mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-12 21:44:06 +08:00
049655499e
The run-time self-tests fail quite early, as soon as the input block size is larger than 64 bytes: alg: hash: Test 4 failed for sha1-sun4i-ss 00000000: b9 c9 1e 52 c0 26 d8 39 81 ff f2 3c 99 b1 27 b2 00000010: 30 d6 c9 85 One thing to notice is the value of the last word, which is the one expected (it can sometime be the last two words). The datasheet isn't very clear about when the digest is ready to retrieve and is seems the bit SS_DATA_END is cleared when the digest was computed *but* that doesn't mean the digest is ready to retrieve in the registers. A ndelay(1) is added before reading the computed digest to ensure it is available in the SS_MD[] registers. Signed-off-by: Antoine Tenart <antoine.tenart@free-electrons.com> Tested-by: Corentin Labbe <clabbe.montjoie@gmail.com> Acked-by: Corentin Labbe <clabbe.montjoie@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
524 lines
13 KiB
C
524 lines
13 KiB
C
/*
|
|
* sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
|
|
*
|
|
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
|
|
*
|
|
* This file add support for MD5 and SHA1.
|
|
*
|
|
* You could find the datasheet in Documentation/arm/sunxi/README
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
#include "sun4i-ss.h"
|
|
#include <linux/scatterlist.h>
|
|
|
|
/* This is a totally arbitrary value */
|
|
#define SS_TIMEOUT 100
|
|
|
|
int sun4i_hash_crainit(struct crypto_tfm *tfm)
|
|
{
|
|
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
|
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
|
|
struct sun4i_ss_alg_template *algt;
|
|
|
|
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
|
|
|
|
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
|
|
op->ss = algt->ss;
|
|
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct sun4i_req_ctx));
|
|
return 0;
|
|
}
|
|
|
|
/* sun4i_hash_init: initialize request context */
|
|
int sun4i_hash_init(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
|
|
struct sun4i_ss_alg_template *algt;
|
|
|
|
memset(op, 0, sizeof(struct sun4i_req_ctx));
|
|
|
|
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
|
|
op->mode = algt->mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct md5_state *octx = out;
|
|
int i;
|
|
|
|
octx->byte_count = op->byte_count + op->len;
|
|
|
|
memcpy(octx->block, op->buf, op->len);
|
|
|
|
if (op->byte_count) {
|
|
for (i = 0; i < 4; i++)
|
|
octx->hash[i] = op->hash[i];
|
|
} else {
|
|
octx->hash[0] = SHA1_H0;
|
|
octx->hash[1] = SHA1_H1;
|
|
octx->hash[2] = SHA1_H2;
|
|
octx->hash[3] = SHA1_H3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
const struct md5_state *ictx = in;
|
|
int i;
|
|
|
|
sun4i_hash_init(areq);
|
|
|
|
op->byte_count = ictx->byte_count & ~0x3F;
|
|
op->len = ictx->byte_count & 0x3F;
|
|
|
|
memcpy(op->buf, ictx->block, op->len);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
op->hash[i] = ictx->hash[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct sha1_state *octx = out;
|
|
int i;
|
|
|
|
octx->count = op->byte_count + op->len;
|
|
|
|
memcpy(octx->buffer, op->buf, op->len);
|
|
|
|
if (op->byte_count) {
|
|
for (i = 0; i < 5; i++)
|
|
octx->state[i] = op->hash[i];
|
|
} else {
|
|
octx->state[0] = SHA1_H0;
|
|
octx->state[1] = SHA1_H1;
|
|
octx->state[2] = SHA1_H2;
|
|
octx->state[3] = SHA1_H3;
|
|
octx->state[4] = SHA1_H4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
const struct sha1_state *ictx = in;
|
|
int i;
|
|
|
|
sun4i_hash_init(areq);
|
|
|
|
op->byte_count = ictx->count & ~0x3F;
|
|
op->len = ictx->count & 0x3F;
|
|
|
|
memcpy(op->buf, ictx->buffer, op->len);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
op->hash[i] = ictx->state[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SS_HASH_UPDATE 1
|
|
#define SS_HASH_FINAL 2
|
|
|
|
/*
|
|
* sun4i_hash_update: update hash engine
|
|
*
|
|
* Could be used for both SHA1 and MD5
|
|
* Write data by step of 32bits and put then in the SS.
