linux/net/xfrm/xfrm_state.c
Kees Cook e99e88a9d2 treewide: setup_timer() -> timer_setup()
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.

Casting from unsigned long:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, ptr);

and forced object casts:

    void my_callback(struct something *ptr)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);

become:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

Direct function assignments:

    void my_callback(unsigned long data)
    {
        struct something *ptr = (struct something *)data;
    ...
    }
    ...
    ptr->my_timer.function = my_callback;

have a temporary cast added, along with converting the args:

    void my_callback(struct timer_list *t)
    {
        struct something *ptr = from_timer(ptr, t, my_timer);
    ...
    }
    ...
    ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;

And finally, callbacks without a data assignment:

    void my_callback(unsigned long data)
    {
    ...
    }
    ...
    setup_timer(&ptr->my_timer, my_callback, 0);

have their argument renamed to verify they're unused during conversion:

    void my_callback(struct timer_list *unused)
    {
    ...
    }
    ...
    timer_setup(&ptr->my_timer, my_callback, 0);

The conversion is done with the following Coccinelle script:

spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/timer_setup.cocci

@fix_address_of@
expression e;
@@

 setup_timer(
-&(e)
+&e
 , ...)

// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@

(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)

@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@

(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
 _E->_timer@_stl.function = _callback;
|
 _E->_timer@_stl.function = &_callback;
|
 _E->_timer@_stl.function = (_cast_func)_callback;
|
 _E->_timer@_stl.function = (_cast_func)&_callback;
|
 _E._timer@_stl.function = _callback;
|
 _E._timer@_stl.function = &_callback;
|
 _E._timer@_stl.function = (_cast_func)_callback;
|
 _E._timer@_stl.function = (_cast_func)&_callback;
)

// callback(unsigned long arg)
@change_callback_handle_cast
 depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
(
	... when != _origarg
	_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
|
	... when != _origarg
	_handletype *_handle;
	... when != _handle
	_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
	... when != _origarg
)
 }

// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
 depends on change_timer_function_usage &&
                     !change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *t
 )
 {
+	_handletype *_origarg = from_timer(_origarg, t, _timer);
+
	... when != _origarg
-	(_handletype *)_origarg
+	_origarg
	... when != _origarg
 }

// Avoid already converted callbacks.
@match_callback_converted
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
	    !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@

 void _callback(struct timer_list *t)
 { ... }

// callback(struct something *handle)
@change_callback_handle_arg
 depends on change_timer_function_usage &&
	    !match_callback_converted &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@

 void _callback(
-_handletype *_handle
+struct timer_list *t
 )
 {
+	_handletype *_handle = from_timer(_handle, t, _timer);
	...
 }

// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
 depends on change_timer_function_usage &&
	    change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@

 void _callback(struct timer_list *t)
 {
-	_handletype *_handle = from_timer(_handle, t, _timer);
 }

// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
 depends on change_timer_function_usage &&
            !change_callback_handle_cast &&
            !change_callback_handle_cast_no_arg &&
	    !change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@

(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)

// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@

(
 _E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
 ;
|
 _E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
 ;
)

// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
 depends on change_timer_function_usage &&
            (change_callback_handle_cast ||
             change_callback_handle_cast_no_arg ||
             change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@

 _callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
 )

// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@

(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)

@change_callback_unused_data
 depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@

 void _callback(
-_origtype _origarg
+struct timer_list *unused
 )
 {
	... when != _origarg
 }

