mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-11 16:24:26 +08:00
6a4ab8869d
When running rootless with special capabilities like: FOWNER / DAC_OVERRIDE / DAC_READ_SEARCH The "access" API will not make the proper check if there is really access to a file or not. >From the access man page: " The check is done using the calling process's real UID and GID, rather than the effective IDs as is done when actually attempting an operation (e.g., open(2)) on the file. Similarly, for the root user, the check uses the set of permitted capabilities rather than the set of effective capabilities; ***and for non-root users, the check uses an empty set of capabilities.*** " What that means is that for non-root user the access API will not do the proper validation if the process really has permission to a file or not. To resolve this this patch replaces all the access API calls with faccessat with AT_EACCESS flag. Signed-off-by: Jon Doron <jond@wiz.io> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20220925070431.1313680-1-arilou@gmail.com
1520 lines
48 KiB
C
1520 lines
48 KiB
C
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
|
|
/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
|
|
#include <ctype.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <libelf.h>
|
|
#include <gelf.h>
|
|
#include <unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/kernel.h>
|
|
|
|
/* s8 will be marked as poison while it's a reg of riscv */
|
|
#if defined(__riscv)
|
|
#define rv_s8 s8
|
|
#endif
|
|
|
|
#include "bpf.h"
|
|
#include "libbpf.h"
|
|
#include "libbpf_common.h"
|
|
#include "libbpf_internal.h"
|
|
#include "hashmap.h"
|
|
|
|
/* libbpf's USDT support consists of BPF-side state/code and user-space
|
|
* state/code working together in concert. BPF-side parts are defined in
|
|
* usdt.bpf.h header library. User-space state is encapsulated by struct
|
|
* usdt_manager and all the supporting code centered around usdt_manager.
|
|
*
|
|
* usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
|
|
* and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
|
|
* don't support BPF cookie (see below). These two maps are implicitly
|
|
* embedded into user's end BPF object file when user's code included
|
|
* usdt.bpf.h. This means that libbpf doesn't do anything special to create
|
|
* these USDT support maps. They are created by normal libbpf logic of
|
|
* instantiating BPF maps when opening and loading BPF object.
|
|
*
|
|
* As such, libbpf is basically unaware of the need to do anything
|
|
* USDT-related until the very first call to bpf_program__attach_usdt(), which
|
|
* can be called by user explicitly or happen automatically during skeleton
|
|
* attach (or, equivalently, through generic bpf_program__attach() call). At
|
|
* this point, libbpf will instantiate and initialize struct usdt_manager and
|
|
* store it in bpf_object. USDT manager is per-BPF object construct, as each
|
|
* independent BPF object might or might not have USDT programs, and thus all
|
|
* the expected USDT-related state. There is no coordination between two
|
|
* bpf_object in parts of USDT attachment, they are oblivious of each other's
|
|
* existence and libbpf is just oblivious, dealing with bpf_object-specific
|
|
* USDT state.
|
|
*
|
|
* Quick crash course on USDTs.
|
|
*
|
|
* From user-space application's point of view, USDT is essentially just
|
|
* a slightly special function call that normally has zero overhead, unless it
|
|
* is being traced by some external entity (e.g, BPF-based tool). Here's how
|
|
* a typical application can trigger USDT probe:
|
|
*
|
|
* #include <sys/sdt.h> // provided by systemtap-sdt-devel package
|
|
* // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
|
|
*
|
|
* STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
|
|
*
|
|
* USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
|
|
* individual USDT has a fixed number of arguments (3 in the above example)
|
|
* and specifies values of each argument as if it was a function call.
|
|
*
|
|
* USDT call is actually not a function call, but is instead replaced by
|
|
* a single NOP instruction (thus zero overhead, effectively). But in addition
|
|
* to that, those USDT macros generate special SHT_NOTE ELF records in
|
|
* .note.stapsdt ELF section. Here's an example USDT definition as emitted by
|
|
* `readelf -n <binary>`:
|
|
*
|
|
* stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors)
|
|
* Provider: test
|
|
* Name: usdt12
|
|
* Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
|
|
* Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
|
|
*
|
|
* In this case we have USDT test:usdt12 with 12 arguments.
|
|
*
|
|
* Location and base are offsets used to calculate absolute IP address of that
|
|
* NOP instruction that kernel can replace with an interrupt instruction to
|
|
* trigger instrumentation code (BPF program for all that we care about).
|
|
*
|
|
* Semaphore above is and optional feature. It records an address of a 2-byte
|
|
* refcount variable (normally in '.probes' ELF section) used for signaling if
|
|
* there is anything that is attached to USDT. This is useful for user
|
|
* applications if, for example, they need to prepare some arguments that are
|
|
* passed only to USDTs and preparation is expensive. By checking if USDT is
|
|
* "activated", an application can avoid paying those costs unnecessarily.
|
|
* Recent enough kernel has built-in support for automatically managing this
|
|
* refcount, which libbpf expects and relies on. If USDT is defined without
|
|
* associated semaphore, this value will be zero. See selftests for semaphore
|
|
* examples.
|
|
*
|
|
* Arguments is the most interesting part. This USDT specification string is
|
|
* providing information about all the USDT arguments and their locations. The
|
|
* part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
|
|
* whether the argument is signed or unsigned (negative size means signed).
|
|
* The part after @ sign is assembly-like definition of argument location
|
|
* (see [0] for more details). Technically, assembler can provide some pretty
|
|
* advanced definitions, but libbpf is currently supporting three most common
|
|
* cases:
|
|
* 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
|
|
* 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
|
|
* whose value is in register %rdx";
|
|
* 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
|
|
* specifies signed 32-bit integer stored at offset -1204 bytes from
|
|
* memory address stored in %rbp.
|
|
*
|
|
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
|
|
*
|
|
* During attachment, libbpf parses all the relevant USDT specifications and
|
|
* prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
|
|
* code through spec map. This allows BPF applications to quickly fetch the
|
|
* actual value at runtime using a simple BPF-side code.
|
|
*
|
|
* With basics out of the way, let's go over less immediately obvious aspects
|
|
* of supporting USDTs.
|
|
*
|
|
* First, there is no special USDT BPF program type. It is actually just
|
|
* a uprobe BPF program (which for kernel, at least currently, is just a kprobe
|
|
* program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
|
|
* that uprobe is usually attached at the function entry, while USDT will
|
|
* normally will be somewhere inside the function. But it should always be
|
|
* pointing to NOP instruction, which makes such uprobes the fastest uprobe
|
|
* kind.
