mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 18:14:07 +08:00
266cf658ef
Recruit a page flag to aid in cache management. The following extra flag is defined: (1) PG_fscache (PG_private_2) The marked page is backed by a local cache and is pinning resources in the cache driver. If PG_fscache is set, then things that checked for PG_private will now also check for that. This includes things like truncation and page invalidation. The function page_has_private() had been added to make the checks for both PG_private and PG_private_2 at the same time. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
1142 lines
26 KiB
C
1142 lines
26 KiB
C
/*
|
|
* Memory Migration functionality - linux/mm/migration.c
|
|
*
|
|
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
|
|
*
|
|
* Page migration was first developed in the context of the memory hotplug
|
|
* project. The main authors of the migration code are:
|
|
*
|
|
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
|
* Hirokazu Takahashi <taka@valinux.co.jp>
|
|
* Dave Hansen <haveblue@us.ibm.com>
|
|
* Christoph Lameter
|
|
*/
|
|
|
|
#include <linux/migrate.h>
|
|
#include <linux/module.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/security.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
|
|
|
|
/*
|
|
* migrate_prep() needs to be called before we start compiling a list of pages
|
|
* to be migrated using isolate_lru_page().
|
|
*/
|
|
int migrate_prep(void)
|
|
{
|
|
/*
|
|
* Clear the LRU lists so pages can be isolated.
|
|
* Note that pages may be moved off the LRU after we have
|
|
* drained them. Those pages will fail to migrate like other
|
|
* pages that may be busy.
|
|
*/
|
|
lru_add_drain_all();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add isolated pages on the list back to the LRU under page lock
|
|
* to avoid leaking evictable pages back onto unevictable list.
|
|
*
|
|
* returns the number of pages put back.
|
|
*/
|
|
int putback_lru_pages(struct list_head *l)
|
|
{
|
|
struct page *page;
|
|
struct page *page2;
|
|
int count = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, l, lru) {
|
|
list_del(&page->lru);
|
|
putback_lru_page(page);
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Restore a potential migration pte to a working pte entry
|
|
*/
|
|
static void remove_migration_pte(struct vm_area_struct *vma,
|
|
struct page *old, struct page *new)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
swp_entry_t entry;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
unsigned long addr = page_address_in_vma(new, vma);
|
|
|
|
if (addr == -EFAULT)
|
|
return;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_present(*pgd))
|
|
return;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_present(*pud))
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_present(*pmd))
|
|
return;
|
|
|
|
ptep = pte_offset_map(pmd, addr);
|
|
|
|
if (!is_swap_pte(*ptep)) {
|
|
pte_unmap(ptep);
|
|
return;
|
|
}
|
|
|
|
ptl = pte_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
|
|
if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
|
|
goto out;
|
|
|
|
get_page(new);
|
|
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
|
|
if (is_write_migration_entry(entry))
|
|
pte = pte_mkwrite(pte);
|
|
flush_cache_page(vma, addr, pte_pfn(pte));
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
|
|
if (PageAnon(new))
|
|
page_add_anon_rmap(new, vma, addr);
|
|
else
|
|
page_add_file_rmap(new);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, addr, pte);
|
|
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
/*
|
|
* Note that remove_file_migration_ptes will only work on regular mappings,
|
|
* Nonlinear mappings do not use migration entries.
|
|
*/
|
|
static void remove_file_migration_ptes(struct page *old, struct page *new)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct address_space *mapping = page_mapping(new);
|
|
struct prio_tree_iter iter;
|
|
pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
|
|
if (!mapping)
|
|
return;
|
|
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
|
|
remove_migration_pte(vma, old, new);
|
|
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
}
|
|
|
|
/*
|
|
* Must hold mmap_sem lock on at least one of the vmas containing
|
|
* the page so that the anon_vma cannot vanish.