Signed-off-by: Kees Cook <keescook@chromium.org>
2017-11-21 15:57:07 -08:00

2494 lines
59 KiB
C

/*
* xfrm_state.c
*
* Changes:
* Mitsuru KANDA @USAGI
* Kazunori MIYAZAWA @USAGI
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
* IPv6 support
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific functions
* Derek Atkins <derek@ihtfp.com>
* Add UDP Encapsulation
*
*/
#include <linux/workqueue.h>
#include <net/xfrm.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/audit.h>
#include <linux/uaccess.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include "xfrm_hash.h"
#define xfrm_state_deref_prot(table, net) \
rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))
static void xfrm_state_gc_task(struct work_struct *work);
/* Each xfrm_state may be linked to two tables:
1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
2. Hash table by (daddr,family,reqid) to find what SAs exist for given
destination/tunnel endpoint. (output)
*/
static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
static __read_mostly seqcount_t xfrm_state_hash_generation = SEQCNT_ZERO(xfrm_state_hash_generation);
static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
static HLIST_HEAD(xfrm_state_gc_list);
static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
{
return refcount_inc_not_zero(&x->refcnt);
}
static inline unsigned int xfrm_dst_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u32 reqid,
unsigned short family)
{
return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
}
static inline unsigned int xfrm_src_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
unsigned short family)
{
return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
}
static inline unsigned int
xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
__be32 spi, u8 proto, unsigned short family)
{
return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
}
static void xfrm_hash_transfer(struct hlist_head *list,
struct hlist_head *ndsttable,
struct hlist_head *nsrctable,
struct hlist_head *nspitable,
unsigned int nhashmask)
{
struct hlist_node *tmp;
struct xfrm_state *x;
hlist_for_each_entry_safe(x, tmp, list, bydst) {
unsigned int h;
h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family,
nhashmask);
hlist_add_head_rcu(&x->bydst, ndsttable + h);
h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
x->props.family,
nhashmask);
hlist_add_head_rcu(&x->bysrc, nsrctable + h);
if (x->id.spi) {
h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
x->id.proto, x->props.family,
nhashmask);
hlist_add_head_rcu(&x->byspi, nspitable + h);
}
}
}
static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
{
return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
}
static void xfrm_hash_resize(struct work_struct *work)
{
struct net *net = container_of(work, struct net, xfrm.state_hash_work);
struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
unsigned long nsize, osize;
unsigned int nhashmask, ohashmask;
int i;
nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
ndst = xfrm_hash_alloc(nsize);
if (!ndst)
return;
nsrc = xfrm_hash_alloc(nsize);
if (!nsrc) {
xfrm_hash_free(ndst, nsize);
return;
}
nspi = xfrm_hash_alloc(nsize);
if (!nspi) {
xfrm_hash_free(ndst, nsize);
xfrm_hash_free(nsrc, nsize);
return;
}
spin_lock_bh(&net->xfrm.xfrm_state_lock);
write_seqcount_begin(&xfrm_state_hash_generation);
nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
for (i = net->xfrm.state_hmask; i >= 0; i--)
xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nhashmask);
osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
ohashmask = net->xfrm.state_hmask;
rcu_assign_pointer(net->xfrm.state_bydst, ndst);
rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
rcu_assign_pointer(net->xfrm.state_byspi, nspi);
net->xfrm.state_hmask = nhashmask;
write_seqcount_end(&xfrm_state_hash_generation);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
osize = (ohashmask + 1) * sizeof(struct hlist_head);
synchronize_rcu();
xfrm_hash_free(odst, osize);
xfrm_hash_free(osrc, osize);