|
|
*
|
|
* Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
|
|
* macro invocations can end up being inlined many-many times, depending on
|
|
* specifics of each individual user application. So single conceptual USDT
|
|
* (identified by provider:name pair of identifiers) is, generally speaking,
|
|
* multiple uprobe locations (USDT call sites) in different places in user
|
|
* application. Further, again due to inlining, each USDT call site might end
|
|
* up having the same argument #N be located in a different place. In one call
|
|
* site it could be a constant, in another will end up in a register, and in
|
|
* yet another could be some other register or even somewhere on the stack.
|
|
*
|
|
* As such, "attaching to USDT" means (in general case) attaching the same
|
|
* uprobe BPF program to multiple target locations in user application, each
|
|
* potentially having a completely different USDT spec associated with it.
|
|
* To wire all this up together libbpf allocates a unique integer spec ID for
|
|
* each unique USDT spec. Spec IDs are allocated as sequential small integers
|
|
* so that they can be used as keys in array BPF map (for performance reasons).
|
|
* Spec ID allocation and accounting is big part of what usdt_manager is
|
|
* about. This state has to be maintained per-BPF object and coordinate
|
|
* between different USDT attachments within the same BPF object.
|
|
*
|
|
* Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
|
|
* as struct usdt_spec. Each invocation of BPF program at runtime needs to
|
|
* know its associated spec ID. It gets it either through BPF cookie, which
|
|
* libbpf sets to spec ID during attach time, or, if kernel is too old to
|
|
* support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
|
|
* case. The latter means that some modes of operation can't be supported
|
|
* without BPF cookie. Such mode is attaching to shared library "generically",
|
|
* without specifying target process. In such case, it's impossible to
|
|
* calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
|
|
* is not supported without BPF cookie support.
|
|
*
|
|
* Note that libbpf is using BPF cookie functionality for its own internal
|
|
* needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
|
|
* provides conceptually equivalent USDT cookie support. It's still u64
|
|
* user-provided value that can be associated with USDT attachment. Note that
|
|
* this will be the same value for all USDT call sites within the same single
|
|
* *logical* USDT attachment. This makes sense because to user attaching to
|
|
* USDT is a single BPF program triggered for singular USDT probe. The fact
|
|
* that this is done at multiple actual locations is a mostly hidden
|
|
* implementation details. This USDT cookie value can be fetched with
|
|
* bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
|
|
*
|
|
* Lastly, while single USDT can have tons of USDT call sites, it doesn't
|
|
* necessarily have that many different USDT specs. It very well might be
|
|
* that 1000 USDT call sites only need 5 different USDT specs, because all the
|
|
* arguments are typically contained in a small set of registers or stack
|
|
* locations. As such, it's wasteful to allocate as many USDT spec IDs as
|
|
* there are USDT call sites. So libbpf tries to be frugal and performs
|
|
* on-the-fly deduplication during a single USDT attachment to only allocate
|
|
* the minimal required amount of unique USDT specs (and thus spec IDs). This
|
|
* is trivially achieved by using USDT spec string (Arguments string from USDT
|
|
* note) as a lookup key in a hashmap. USDT spec string uniquely defines
|
|
* everything about how to fetch USDT arguments, so two USDT call sites
|
|
* sharing USDT spec string can safely share the same USDT spec and spec ID.
|
|
* Note, this spec string deduplication is happening only during the same USDT
|
|
* attachment, so each USDT spec shares the same USDT cookie value. This is
|
|
* not generally true for other USDT attachments within the same BPF object,
|
|
* as even if USDT spec string is the same, USDT cookie value can be
|
|
* different. It was deemed excessive to try to deduplicate across independent
|
|
* USDT attachments by taking into account USDT spec string *and* USDT cookie
|
|
* value, which would complicated spec ID accounting significantly for little
|
|
* gain.
|
|
*/
|
|
|
|
#define USDT_BASE_SEC ".stapsdt.base"
|
|
#define USDT_SEMA_SEC ".probes"
|
|
#define USDT_NOTE_SEC ".note.stapsdt"
|
|
#define USDT_NOTE_TYPE 3
|
|
#define USDT_NOTE_NAME "stapsdt"
|
|
|
|
/* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
|
|
enum usdt_arg_type {
|
|
USDT_ARG_CONST,
|
|
USDT_ARG_REG,
|
|
USDT_ARG_REG_DEREF,
|
|
};
|
|
|
|
/* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
|
|
struct usdt_arg_spec {
|
|
__u64 val_off;
|
|
enum usdt_arg_type arg_type;
|
|
short reg_off;
|
|
bool arg_signed;
|
|
char arg_bitshift;
|
|
};
|
|
|
|
/* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
|
|
#define USDT_MAX_ARG_CNT 12
|
|
|
|
/* should match struct __bpf_usdt_spec from usdt.bpf.h */
|
|
struct usdt_spec {
|
|
struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
|
|
__u64 usdt_cookie;
|
|
short arg_cnt;
|
|
};
|
|
|
|
struct usdt_note {
|
|
const char *provider;
|
|
const char *name;
|
|
/* USDT args specification string, e.g.:
|
|
* "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
|
|
*/
|
|
const char *args;
|
|
long loc_addr;
|
|
long base_addr;
|
|
long sema_addr;
|
|
};
|
|
|
|
struct usdt_target {
|
|
long abs_ip;
|
|
long rel_ip;
|
|
long sema_off;
|
|
struct usdt_spec spec;
|
|
const char *spec_str;
|
|
};
|
|
|
|
struct usdt_manager {
|
|
struct bpf_map *specs_map;
|
|
struct bpf_map *ip_to_spec_id_map;
|
|
|
|
int *free_spec_ids;
|
|
size_t free_spec_cnt;
|
|
size_t next_free_spec_id;
|
|
|
|
bool has_bpf_cookie;
|
|
bool has_sema_refcnt;
|
|
};
|
|
|
|
struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
|
|
{
|
|
static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
|
|
struct usdt_manager *man;
|
|
struct bpf_map *specs_map, *ip_to_spec_id_map;
|
|
|
|
specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
|
|
ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
|
|
if (!specs_map || !ip_to_spec_id_map) {
|
|
pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
|
|
return ERR_PTR(-ESRCH);
|
|
}
|
|
|
|
man = calloc(1, sizeof(*man));
|
|
if (!man)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
man->specs_map = specs_map;
|
|
man->ip_to_spec_id_map = ip_to_spec_id_map;
|
|
|
|
/* Detect if BPF cookie is supported for kprobes.