|
|
*/
|
|
static void remove_anon_migration_ptes(struct page *old, struct page *new)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
struct vm_area_struct *vma;
|
|
unsigned long mapping;
|
|
|
|
mapping = (unsigned long)new->mapping;
|
|
|
|
if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
|
|
*/
|
|
anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
|
|
spin_lock(&anon_vma->lock);
|
|
|
|
list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
|
|
remove_migration_pte(vma, old, new);
|
|
|
|
spin_unlock(&anon_vma->lock);
|
|
}
|
|
|
|
/*
|
|
* Get rid of all migration entries and replace them by
|
|
* references to the indicated page.
|
|
*/
|
|
static void remove_migration_ptes(struct page *old, struct page *new)
|
|
{
|
|
if (PageAnon(new))
|
|
remove_anon_migration_ptes(old, new);
|
|
else
|
|
remove_file_migration_ptes(old, new);
|
|
}
|
|
|
|
/*
|
|
* Something used the pte of a page under migration. We need to
|
|
* get to the page and wait until migration is finished.
|
|
* When we return from this function the fault will be retried.
|
|
*
|
|
* This function is called from do_swap_page().
|
|
*/
|
|
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
swp_entry_t entry;
|
|
struct page *page;
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_migration_entry(entry))
|
|
goto out;
|
|
|
|
page = migration_entry_to_page(entry);
|
|
|
|
/*
|
|
* Once radix-tree replacement of page migration started, page_count
|
|
* *must* be zero. And, we don't want to call wait_on_page_locked()
|
|
* against a page without get_page().
|
|
* So, we use get_page_unless_zero(), here. Even failed, page fault
|
|
* will occur again.
|
|
*/
|
|
if (!get_page_unless_zero(page))
|
|
goto out;
|
|
pte_unmap_unlock(ptep, ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
return;
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
/*
|
|
* Replace the page in the mapping.
|
|
*
|
|
* The number of remaining references must be:
|
|
* 1 for anonymous pages without a mapping
|
|
* 2 for pages with a mapping
|
|
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
|
|
*/
|
|
static int migrate_page_move_mapping(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
int expected_count;
|
|
void **pslot;
|
|
|
|
if (!mapping) {
|
|
/* Anonymous page without mapping */
|
|
if (page_count(page) != 1)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
|
|
pslot = radix_tree_lookup_slot(&mapping->page_tree,
|
|
page_index(page));
|
|
|
|
expected_count = 2 + !!page_has_private(page);
|
|
if (page_count(page) != expected_count ||
|
|
(struct page *)radix_tree_deref_slot(pslot) != page) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!page_freeze_refs(page, expected_count)) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Now we know that no one else is looking at the page.
|
|
*/
|
|
get_page(newpage); /* add cache reference */
|
|
if (PageSwapCache(page)) {
|
|
SetPageSwapCache(newpage);
|
|
set_page_private(newpage, page_private(page));
|
|
}
|
|
|
|
radix_tree_replace_slot(pslot, newpage);
|
|
|
|
page_unfreeze_refs(page, expected_count);
|
|
/*
|
|
* Drop cache reference from old page.
|
|
* We know this isn't the last reference.
|
|
*/
|
|
__put_page(page);
|
|
|
|
/*
|
|
* If moved to a different zone then also account
|
|
* the page for that zone. Other VM counters will be
|
|
* taken care of when we establish references to the
|
|
* new page and drop references to the old page.
|
|
*
|
|
* Note that anonymous pages are accounted for
|
|
* via NR_FILE_PAGES and NR_ANON_PAGES if they
|
|
* are mapped to swap space.
|
|
*/
|
|
__dec_zone_page_state(page, NR_FILE_PAGES);
|
|
__inc_zone_page_state(newpage, NR_FILE_PAGES);
|
|
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the page to its new location
|
|
*/
|
|
static void migrate_page_copy(struct page *newpage, struct page *page)
|
|
{
|
|
int anon;
|
|
|
|
copy_highpage(newpage, page);
|
|
|
|
if (PageError(page))
|
|
SetPageError(newpage);
|
|
if (PageReferenced(page))
|
|
SetPageReferenced(newpage);
|
|
if (PageUptodate(page))
|
|
SetPageUptodate(newpage);
|
|
if (TestClearPageActive(page)) {
|
|
VM_BUG_ON(PageUnevictable(page));
|
|
SetPageActive(newpage);
|
|
} else
|
|
unevictable_migrate_page(newpage, page);
|
|
if (PageChecked(page))
|
|
SetPageChecked(newpage);
|
|
if (PageMappedToDisk(page))
|
|
SetPageMappedToDisk(newpage);
|
|
|
|
if (PageDirty(page)) {
|
|
clear_page_dirty_for_io(page);
|
|
/*
|
|
* Want to mark the page and the radix tree as dirty, and
|
|
* redo the accounting that clear_page_dirty_for_io undid,
|
|
* but we can't use set_page_dirty because that function
|
|
* is actually a signal that all of the page has become dirty.
