mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-18 09:44:18 +08:00
19ece546a4
Enable quota usage tracking on mount and disable it on umount. Also add support for quota on and quota off quotactls and usrquota and grpquota mount options. Add quota features among supported ones. Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Mark Fasheh <mfasheh@suse.com>
1808 lines
46 KiB
C
1808 lines
46 KiB
C
/* -*- mode: c; c-basic-offset: 8; -*-
|
|
* vim: noexpandtab sw=8 ts=8 sts=0:
|
|
*
|
|
* journal.c
|
|
*
|
|
* Defines functions of journalling api
|
|
*
|
|
* Copyright (C) 2003, 2004 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/kthread.h>
|
|
|
|
#define MLOG_MASK_PREFIX ML_JOURNAL
|
|
#include <cluster/masklog.h>
|
|
|
|
#include "ocfs2.h"
|
|
|
|
#include "alloc.h"
|
|
#include "dir.h"
|
|
#include "dlmglue.h"
|
|
#include "extent_map.h"
|
|
#include "heartbeat.h"
|
|
#include "inode.h"
|
|
#include "journal.h"
|
|
#include "localalloc.h"
|
|
#include "slot_map.h"
|
|
#include "super.h"
|
|
#include "sysfile.h"
|
|
#include "quota.h"
|
|
|
|
#include "buffer_head_io.h"
|
|
|
|
DEFINE_SPINLOCK(trans_inc_lock);
|
|
|
|
static int ocfs2_force_read_journal(struct inode *inode);
|
|
static int ocfs2_recover_node(struct ocfs2_super *osb,
|
|
int node_num, int slot_num);
|
|
static int __ocfs2_recovery_thread(void *arg);
|
|
static int ocfs2_commit_cache(struct ocfs2_super *osb);
|
|
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
|
|
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
|
|
int dirty, int replayed);
|
|
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
|
|
int slot_num);
|
|
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
|
|
int slot);
|
|
static int ocfs2_commit_thread(void *arg);
|
|
|
|
static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
|
|
{
|
|
return __ocfs2_wait_on_mount(osb, 0);
|
|
}
|
|
|
|
static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
|
|
{
|
|
return __ocfs2_wait_on_mount(osb, 1);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* The recovery_list is a simple linked list of node numbers to recover.
|
|
* It is protected by the recovery_lock.
|
|
*/
|
|
|
|
struct ocfs2_recovery_map {
|
|
unsigned int rm_used;
|
|
unsigned int *rm_entries;
|
|
};
|
|
|
|
int ocfs2_recovery_init(struct ocfs2_super *osb)
|
|
{
|
|
struct ocfs2_recovery_map *rm;
|
|
|
|
mutex_init(&osb->recovery_lock);
|
|
osb->disable_recovery = 0;
|
|
osb->recovery_thread_task = NULL;
|
|
init_waitqueue_head(&osb->recovery_event);
|
|
|
|
rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
|
|
osb->max_slots * sizeof(unsigned int),
|
|
GFP_KERNEL);
|
|
if (!rm) {
|
|
mlog_errno(-ENOMEM);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rm->rm_entries = (unsigned int *)((char *)rm +
|
|
sizeof(struct ocfs2_recovery_map));
|
|
osb->recovery_map = rm;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* we can't grab the goofy sem lock from inside wait_event, so we use
|
|
* memory barriers to make sure that we'll see the null task before
|
|
* being woken up */
|
|
static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
|
|
{
|
|
mb();
|
|
return osb->recovery_thread_task != NULL;
|
|
}
|
|
|
|
void ocfs2_recovery_exit(struct ocfs2_super *osb)
|
|
{
|
|
struct ocfs2_recovery_map *rm;
|
|
|
|
/* disable any new recovery threads and wait for any currently
|
|
* running ones to exit. Do this before setting the vol_state. */
|
|
mutex_lock(&osb->recovery_lock);
|
|
osb->disable_recovery = 1;
|
|
mutex_unlock(&osb->recovery_lock);
|
|
wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
|
|
|
|
/* At this point, we know that no more recovery threads can be
|
|
* launched, so wait for any recovery completion work to
|
|
* complete. */
|
|
flush_workqueue(ocfs2_wq);
|
|
|
|
/*
|
|
* Now that recovery is shut down, and the osb is about to be
|
|
* freed, the osb_lock is not taken here.
|
|
*/
|
|
rm = osb->recovery_map;
|
|
/* XXX: Should we bug if there are dirty entries? */
|
|
|
|
kfree(rm);
|
|
}
|
|
|
|
static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
|
|
unsigned int node_num)
|
|
{
|
|
int i;
|
|
struct ocfs2_recovery_map *rm = osb->recovery_map;
|
|
|
|
assert_spin_locked(&osb->osb_lock);
|
|
|
|
for (i = 0; i < rm->rm_used; i++) {
|
|
if (rm->rm_entries[i] == node_num)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Behaves like test-and-set. Returns the previous value */
|
|
static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
|
|
unsigned int node_num)
|
|
{
|
|
struct ocfs2_recovery_map *rm = osb->recovery_map;
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
if (__ocfs2_recovery_map_test(osb, node_num)) {
|
|
spin_unlock(&osb->osb_lock);
|
|
return 1;
|
|
}
|
|
|
|
/* XXX: Can this be exploited? Not from o2dlm... */
|
|
BUG_ON(rm->rm_used >= osb->max_slots);
|
|
|
|
rm->rm_entries[rm->rm_used] = node_num;
|
|
rm->rm_used++;
|
|
spin_unlock(&osb->osb_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
|
|
unsigned int node_num)
|
|
{
|
|
int i;
|
|
struct ocfs2_recovery_map *rm = osb->recovery_map;
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
|
|
for (i = 0; i < rm->rm_used; i++) {
|
|
if (rm->rm_entries[i] == node_num)
|
|
break;
|
|
}
|
|
|
|
if (i < rm->rm_used) {
|
|
/* XXX: be careful with the pointer math */
|
|
memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
|
|
(rm->rm_used - i - 1) * sizeof(unsigned int));
|
|
rm->rm_used--;
|
|
}
|
|
|
|
spin_unlock(&osb->osb_lock);
|
|
}
|
|
|
|
static int ocfs2_commit_cache(struct ocfs2_super *osb)
|
|
{
|
|
int status = 0;
|
|
unsigned int flushed;
|
|
unsigned long old_id;
|
|
struct ocfs2_journal *journal = NULL;
|
|
|
|
mlog_entry_void();
|
|
|
|
journal = osb->journal;
|
|
|
|
/* Flush all pending commits and checkpoint the journal. */