|
|
* We don't need IP-to-ID mapping if we can use BPF cookies.
|
|
* Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
|
|
*/
|
|
man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
|
|
|
|
/* Detect kernel support for automatic refcounting of USDT semaphore.
|
|
* If this is not supported, USDTs with semaphores will not be supported.
|
|
* Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
|
|
*/
|
|
man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
|
|
|
|
return man;
|
|
}
|
|
|
|
void usdt_manager_free(struct usdt_manager *man)
|
|
{
|
|
if (IS_ERR_OR_NULL(man))
|
|
return;
|
|
|
|
free(man->free_spec_ids);
|
|
free(man);
|
|
}
|
|
|
|
static int sanity_check_usdt_elf(Elf *elf, const char *path)
|
|
{
|
|
GElf_Ehdr ehdr;
|
|
int endianness;
|
|
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
|
|
return -EBADF;
|
|
}
|
|
|
|
switch (gelf_getclass(elf)) {
|
|
case ELFCLASS64:
|
|
if (sizeof(void *) != 8) {
|
|
pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
|
|
return -EBADF;
|
|
}
|
|
break;
|
|
case ELFCLASS32:
|
|
if (sizeof(void *) != 4) {
|
|
pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
|
|
return -EBADF;
|
|
}
|
|
break;
|
|
default:
|
|
pr_warn("usdt: unsupported ELF class for '%s'\n", path);
|
|
return -EBADF;
|
|
}
|
|
|
|
if (!gelf_getehdr(elf, &ehdr))
|
|
return -EINVAL;
|
|
|
|
if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
|
|
pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
|
|
path, ehdr.e_type);
|
|
return -EBADF;
|
|
}
|
|
|
|
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
endianness = ELFDATA2LSB;
|
|
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
endianness = ELFDATA2MSB;
|
|
#else
|
|
# error "Unrecognized __BYTE_ORDER__"
|
|
#endif
|
|
if (endianness != ehdr.e_ident[EI_DATA]) {
|
|
pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
|
|
return -EBADF;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
|
|
{
|
|
Elf_Scn *sec = NULL;
|
|
size_t shstrndx;
|
|
|
|
if (elf_getshdrstrndx(elf, &shstrndx))
|
|
return -EINVAL;
|
|
|
|
/* check if ELF is corrupted and avoid calling elf_strptr if yes */
|
|
if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
|
|
return -EINVAL;
|
|
|
|
while ((sec = elf_nextscn(elf, sec)) != NULL) {
|
|
char *name;
|
|
|
|
if (!gelf_getshdr(sec, shdr))
|
|
return -EINVAL;
|
|
|
|
name = elf_strptr(elf, shstrndx, shdr->sh_name);
|
|
if (name && strcmp(sec_name, name) == 0) {
|
|
*scn = sec;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
struct elf_seg {
|
|
long start;
|
|
long end;
|
|
long offset;
|
|
bool is_exec;
|
|
};
|
|
|
|
static int cmp_elf_segs(const void *_a, const void *_b)
|
|
{
|
|
const struct elf_seg *a = _a;
|
|
const struct elf_seg *b = _b;
|
|
|
|
return a->start < b->start ? -1 : 1;
|
|
}
|
|
|
|
static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
|
|
{
|
|
GElf_Phdr phdr;
|
|
size_t n;
|
|
int i, err;
|
|
struct elf_seg *seg;
|
|
void *tmp;
|
|
|
|
*seg_cnt = 0;
|
|
|
|
if (elf_getphdrnum(elf, &n)) {
|
|
err = -errno;
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (!gelf_getphdr(elf, i, &phdr)) {
|
|
err = -errno;
|
|
return err;
|
|
}
|
|
|
|
pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
|
|
i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
|
|
(long)phdr.p_type, (long)phdr.p_flags);
|
|
if (phdr.p_type != PT_LOAD)
|
|
continue;
|
|
|
|
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
|
|
*segs = tmp;
|
|
seg = *segs + *seg_cnt;
|
|
(*seg_cnt)++;
|
|
|
|
seg->start = phdr.p_vaddr;
|
|
seg->end = phdr.p_vaddr + phdr.p_memsz;
|
|
seg->offset = phdr.p_offset;
|
|
seg->is_exec = phdr.p_flags & PF_X;
|
|
}
|
|
|
|
if (*seg_cnt == 0) {
|
|
pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
|
|
return -ESRCH;
|
|
}
|
|
|
|
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
|
|
return 0;
|
|
}
|
|
|
|
static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
|
|
{
|
|
char path[PATH_MAX], line[PATH_MAX], mode[16];
|
|
size_t seg_start, seg_end, seg_off;
|
|
struct elf_seg *seg;
|
|
int tmp_pid, i, err;
|
|
FILE *f;
|
|
|
|
*seg_cnt = 0;
|
|
|
|
/* Handle containerized binaries only accessible from
|
|
* /proc/<pid>/root/<path>. They will be reported as just /<path> in
|
|
* /proc/<pid>/maps.