|
|
* Wheras only part of our page may be dirty.
|
|
*/
|
|
__set_page_dirty_nobuffers(newpage);
|
|
}
|
|
|
|
mlock_migrate_page(newpage, page);
|
|
|
|
ClearPageSwapCache(page);
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
/* page->mapping contains a flag for PageAnon() */
|
|
anon = PageAnon(page);
|
|
page->mapping = NULL;
|
|
|
|
/*
|
|
* If any waiters have accumulated on the new page then
|
|
* wake them up.
|
|
*/
|
|
if (PageWriteback(newpage))
|
|
end_page_writeback(newpage);
|
|
}
|
|
|
|
/************************************************************
|
|
* Migration functions
|
|
***********************************************************/
|
|
|
|
/* Always fail migration. Used for mappings that are not movable */
|
|
int fail_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
return -EIO;
|
|
}
|
|
EXPORT_SYMBOL(fail_migrate_page);
|
|
|
|
/*
|
|
* Common logic to directly migrate a single page suitable for
|
|
* pages that do not use PagePrivate/PagePrivate2.
|
|
*
|
|
* Pages are locked upon entry and exit.
|
|
*/
|
|
int migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
int rc;
|
|
|
|
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
migrate_page_copy(newpage, page);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/*
|
|
* Migration function for pages with buffers. This function can only be used
|
|
* if the underlying filesystem guarantees that no other references to "page"
|
|
* exist.
|
|
*/
|
|
int buffer_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
int rc;
|
|
|
|
if (!page_has_buffers(page))
|
|
return migrate_page(mapping, newpage, page);
|
|
|
|
head = page_buffers(page);
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
bh = head;
|
|
do {
|
|
get_bh(bh);
|
|
lock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
ClearPagePrivate(page);
|
|
set_page_private(newpage, page_private(page));
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
|
|
bh = head;
|
|
do {
|
|
set_bh_page(bh, newpage, bh_offset(bh));
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
SetPagePrivate(newpage);
|
|
|
|
migrate_page_copy(newpage, page);
|
|
|
|
bh = head;
|
|
do {
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(buffer_migrate_page);
|
|
#endif
|
|
|
|
/*
|
|
* Writeback a page to clean the dirty state
|
|
*/
|
|
static int writeout(struct address_space *mapping, struct page *page)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.nr_to_write = 1,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
.nonblocking = 1,
|
|
.for_reclaim = 1
|
|
};
|
|
int rc;
|
|
|
|
if (!mapping->a_ops->writepage)
|
|
/* No write method for the address space */
|
|
return -EINVAL;
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
/* Someone else already triggered a write */
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* A dirty page may imply that the underlying filesystem has
|
|
* the page on some queue. So the page must be clean for
|
|
* migration. Writeout may mean we loose the lock and the
|
|
* page state is no longer what we checked for earlier.
|
|
* At this point we know that the migration attempt cannot
|
|
* be successful.
|
|
*/
|
|
remove_migration_ptes(page, page);
|
|
|
|
rc = mapping->a_ops->writepage(page, &wbc);
|
|
|
|
if (rc != AOP_WRITEPAGE_ACTIVATE)
|
|
/* unlocked. Relock */
|
|
lock_page(page);
|
|
|
|
return (rc < 0) ? -EIO : -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Default handling if a filesystem does not provide a migration function.
|
|
*/
|
|
static int fallback_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
if (PageDirty(page))
|
|
return writeout(mapping, page);
|
|
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
|
|
return migrate_page(mapping, newpage, page);
|
|
}
|
|
|
|
/*
|
|
* Move a page to a newly allocated page
|
|
* The page is locked and all ptes have been successfully removed.