|
|
down_write(&journal->j_trans_barrier);
|
|
|
|
if (atomic_read(&journal->j_num_trans) == 0) {
|
|
up_write(&journal->j_trans_barrier);
|
|
mlog(0, "No transactions for me to flush!\n");
|
|
goto finally;
|
|
}
|
|
|
|
jbd2_journal_lock_updates(journal->j_journal);
|
|
status = jbd2_journal_flush(journal->j_journal);
|
|
jbd2_journal_unlock_updates(journal->j_journal);
|
|
if (status < 0) {
|
|
up_write(&journal->j_trans_barrier);
|
|
mlog_errno(status);
|
|
goto finally;
|
|
}
|
|
|
|
old_id = ocfs2_inc_trans_id(journal);
|
|
|
|
flushed = atomic_read(&journal->j_num_trans);
|
|
atomic_set(&journal->j_num_trans, 0);
|
|
up_write(&journal->j_trans_barrier);
|
|
|
|
mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
|
|
journal->j_trans_id, flushed);
|
|
|
|
ocfs2_wake_downconvert_thread(osb);
|
|
wake_up(&journal->j_checkpointed);
|
|
finally:
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
/* pass it NULL and it will allocate a new handle object for you. If
|
|
* you pass it a handle however, it may still return error, in which
|
|
* case it has free'd the passed handle for you. */
|
|
handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
|
|
{
|
|
journal_t *journal = osb->journal->j_journal;
|
|
handle_t *handle;
|
|
|
|
BUG_ON(!osb || !osb->journal->j_journal);
|
|
|
|
if (ocfs2_is_hard_readonly(osb))
|
|
return ERR_PTR(-EROFS);
|
|
|
|
BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
|
|
BUG_ON(max_buffs <= 0);
|
|
|
|
/* Nested transaction? Just return the handle... */
|
|
if (journal_current_handle())
|
|
return jbd2_journal_start(journal, max_buffs);
|
|
|
|
down_read(&osb->journal->j_trans_barrier);
|
|
|
|
handle = jbd2_journal_start(journal, max_buffs);
|
|
if (IS_ERR(handle)) {
|
|
up_read(&osb->journal->j_trans_barrier);
|
|
|
|
mlog_errno(PTR_ERR(handle));
|
|
|
|
if (is_journal_aborted(journal)) {
|
|
ocfs2_abort(osb->sb, "Detected aborted journal");
|
|
handle = ERR_PTR(-EROFS);
|
|
}
|
|
} else {
|
|
if (!ocfs2_mount_local(osb))
|
|
atomic_inc(&(osb->journal->j_num_trans));
|
|
}
|
|
|
|
return handle;
|
|
}
|
|
|
|
int ocfs2_commit_trans(struct ocfs2_super *osb,
|
|
handle_t *handle)
|
|
{
|
|
int ret, nested;
|
|
struct ocfs2_journal *journal = osb->journal;
|
|
|
|
BUG_ON(!handle);
|
|
|
|
nested = handle->h_ref > 1;
|
|
ret = jbd2_journal_stop(handle);
|
|
if (ret < 0)
|
|
mlog_errno(ret);
|
|
|
|
if (!nested)
|
|
up_read(&journal->j_trans_barrier);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* 'nblocks' is what you want to add to the current
|
|
* transaction. extend_trans will either extend the current handle by
|
|
* nblocks, or commit it and start a new one with nblocks credits.
|
|
*
|
|
* This might call jbd2_journal_restart() which will commit dirty buffers
|
|
* and then restart the transaction. Before calling
|
|
* ocfs2_extend_trans(), any changed blocks should have been
|
|
* dirtied. After calling it, all blocks which need to be changed must
|
|
* go through another set of journal_access/journal_dirty calls.
|
|
*
|
|
* WARNING: This will not release any semaphores or disk locks taken
|
|
* during the transaction, so make sure they were taken *before*
|
|
* start_trans or we'll have ordering deadlocks.
|
|
*
|
|
* WARNING2: Note that we do *not* drop j_trans_barrier here. This is
|
|
* good because transaction ids haven't yet been recorded on the
|
|
* cluster locks associated with this handle.
|
|
*/
|
|
int ocfs2_extend_trans(handle_t *handle, int nblocks)
|
|
{
|
|
int status;
|
|
|
|
BUG_ON(!handle);
|
|
BUG_ON(!nblocks);
|
|
|
|
mlog_entry_void();
|
|
|
|
mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
|
|
|
|
#ifdef CONFIG_OCFS2_DEBUG_FS
|
|
status = 1;
|
|
#else
|
|
status = jbd2_journal_extend(handle, nblocks);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
#endif
|
|
|
|
if (status > 0) {
|
|
mlog(0,
|
|
"jbd2_journal_extend failed, trying "
|
|
"jbd2_journal_restart\n");
|
|
status = jbd2_journal_restart(handle, nblocks);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
status = 0;
|
|
bail:
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
int ocfs2_journal_access(handle_t *handle,
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
int type)
|
|
{
|
|
int status;
|
|
|
|
BUG_ON(!inode);
|
|
BUG_ON(!handle);
|
|
BUG_ON(!bh);
|
|
|
|
mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
|
|
(unsigned long long)bh->b_blocknr, type,
|
|
(type == OCFS2_JOURNAL_ACCESS_CREATE) ?
|
|
"OCFS2_JOURNAL_ACCESS_CREATE" :
|
|
"OCFS2_JOURNAL_ACCESS_WRITE",
|
|
bh->b_size);
|
|
|
|
/* we can safely remove this assertion after testing. */
|
|
if (!buffer_uptodate(bh)) {
|
|
mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
|
|
mlog(ML_ERROR, "b_blocknr=%llu\n",
|
|
(unsigned long long)bh->b_blocknr);
|
|
BUG();
|
|
}
|
|
|
|
/* Set the current transaction information on the inode so
|
|
* that the locking code knows whether it can drop it's locks
|
|
* on this inode or not. We're protected from the commit
|
|
* thread updating the current transaction id until
|
|
* ocfs2_commit_trans() because ocfs2_start_trans() took
|
|
* j_trans_barrier for us. */
|
|
ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
|
|
|
|
mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
|
|
switch (type) {
|
|
case OCFS2_JOURNAL_ACCESS_CREATE:
|
|
case OCFS2_JOURNAL_ACCESS_WRITE:
|
|
status = jbd2_journal_get_write_access(handle, bh);
|
|
break;
|
|
|
|
case OCFS2_JOURNAL_ACCESS_UNDO:
|
|
status = jbd2_journal_get_undo_access(handle, bh);
|
|
break;
|
|
|
|
default:
|
|
status = -EINVAL;
|
|
mlog(ML_ERROR, "Uknown access type!\n");
|
|
}
|
|
mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
|
|
|
|
if (status < 0)
|
|
mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
|
|
status, type);