|
|
*/
|
|
if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
|
|
goto proceed;
|
|
|
|
if (!realpath(lib_path, path)) {
|
|
pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n",
|
|
lib_path, -errno);
|
|
libbpf_strlcpy(path, lib_path, sizeof(path));
|
|
}
|
|
|
|
proceed:
|
|
sprintf(line, "/proc/%d/maps", pid);
|
|
f = fopen(line, "r");
|
|
if (!f) {
|
|
err = -errno;
|
|
pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n",
|
|
line, lib_path, err);
|
|
return err;
|
|
}
|
|
|
|
/* We need to handle lines with no path at the end:
|
|
*
|
|
* 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so
|
|
* 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
|
|
* 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
|
|
*/
|
|
while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
|
|
&seg_start, &seg_end, mode, &seg_off, line) == 5) {
|
|
void *tmp;
|
|
|
|
/* to handle no path case (see above) we need to capture line
|
|
* without skipping any whitespaces. So we need to strip
|
|
* leading whitespaces manually here
|
|
*/
|
|
i = 0;
|
|
while (isblank(line[i]))
|
|
i++;
|
|
if (strcmp(line + i, path) != 0)
|
|
continue;
|
|
|
|
pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
|
|
path, seg_start, seg_end, mode, seg_off);
|
|
|
|
/* ignore non-executable sections for shared libs */
|
|
if (mode[2] != 'x')
|
|
continue;
|
|
|
|
tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
|
|
if (!tmp) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
*segs = tmp;
|
|
seg = *segs + *seg_cnt;
|
|
*seg_cnt += 1;
|
|
|
|
seg->start = seg_start;
|
|
seg->end = seg_end;
|
|
seg->offset = seg_off;
|
|
seg->is_exec = true;
|
|
}
|
|
|
|
if (*seg_cnt == 0) {
|
|
pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
|
|
lib_path, path, pid);
|
|
err = -ESRCH;
|
|
goto err_out;
|
|
}
|
|
|
|
qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
|
|
err = 0;
|
|
err_out:
|
|
fclose(f);
|
|
return err;
|
|
}
|
|
|
|
static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
|
|
{
|
|
struct elf_seg *seg;
|
|
int i;
|
|
|
|
/* for ELF binaries (both executables and shared libraries), we are
|
|
* given virtual address (absolute for executables, relative for
|
|
* libraries) which should match address range of [seg_start, seg_end)
|
|
*/
|
|
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
|
|
if (seg->start <= virtaddr && virtaddr < seg->end)
|
|
return seg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
|
|
{
|
|
struct elf_seg *seg;
|
|
int i;
|
|
|
|
/* for VMA segments from /proc/<pid>/maps file, provided "address" is
|
|
* actually a file offset, so should be fall within logical
|
|
* offset-based range of [offset_start, offset_end)
|
|
*/
|
|
for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
|
|
if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
|
|
return seg;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
|
|
const char *data, size_t name_off, size_t desc_off,
|
|
struct usdt_note *usdt_note);
|
|
|
|
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
|
|
|
|
static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
|
|
const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
|
|
struct usdt_target **out_targets, size_t *out_target_cnt)
|
|
{
|
|
size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
|
|
struct elf_seg *segs = NULL, *vma_segs = NULL;
|
|
struct usdt_target *targets = NULL, *target;
|
|
long base_addr = 0;
|
|
Elf_Scn *notes_scn, *base_scn;
|
|
GElf_Shdr base_shdr, notes_shdr;
|
|
GElf_Ehdr ehdr;
|
|
GElf_Nhdr nhdr;
|
|
Elf_Data *data;
|
|
int err;
|
|
|
|
*out_targets = NULL;
|
|
*out_target_cnt = 0;
|
|
|
|
err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn);
|
|
if (err) {
|
|
pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
|
|
return err;
|
|
}
|
|
|
|
if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
|
|
pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = parse_elf_segs(elf, path, &segs, &seg_cnt);
|
|
if (err) {
|
|
pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err);
|
|
goto err_out;
|
|
}
|
|
|
|
/* .stapsdt.base ELF section is optional, but is used for prelink
|
|
* offset compensation (see a big comment further below)
|
|
*/
|
|
if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
|
|
base_addr = base_shdr.sh_addr;
|
|
|
|
data = elf_getdata(notes_scn, 0);
|
|
off = 0;
|
|
while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
|
|
long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
|
|
struct usdt_note note;
|
|
struct elf_seg *seg = NULL;
|
|
void *tmp;
|
|
|
|
err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
|
|
continue;
|
|
|
|
/* We need to compensate "prelink effect". See [0] for details,
|
|
* relevant parts quoted here:
|
|
*
|
|
* Each SDT probe also expands into a non-allocated ELF note. You can
|
|
* find this by looking at SHT_NOTE sections and decoding the format;
|
|
* see below for details. Because the note is non-allocated, it means
|
|
* there is no runtime cost, and also preserved in both stripped files
|
|
* and .debug files.
|
|
*
|
|
* However, this means that prelink won't adjust the note's contents
|
|
* for address offsets. Instead, this is done via the .stapsdt.base
|
|
* section. This is a special section that is added to the text. We
|
|
* will only ever have one of these sections in a final link and it
|
|
* will only ever be one byte long. Nothing about this section itself
|
|
* matters, we just use it as a marker to detect prelink address
|
|
* adjustments.
|
|
*
|
|
* Each probe note records the link-time address of the .stapsdt.base
|
|
* section alongside the probe PC address. The decoder compares the
|
|
* base address stored in the note with the .stapsdt.base section's
|
|
* sh_addr. Initially these are the same, but the section header will
|
|
* be adjusted by prelink. So the decoder applies the difference to
|
|
* the probe PC address to get the correct prelinked PC address; the
|
|
* same adjustment is applied to the semaphore address, if any.
|
|
*
|
|
* [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
|
|
*/
|
|
usdt_abs_ip = note.loc_addr;
|
|
if (base_addr)
|
|
usdt_abs_ip += base_addr - note.base_addr;
|
|
|
|
/* When attaching uprobes (which is what USDTs basically are)
|
|
* kernel expects file offset to be specified, not a relative
|
|
* virtual address, so we need to translate virtual address to
|
|
* file offset, for both ET_EXEC and ET_DYN binaries.
|
|
*/
|
|
seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
|
|
if (!seg) {
|
|
err = -ESRCH;
|
|
pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
|
|
usdt_provider, usdt_name, path, usdt_abs_ip);
|
|
goto err_out;
|
|
}
|
|
if (!seg->is_exec) {
|
|
err = -ESRCH;
|
|
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
|
|
path, seg->start, seg->end, usdt_provider, usdt_name,
|
|
usdt_abs_ip);
|
|
goto err_out;
|
|
}
|
|
/* translate from virtual address to file offset */
|
|
usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
|
|
|
|
if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
|
|
/* If we don't have BPF cookie support but need to
|
|
* attach to a shared library, we'll need to know and
|
|
* record absolute addresses of attach points due to
|
|
* the need to lookup USDT spec by absolute IP of
|
|
* triggered uprobe. Doing this resolution is only
|
|
* possible when we have a specific PID of the process
|
|
* that's using specified shared library. BPF cookie
|
|
* removes the absolute address limitation as we don't
|
|
* need to do this lookup (we just use BPF cookie as
|
|
* an index of USDT spec), so for newer kernels with
|
|
* BPF cookie support libbpf supports USDT attachment
|
|
* to shared libraries with no PID filter.