|
|
*
|
|
* The new page will have replaced the old page if this function
|
|
* is successful.
|
|
*
|
|
* Return value:
|
|
* < 0 - error code
|
|
* == 0 - success
|
|
*/
|
|
static int move_to_new_page(struct page *newpage, struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
int rc;
|
|
|
|
/*
|
|
* Block others from accessing the page when we get around to
|
|
* establishing additional references. We are the only one
|
|
* holding a reference to the new page at this point.
|
|
*/
|
|
if (!trylock_page(newpage))
|
|
BUG();
|
|
|
|
/* Prepare mapping for the new page.*/
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
if (PageSwapBacked(page))
|
|
SetPageSwapBacked(newpage);
|
|
|
|
mapping = page_mapping(page);
|
|
if (!mapping)
|
|
rc = migrate_page(mapping, newpage, page);
|
|
else if (mapping->a_ops->migratepage)
|
|
/*
|
|
* Most pages have a mapping and most filesystems
|
|
* should provide a migration function. Anonymous
|
|
* pages are part of swap space which also has its
|
|
* own migration function. This is the most common
|
|
* path for page migration.
|
|
*/
|
|
rc = mapping->a_ops->migratepage(mapping,
|
|
newpage, page);
|
|
else
|
|
rc = fallback_migrate_page(mapping, newpage, page);
|
|
|
|
if (!rc) {
|
|
remove_migration_ptes(page, newpage);
|
|
} else
|
|
newpage->mapping = NULL;
|
|
|
|
unlock_page(newpage);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Obtain the lock on page, remove all ptes and migrate the page
|
|
* to the newly allocated page in newpage.
|
|
*/
|
|
static int unmap_and_move(new_page_t get_new_page, unsigned long private,
|
|
struct page *page, int force)
|
|
{
|
|
int rc = 0;
|
|
int *result = NULL;
|
|
struct page *newpage = get_new_page(page, private, &result);
|
|
int rcu_locked = 0;
|
|
int charge = 0;
|
|
struct mem_cgroup *mem;
|
|
|
|
if (!newpage)
|
|
return -ENOMEM;
|
|
|
|
if (page_count(page) == 1) {
|
|
/* page was freed from under us. So we are done. */
|
|
goto move_newpage;
|
|
}
|
|
|
|
/* prepare cgroup just returns 0 or -ENOMEM */
|
|
rc = -EAGAIN;
|
|
|
|
if (!trylock_page(page)) {
|
|
if (!force)
|
|
goto move_newpage;
|
|
lock_page(page);
|
|
}
|
|
|
|
/* charge against new page */
|
|
charge = mem_cgroup_prepare_migration(page, &mem);
|
|
if (charge == -ENOMEM) {
|
|
rc = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
BUG_ON(charge);
|
|
|
|
if (PageWriteback(page)) {
|
|
if (!force)
|
|
goto uncharge;
|
|
wait_on_page_writeback(page);
|
|
}
|
|
/*
|
|
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
|
|
* we cannot notice that anon_vma is freed while we migrates a page.
|
|
* This rcu_read_lock() delays freeing anon_vma pointer until the end
|
|
* of migration. File cache pages are no problem because of page_lock()
|
|
* File Caches may use write_page() or lock_page() in migration, then,
|
|
* just care Anon page here.
|
|
*/
|
|
if (PageAnon(page)) {
|
|
rcu_read_lock();
|
|
rcu_locked = 1;
|
|
}
|
|
|
|
/*
|
|
* Corner case handling:
|
|
* 1. When a new swap-cache page is read into, it is added to the LRU
|
|
* and treated as swapcache but it has no rmap yet.
|
|
* Calling try_to_unmap() against a page->mapping==NULL page will
|
|
* trigger a BUG. So handle it here.
|
|
* 2. An orphaned page (see truncate_complete_page) might have
|
|
* fs-private metadata. The page can be picked up due to memory
|
|
* offlining. Everywhere else except page reclaim, the page is
|
|
* invisible to the vm, so the page can not be migrated. So try to
|
|
* free the metadata, so the page can be freed.