xfrm_hash_free(ospi, osize);
}
static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];
static DEFINE_SPINLOCK(xfrm_state_gc_lock);
int __xfrm_state_delete(struct xfrm_state *x);
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
bool km_is_alive(const struct km_event *c);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
static DEFINE_SPINLOCK(xfrm_type_lock);
int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
const struct xfrm_type **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_map;
spin_lock_bh(&xfrm_type_lock);
if (likely(typemap[type->proto] == NULL))
typemap[type->proto] = type;
else
err = -EEXIST;
spin_unlock_bh(&xfrm_type_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_register_type);
int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
const struct xfrm_type **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_map;
spin_lock_bh(&xfrm_type_lock);
if (unlikely(typemap[type->proto] != type))
err = -ENOENT;
else
typemap[type->proto] = NULL;
spin_unlock_bh(&xfrm_type_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_unregister_type);
static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
{
struct xfrm_state_afinfo *afinfo;
const struct xfrm_type **typemap;
const struct xfrm_type *type;
int modload_attempted = 0;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
typemap = afinfo->type_map;
type = READ_ONCE(typemap[proto]);
if (unlikely(type && !try_module_get(type->owner)))
type = NULL;
rcu_read_unlock();
if (!type && !modload_attempted) {
request_module("xfrm-type-%d-%d", family, proto);
modload_attempted = 1;
goto retry;
}
return type;
}
static void xfrm_put_type(const struct xfrm_type *type)
{
module_put(type->owner);
}
static DEFINE_SPINLOCK(xfrm_type_offload_lock);
int xfrm_register_type_offload(const struct xfrm_type_offload *type,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
const struct xfrm_type_offload **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_offload_map;
spin_lock_bh(&xfrm_type_offload_lock);
if (likely(typemap[type->proto] == NULL))
typemap[type->proto] = type;
else
err = -EEXIST;
spin_unlock_bh(&xfrm_type_offload_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_register_type_offload);
int xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
const struct xfrm_type_offload **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_offload_map;
spin_lock_bh(&xfrm_type_offload_lock);
if (unlikely(typemap[type->proto] != type))
err = -ENOENT;
else
typemap[type->proto] = NULL;
spin_unlock_bh(&xfrm_type_offload_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_unregister_type_offload);
static const struct xfrm_type_offload *
xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
{
struct xfrm_state_afinfo *afinfo;
const struct xfrm_type_offload **typemap;
const struct xfrm_type_offload *type;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
typemap = afinfo->type_offload_map;
type = typemap[proto];
if ((type && !try_module_get(type->owner)))
type = NULL;
if (!type && try_load) {
request_module("xfrm-offload-%d-%d", family, proto);
try_load = 0;
goto retry;
}
rcu_read_unlock();
return type;
}
static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
{
module_put(type->owner);
}
static DEFINE_SPINLOCK(xfrm_mode_lock);
int xfrm_register_mode(struct xfrm_mode *mode, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode **modemap;
int err;
if (unlikely(mode->encap >= XFRM_MODE_MAX))
return -EINVAL;
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
err = -EEXIST;
modemap = afinfo->mode_map;
spin_lock_bh(&xfrm_mode_lock);
if (modemap[mode->encap])
goto out;
err = -ENOENT;
if (!try_module_get(afinfo->owner))
goto out;
mode->afinfo = afinfo;
modemap[mode->encap] = mode;
err = 0;
out:
spin_unlock_bh(&xfrm_mode_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_register_mode);
int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode **modemap;
int err;
if (unlikely(mode->encap >= XFRM_MODE_MAX))
return -EINVAL;
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