|
|
*/
|
|
if (pid < 0) {
|
|
pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
|
|
err = -ENOTSUP;
|
|
goto err_out;
|
|
}
|
|
|
|
/* vma_segs are lazily initialized only if necessary */
|
|
if (vma_seg_cnt == 0) {
|
|
err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
|
|
if (err) {
|
|
pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n",
|
|
pid, path, err);
|
|
goto err_out;
|
|
}
|
|
}
|
|
|
|
seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
|
|
if (!seg) {
|
|
err = -ESRCH;
|
|
pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
|
|
usdt_provider, usdt_name, path, usdt_rel_ip);
|
|
goto err_out;
|
|
}
|
|
|
|
usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
|
|
}
|
|
|
|
pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
|
|
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
|
|
note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
|
|
seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
|
|
|
|
/* Adjust semaphore address to be a file offset */
|
|
if (note.sema_addr) {
|
|
if (!man->has_sema_refcnt) {
|
|
pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
|
|
usdt_provider, usdt_name, path);
|
|
err = -ENOTSUP;
|
|
goto err_out;
|
|
}
|
|
|
|
seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
|
|
if (!seg) {
|
|
err = -ESRCH;
|
|
pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
|
|
usdt_provider, usdt_name, path, note.sema_addr);
|
|
goto err_out;
|
|
}
|
|
if (seg->is_exec) {
|
|
err = -ESRCH;
|
|
pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
|
|
path, seg->start, seg->end, usdt_provider, usdt_name,
|
|
note.sema_addr);
|
|
goto err_out;
|
|
}
|
|
|
|
usdt_sema_off = note.sema_addr - seg->start + seg->offset;
|
|
|
|
pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
|
|
usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
|
|
path, note.sema_addr, note.base_addr, usdt_sema_off,
|
|
seg->start, seg->end, seg->offset);
|
|
}
|
|
|
|
/* Record adjusted addresses and offsets and parse USDT spec */
|
|
tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
|
|
if (!tmp) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
targets = tmp;
|
|
|
|
target = &targets[target_cnt];
|
|
memset(target, 0, sizeof(*target));
|
|
|
|
target->abs_ip = usdt_abs_ip;
|
|
target->rel_ip = usdt_rel_ip;
|
|
target->sema_off = usdt_sema_off;
|
|
|
|
/* notes.args references strings from Elf itself, so they can
|
|
* be referenced safely until elf_end() call
|
|
*/
|
|
target->spec_str = note.args;
|
|
|
|
err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
target_cnt++;
|
|
}
|
|
|
|
*out_targets = targets;
|
|
*out_target_cnt = target_cnt;
|
|
err = target_cnt;
|
|
|
|
err_out:
|
|
free(segs);
|
|
free(vma_segs);
|
|
if (err < 0)
|
|
free(targets);
|
|
return err;
|
|
}
|
|
|
|
struct bpf_link_usdt {
|
|
struct bpf_link link;
|
|
|
|
struct usdt_manager *usdt_man;
|
|
|
|
size_t spec_cnt;
|
|
int *spec_ids;
|
|
|
|
size_t uprobe_cnt;
|
|
struct {
|
|
long abs_ip;
|
|
struct bpf_link *link;
|
|
} *uprobes;
|
|
};
|
|
|
|
static int bpf_link_usdt_detach(struct bpf_link *link)
|
|
{
|
|
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
|
|
struct usdt_manager *man = usdt_link->usdt_man;
|
|
int i;
|
|
|
|
for (i = 0; i < usdt_link->uprobe_cnt; i++) {
|
|
/* detach underlying uprobe link */
|
|
bpf_link__destroy(usdt_link->uprobes[i].link);
|
|
/* there is no need to update specs map because it will be
|
|
* unconditionally overwritten on subsequent USDT attaches,
|
|
* but if BPF cookies are not used we need to remove entry
|
|
* from ip_to_spec_id map, otherwise we'll run into false
|
|
* conflicting IP errors
|
|
*/
|
|
if (!man->has_bpf_cookie) {
|
|
/* not much we can do about errors here */
|
|
(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
|
|
&usdt_link->uprobes[i].abs_ip);
|
|
}
|
|
}
|
|
|
|
/* try to return the list of previously used spec IDs to usdt_manager
|
|
* for future reuse for subsequent USDT attaches
|
|
*/
|
|
if (!man->free_spec_ids) {
|
|
/* if there were no free spec IDs yet, just transfer our IDs */
|
|
man->free_spec_ids = usdt_link->spec_ids;
|
|
man->free_spec_cnt = usdt_link->spec_cnt;
|
|
usdt_link->spec_ids = NULL;
|
|
} else {
|
|
/* otherwise concat IDs */
|
|
size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
|
|
int *new_free_ids;
|
|
|
|
new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
|
|
sizeof(*new_free_ids));
|
|
/* If we couldn't resize free_spec_ids, we'll just leak
|
|
* a bunch of free IDs; this is very unlikely to happen and if
|
|
* system is so exhausted on memory, it's the least of user's
|
|
* concerns, probably.
|
|
* So just do our best here to return those IDs to usdt_manager.
