = unit_bytes;
|
|
tic->t_curr_res = unit_bytes;
|
|
tic->t_cnt = cnt;
|
|
tic->t_ocnt = cnt;
|
|
tic->t_tid = random32();
|
|
tic->t_clientid = client;
|
|
tic->t_flags = XLOG_TIC_INITED;
|
|
tic->t_trans_type = 0;
|
|
if (permanent)
|
|
tic->t_flags |= XLOG_TIC_PERM_RESERV;
|
|
|
|
xlog_tic_reset_res(tic);
|
|
|
|
return tic;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
*
|
|
* Log debug routines
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
#if defined(DEBUG)
|
|
/*
|
|
* Make sure that the destination ptr is within the valid data region of
|
|
* one of the iclogs. This uses backup pointers stored in a different
|
|
* part of the log in case we trash the log structure.
|
|
*/
|
|
void
|
|
xlog_verify_dest_ptr(
|
|
struct xlog *log,
|
|
char *ptr)
|
|
{
|
|
int i;
|
|
int good_ptr = 0;
|
|
|
|
for (i = 0; i < log->l_iclog_bufs; i++) {
|
|
if (ptr >= log->l_iclog_bak[i] &&
|
|
ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
|
|
good_ptr++;
|
|
}
|
|
|
|
if (!good_ptr)
|
|
xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
|
|
}
|
|
|
|
/*
|
|
* Check to make sure the grant write head didn't just over lap the tail. If
|
|
* the cycles are the same, we can't be overlapping. Otherwise, make sure that
|
|
* the cycles differ by exactly one and check the byte count.
|
|
*
|
|
* This check is run unlocked, so can give false positives. Rather than assert
|
|
* on failures, use a warn-once flag and a panic tag to allow the admin to
|
|
* determine if they want to panic the machine when such an error occurs. For
|
|
* debug kernels this will have the same effect as using an assert but, unlinke
|
|
* an assert, it can be turned off at runtime.
|
|
*/
|
|
STATIC void
|
|
xlog_verify_grant_tail(
|
|
struct xlog *log)
|
|
{
|
|
int tail_cycle, tail_blocks;
|
|
int cycle, space;
|
|
|
|
xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
|
|
if (tail_cycle != cycle) {
|
|
if (cycle - 1 != tail_cycle &&
|
|
!(log->l_flags & XLOG_TAIL_WARN)) {
|
|
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
|
|
"%s: cycle - 1 != tail_cycle", __func__);
|
|
log->l_flags |= XLOG_TAIL_WARN;
|
|
}
|
|
|
|
if (space > BBTOB(tail_blocks) &&
|
|
!(log->l_flags & XLOG_TAIL_WARN)) {
|
|
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
|
|
"%s: space > BBTOB(tail_blocks)", __func__);
|
|
log->l_flags |= XLOG_TAIL_WARN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* check if it will fit */
|
|
STATIC void
|
|
xlog_verify_tail_lsn(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
xfs_lsn_t tail_lsn)
|
|
{
|
|
int blocks;
|
|
|
|
if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
|
|
blocks =
|
|
log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
|
|
if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
|
|
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
|
|
} else {
|
|
ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
|
|
|
|
if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
|
|
xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
|
|
|
|
blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
|
|
if (blocks < BTOBB(iclog->ic_offset) + 1)
|
|
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
|
|
}
|
|
} /* xlog_verify_tail_lsn */
|
|
|
|
/*
|
|
* Perform a number of checks on the iclog before writing to disk.
|
|
*
|
|
* 1. Make sure the iclogs are still circular
|
|
* 2. Make sure we have a good magic number
|
|
* 3. Make sure we don't have magic numbers in the data
|
|
* 4. Check fields of each log operation header for:
|
|
* A. Valid client identifier
|
|
* B. tid ptr value falls in valid ptr space (user space code)
|
|
* C. Length in log record header is correct according to the
|
|
* individual operation headers within record.
|
|
* 5. When a bwrite will occur within 5 blocks of the front of the physical
|
|
* log, check the preceding blocks of the physical log to make sure all
|
|
* the cycle numbers agree with the current cycle number.