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
int ocfs2_journal_dirty(handle_t *handle,
|
|
struct buffer_head *bh)
|
|
{
|
|
int status;
|
|
|
|
mlog_entry("(bh->b_blocknr=%llu)\n",
|
|
(unsigned long long)bh->b_blocknr);
|
|
|
|
status = jbd2_journal_dirty_metadata(handle, bh);
|
|
if (status < 0)
|
|
mlog(ML_ERROR, "Could not dirty metadata buffer. "
|
|
"(bh->b_blocknr=%llu)\n",
|
|
(unsigned long long)bh->b_blocknr);
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
|
|
|
|
void ocfs2_set_journal_params(struct ocfs2_super *osb)
|
|
{
|
|
journal_t *journal = osb->journal->j_journal;
|
|
unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
|
|
|
|
if (osb->osb_commit_interval)
|
|
commit_interval = osb->osb_commit_interval;
|
|
|
|
spin_lock(&journal->j_state_lock);
|
|
journal->j_commit_interval = commit_interval;
|
|
if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
|
|
journal->j_flags |= JBD2_BARRIER;
|
|
else
|
|
journal->j_flags &= ~JBD2_BARRIER;
|
|
spin_unlock(&journal->j_state_lock);
|
|
}
|
|
|
|
int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
|
|
{
|
|
int status = -1;
|
|
struct inode *inode = NULL; /* the journal inode */
|
|
journal_t *j_journal = NULL;
|
|
struct ocfs2_dinode *di = NULL;
|
|
struct buffer_head *bh = NULL;
|
|
struct ocfs2_super *osb;
|
|
int inode_lock = 0;
|
|
|
|
mlog_entry_void();
|
|
|
|
BUG_ON(!journal);
|
|
|
|
osb = journal->j_osb;
|
|
|
|
/* already have the inode for our journal */
|
|
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
|
|
osb->slot_num);
|
|
if (inode == NULL) {
|
|
status = -EACCES;
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
if (is_bad_inode(inode)) {
|
|
mlog(ML_ERROR, "access error (bad inode)\n");
|
|
iput(inode);
|
|
inode = NULL;
|
|
status = -EACCES;
|
|
goto done;
|
|
}
|
|
|
|
SET_INODE_JOURNAL(inode);
|
|
OCFS2_I(inode)->ip_open_count++;
|
|
|
|
/* Skip recovery waits here - journal inode metadata never
|
|
* changes in a live cluster so it can be considered an
|
|
* exception to the rule. */
|
|
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
|
|
if (status < 0) {
|
|
if (status != -ERESTARTSYS)
|
|
mlog(ML_ERROR, "Could not get lock on journal!\n");
|
|
goto done;
|
|
}
|
|
|
|
inode_lock = 1;
|
|
di = (struct ocfs2_dinode *)bh->b_data;
|
|
|
|
if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
|
|
mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
|
|
inode->i_size);
|
|
status = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
mlog(0, "inode->i_size = %lld\n", inode->i_size);
|
|
mlog(0, "inode->i_blocks = %llu\n",
|
|
(unsigned long long)inode->i_blocks);
|
|
mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
|
|
|
|
/* call the kernels journal init function now */
|
|
j_journal = jbd2_journal_init_inode(inode);
|
|
if (j_journal == NULL) {
|
|
mlog(ML_ERROR, "Linux journal layer error\n");
|
|
status = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
mlog(0, "Returned from jbd2_journal_init_inode\n");
|
|
mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
|
|
|
|
*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
|
|
OCFS2_JOURNAL_DIRTY_FL);
|
|
|
|
journal->j_journal = j_journal;
|
|
journal->j_inode = inode;
|
|
journal->j_bh = bh;
|
|
|
|
ocfs2_set_journal_params(osb);
|
|
|
|
journal->j_state = OCFS2_JOURNAL_LOADED;
|
|
|
|
status = 0;
|
|
done:
|
|
if (status < 0) {
|
|
if (inode_lock)
|
|
ocfs2_inode_unlock(inode, 1);
|
|
brelse(bh);
|
|
if (inode) {
|
|
OCFS2_I(inode)->ip_open_count--;
|
|
iput(inode);
|
|
}
|
|
}
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
|
|
{
|
|
le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
|
|
}
|
|
|
|
static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
|
|
{
|
|
return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
|
|
}
|
|
|
|
static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
|
|
int dirty, int replayed)
|
|
{
|
|
int status;
|
|
unsigned int flags;
|
|
struct ocfs2_journal *journal = osb->journal;
|
|
struct buffer_head *bh = journal->j_bh;
|
|
struct ocfs2_dinode *fe;
|
|
|
|
mlog_entry_void();
|
|
|
|
fe = (struct ocfs2_dinode *)bh->b_data;
|
|
|
|
/* The journal bh on the osb always comes from ocfs2_journal_init()
|
|
* and was validated there inside ocfs2_inode_lock_full(). It's a
|
|
* code bug if we mess it up. */
|
|
BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
|
|
|
|
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
|
|
if (dirty)
|
|
flags |= OCFS2_JOURNAL_DIRTY_FL;
|
|
else
|
|
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
|
|
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
|
|
|
|
if (replayed)
|
|
ocfs2_bump_recovery_generation(fe);
|
|
|
|
status = ocfs2_write_block(osb, bh, journal->j_inode);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* If the journal has been kmalloc'd it needs to be freed after this
|
|
* call.
|
|
*/
|
|
void ocfs2_journal_shutdown(struct ocfs2_super *osb)
|
|
{
|
|
struct ocfs2_journal *journal = NULL;
|
|
int status = 0;
|
|
struct inode *inode = NULL;
|
|
int num_running_trans = 0;
|
|
|
|
mlog_entry_void();
|
|
|
|
BUG_ON(!osb);
|
|
|
|
journal = osb->journal;
|
|
if (!journal)
|
|
goto done;
|
|
|
|
inode = journal->j_inode;
|
|
|
|
if (journal->j_state != OCFS2_JOURNAL_LOADED)
|
|
goto done;
|
|
|
|
/* need to inc inode use count - jbd2_journal_destroy will iput. */
|
|
if (!igrab(inode))
|
|
BUG();
|
|
|
|
num_running_trans = atomic_read(&(osb->journal->j_num_trans));
|
|
if (num_running_trans > 0)
|
|
mlog(0, "Shutting down journal: must wait on %d "
|
|
"running transactions!\n",
|
|
num_running_trans);
|
|
|
|
/* Do a commit_cache here. It will flush our journal, *and*
|
|
* release any locks that are still held.
|
|
* set the SHUTDOWN flag and release the trans lock.