|
|
*/
|
|
if (new_free_ids) {
|
|
memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
|
|
usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
|
|
man->free_spec_ids = new_free_ids;
|
|
man->free_spec_cnt = new_cnt;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bpf_link_usdt_dealloc(struct bpf_link *link)
|
|
{
|
|
struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
|
|
|
|
free(usdt_link->spec_ids);
|
|
free(usdt_link->uprobes);
|
|
free(usdt_link);
|
|
}
|
|
|
|
static size_t specs_hash_fn(const void *key, void *ctx)
|
|
{
|
|
const char *s = key;
|
|
|
|
return str_hash(s);
|
|
}
|
|
|
|
static bool specs_equal_fn(const void *key1, const void *key2, void *ctx)
|
|
{
|
|
const char *s1 = key1;
|
|
const char *s2 = key2;
|
|
|
|
return strcmp(s1, s2) == 0;
|
|
}
|
|
|
|
static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
|
|
struct bpf_link_usdt *link, struct usdt_target *target,
|
|
int *spec_id, bool *is_new)
|
|
{
|
|
void *tmp;
|
|
int err;
|
|
|
|
/* check if we already allocated spec ID for this spec string */
|
|
if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
|
|
*spec_id = (long)tmp;
|
|
*is_new = false;
|
|
return 0;
|
|
}
|
|
|
|
/* otherwise it's a new ID that needs to be set up in specs map and
|
|
* returned back to usdt_manager when USDT link is detached
|
|
*/
|
|
tmp = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
|
|
if (!tmp)
|
|
return -ENOMEM;
|
|
link->spec_ids = tmp;
|
|
|
|
/* get next free spec ID, giving preference to free list, if not empty */
|
|
if (man->free_spec_cnt) {
|
|
*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
|
|
|
|
/* cache spec ID for current spec string for future lookups */
|
|
err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id);
|
|
if (err)
|
|
return err;
|
|
|
|
man->free_spec_cnt--;
|
|
} else {
|
|
/* don't allocate spec ID bigger than what fits in specs map */
|
|
if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
|
|
return -E2BIG;
|
|
|
|
*spec_id = man->next_free_spec_id;
|
|
|
|
/* cache spec ID for current spec string for future lookups */
|
|
err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id);
|
|
if (err)
|
|
return err;
|
|
|
|
man->next_free_spec_id++;
|
|
}
|
|
|
|
/* remember new spec ID in the link for later return back to free list on detach */
|
|
link->spec_ids[link->spec_cnt] = *spec_id;
|
|
link->spec_cnt++;
|
|
*is_new = true;
|
|
return 0;
|
|
}
|
|
|
|
struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
|
|
pid_t pid, const char *path,
|
|
const char *usdt_provider, const char *usdt_name,
|
|
__u64 usdt_cookie)
|
|
{
|
|
int i, fd, err, spec_map_fd, ip_map_fd;
|
|
LIBBPF_OPTS(bpf_uprobe_opts, opts);
|
|
struct hashmap *specs_hash = NULL;
|
|
struct bpf_link_usdt *link = NULL;
|
|
struct usdt_target *targets = NULL;
|
|
size_t target_cnt;
|
|
Elf *elf;
|
|
|
|
spec_map_fd = bpf_map__fd(man->specs_map);
|
|
ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
|
|
|
|
/* TODO: perform path resolution similar to uprobe's */
|
|
fd = open(path, O_RDONLY);
|
|
if (fd < 0) {
|
|
err = -errno;
|
|
pr_warn("usdt: failed to open ELF binary '%s': %d\n", path, err);
|
|
return libbpf_err_ptr(err);
|
|
}
|
|
|
|
elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
|
|
if (!elf) {
|
|
err = -EBADF;
|
|
pr_warn("usdt: failed to parse ELF binary '%s': %s\n", path, elf_errmsg(-1));
|
|
goto err_out;
|
|
}
|
|
|
|
err = sanity_check_usdt_elf(elf, path);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* normalize PID filter */
|
|
if (pid < 0)
|
|
pid = -1;
|
|
else if (pid == 0)
|
|
pid = getpid();
|
|
|
|
/* discover USDT in given binary, optionally limiting
|
|
* activations to a given PID, if pid > 0
|
|
*/
|
|
err = collect_usdt_targets(man, elf, path, pid, usdt_provider, usdt_name,
|
|
usdt_cookie, &targets, &target_cnt);
|
|
if (err <= 0) {
|
|
err = (err == 0) ? -ENOENT : err;
|
|
goto err_out;
|
|
}
|
|
|
|
specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
|
|
if (IS_ERR(specs_hash)) {
|
|
err = PTR_ERR(specs_hash);
|
|
goto err_out;
|
|
}
|
|
|
|
link = calloc(1, sizeof(*link));
|
|
if (!link) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
link->usdt_man = man;
|
|
link->link.detach = &bpf_link_usdt_detach;
|
|
link->link.dealloc = &bpf_link_usdt_dealloc;
|
|
|
|
link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
|
|
if (!link->uprobes) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
for (i = 0; i < target_cnt; i++) {
|
|
struct usdt_target *target = &targets[i];
|
|
struct bpf_link *uprobe_link;
|
|
bool is_new;
|
|
int spec_id;
|
|
|
|
/* Spec ID can be either reused or newly allocated. If it is
|
|
* newly allocated, we'll need to fill out spec map, otherwise
|
|
* entire spec should be valid and can be just used by a new
|
|
* uprobe. We reuse spec when USDT arg spec is identical. We
|
|
* also never share specs between two different USDT
|
|
* attachments ("links"), so all the reused specs already
|
|
* share USDT cookie value implicitly.
|
|
*/
|
|
err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
|
|
err = -errno;
|
|
pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n",
|
|
spec_id, usdt_provider, usdt_name, path, err);
|
|
goto err_out;
|
|
}
|
|
if (!man->has_bpf_cookie &&
|
|
bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
|
|
err = -errno;
|
|
if (err == -EEXIST) {
|
|
pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
|
|
spec_id, usdt_provider, usdt_name, path);
|
|
} else {
|
|
pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n",
|
|
target->abs_ip, spec_id, usdt_provider, usdt_name,
|
|
path, err);
|
|
}
|
|
goto err_out;
|
|
}
|
|
|
|
opts.ref_ctr_offset = target->sema_off;
|
|
opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
|
|
uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
|
|
target->rel_ip, &opts);
|
|
err = libbpf_get_error(uprobe_link);
|
|
if (err) {
|
|
pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n",
|
|
i, usdt_provider, usdt_name, path, err);
|
|
goto err_out;
|
|
}
|
|
|
|
link->uprobes[i].link = uprobe_link;
|
|
link->uprobes[i].abs_ip = target->abs_ip;
|
|
link->uprobe_cnt++;
|
|
}
|
|
|
|
free(targets);
|
|
hashmap__free(specs_hash);
|
|
elf_end(elf);
|
|
close(fd);
|
|
|
|
return &link->link;
|
|
|
|
err_out:
|
|
if (link)
|
|
bpf_link__destroy(&link->link);
|
|
free(targets);
|
|
hashmap__free(specs_hash);
|
|
if (elf)
|
|
elf_end(elf);
|
|
close(fd);
|
|
return libbpf_err_ptr(err);
|
|
}
|
|
|
|
/* Parse out USDT ELF note from '.note.stapsdt' section.
|
|
* Logic inspired by perf's code.