|
|
*/
|
|
STATIC void
|
|
xlog_verify_iclog(xlog_t *log,
|
|
xlog_in_core_t *iclog,
|
|
int count,
|
|
boolean_t syncing)
|
|
{
|
|
xlog_op_header_t *ophead;
|
|
xlog_in_core_t *icptr;
|
|
xlog_in_core_2_t *xhdr;
|
|
xfs_caddr_t ptr;
|
|
xfs_caddr_t base_ptr;
|
|
__psint_t field_offset;
|
|
__uint8_t clientid;
|
|
int len, i, j, k, op_len;
|
|
int idx;
|
|
|
|
/* check validity of iclog pointers */
|
|
spin_lock(&log->l_icloglock);
|
|
icptr = log->l_iclog;
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
|
if (icptr == NULL)
|
|
xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
|
|
icptr = icptr->ic_next;
|
|
}
|
|
if (icptr != log->l_iclog)
|
|
xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
/* check log magic numbers */
|
|
if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
|
|
xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
|
|
|
|
ptr = (xfs_caddr_t) &iclog->ic_header;
|
|
for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
|
|
ptr += BBSIZE) {
|
|
if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
|
|
xfs_emerg(log->l_mp, "%s: unexpected magic num",
|
|
__func__);
|
|
}
|
|
|
|
/* check fields */
|
|
len = be32_to_cpu(iclog->ic_header.h_num_logops);
|
|
ptr = iclog->ic_datap;
|
|
base_ptr = ptr;
|
|
ophead = (xlog_op_header_t *)ptr;
|
|
xhdr = iclog->ic_data;
|
|
for (i = 0; i < len; i++) {
|
|
ophead = (xlog_op_header_t *)ptr;
|
|
|
|
/* clientid is only 1 byte */
|
|
field_offset = (__psint_t)
|
|
((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
|
clientid = ophead->oh_clientid;
|
|
} else {
|
|
idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
clientid = xlog_get_client_id(
|
|
xhdr[j].hic_xheader.xh_cycle_data[k]);
|
|
} else {
|
|
clientid = xlog_get_client_id(
|
|
iclog->ic_header.h_cycle_data[idx]);
|
|
}
|
|
}
|
|
if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
|
|
xfs_warn(log->l_mp,
|
|
"%s: invalid clientid %d op 0x%p offset 0x%lx",
|
|
__func__, clientid, ophead,
|
|
(unsigned long)field_offset);
|
|
|
|
/* check length */
|
|
field_offset = (__psint_t)
|
|
((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
|
op_len = be32_to_cpu(ophead->oh_len);
|
|
} else {
|
|
idx = BTOBBT((__psint_t)&ophead->oh_len -
|
|
(__psint_t)iclog->ic_datap);
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
|
|
} else {
|
|
op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
|
|
}
|
|
}
|
|
ptr += sizeof(xlog_op_header_t) + op_len;
|
|
}
|
|
} /* xlog_verify_iclog */
|
|
#endif
|
|
|
|
/*
|
|
* Mark all iclogs IOERROR. l_icloglock is held by the caller.
|
|
*/
|
|
STATIC int
|
|
xlog_state_ioerror(
|
|
xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog, *ic;
|
|
|
|
iclog = log->l_iclog;
|
|
if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
/*
|
|
* Mark all the incore logs IOERROR.
|
|
* From now on, no log flushes will result.
|
|
*/
|
|
ic = iclog;
|
|
do {
|
|
ic->ic_state = XLOG_STATE_IOERROR;
|
|
ic = ic->ic_next;
|
|
} while (ic != iclog);
|
|
return 0;
|
|
}
|
|
/*
|
|
* Return non-zero, if state transition has already happened.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is called from xfs_force_shutdown, when we're forcibly
|
|
* shutting down the filesystem, typically because of an IO error.
|
|
* Our main objectives here are to make sure that:
|
|
* a. the filesystem gets marked 'SHUTDOWN' for all interested
|
|
* parties to find out, 'atomically'.
|
|
* b. those who're sleeping on log reservations, pinned objects and
|
|
* other resources get woken up, and be told the bad news.
|
|
* c. nothing new gets queued up after (a) and (b) are done.