err = -ENOENT;
modemap = afinfo->mode_map;
spin_lock_bh(&xfrm_mode_lock);
if (likely(modemap[mode->encap] == mode)) {
modemap[mode->encap] = NULL;
module_put(mode->afinfo->owner);
err = 0;
}
spin_unlock_bh(&xfrm_mode_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_unregister_mode);
static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode *mode;
int modload_attempted = 0;
if (unlikely(encap >= XFRM_MODE_MAX))
return NULL;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
mode = READ_ONCE(afinfo->mode_map[encap]);
if (unlikely(mode && !try_module_get(mode->owner)))
mode = NULL;
rcu_read_unlock();
if (!mode && !modload_attempted) {
request_module("xfrm-mode-%d-%d", family, encap);
modload_attempted = 1;
goto retry;
}
return mode;
}
static void xfrm_put_mode(struct xfrm_mode *mode)
{
module_put(mode->owner);
}
static void xfrm_state_gc_destroy(struct xfrm_state *x)
{
tasklet_hrtimer_cancel(&x->mtimer);
del_timer_sync(&x->rtimer);
kfree(x->aead);
kfree(x->aalg);
kfree(x->ealg);
kfree(x->calg);
kfree(x->encap);
kfree(x->coaddr);
kfree(x->replay_esn);
kfree(x->preplay_esn);
if (x->inner_mode)
xfrm_put_mode(x->inner_mode);
if (x->inner_mode_iaf)
xfrm_put_mode(x->inner_mode_iaf);
if (x->outer_mode)
xfrm_put_mode(x->outer_mode);
if (x->type_offload)
xfrm_put_type_offload(x->type_offload);
if (x->type) {
x->type->destructor(x);
xfrm_put_type(x->type);
}
xfrm_dev_state_free(x);
security_xfrm_state_free(x);
kfree(x);
}
static void xfrm_state_gc_task(struct work_struct *work)
{
struct xfrm_state *x;
struct hlist_node *tmp;
struct hlist_head gc_list;
spin_lock_bh(&xfrm_state_gc_lock);
hlist_move_list(&xfrm_state_gc_list, &gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
synchronize_rcu();
hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
xfrm_state_gc_destroy(x);
}
static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
{
struct tasklet_hrtimer *thr = container_of(me, struct tasklet_hrtimer, timer);
struct xfrm_state *x = container_of(thr, struct xfrm_state, mtimer);
unsigned long now = get_seconds();
long next = LONG_MAX;
int warn = 0;
int err = 0;
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto out;
if (x->km.state == XFRM_STATE_EXPIRED)
goto expired;
if (x->lft.hard_add_expires_seconds) {
long tmo = x->lft.hard_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
if (x->xflags & XFRM_SOFT_EXPIRE) {
/* enter hard expire without soft expire first?!
* setting a new date could trigger this.
* workaround: fix x->curflt.add_time by below:
*/
x->curlft.add_time = now - x->saved_tmo - 1;
tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
} else
goto expired;
}
if (tmo < next)
next = tmo;
}
if (x->lft.hard_use_expires_seconds) {
long tmo = x->lft.hard_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
goto expired;
if (tmo < next)
next = tmo;
}
if (x->km.dying)
goto resched;
if (x->lft.soft_add_expires_seconds) {
long tmo = x->lft.soft_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
warn = 1;
x->xflags &= ~XFRM_SOFT_EXPIRE;
} else if (tmo < next) {
next = tmo;
x->xflags |= XFRM_SOFT_EXPIRE;
x->saved_tmo = tmo;
}
}
if (x->lft.soft_use_expires_seconds) {
long tmo = x->lft.soft_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
warn = 1;
else if (tmo < next)
next = tmo;
}
x->km.dying = warn;
if (warn)
km_state_expired(x, 0, 0);
resched:
if (next != LONG_MAX) {
tasklet_hrtimer_start(&x->mtimer, ktime_set(next, 0), HRTIMER_MODE_REL);
}
goto out;
expired:
if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
x->km.state = XFRM_STATE_EXPIRED;
err = __xfrm_state_delete(x);
if (!err)
km_state_expired(x, 1, 0);
xfrm_audit_state_delete(x, err ? 0 : 1, true);
out:
spin_unlock(&x->lock);
return HRTIMER_NORESTART;
}
static void xfrm_replay_timer_handler(struct timer_list *t);
struct xfrm_state *xfrm_state_alloc(struct net *net)
{
struct xfrm_state *x;
x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC);
if (x) {
write_pnet(&x->xs_net, net);
refcount_set(&x->refcnt, 1);
atomic_set(&x->tunnel_users, 0);