|
|
*/
|
|
static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
|
|
const char *data, size_t name_off, size_t desc_off,
|
|
struct usdt_note *note)
|
|
{
|
|
const char *provider, *name, *args;
|
|
long addrs[3];
|
|
size_t len;
|
|
|
|
/* sanity check USDT note name and type first */
|
|
if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
|
|
return -EINVAL;
|
|
if (nhdr->n_type != USDT_NOTE_TYPE)
|
|
return -EINVAL;
|
|
|
|
/* sanity check USDT note contents ("description" in ELF terminology) */
|
|
len = nhdr->n_descsz;
|
|
data = data + desc_off;
|
|
|
|
/* +3 is the very minimum required to store three empty strings */
|
|
if (len < sizeof(addrs) + 3)
|
|
return -EINVAL;
|
|
|
|
/* get location, base, and semaphore addrs */
|
|
memcpy(&addrs, data, sizeof(addrs));
|
|
|
|
/* parse string fields: provider, name, args */
|
|
provider = data + sizeof(addrs);
|
|
|
|
name = (const char *)memchr(provider, '\0', data + len - provider);
|
|
if (!name) /* non-zero-terminated provider */
|
|
return -EINVAL;
|
|
name++;
|
|
if (name >= data + len || *name == '\0') /* missing or empty name */
|
|
return -EINVAL;
|
|
|
|
args = memchr(name, '\0', data + len - name);
|
|
if (!args) /* non-zero-terminated name */
|
|
return -EINVAL;
|
|
++args;
|
|
if (args >= data + len) /* missing arguments spec */
|
|
return -EINVAL;
|
|
|
|
note->provider = provider;
|
|
note->name = name;
|
|
if (*args == '\0' || *args == ':')
|
|
note->args = "";
|
|
else
|
|
note->args = args;
|
|
note->loc_addr = addrs[0];
|
|
note->base_addr = addrs[1];
|
|
note->sema_addr = addrs[2];
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg);
|
|
|
|
static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
|
|
{
|
|
const char *s;
|
|
int len;
|
|
|
|
spec->usdt_cookie = usdt_cookie;
|
|
spec->arg_cnt = 0;
|
|
|
|
s = note->args;
|
|
while (s[0]) {
|
|
if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
|
|
pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
|
|
USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
|
|
return -E2BIG;
|
|
}
|
|
|
|
len = parse_usdt_arg(s, spec->arg_cnt, &spec->args[spec->arg_cnt]);
|
|
if (len < 0)
|
|
return len;
|
|
|
|
s += len;
|
|
spec->arg_cnt++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Architecture-specific logic for parsing USDT argument location specs */
|
|
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
|
|
static int calc_pt_regs_off(const char *reg_name)
|
|
{
|
|
static struct {
|
|
const char *names[4];
|
|
size_t pt_regs_off;
|
|
} reg_map[] = {
|
|
#ifdef __x86_64__
|
|
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
|
|
#else
|
|
#define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
|
|
#endif
|
|
{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
|
|
{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
|
|
{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
|
|
{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
|
|
{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
|
|
{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
|
|
{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
|
|
{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
|
|
{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
|
|
#undef reg_off
|
|
#ifdef __x86_64__
|
|
{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
|
|
{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
|
|
{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
|
|
{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
|
|
{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
|
|
{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
|
|
{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
|
|
{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
|
|
#endif
|
|
};
|
|
int i, j;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
|
|
for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
|
|
if (strcmp(reg_name, reg_map[i].names[j]) == 0)
|
|
return reg_map[i].pt_regs_off;
|
|
}
|
|
}
|
|
|
|
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg)
|
|
{
|
|
char *reg_name = NULL;
|
|
int arg_sz, len, reg_off;
|
|
long off;
|
|
|
|
if (sscanf(arg_str, " %d @ %ld ( %%%m[^)] ) %n", &arg_sz, &off, ®_name, &len) == 3) {
|
|
/* Memory dereference case, e.g., -4@-20(%rbp) */
|
|
arg->arg_type = USDT_ARG_REG_DEREF;
|
|
arg->val_off = off;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else if (sscanf(arg_str, " %d @ %%%ms %n", &arg_sz, ®_name, &len) == 2) {
|
|
/* Register read case, e.g., -4@%eax */
|
|
arg->arg_type = USDT_ARG_REG;
|
|
arg->val_off = 0;
|
|
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else if (sscanf(arg_str, " %d @ $%ld %n", &arg_sz, &off, &len) == 2) {
|
|
/* Constant value case, e.g., 4@$71 */
|
|
arg->arg_type = USDT_ARG_CONST;
|
|
arg->val_off = off;
|
|
arg->reg_off = 0;
|
|
} else {
|
|
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
arg->arg_signed = arg_sz < 0;
|
|
if (arg_sz < 0)
|
|
arg_sz = -arg_sz;
|
|
|
|
switch (arg_sz) {
|
|
case 1: case 2: case 4: case 8:
|
|
arg->arg_bitshift = 64 - arg_sz * 8;
|
|
break;
|
|
default:
|
|
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
|
|
arg_num, arg_str, arg_sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
#elif defined(__s390x__)
|
|
|
|
/* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg)
|
|
{
|
|
unsigned int reg;
|
|
int arg_sz, len;
|
|
long off;
|
|
|
|
if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", &arg_sz, &off, ®, &len) == 3) {
|
|
/* Memory dereference case, e.g., -2@-28(%r15) */
|
|
arg->arg_type = USDT_ARG_REG_DEREF;
|
|
arg->val_off = off;
|
|
if (reg > 15) {
|
|
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
|
|
return -EINVAL;
|
|
}
|
|
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
|
|
} else if (sscanf(arg_str, " %d @ %%r%u %n", &arg_sz, ®, &len) == 2) {
|
|
/* Register read case, e.g., -8@%r0 */
|
|
arg->arg_type = USDT_ARG_REG;
|
|
arg->val_off = 0;
|
|