|
|
* the commit thread will take the trans lock for us below. */
|
|
journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
|
|
|
|
/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
|
|
* drop the trans_lock (which we want to hold until we
|
|
* completely destroy the journal. */
|
|
if (osb->commit_task) {
|
|
/* Wait for the commit thread */
|
|
mlog(0, "Waiting for ocfs2commit to exit....\n");
|
|
kthread_stop(osb->commit_task);
|
|
osb->commit_task = NULL;
|
|
}
|
|
|
|
BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
|
|
|
|
if (ocfs2_mount_local(osb)) {
|
|
jbd2_journal_lock_updates(journal->j_journal);
|
|
status = jbd2_journal_flush(journal->j_journal);
|
|
jbd2_journal_unlock_updates(journal->j_journal);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
}
|
|
|
|
if (status == 0) {
|
|
/*
|
|
* Do not toggle if flush was unsuccessful otherwise
|
|
* will leave dirty metadata in a "clean" journal
|
|
*/
|
|
status = ocfs2_journal_toggle_dirty(osb, 0, 0);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
}
|
|
|
|
/* Shutdown the kernel journal system */
|
|
jbd2_journal_destroy(journal->j_journal);
|
|
journal->j_journal = NULL;
|
|
|
|
OCFS2_I(inode)->ip_open_count--;
|
|
|
|
/* unlock our journal */
|
|
ocfs2_inode_unlock(inode, 1);
|
|
|
|
brelse(journal->j_bh);
|
|
journal->j_bh = NULL;
|
|
|
|
journal->j_state = OCFS2_JOURNAL_FREE;
|
|
|
|
// up_write(&journal->j_trans_barrier);
|
|
done:
|
|
if (inode)
|
|
iput(inode);
|
|
mlog_exit_void();
|
|
}
|
|
|
|
static void ocfs2_clear_journal_error(struct super_block *sb,
|
|
journal_t *journal,
|
|
int slot)
|
|
{
|
|
int olderr;
|
|
|
|
olderr = jbd2_journal_errno(journal);
|
|
if (olderr) {
|
|
mlog(ML_ERROR, "File system error %d recorded in "
|
|
"journal %u.\n", olderr, slot);
|
|
mlog(ML_ERROR, "File system on device %s needs checking.\n",
|
|
sb->s_id);
|
|
|
|
jbd2_journal_ack_err(journal);
|
|
jbd2_journal_clear_err(journal);
|
|
}
|
|
}
|
|
|
|
int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
|
|
{
|
|
int status = 0;
|
|
struct ocfs2_super *osb;
|
|
|
|
mlog_entry_void();
|
|
|
|
BUG_ON(!journal);
|
|
|
|
osb = journal->j_osb;
|
|
|
|
status = jbd2_journal_load(journal->j_journal);
|
|
if (status < 0) {
|
|
mlog(ML_ERROR, "Failed to load journal!\n");
|
|
goto done;
|
|
}
|
|
|
|
ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
|
|
|
|
status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
|
|
/* Launch the commit thread */
|
|
if (!local) {
|
|
osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
|
|
"ocfs2cmt");
|
|
if (IS_ERR(osb->commit_task)) {
|
|
status = PTR_ERR(osb->commit_task);
|
|
osb->commit_task = NULL;
|
|
mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
|
|
"error=%d", status);
|
|
goto done;
|
|
}
|
|
} else
|
|
osb->commit_task = NULL;
|
|
|
|
done:
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
|
|
/* 'full' flag tells us whether we clear out all blocks or if we just
|
|
* mark the journal clean */
|
|
int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
|
|
{
|
|
int status;
|
|
|
|
mlog_entry_void();
|
|
|
|
BUG_ON(!journal);
|
|
|
|
status = jbd2_journal_wipe(journal->j_journal, full);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
bail:
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
static int ocfs2_recovery_completed(struct ocfs2_super *osb)
|
|
{
|
|
int empty;
|
|
struct ocfs2_recovery_map *rm = osb->recovery_map;
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
empty = (rm->rm_used == 0);
|
|
spin_unlock(&osb->osb_lock);
|
|
|
|
return empty;
|
|
}
|
|
|
|
void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
|
|
{
|
|
wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
|
|
}
|
|
|
|
/*
|
|
* JBD Might read a cached version of another nodes journal file. We
|
|
* don't want this as this file changes often and we get no
|
|
* notification on those changes. The only way to be sure that we've
|
|
* got the most up to date version of those blocks then is to force
|
|
* read them off disk. Just searching through the buffer cache won't
|
|
* work as there may be pages backing this file which are still marked
|
|
* up to date. We know things can't change on this file underneath us
|
|
* as we have the lock by now :)
|
|
*/
|
|
static int ocfs2_force_read_journal(struct inode *inode)
|
|
{
|
|
int status = 0;
|
|
int i;
|
|
u64 v_blkno, p_blkno, p_blocks, num_blocks;
|
|
#define CONCURRENT_JOURNAL_FILL 32ULL
|
|
struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
|
|
|
|
mlog_entry_void();
|
|
|
|
memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
|
|
|
|
num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
|
|
v_blkno = 0;
|
|
while (v_blkno < num_blocks) {
|
|
status = ocfs2_extent_map_get_blocks(inode, v_blkno,
|
|
&p_blkno, &p_blocks, NULL);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
if (p_blocks > CONCURRENT_JOURNAL_FILL)
|
|
p_blocks = CONCURRENT_JOURNAL_FILL;
|
|
|
|
/* We are reading journal data which should not
|
|
* be put in the uptodate cache */
|
|
status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
|
|
p_blkno, p_blocks, bhs);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
for(i = 0; i < p_blocks; i++) {
|
|
brelse(bhs[i]);
|
|
bhs[i] = NULL;
|
|
}
|
|
|
|
v_blkno += p_blocks;
|
|
}
|
|
|
|
bail:
|
|
for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
|
|
brelse(bhs[i]);
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
struct ocfs2_la_recovery_item {
|
|
struct list_head lri_list;
|
|
int lri_slot;
|
|
struct ocfs2_dinode *lri_la_dinode;
|
|
struct ocfs2_dinode *lri_tl_dinode;
|
|
struct ocfs2_quota_recovery *lri_qrec;
|
|
};
|
|
|
|
/* Does the second half of the recovery process. By this point, the
|
|
* node is marked clean and can actually be considered recovered,
|
|
* hence it's no longer in the recovery map, but there's still some
|
|
* cleanup we can do which shouldn't happen within the recovery thread
|
|
* as locking in that context becomes very difficult if we are to take
|
|
* recovering nodes into account.
|
|
*
|
|
* NOTE: This function can and will sleep on recovery of other nodes
|
|
* during cluster locking, just like any other ocfs2 process.