|
|
*
|
|
* Since we cannot leave partial data and hash state in the engine,
|
|
* we need to get the hash state at the end of this function.
|
|
* We can get the hash state every 64 bytes
|
|
*
|
|
* So the first work is to get the number of bytes to write to SS modulo 64
|
|
* The extra bytes will go to a temporary buffer op->buf storing op->len bytes
|
|
*
|
|
* So at the begin of update()
|
|
* if op->len + areq->nbytes < 64
|
|
* => all data will be written to wait buffer (op->buf) and end=0
|
|
* if not, write all data from op->buf to the device and position end to
|
|
* complete to 64bytes
|
|
*
|
|
* example 1:
|
|
* update1 60o => op->len=60
|
|
* update2 60o => need one more word to have 64 bytes
|
|
* end=4
|
|
* so write all data from op->buf and one word of SGs
|
|
* write remaining data in op->buf
|
|
* final state op->len=56
|
|
*/
|
|
static int sun4i_hash(struct ahash_request *areq)
|
|
{
|
|
/*
|
|
* i is the total bytes read from SGs, to be compared to areq->nbytes
|
|
* i is important because we cannot rely on SG length since the sum of
|
|
* SG->length could be greater than areq->nbytes
|
|
*
|
|
* end is the position when we need to stop writing to the device,
|
|
* to be compared to i
|
|
*
|
|
* in_i: advancement in the current SG
|
|
*/
|
|
unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
|
|
unsigned int in_i = 0;
|
|
u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
|
|
struct sun4i_ss_ctx *ss = tfmctx->ss;
|
|
struct scatterlist *in_sg = areq->src;
|
|
struct sg_mapping_iter mi;
|
|
int in_r, err = 0;
|
|
size_t copied = 0;
|
|
|
|
dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
|
|
__func__, crypto_tfm_alg_name(areq->base.tfm),
|
|
op->byte_count, areq->nbytes, op->mode,
|
|
op->len, op->hash[0]);
|
|
|
|
if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
|
|
return 0;
|
|
|
|
/* protect against overflow */
|
|
if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
|
|
dev_err(ss->dev, "Cannot process too large request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
|
|
/* linearize data to op->buf */
|
|
copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
|
|
op->buf + op->len, areq->nbytes, 0);
|
|
op->len += copied;
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_bh(&ss->slock);
|
|
|
|
/*
|
|
* if some data have been processed before,
|
|
* we need to restore the partial hash state
|
|
*/
|
|
if (op->byte_count) {
|
|
ivmode = SS_IV_ARBITRARY;
|
|
for (i = 0; i < 5; i++)
|
|
writel(op->hash[i], ss->base + SS_IV0 + i * 4);
|
|
}
|
|
/* Enable the device */
|
|
writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
|
|
|
|
if (!(op->flags & SS_HASH_UPDATE))
|
|
goto hash_final;
|
|
|
|
/* start of handling data */
|
|
if (!(op->flags & SS_HASH_FINAL)) {
|
|
end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
|
|
|
|
if (end > areq->nbytes || areq->nbytes - end > 63) {
|
|
dev_err(ss->dev, "ERROR: Bound error %u %u\n",
|
|
end, areq->nbytes);
|
|
err = -EINVAL;
|
|
goto release_ss;
|
|
}
|
|
} else {
|
|
/* Since we have the flag final, we can go up to modulo 4 */
|
|
end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
|
|
}
|
|
|
|
/* TODO if SGlen % 4 and !op->len then DMA */
|
|
i = 1;
|
|
while (in_sg && i == 1) {
|
|
if (in_sg->length % 4)
|
|
i = 0;
|
|
in_sg = sg_next(in_sg);
|
|
}
|
|
if (i == 1 && !op->len && areq->nbytes)
|
|
dev_dbg(ss->dev, "We can DMA\n");
|
|
|
|
i = 0;
|
|
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
|
|