|
|
*/
|
|
if (!page->mapping) {
|
|
if (!PageAnon(page) && page_has_private(page)) {
|
|
/*
|
|
* Go direct to try_to_free_buffers() here because
|
|
* a) that's what try_to_release_page() would do anyway
|
|
* b) we may be under rcu_read_lock() here, so we can't
|
|
* use GFP_KERNEL which is what try_to_release_page()
|
|
* needs to be effective.
|
|
*/
|
|
try_to_free_buffers(page);
|
|
}
|
|
goto rcu_unlock;
|
|
}
|
|
|
|
/* Establish migration ptes or remove ptes */
|
|
try_to_unmap(page, 1);
|
|
|
|
if (!page_mapped(page))
|
|
rc = move_to_new_page(newpage, page);
|
|
|
|
if (rc)
|
|
remove_migration_ptes(page, page);
|
|
rcu_unlock:
|
|
if (rcu_locked)
|
|
rcu_read_unlock();
|
|
uncharge:
|
|
if (!charge)
|
|
mem_cgroup_end_migration(mem, page, newpage);
|
|
unlock:
|
|
unlock_page(page);
|
|
|
|
if (rc != -EAGAIN) {
|
|
/*
|
|
* A page that has been migrated has all references
|
|
* removed and will be freed. A page that has not been
|
|
* migrated will have kepts its references and be
|
|
* restored.
|
|
*/
|
|
list_del(&page->lru);
|
|
putback_lru_page(page);
|
|
}
|
|
|
|
move_newpage:
|
|
|
|
/*
|
|
* Move the new page to the LRU. If migration was not successful
|
|
* then this will free the page.
|
|
*/
|
|
putback_lru_page(newpage);
|
|
|
|
if (result) {
|
|
if (rc)
|
|
*result = rc;
|
|
else
|
|
*result = page_to_nid(newpage);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* migrate_pages
|
|
*
|
|
* The function takes one list of pages to migrate and a function
|
|
* that determines from the page to be migrated and the private data
|
|
* the target of the move and allocates the page.
|
|
*
|
|
* The function returns after 10 attempts or if no pages
|
|
* are movable anymore because to has become empty
|
|
* or no retryable pages exist anymore. All pages will be
|
|
* returned to the LRU or freed.
|
|
*
|
|
* Return: Number of pages not migrated or error code.
|
|
*/
|
|
int migrate_pages(struct list_head *from,
|
|
new_page_t get_new_page, unsigned long private)
|
|
{
|
|
int retry = 1;
|
|
int nr_failed = 0;
|
|
int pass = 0;
|
|
struct page *page;
|
|
struct page *page2;
|
|
int swapwrite = current->flags & PF_SWAPWRITE;
|
|
int rc;
|
|
|
|
if (!swapwrite)
|
|
current->flags |= PF_SWAPWRITE;
|
|
|
|
for(pass = 0; pass < 10 && retry; pass++) {
|
|
retry = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, from, lru) {
|
|
cond_resched();
|
|
|
|
rc = unmap_and_move(get_new_page, private,
|
|
page, pass > 2);
|
|
|
|
switch(rc) {
|
|
case -ENOMEM:
|
|
goto out;
|
|
case -EAGAIN:
|
|
retry++;
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
/* Permanent failure */
|
|
nr_failed++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rc = 0;
|
|
out:
|
|
if (!swapwrite)
|
|
current->flags &= ~PF_SWAPWRITE;
|
|
|
|
putback_lru_pages(from);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
return nr_failed + retry;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Move a list of individual pages
|
|
*/
|
|
struct page_to_node {
|
|
unsigned long addr;
|
|
struct page *page;
|
|
int node;
|
|
int status;
|
|
};
|
|
|
|
static struct page *new_page_node(struct page *p, unsigned long private,
|
|
int **result)
|
|
{
|
|
struct page_to_node *pm = (struct page_to_node *)private;
|
|
|
|
while (pm->node != MAX_NUMNODES && pm->page != p)
|
|
pm++;
|
|
|
|
if (pm->node == MAX_NUMNODES)
|
|
return NULL;
|
|
|
|
*result = &pm->status;
|
|
|
|
return alloc_pages_node(pm->node,
|
|
GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
|
|
}
|
|
|
|
/*
|
|
* Move a set of pages as indicated in the pm array. The addr
|
|
* field must be set to the virtual address of the page to be moved
|
|
* and the node number must contain a valid target node.