|
|
*/
|
|
void ocfs2_complete_recovery(struct work_struct *work)
|
|
{
|
|
int ret;
|
|
struct ocfs2_journal *journal =
|
|
container_of(work, struct ocfs2_journal, j_recovery_work);
|
|
struct ocfs2_super *osb = journal->j_osb;
|
|
struct ocfs2_dinode *la_dinode, *tl_dinode;
|
|
struct ocfs2_la_recovery_item *item, *n;
|
|
struct ocfs2_quota_recovery *qrec;
|
|
LIST_HEAD(tmp_la_list);
|
|
|
|
mlog_entry_void();
|
|
|
|
mlog(0, "completing recovery from keventd\n");
|
|
|
|
spin_lock(&journal->j_lock);
|
|
list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
|
|
spin_unlock(&journal->j_lock);
|
|
|
|
list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
|
|
list_del_init(&item->lri_list);
|
|
|
|
mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
|
|
|
|
ocfs2_wait_on_quotas(osb);
|
|
|
|
la_dinode = item->lri_la_dinode;
|
|
if (la_dinode) {
|
|
mlog(0, "Clean up local alloc %llu\n",
|
|
(unsigned long long)le64_to_cpu(la_dinode->i_blkno));
|
|
|
|
ret = ocfs2_complete_local_alloc_recovery(osb,
|
|
la_dinode);
|
|
if (ret < 0)
|
|
mlog_errno(ret);
|
|
|
|
kfree(la_dinode);
|
|
}
|
|
|
|
tl_dinode = item->lri_tl_dinode;
|
|
if (tl_dinode) {
|
|
mlog(0, "Clean up truncate log %llu\n",
|
|
(unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
|
|
|
|
ret = ocfs2_complete_truncate_log_recovery(osb,
|
|
tl_dinode);
|
|
if (ret < 0)
|
|
mlog_errno(ret);
|
|
|
|
kfree(tl_dinode);
|
|
}
|
|
|
|
ret = ocfs2_recover_orphans(osb, item->lri_slot);
|
|
if (ret < 0)
|
|
mlog_errno(ret);
|
|
|
|
qrec = item->lri_qrec;
|
|
if (qrec) {
|
|
mlog(0, "Recovering quota files");
|
|
ret = ocfs2_finish_quota_recovery(osb, qrec,
|
|
item->lri_slot);
|
|
if (ret < 0)
|
|
mlog_errno(ret);
|
|
/* Recovery info is already freed now */
|
|
}
|
|
|
|
kfree(item);
|
|
}
|
|
|
|
mlog(0, "Recovery completion\n");
|
|
mlog_exit_void();
|
|
}
|
|
|
|
/* NOTE: This function always eats your references to la_dinode and
|
|
* tl_dinode, either manually on error, or by passing them to
|
|
* ocfs2_complete_recovery */
|
|
static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
|
|
int slot_num,
|
|
struct ocfs2_dinode *la_dinode,
|
|
struct ocfs2_dinode *tl_dinode,
|
|
struct ocfs2_quota_recovery *qrec)
|
|
{
|
|
struct ocfs2_la_recovery_item *item;
|
|
|
|
item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
|
|
if (!item) {
|
|
/* Though we wish to avoid it, we are in fact safe in
|
|
* skipping local alloc cleanup as fsck.ocfs2 is more
|
|
* than capable of reclaiming unused space. */
|
|
if (la_dinode)
|
|
kfree(la_dinode);
|
|
|
|
if (tl_dinode)
|
|
kfree(tl_dinode);
|
|
|
|
if (qrec)
|
|
ocfs2_free_quota_recovery(qrec);
|
|
|
|
mlog_errno(-ENOMEM);
|
|
return;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&item->lri_list);
|
|
item->lri_la_dinode = la_dinode;
|
|
item->lri_slot = slot_num;
|
|
item->lri_tl_dinode = tl_dinode;
|
|
item->lri_qrec = qrec;
|
|
|
|
spin_lock(&journal->j_lock);
|
|
list_add_tail(&item->lri_list, &journal->j_la_cleanups);
|
|
queue_work(ocfs2_wq, &journal->j_recovery_work);
|
|
spin_unlock(&journal->j_lock);
|
|
}
|
|
|
|
/* Called by the mount code to queue recovery the last part of
|
|
* recovery for it's own slot. */
|
|
void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
|
|
{
|
|
struct ocfs2_journal *journal = osb->journal;
|
|
|
|
if (osb->dirty) {
|
|
/* No need to queue up our truncate_log as regular
|
|
* cleanup will catch that. */
|
|
ocfs2_queue_recovery_completion(journal,
|
|
osb->slot_num,
|
|
osb->local_alloc_copy,
|
|
NULL,
|
|
NULL);
|
|
ocfs2_schedule_truncate_log_flush(osb, 0);
|
|
|
|
osb->local_alloc_copy = NULL;
|
|
osb->dirty = 0;
|
|
}
|
|
}
|
|
|
|
void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
|
|
{
|
|
if (osb->quota_rec) {
|
|
ocfs2_queue_recovery_completion(osb->journal,
|
|
osb->slot_num,
|
|
NULL,
|
|
NULL,
|
|
osb->quota_rec);
|
|
osb->quota_rec = NULL;
|
|
}
|
|
}
|
|
|
|
static int __ocfs2_recovery_thread(void *arg)
|
|
{
|
|
int status, node_num, slot_num;
|
|
struct ocfs2_super *osb = arg;
|
|
struct ocfs2_recovery_map *rm = osb->recovery_map;
|
|
int *rm_quota = NULL;
|
|
int rm_quota_used = 0, i;
|
|
struct ocfs2_quota_recovery *qrec;
|
|
|
|
mlog_entry_void();
|
|
|
|
status = ocfs2_wait_on_mount(osb);
|
|
if (status < 0) {
|
|
goto bail;
|
|
}
|
|
|
|
rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
|
|
if (!rm_quota) {
|
|
status = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
restart:
|
|
status = ocfs2_super_lock(osb, 1);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
while (rm->rm_used) {
|
|
/* It's always safe to remove entry zero, as we won't
|
|
* clear it until ocfs2_recover_node() has succeeded. */
|
|
node_num = rm->rm_entries[0];
|
|
spin_unlock(&osb->osb_lock);
|
|
mlog(0, "checking node %d\n", node_num);
|
|
slot_num = ocfs2_node_num_to_slot(osb, node_num);
|
|
if (slot_num == -ENOENT) {
|
|
status = 0;
|
|
mlog(0, "no slot for this node, so no recovery"
|
|
"required.\n");
|
|
goto skip_recovery;
|
|
}
|
|
mlog(0, "node %d was using slot %d\n", node_num, slot_num);
|
|
|
|
/* It is a bit subtle with quota recovery. We cannot do it
|
|
* immediately because we have to obtain cluster locks from
|
|
* quota files and we also don't want to just skip it because
|
|
* then quota usage would be out of sync until some node takes
|
|
* the slot. So we remember which nodes need quota recovery
|
|
* and when everything else is done, we recover quotas. */
|
|
for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
|
|
if (i == rm_quota_used)
|
|
rm_quota[rm_quota_used++] = slot_num;
|
|
|
|
status = ocfs2_recover_node(osb, node_num, slot_num);
|
|
skip_recovery:
|
|
if (!status) {
|
|
ocfs2_recovery_map_clear(osb, node_num);
|
|
} else {
|
|
mlog(ML_ERROR,
|
|
"Error %d recovering node %d on device (%u,%u)!\n",
|
|
status, node_num,
|
|
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
|
|
mlog(ML_ERROR, "Volume requires unmount.\n");
|
|
}
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
}
|
|
spin_unlock(&osb->osb_lock);
|
|
mlog(0, "All nodes recovered\n");
|
|
|
|
/* Refresh all journal recovery generations from disk */
|
|
status = ocfs2_check_journals_nolocks(osb);
|
|
status = (status == -EROFS) ? 0 : status;
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
/* Now it is right time to recover quotas... We have to do this under
|
|
* superblock lock so that noone can start using the slot (and crash)
|
|
* before we recover it */
|
|
for (i = 0; i < rm_quota_used; i++) {
|
|
qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
|
|
if (IS_ERR(qrec)) {
|
|
status = PTR_ERR(qrec);
|
|
mlog_errno(status);
|
|
continue;
|
|
}
|
|
ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
|
|
NULL, NULL, qrec);
|
|
}
|
|
|
|
ocfs2_super_unlock(osb, 1);
|
|
|
|
/* We always run recovery on our own orphan dir - the dead
|
|