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
|
|
do {
|
|
/*
|
|
* we need to linearize in two case:
|
|
* - the buffer is already used
|
|
* - the SG does not have enough byte remaining ( < 4)
|
|
*/
|
|
if (op->len || (mi.length - in_i) < 4) {
|
|
/*
|
|
* if we have entered here we have two reason to stop
|
|
* - the buffer is full
|
|
* - reach the end
|
|
*/
|
|
while (op->len < 64 && i < end) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min3(mi.length - in_i, end - i,
|
|
64 - op->len);
|
|
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
|
|
op->len += in_r;
|
|
i += in_r;
|
|
in_i += in_r;
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
if (op->len > 3 && !(op->len % 4)) {
|
|
/* write buf to the device */
|
|
writesl(ss->base + SS_RXFIFO, op->buf,
|
|
op->len / 4);
|
|
op->byte_count += op->len;
|
|
op->len = 0;
|
|
}
|
|
}
|
|
if (mi.length - in_i > 3 && i < end) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min3(mi.length - in_i, areq->nbytes - i,
|
|
((mi.length - in_i) / 4) * 4);
|
|
/* how many bytes we can write in the device*/
|
|
todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
|
|
writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
|
|
op->byte_count += todo * 4;
|
|
i += todo * 4;
|
|
in_i += todo * 4;
|
|
rx_cnt -= todo;
|
|
if (!rx_cnt) {
|
|
spaces = readl(ss->base + SS_FCSR);
|
|
rx_cnt = SS_RXFIFO_SPACES(spaces);
|
|
}
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
} while (i < end);
|
|
|
|
/*
|
|
* Now we have written to the device all that we can,
|
|
* store the remaining bytes in op->buf
|
|
*/
|
|
if ((areq->nbytes - i) < 64) {
|
|
while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min3(mi.length - in_i, areq->nbytes - i,
|
|
64 - op->len);
|
|
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
|
|
op->len += in_r;
|
|
i += in_r;
|
|
in_i += in_r;
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
sg_miter_stop(&mi);
|
|
|
|
/*
|
|
* End of data process
|
|
* Now if we have the flag final go to finalize part
|
|
* If not, store the partial hash
|
|
*/
|
|
if (op->flags & SS_HASH_FINAL)
|
|
goto hash_final;
|
|
|
|
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
|
|
i = 0;
|
|
do {
|
|
v = readl(ss->base + SS_CTL);
|
|
i++;
|
|
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
|
|
if (unlikely(i >= SS_TIMEOUT)) {
|
|
dev_err_ratelimited(ss->dev,
|
|
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
|
|
i, SS_TIMEOUT, v, areq->nbytes);
|
|
err = -EIO;
|
|
goto release_ss;
|
|
}
|
|
|
|
/*
|
|
* The datasheet isn't very clear about when to retrieve the digest. The
|
|
* bit SS_DATA_END is cleared when the engine has processed the data and
|
|
* when the digest is computed *but* it doesn't mean the digest is
|
|
* available in the digest registers. Hence the delay to be sure we can
|
|
* read it.
|
|
*/
|
|
ndelay(1);
|
|
|
|
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
|
|
op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
|
|
|
|
goto release_ss;
|
|
|
|
/*
|
|
* hash_final: finalize hashing operation
|
|
*
|
|
* If we have some remaining bytes, we write them.
|
|
* Then ask the SS for finalizing the hashing operation
|
|
*
|
|
* I do not check RX FIFO size in this function since the size is 32
|
|
* after each enabling and this function neither write more than 32 words.
|
|
* If we come from the update part, we cannot have more than
|
|
* 3 remaining bytes to write and SS is fast enough to not care about it.