|
|
* The pm array ends with node = MAX_NUMNODES.
|
|
*/
|
|
static int do_move_page_to_node_array(struct mm_struct *mm,
|
|
struct page_to_node *pm,
|
|
int migrate_all)
|
|
{
|
|
int err;
|
|
struct page_to_node *pp;
|
|
LIST_HEAD(pagelist);
|
|
|
|
migrate_prep();
|
|
down_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Build a list of pages to migrate
|
|
*/
|
|
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
|
|
err = -EFAULT;
|
|
vma = find_vma(mm, pp->addr);
|
|
if (!vma || !vma_migratable(vma))
|
|
goto set_status;
|
|
|
|
page = follow_page(vma, pp->addr, FOLL_GET);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = -ENOENT;
|
|
if (!page)
|
|
goto set_status;
|
|
|
|
if (PageReserved(page)) /* Check for zero page */
|
|
goto put_and_set;
|
|
|
|
pp->page = page;
|
|
err = page_to_nid(page);
|
|
|
|
if (err == pp->node)
|
|
/*
|
|
* Node already in the right place
|
|
*/
|
|
goto put_and_set;
|
|
|
|
err = -EACCES;
|
|
if (page_mapcount(page) > 1 &&
|
|
!migrate_all)
|
|
goto put_and_set;
|
|
|
|
err = isolate_lru_page(page);
|
|
if (!err)
|
|
list_add_tail(&page->lru, &pagelist);
|
|
put_and_set:
|
|
/*
|
|
* Either remove the duplicate refcount from
|
|
* isolate_lru_page() or drop the page ref if it was
|
|
* not isolated.
|
|
*/
|
|
put_page(page);
|
|
set_status:
|
|
pp->status = err;
|
|
}
|
|
|
|
err = 0;
|
|
if (!list_empty(&pagelist))
|
|
err = migrate_pages(&pagelist, new_page_node,
|
|
(unsigned long)pm);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Migrate an array of page address onto an array of nodes and fill
|
|
* the corresponding array of status.
|
|
*/
|
|
static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
|
|
unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
const int __user *nodes,
|
|
int __user *status, int flags)
|
|
{
|
|
struct page_to_node *pm;
|
|
nodemask_t task_nodes;
|
|
unsigned long chunk_nr_pages;
|
|
unsigned long chunk_start;
|
|
int err;
|
|
|
|
task_nodes = cpuset_mems_allowed(task);
|
|
|
|
err = -ENOMEM;
|
|
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
|
|
if (!pm)
|
|
goto out;
|
|
/*
|
|
* Store a chunk of page_to_node array in a page,
|
|
* but keep the last one as a marker
|
|
*/
|
|
chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
|
|
|
|
for (chunk_start = 0;
|
|
chunk_start < nr_pages;
|
|
chunk_start += chunk_nr_pages) {
|
|
int j;
|
|
|
|
if (chunk_start + chunk_nr_pages > nr_pages)
|
|
chunk_nr_pages = nr_pages - chunk_start;
|
|
|
|
/* fill the chunk pm with addrs and nodes from user-space */
|
|
for (j = 0; j < chunk_nr_pages; j++) {
|
|
const void __user *p;
|
|
int node;
|
|
|
|
err = -EFAULT;
|
|
if (get_user(p, pages + j + chunk_start))
|
|
goto out_pm;
|
|
pm[j].addr = (unsigned long) p;
|
|
|
|
if (get_user(node, nodes + j + chunk_start))
|
|
goto out_pm;
|
|
|
|
err = -ENODEV;
|
|
if (!node_state(node, N_HIGH_MEMORY))
|
|
goto out_pm;
|
|
|
|
err = -EACCES;
|
|
if (!node_isset(node, task_nodes))
|
|
goto out_pm;
|
|
|
|
pm[j].node = node;
|
|
}
|
|
|
|
/* End marker for this chunk */
|
|
pm[chunk_nr_pages].node = MAX_NUMNODES;
|
|
|
|
/* Migrate this chunk */
|
|
err = do_move_page_to_node_array(mm, pm,
|
|
flags & MPOL_MF_MOVE_ALL);
|
|
if (err < 0)
|
|
goto out_pm;
|
|
|
|
/* Return status information */
|
|
for (j = 0; j < chunk_nr_pages; j++)
|
|
if (put_user(pm[j].status, status + j + chunk_start)) {
|
|
err = -EFAULT;
|
|
goto out_pm;
|
|
}
|
|
}
|
|
err = 0;
|
|
|
|
out_pm:
|
|
free_page((unsigned long)pm);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of an array of pages and store it in an array of status.