* node(s) may have disallowd a previos inode delete. Re-processing
|
|
* is therefore required. */
|
|
ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
|
|
NULL, NULL);
|
|
|
|
bail:
|
|
mutex_lock(&osb->recovery_lock);
|
|
if (!status && !ocfs2_recovery_completed(osb)) {
|
|
mutex_unlock(&osb->recovery_lock);
|
|
goto restart;
|
|
}
|
|
|
|
osb->recovery_thread_task = NULL;
|
|
mb(); /* sync with ocfs2_recovery_thread_running */
|
|
wake_up(&osb->recovery_event);
|
|
|
|
mutex_unlock(&osb->recovery_lock);
|
|
|
|
if (rm_quota)
|
|
kfree(rm_quota);
|
|
|
|
mlog_exit(status);
|
|
/* no one is callint kthread_stop() for us so the kthread() api
|
|
* requires that we call do_exit(). And it isn't exported, but
|
|
* complete_and_exit() seems to be a minimal wrapper around it. */
|
|
complete_and_exit(NULL, status);
|
|
return status;
|
|
}
|
|
|
|
void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
|
|
{
|
|
mlog_entry("(node_num=%d, osb->node_num = %d)\n",
|
|
node_num, osb->node_num);
|
|
|
|
mutex_lock(&osb->recovery_lock);
|
|
if (osb->disable_recovery)
|
|
goto out;
|
|
|
|
/* People waiting on recovery will wait on
|
|
* the recovery map to empty. */
|
|
if (ocfs2_recovery_map_set(osb, node_num))
|
|
mlog(0, "node %d already in recovery map.\n", node_num);
|
|
|
|
mlog(0, "starting recovery thread...\n");
|
|
|
|
if (osb->recovery_thread_task)
|
|
goto out;
|
|
|
|
osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
|
|
"ocfs2rec");
|
|
if (IS_ERR(osb->recovery_thread_task)) {
|
|
mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
|
|
osb->recovery_thread_task = NULL;
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&osb->recovery_lock);
|
|
wake_up(&osb->recovery_event);
|
|
|
|
mlog_exit_void();
|
|
}
|
|
|
|
static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
|
|
int slot_num,
|
|
struct buffer_head **bh,
|
|
struct inode **ret_inode)
|
|
{
|
|
int status = -EACCES;
|
|
struct inode *inode = NULL;
|
|
|
|
BUG_ON(slot_num >= osb->max_slots);
|
|
|
|
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
|
|
slot_num);
|
|
if (!inode || is_bad_inode(inode)) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
SET_INODE_JOURNAL(inode);
|
|
|
|
status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
status = 0;
|
|
|
|
bail:
|
|
if (inode) {
|
|
if (status || !ret_inode)
|
|
iput(inode);
|
|
else
|
|
*ret_inode = inode;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/* Does the actual journal replay and marks the journal inode as
|
|
* clean. Will only replay if the journal inode is marked dirty. */
|
|
static int ocfs2_replay_journal(struct ocfs2_super *osb,
|
|
int node_num,
|
|
int slot_num)
|
|
{
|
|
int status;
|
|
int got_lock = 0;
|
|
unsigned int flags;
|
|
struct inode *inode = NULL;
|
|
struct ocfs2_dinode *fe;
|
|
journal_t *journal = NULL;
|
|
struct buffer_head *bh = NULL;
|
|
u32 slot_reco_gen;
|
|
|
|
status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
|
|
if (status) {
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
|
|
fe = (struct ocfs2_dinode *)bh->b_data;
|
|
slot_reco_gen = ocfs2_get_recovery_generation(fe);
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/*
|
|
* As the fs recovery is asynchronous, there is a small chance that
|
|
* another node mounted (and recovered) the slot before the recovery
|
|
* thread could get the lock. To handle that, we dirty read the journal
|
|
* inode for that slot to get the recovery generation. If it is
|
|
* different than what we expected, the slot has been recovered.
|
|
* If not, it needs recovery.
|
|
*/
|
|
if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
|
|
mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
|
|
osb->slot_recovery_generations[slot_num], slot_reco_gen);
|
|
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
|
|
status = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
/* Continue with recovery as the journal has not yet been recovered */
|
|
|
|
status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
|
|
if (status < 0) {
|
|
mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
|
|
if (status != -ERESTARTSYS)
|
|
mlog(ML_ERROR, "Could not lock journal!\n");
|
|
goto done;
|
|
}
|
|
got_lock = 1;
|
|
|
|
fe = (struct ocfs2_dinode *) bh->b_data;
|
|
|
|
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
|
|
slot_reco_gen = ocfs2_get_recovery_generation(fe);
|
|
|
|
if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
|
|
mlog(0, "No recovery required for node %d\n", node_num);
|
|
/* Refresh recovery generation for the slot */
|
|
osb->slot_recovery_generations[slot_num] = slot_reco_gen;
|
|
goto done;
|
|
}
|
|
|
|
mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
|
|
node_num, slot_num,
|
|
MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
|
|
|
|
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
|
|
|
|
status = ocfs2_force_read_journal(inode);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
|
|
mlog(0, "calling journal_init_inode\n");
|
|
journal = jbd2_journal_init_inode(inode);
|
|
if (journal == NULL) {
|
|
mlog(ML_ERROR, "Linux journal layer error\n");
|
|
status = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
status = jbd2_journal_load(journal);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
if (!igrab(inode))
|
|
BUG();
|
|
jbd2_journal_destroy(journal);
|
|
goto done;
|
|
}
|
|
|
|
ocfs2_clear_journal_error(osb->sb, journal, slot_num);
|
|
|
|
/* wipe the journal */
|
|
mlog(0, "flushing the journal.\n");
|
|
jbd2_journal_lock_updates(journal);
|
|
status = jbd2_journal_flush(journal);
|
|
jbd2_journal_unlock_updates(journal);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
/* This will mark the node clean */
|
|
flags = le32_to_cpu(fe->id1.journal1.ij_flags);
|
|
flags &= ~OCFS2_JOURNAL_DIRTY_FL;
|
|
fe->id1.journal1.ij_flags = cpu_to_le32(flags);
|
|
|
|
/* Increment recovery generation to indicate successful recovery */
|
|
ocfs2_bump_recovery_generation(fe);
|
|
osb->slot_recovery_generations[slot_num] =
|
|
ocfs2_get_recovery_generation(fe);
|
|
|
|
status = ocfs2_write_block(osb, bh, inode);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
if (!igrab(inode))
|
|
BUG();
|
|
|
|
jbd2_journal_destroy(journal);
|
|
|
|
done:
|
|
/* drop the lock on this nodes journal */
|
|
if (got_lock)
|
|
ocfs2_inode_unlock(inode, 1);
|
|
|
|
if (inode)
|
|
iput(inode);
|
|
|
|
brelse(bh);
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Do the most important parts of node recovery:
|
|
* - Replay it's journal
|
|
* - Stamp a clean local allocator file
|
|
* - Stamp a clean truncate log
|
|
* - Mark the node clean
|
|
*
|
|
* If this function completes without error, a node in OCFS2 can be
|
|
* said to have been safely recovered. As a result, failure during the
|
|
* second part of a nodes recovery process (local alloc recovery) is
|
|
* far less concerning.