|
|
*/
|
|
|
|
hash_final:
|
|
|
|
/* write the remaining words of the wait buffer */
|
|
if (op->len) {
|
|
nwait = op->len / 4;
|
|
if (nwait) {
|
|
writesl(ss->base + SS_RXFIFO, op->buf, nwait);
|
|
op->byte_count += 4 * nwait;
|
|
}
|
|
|
|
nbw = op->len - 4 * nwait;
|
|
if (nbw) {
|
|
wb = *(u32 *)(op->buf + nwait * 4);
|
|
wb &= GENMASK((nbw * 8) - 1, 0);
|
|
|
|
op->byte_count += nbw;
|
|
}
|
|
}
|
|
|
|
/* write the remaining bytes of the nbw buffer */
|
|
wb |= ((1 << 7) << (nbw * 8));
|
|
bf[j++] = wb;
|
|
|
|
/*
|
|
* number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
|
|
* I take the operations from other MD5/SHA1 implementations
|
|
*/
|
|
|
|
/* last block size */
|
|
fill = 64 - (op->byte_count % 64);
|
|
min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
|
|
|
|
/* if we can't fill all data, jump to the next 64 block */
|
|
if (fill < min_fill)
|
|
fill += 64;
|
|
|
|
j += (fill - min_fill) / sizeof(u32);
|
|
|
|
/* write the length of data */
|
|
if (op->mode == SS_OP_SHA1) {
|
|
__be64 bits = cpu_to_be64(op->byte_count << 3);
|
|
bf[j++] = lower_32_bits(bits);
|
|
bf[j++] = upper_32_bits(bits);
|
|
} else {
|
|
__le64 bits = op->byte_count << 3;
|
|
bf[j++] = lower_32_bits(bits);
|
|
bf[j++] = upper_32_bits(bits);
|
|
}
|
|
writesl(ss->base + SS_RXFIFO, bf, j);
|
|
|
|
/* Tell the SS to stop the hashing */
|
|
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
|
|
|
|
/*
|
|
* Wait for SS to finish the hash.
|
|
* The timeout could happen only in case of bad overclocking
|
|
* or driver bug.
|
|
*/
|
|
i = 0;
|
|
do {
|
|
v = readl(ss->base + SS_CTL);
|
|
i++;
|
|
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
|
|
if (unlikely(i >= SS_TIMEOUT)) {
|
|
dev_err_ratelimited(ss->dev,
|
|
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
|
|
i, SS_TIMEOUT, v, areq->nbytes);
|
|
err = -EIO;
|
|
goto release_ss;
|
|
}
|
|
|
|
/*
|
|
* The datasheet isn't very clear about when to retrieve the digest. The
|
|
* bit SS_DATA_END is cleared when the engine has processed the data and
|
|
* when the digest is computed *but* it doesn't mean the digest is
|
|
* available in the digest registers. Hence the delay to be sure we can
|
|
* read it.
|
|
*/
|
|
ndelay(1);
|
|
|
|
/* Get the hash from the device */
|
|
if (op->mode == SS_OP_SHA1) {
|
|
for (i = 0; i < 5; i++) {
|
|
v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
|
|
memcpy(areq->result + i * 4, &v, 4);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 4; i++) {
|
|
v = readl(ss->base + SS_MD0 + i * 4);
|
|
memcpy(areq->result + i * 4, &v, 4);
|
|
}
|
|
}
|
|
|
|
release_ss:
|
|
writel(0, ss->base + SS_CTL);
|
|
spin_unlock_bh(&ss->slock);
|
|
return err;
|
|
}
|
|
|
|
int sun4i_hash_final(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
int sun4i_hash_update(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_UPDATE;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
/* sun4i_hash_finup: finalize hashing operation after an update */
|
|
int sun4i_hash_finup(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
/* combo of init/update/final functions */
|
|
int sun4i_hash_digest(struct ahash_request *areq)
|
|
{
|
|
int err;
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
err = sun4i_hash_init(areq);
|
|
if (err)
|
|
return err;
|
|
|
|
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|