|
|
*/
|
|
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user **pages, int *status)
|
|
{
|
|
unsigned long i;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long addr = (unsigned long)(*pages);
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
int err = -EFAULT;
|
|
|
|
vma = find_vma(mm, addr);
|
|
if (!vma)
|
|
goto set_status;
|
|
|
|
page = follow_page(vma, addr, 0);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = -ENOENT;
|
|
/* Use PageReserved to check for zero page */
|
|
if (!page || PageReserved(page))
|
|
goto set_status;
|
|
|
|
err = page_to_nid(page);
|
|
set_status:
|
|
*status = err;
|
|
|
|
pages++;
|
|
status++;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of a user array of pages and store it in
|
|
* a user array of status.
|
|
*/
|
|
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
int __user *status)
|
|
{
|
|
#define DO_PAGES_STAT_CHUNK_NR 16
|
|
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
|
|
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
|
|
unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
|
|
int err;
|
|
|
|
for (i = 0; i < nr_pages; i += chunk_nr) {
|
|
if (chunk_nr + i > nr_pages)
|
|
chunk_nr = nr_pages - i;
|
|
|
|
err = copy_from_user(chunk_pages, &pages[i],
|
|
chunk_nr * sizeof(*chunk_pages));
|
|
if (err) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
|
|
|
|
err = copy_to_user(&status[i], chunk_status,
|
|
chunk_nr * sizeof(*chunk_status));
|
|
if (err) {
|
|
err = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Move a list of pages in the address space of the currently executing
|
|
* process.
|
|
*/
|
|
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
|
|
const void __user * __user *, pages,
|
|
const int __user *, nodes,
|
|
int __user *, status, int, flags)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
int err;
|
|
|
|
/* Check flags */
|
|
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
/* Find the mm_struct */
|
|
read_lock(&tasklist_lock);
|
|
task = pid ? find_task_by_vpid(pid) : current;
|
|
if (!task) {
|
|
read_unlock(&tasklist_lock);
|
|
return -ESRCH;
|
|
}
|
|
mm = get_task_mm(task);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. The right exists if the process has administrative
|
|
* capabilities, superuser privileges or the same
|
|
* userid as the target process.
|
|
*/
|
|
rcu_read_lock();
|
|
tcred = __task_cred(task);
|
|
if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
|
|
cred->uid != tcred->suid && cred->uid != tcred->uid &&
|
|
!capable(CAP_SYS_NICE)) {
|
|
rcu_read_unlock();
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
err = security_task_movememory(task);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (nodes) {
|
|
err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
|
|
flags);
|
|
} else {
|
|
err = do_pages_stat(mm, nr_pages, pages, status);
|
|
}
|
|
|
|
out:
|
|
mmput(mm);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Call migration functions in the vma_ops that may prepare
|
|
* memory in a vm for migration. migration functions may perform
|
|
* the migration for vmas that do not have an underlying page struct.
|
|
*/
|
|
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
|
|
const nodemask_t *from, unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int err = 0;
|
|
|
|
for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
|
|
if (vma->vm_ops && vma->vm_ops->migrate) {
|
|
err = vma->vm_ops->migrate(vma, to, from, flags);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
#endif
|