|
|
*/
|
|
static int ocfs2_recover_node(struct ocfs2_super *osb,
|
|
int node_num, int slot_num)
|
|
{
|
|
int status = 0;
|
|
struct ocfs2_dinode *la_copy = NULL;
|
|
struct ocfs2_dinode *tl_copy = NULL;
|
|
|
|
mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
|
|
node_num, slot_num, osb->node_num);
|
|
|
|
/* Should not ever be called to recover ourselves -- in that
|
|
* case we should've called ocfs2_journal_load instead. */
|
|
BUG_ON(osb->node_num == node_num);
|
|
|
|
status = ocfs2_replay_journal(osb, node_num, slot_num);
|
|
if (status < 0) {
|
|
if (status == -EBUSY) {
|
|
mlog(0, "Skipping recovery for slot %u (node %u) "
|
|
"as another node has recovered it\n", slot_num,
|
|
node_num);
|
|
status = 0;
|
|
goto done;
|
|
}
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
|
|
/* Stamp a clean local alloc file AFTER recovering the journal... */
|
|
status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto done;
|
|
}
|
|
|
|
/* An error from begin_truncate_log_recovery is not
|
|
* serious enough to warrant halting the rest of
|
|
* recovery. */
|
|
status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
/* Likewise, this would be a strange but ultimately not so
|
|
* harmful place to get an error... */
|
|
status = ocfs2_clear_slot(osb, slot_num);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
/* This will kfree the memory pointed to by la_copy and tl_copy */
|
|
ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
|
|
tl_copy, NULL);
|
|
|
|
status = 0;
|
|
done:
|
|
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
/* Test node liveness by trylocking his journal. If we get the lock,
|
|
* we drop it here. Return 0 if we got the lock, -EAGAIN if node is
|
|
* still alive (we couldn't get the lock) and < 0 on error. */
|
|
static int ocfs2_trylock_journal(struct ocfs2_super *osb,
|
|
int slot_num)
|
|
{
|
|
int status, flags;
|
|
struct inode *inode = NULL;
|
|
|
|
inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
|
|
slot_num);
|
|
if (inode == NULL) {
|
|
mlog(ML_ERROR, "access error\n");
|
|
status = -EACCES;
|
|
goto bail;
|
|
}
|
|
if (is_bad_inode(inode)) {
|
|
mlog(ML_ERROR, "access error (bad inode)\n");
|
|
iput(inode);
|
|
inode = NULL;
|
|
status = -EACCES;
|
|
goto bail;
|
|
}
|
|
SET_INODE_JOURNAL(inode);
|
|
|
|
flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
|
|
status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
|
|
if (status < 0) {
|
|
if (status != -EAGAIN)
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
|
|
ocfs2_inode_unlock(inode, 1);
|
|
bail:
|
|
if (inode)
|
|
iput(inode);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* Call this underneath ocfs2_super_lock. It also assumes that the
|
|
* slot info struct has been updated from disk. */
|
|
int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
|
|
{
|
|
unsigned int node_num;
|
|
int status, i;
|
|
u32 gen;
|
|
struct buffer_head *bh = NULL;
|
|
struct ocfs2_dinode *di;
|
|
|
|
/* This is called with the super block cluster lock, so we
|
|
* know that the slot map can't change underneath us. */
|
|
|
|
for (i = 0; i < osb->max_slots; i++) {
|
|
/* Read journal inode to get the recovery generation */
|
|
status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
|
|
if (status) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
di = (struct ocfs2_dinode *)bh->b_data;
|
|
gen = ocfs2_get_recovery_generation(di);
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
osb->slot_recovery_generations[i] = gen;
|
|
|
|
mlog(0, "Slot %u recovery generation is %u\n", i,
|
|
osb->slot_recovery_generations[i]);
|
|
|
|
if (i == osb->slot_num) {
|
|
spin_unlock(&osb->osb_lock);
|
|
continue;
|
|
}
|
|
|
|
status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
|
|
if (status == -ENOENT) {
|
|
spin_unlock(&osb->osb_lock);
|
|
continue;
|
|
}
|
|
|
|
if (__ocfs2_recovery_map_test(osb, node_num)) {
|
|
spin_unlock(&osb->osb_lock);
|
|
continue;
|
|
}
|
|
spin_unlock(&osb->osb_lock);
|
|
|
|
/* Ok, we have a slot occupied by another node which
|
|
* is not in the recovery map. We trylock his journal
|
|
* file here to test if he's alive. */
|
|
status = ocfs2_trylock_journal(osb, i);
|
|
if (!status) {
|
|
/* Since we're called from mount, we know that
|
|
* the recovery thread can't race us on
|
|
* setting / checking the recovery bits. */
|
|
ocfs2_recovery_thread(osb, node_num);
|
|
} else if ((status < 0) && (status != -EAGAIN)) {
|
|
mlog_errno(status);
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
status = 0;
|
|
bail:
|
|
mlog_exit(status);
|
|
return status;
|
|
}
|
|
|
|
struct ocfs2_orphan_filldir_priv {
|
|
struct inode *head;
|
|
struct ocfs2_super *osb;
|
|
};
|
|
|
|
static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
|
|
loff_t pos, u64 ino, unsigned type)
|
|
{
|
|
struct ocfs2_orphan_filldir_priv *p = priv;
|
|
struct inode *iter;
|
|
|
|
if (name_len == 1 && !strncmp(".", name, 1))
|
|
return 0;
|
|
if (name_len == 2 && !strncmp("..", name, 2))
|
|
return 0;
|
|
|
|
/* Skip bad inodes so that recovery can continue */
|
|
iter = ocfs2_iget(p->osb, ino,
|
|
OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
|
|
if (IS_ERR(iter))
|
|
return 0;
|
|
|
|
mlog(0, "queue orphan %llu\n",
|
|
(unsigned long long)OCFS2_I(iter)->ip_blkno);
|
|
/* No locking is required for the next_orphan queue as there
|
|
* is only ever a single process doing orphan recovery. */
|
|
OCFS2_I(iter)->ip_next_orphan = p->head;
|
|
p->head = iter;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ocfs2_queue_orphans(struct ocfs2_super *osb,
|
|
int slot,
|
|
struct inode **head)
|
|
{
|
|
int status;
|
|
struct inode *orphan_dir_inode = NULL;
|
|
struct ocfs2_orphan_filldir_priv priv;
|
|
loff_t pos = 0;
|
|
|
|
priv.osb = osb;
|
|
priv.head = *head;
|
|
|
|
orphan_dir_inode = ocfs2_get_system_file_inode(osb,
|
|
ORPHAN_DIR_SYSTEM_INODE,
|
|
slot);
|
|
if (!orphan_dir_inode) {
|
|
status = -ENOENT;
|
|
mlog_errno(status);
|
|
return status;
|
|
}
|
|
|
|
mutex_lock(&orphan_dir_inode->i_mutex);
|
|
status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
|
|
if (status < 0) {
|
|
mlog_errno(status);
|
|
goto out;
|
|
}
|
|
|
|
status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
|
|
ocfs2_orphan_filldir);
|
|
if (status) {
|
|
mlog_errno(status);
|
|
goto out_cluster;
|
|
}
|
|
|
|
*head = priv.head;
|
|
|
|
out_cluster:
|
|
ocfs2_inode_unlock(orphan_dir_inode, 0);
|
|
out:
|
|
mutex_unlock(&orphan_dir_inode->i_mutex);
|
|
iput(orphan_dir_inode);
|
|
return status;
|
|
}
|
|
|
|
static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
|
|
int slot)
|
|
{
|
|
int ret;
|
|
|
|
spin_lock(&osb->osb_lock);
|
|
ret = !osb->osb_orphan_wipes[slot];
|
|
spin_unlock(&osb->osb_lock);
|
|
return ret;
|
|
}
|
|
|
|
static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
|
|
int slot)
|
|
{
|
|
spin_lock(&osb->osb_lock);
|
|
/* Mark ourselves such that new processes in delete_inode()
|
|
* know to quit early. */
|
|
ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
|
|
while (osb->osb_orphan_wipes[slot]) {
|
|
/* If any processes are already in the middle of an
|
|
* orphan wipe on this dir, then we need to wait for
|
|
* them. */
|
|
spin_unlock(&osb->osb_lock);
|
|
wait_event_interruptible(osb->osb_wipe_event,
|
|
ocfs2_orphan_recovery_can_continue(osb, slot));
|
|
spin_lock(&osb->osb_lock);
|
|
}
|
|
spin_unlock(&osb->osb_lock);
|
|
}
|
|
|
|
static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
|
|
int slot)
|
|
{
|
|
ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
|
|
}
|
|
|
|
/*
|
|
* Orphan recovery. Each mounted node has it's own orphan dir which we
|
|
* must run during recovery. Our strategy here is to build a list of
|
|
* the inodes in the orphan dir and iget/iput them. The VFS does
|
|
* (most) of the rest of the work.