|
|
* d. if !logerror, flush the iclogs to disk, then seal them off
|
|
* for business.
|
|
*
|
|
* Note: for delayed logging the !logerror case needs to flush the regions
|
|
* held in memory out to the iclogs before flushing them to disk. This needs
|
|
* to be done before the log is marked as shutdown, otherwise the flush to the
|
|
* iclogs will fail.
|
|
*/
|
|
int
|
|
xfs_log_force_umount(
|
|
struct xfs_mount *mp,
|
|
int logerror)
|
|
{
|
|
xlog_t *log;
|
|
int retval;
|
|
|
|
log = mp->m_log;
|
|
|
|
/*
|
|
* If this happens during log recovery, don't worry about
|
|
* locking; the log isn't open for business yet.
|
|
*/
|
|
if (!log ||
|
|
log->l_flags & XLOG_ACTIVE_RECOVERY) {
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
|
if (mp->m_sb_bp)
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Somebody could've already done the hard work for us.
|
|
* No need to get locks for this.
|
|
*/
|
|
if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
ASSERT(XLOG_FORCED_SHUTDOWN(log));
|
|
return 1;
|
|
}
|
|
retval = 0;
|
|
|
|
/*
|
|
* Flush the in memory commit item list before marking the log as
|
|
* being shut down. We need to do it in this order to ensure all the
|
|
* completed transactions are flushed to disk with the xfs_log_force()
|
|
* call below.
|
|
*/
|
|
if (!logerror)
|
|
xlog_cil_force(log);
|
|
|
|
/*
|
|
* mark the filesystem and the as in a shutdown state and wake
|
|
* everybody up to tell them the bad news.
|
|
*/
|
|
spin_lock(&log->l_icloglock);
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
|
if (mp->m_sb_bp)
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
|
|
|
/*
|
|
* This flag is sort of redundant because of the mount flag, but
|
|
* it's good to maintain the separation between the log and the rest
|
|
* of XFS.
|
|
*/
|
|
log->l_flags |= XLOG_IO_ERROR;
|
|
|
|
/*
|
|
* If we hit a log error, we want to mark all the iclogs IOERROR
|
|
* while we're still holding the loglock.
|
|
*/
|
|
if (logerror)
|
|
retval = xlog_state_ioerror(log);
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
/*
|
|
* We don't want anybody waiting for log reservations after this. That
|
|
* means we have to wake up everybody queued up on reserveq as well as
|
|
* writeq. In addition, we make sure in xlog_{re}grant_log_space that
|
|
* we don't enqueue anything once the SHUTDOWN flag is set, and this
|
|
* action is protected by the grant locks.
|
|
*/
|
|
xlog_grant_head_wake_all(&log->l_reserve_head);
|
|
xlog_grant_head_wake_all(&log->l_write_head);
|
|
|
|
if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
ASSERT(!logerror);
|
|
/*
|
|
* Force the incore logs to disk before shutting the
|
|
* log down completely.
|
|
*/
|
|
_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
retval = xlog_state_ioerror(log);
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
/*
|
|
* Wake up everybody waiting on xfs_log_force.
|
|
* Callback all log item committed functions as if the
|
|
* log writes were completed.
|
|
*/
|
|
xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
|
|
|
|
#ifdef XFSERRORDEBUG
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
iclog = log->l_iclog;
|
|
do {
|
|
ASSERT(iclog->ic_callback == 0);
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
spin_unlock(&log->l_icloglock);
|
|
}
|
|
#endif
|
|
/* return non-zero if log IOERROR transition had already happened */
|
|
return retval;
|
|
}
|
|
|
|
STATIC int
|
|
xlog_iclogs_empty(xlog_t *log)
|
|
{
|
|
xlog_in_core_t *iclog;
|
|
|
|
iclog = log->l_iclog;
|
|
do {
|
|
/* endianness does not matter here, zero is zero in
|
|
* any language.
|
|
*/
|
|
if (iclog->ic_header.h_num_logops)
|
|
return 0;
|
|
iclog = iclog->ic_next;
|
|
} while (iclog != log->l_iclog);
|
|
return 1;
|
|
}
|