if (reg > 15) {
|
|
pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
|
|
return -EINVAL;
|
|
}
|
|
arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
|
|
} else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) {
|
|
/* Constant value case, e.g., 4@71 */
|
|
arg->arg_type = USDT_ARG_CONST;
|
|
arg->val_off = off;
|
|
arg->reg_off = 0;
|
|
} else {
|
|
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
arg->arg_signed = arg_sz < 0;
|
|
if (arg_sz < 0)
|
|
arg_sz = -arg_sz;
|
|
|
|
switch (arg_sz) {
|
|
case 1: case 2: case 4: case 8:
|
|
arg->arg_bitshift = 64 - arg_sz * 8;
|
|
break;
|
|
default:
|
|
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
|
|
arg_num, arg_str, arg_sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
#elif defined(__aarch64__)
|
|
|
|
static int calc_pt_regs_off(const char *reg_name)
|
|
{
|
|
int reg_num;
|
|
|
|
if (sscanf(reg_name, "x%d", ®_num) == 1) {
|
|
if (reg_num >= 0 && reg_num < 31)
|
|
return offsetof(struct user_pt_regs, regs[reg_num]);
|
|
} else if (strcmp(reg_name, "sp") == 0) {
|
|
return offsetof(struct user_pt_regs, sp);
|
|
}
|
|
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg)
|
|
{
|
|
char *reg_name = NULL;
|
|
int arg_sz, len, reg_off;
|
|
long off;
|
|
|
|
if (sscanf(arg_str, " %d @ \[ %m[a-z0-9], %ld ] %n", &arg_sz, ®_name, &off, &len) == 3) {
|
|
/* Memory dereference case, e.g., -4@[sp, 96] */
|
|
arg->arg_type = USDT_ARG_REG_DEREF;
|
|
arg->val_off = off;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else if (sscanf(arg_str, " %d @ \[ %m[a-z0-9] ] %n", &arg_sz, ®_name, &len) == 2) {
|
|
/* Memory dereference case, e.g., -4@[sp] */
|
|
arg->arg_type = USDT_ARG_REG_DEREF;
|
|
arg->val_off = 0;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) {
|
|
/* Constant value case, e.g., 4@5 */
|
|
arg->arg_type = USDT_ARG_CONST;
|
|
arg->val_off = off;
|
|
arg->reg_off = 0;
|
|
} else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) {
|
|
/* Register read case, e.g., -8@x4 */
|
|
arg->arg_type = USDT_ARG_REG;
|
|
arg->val_off = 0;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else {
|
|
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
arg->arg_signed = arg_sz < 0;
|
|
if (arg_sz < 0)
|
|
arg_sz = -arg_sz;
|
|
|
|
switch (arg_sz) {
|
|
case 1: case 2: case 4: case 8:
|
|
arg->arg_bitshift = 64 - arg_sz * 8;
|
|
break;
|
|
default:
|
|
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
|
|
arg_num, arg_str, arg_sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
#elif defined(__riscv)
|
|
|
|
static int calc_pt_regs_off(const char *reg_name)
|
|
{
|
|
static struct {
|
|
const char *name;
|
|
size_t pt_regs_off;
|
|
} reg_map[] = {
|
|
{ "ra", offsetof(struct user_regs_struct, ra) },
|
|
{ "sp", offsetof(struct user_regs_struct, sp) },
|
|
{ "gp", offsetof(struct user_regs_struct, gp) },
|
|
{ "tp", offsetof(struct user_regs_struct, tp) },
|
|
{ "a0", offsetof(struct user_regs_struct, a0) },
|
|
{ "a1", offsetof(struct user_regs_struct, a1) },
|
|
{ "a2", offsetof(struct user_regs_struct, a2) },
|
|
{ "a3", offsetof(struct user_regs_struct, a3) },
|
|
{ "a4", offsetof(struct user_regs_struct, a4) },
|
|
{ "a5", offsetof(struct user_regs_struct, a5) },
|
|
{ "a6", offsetof(struct user_regs_struct, a6) },
|
|
{ "a7", offsetof(struct user_regs_struct, a7) },
|
|
{ "s0", offsetof(struct user_regs_struct, s0) },
|
|
{ "s1", offsetof(struct user_regs_struct, s1) },
|
|
{ "s2", offsetof(struct user_regs_struct, s2) },
|
|
{ "s3", offsetof(struct user_regs_struct, s3) },
|
|
{ "s4", offsetof(struct user_regs_struct, s4) },
|
|
{ "s5", offsetof(struct user_regs_struct, s5) },
|
|
{ "s6", offsetof(struct user_regs_struct, s6) },
|
|
{ "s7", offsetof(struct user_regs_struct, s7) },
|
|
{ "s8", offsetof(struct user_regs_struct, rv_s8) },
|
|
{ "s9", offsetof(struct user_regs_struct, s9) },
|
|
{ "s10", offsetof(struct user_regs_struct, s10) },
|
|
{ "s11", offsetof(struct user_regs_struct, s11) },
|
|
{ "t0", offsetof(struct user_regs_struct, t0) },
|
|
{ "t1", offsetof(struct user_regs_struct, t1) },
|
|
{ "t2", offsetof(struct user_regs_struct, t2) },
|
|
{ "t3", offsetof(struct user_regs_struct, t3) },
|
|
{ "t4", offsetof(struct user_regs_struct, t4) },
|
|
{ "t5", offsetof(struct user_regs_struct, t5) },
|
|
{ "t6", offsetof(struct user_regs_struct, t6) },
|
|
};
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
|
|
if (strcmp(reg_name, reg_map[i].name) == 0)
|
|
return reg_map[i].pt_regs_off;
|
|
}
|
|
|
|
pr_warn("usdt: unrecognized register '%s'\n", reg_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg)
|
|
{
|
|
char *reg_name = NULL;
|
|
int arg_sz, len, reg_off;
|
|
long off;
|
|
|
|
if (sscanf(arg_str, " %d @ %ld ( %m[a-z0-9] ) %n", &arg_sz, &off, ®_name, &len) == 3) {
|
|
/* Memory dereference case, e.g., -8@-88(s0) */
|
|
arg->arg_type = USDT_ARG_REG_DEREF;
|
|
arg->val_off = off;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) {
|
|
/* Constant value case, e.g., 4@5 */
|
|
arg->arg_type = USDT_ARG_CONST;
|
|
arg->val_off = off;
|
|
arg->reg_off = 0;
|
|
} else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) {
|
|
/* Register read case, e.g., -8@a1 */
|
|
arg->arg_type = USDT_ARG_REG;
|
|
arg->val_off = 0;
|
|
reg_off = calc_pt_regs_off(reg_name);
|
|
free(reg_name);
|
|
if (reg_off < 0)
|
|
return reg_off;
|
|
arg->reg_off = reg_off;
|
|
} else {
|
|
pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
|
|
return -EINVAL;
|
|
}
|
|
|
|
arg->arg_signed = arg_sz < 0;
|
|
if (arg_sz < 0)
|
|
arg_sz = -arg_sz;
|
|
|
|
switch (arg_sz) {
|
|
case 1: case 2: case 4: case 8:
|
|
arg->arg_bitshift = 64 - arg_sz * 8;
|
|
break;
|
|
default:
|
|
pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
|
|
arg_num, arg_str, arg_sz);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
#else
|
|
|
|
static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg)
|
|
{
|
|
pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#endif
|