|
|
*
|
|
* Orphan recovery can happen at any time, not just mount so we have a
|
|
* couple of extra considerations.
|
|
*
|
|
* - We grab as many inodes as we can under the orphan dir lock -
|
|
* doing iget() outside the orphan dir risks getting a reference on
|
|
* an invalid inode.
|
|
* - We must be sure not to deadlock with other processes on the
|
|
* system wanting to run delete_inode(). This can happen when they go
|
|
* to lock the orphan dir and the orphan recovery process attempts to
|
|
* iget() inside the orphan dir lock. This can be avoided by
|
|
* advertising our state to ocfs2_delete_inode().
|
|
*/
|
|
static int ocfs2_recover_orphans(struct ocfs2_super *osb,
|
|
int slot)
|
|
{
|
|
int ret = 0;
|
|
struct inode *inode = NULL;
|
|
struct inode *iter;
|
|
struct ocfs2_inode_info *oi;
|
|
|
|
mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
|
|
|
|
ocfs2_mark_recovering_orphan_dir(osb, slot);
|
|
ret = ocfs2_queue_orphans(osb, slot, &inode);
|
|
ocfs2_clear_recovering_orphan_dir(osb, slot);
|
|
|
|
/* Error here should be noted, but we want to continue with as
|
|
* many queued inodes as we've got. */
|
|
if (ret)
|
|
mlog_errno(ret);
|
|
|
|
while (inode) {
|
|
oi = OCFS2_I(inode);
|
|
mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
|
|
|
|
iter = oi->ip_next_orphan;
|
|
|
|
spin_lock(&oi->ip_lock);
|
|
/* The remote delete code may have set these on the
|
|
* assumption that the other node would wipe them
|
|
* successfully. If they are still in the node's
|
|
* orphan dir, we need to reset that state. */
|
|
oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
|
|
|
|
/* Set the proper information to get us going into
|
|
* ocfs2_delete_inode. */
|
|
oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
|
|
spin_unlock(&oi->ip_lock);
|
|
|
|
iput(inode);
|
|
|
|
inode = iter;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
|
|
{
|
|
/* This check is good because ocfs2 will wait on our recovery
|
|
* thread before changing it to something other than MOUNTED
|
|
* or DISABLED. */
|
|
wait_event(osb->osb_mount_event,
|
|
(!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
|
|
atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
|
|
atomic_read(&osb->vol_state) == VOLUME_DISABLED);
|
|
|
|
/* If there's an error on mount, then we may never get to the
|
|
* MOUNTED flag, but this is set right before
|
|
* dismount_volume() so we can trust it. */
|
|
if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
|
|
mlog(0, "mount error, exiting!\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ocfs2_commit_thread(void *arg)
|
|
{
|
|
int status;
|
|
struct ocfs2_super *osb = arg;
|
|
struct ocfs2_journal *journal = osb->journal;
|
|
|
|
/* we can trust j_num_trans here because _should_stop() is only set in
|
|
* shutdown and nobody other than ourselves should be able to start
|
|
* transactions. committing on shutdown might take a few iterations
|
|
* as final transactions put deleted inodes on the list */
|
|
while (!(kthread_should_stop() &&
|
|
atomic_read(&journal->j_num_trans) == 0)) {
|
|
|
|
wait_event_interruptible(osb->checkpoint_event,
|
|
atomic_read(&journal->j_num_trans)
|
|
|| kthread_should_stop());
|
|
|
|
status = ocfs2_commit_cache(osb);
|
|
if (status < 0)
|
|
mlog_errno(status);
|
|
|
|
if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
|
|
mlog(ML_KTHREAD,
|
|
"commit_thread: %u transactions pending on "
|
|
"shutdown\n",
|
|
atomic_read(&journal->j_num_trans));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reads all the journal inodes without taking any cluster locks. Used
|
|
* for hard readonly access to determine whether any journal requires
|
|
* recovery. Also used to refresh the recovery generation numbers after
|
|
* a journal has been recovered by another node.
|
|
*/
|
|
int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
|
|
{
|
|
int ret = 0;
|
|
unsigned int slot;
|
|
struct buffer_head *di_bh = NULL;
|
|
struct ocfs2_dinode *di;
|
|
int journal_dirty = 0;
|
|
|
|
for(slot = 0; slot < osb->max_slots; slot++) {
|
|
ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
|
|
if (ret) {
|
|
mlog_errno(ret);
|
|
goto out;
|
|
}
|
|
|
|
di = (struct ocfs2_dinode *) di_bh->b_data;
|
|
|
|
osb->slot_recovery_generations[slot] =
|
|
ocfs2_get_recovery_generation(di);
|
|
|
|
if (le32_to_cpu(di->id1.journal1.ij_flags) &
|
|
OCFS2_JOURNAL_DIRTY_FL)
|
|
journal_dirty = 1;
|
|
|
|
brelse(di_bh);
|
|
di_bh = NULL;
|
|
}
|
|
|
|
out:
|
|
if (journal_dirty)
|
|
ret = -EROFS;
|
|
return ret;
|
|
}
|