INIT_LIST_HEAD(&x->km.all);
INIT_HLIST_NODE(&x->bydst);
INIT_HLIST_NODE(&x->bysrc);
INIT_HLIST_NODE(&x->byspi);
tasklet_hrtimer_init(&x->mtimer, xfrm_timer_handler,
CLOCK_BOOTTIME, HRTIMER_MODE_ABS);
timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
x->curlft.add_time = get_seconds();
x->lft.soft_byte_limit = XFRM_INF;
x->lft.soft_packet_limit = XFRM_INF;
x->lft.hard_byte_limit = XFRM_INF;
x->lft.hard_packet_limit = XFRM_INF;
x->replay_maxage = 0;
x->replay_maxdiff = 0;
x->inner_mode = NULL;
x->inner_mode_iaf = NULL;
spin_lock_init(&x->lock);
}
return x;
}
EXPORT_SYMBOL(xfrm_state_alloc);
void __xfrm_state_destroy(struct xfrm_state *x)
{
WARN_ON(x->km.state != XFRM_STATE_DEAD);
spin_lock_bh(&xfrm_state_gc_lock);
hlist_add_head(&x->gclist, &xfrm_state_gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
schedule_work(&xfrm_state_gc_work);
}
EXPORT_SYMBOL(__xfrm_state_destroy);
int __xfrm_state_delete(struct xfrm_state *x)
{
struct net *net = xs_net(x);
int err = -ESRCH;
if (x->km.state != XFRM_STATE_DEAD) {
x->km.state = XFRM_STATE_DEAD;
spin_lock(&net->xfrm.xfrm_state_lock);
list_del(&x->km.all);
hlist_del_rcu(&x->bydst);
hlist_del_rcu(&x->bysrc);
if (x->id.spi)
hlist_del_rcu(&x->byspi);
net->xfrm.state_num--;
spin_unlock(&net->xfrm.xfrm_state_lock);
xfrm_dev_state_delete(x);
/* All xfrm_state objects are created by xfrm_state_alloc.
* The xfrm_state_alloc call gives a reference, and that
* is what we are dropping here.
*/
xfrm_state_put(x);
err = 0;
}
return err;
}
EXPORT_SYMBOL(__xfrm_state_delete);
int xfrm_state_delete(struct xfrm_state *x)
{
int err;
spin_lock_bh(&x->lock);
err = __xfrm_state_delete(x);
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_delete);
#ifdef CONFIG_SECURITY_NETWORK_XFRM
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
int i, err = 0;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (xfrm_id_proto_match(x->id.proto, proto) &&
(err = security_xfrm_state_delete(x)) != 0) {
xfrm_audit_state_delete(x, 0, task_valid);
return err;
}
}
}
return err;
}
static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
int i, err = 0;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
struct xfrm_state_offload *xso;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
xso = &x->xso;
if (xso->dev == dev &&
(err = security_xfrm_state_delete(x)) != 0) {
xfrm_audit_state_delete(x, 0, task_valid);
return err;
}
}
}
return err;
}
#else
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
return 0;
}
static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
return 0;
}
#endif
int xfrm_state_flush(struct net *net, u8 proto, bool task_valid)
{
int i, err = 0, cnt = 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_flush_secctx_check(net, proto, task_valid);
if (err)
goto out;
err = -ESRCH;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
restart:
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (!xfrm_state_kern(x) &&
xfrm_id_proto_match(x->id.proto, proto)) {
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_delete(x);
xfrm_audit_state_delete(x, err ? 0 : 1,
task_valid);
xfrm_state_put(x);
if (!err)
cnt++;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
goto restart;
}
}
}
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (cnt) {
err = 0;
xfrm_policy_cache_flush();
}
return err;
}
EXPORT_SYMBOL(xfrm_state_flush);
int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
{
int i, err = 0, cnt = 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
if (err)
goto out;
err = -ESRCH;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
struct xfrm_state_offload *xso;
restart:
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
xso = &x->xso;
if (!xfrm_state_kern(x) && xso->dev == dev) {
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = xfrm_state_delete(x);
xfrm_audit_state_delete(x, err ? 0 : 1,
task_valid);
xfrm_state_put(x);
if (!err)
cnt++;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
goto restart;
}
}
}
if (cnt)
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return err;
}
EXPORT_SYMBOL(xfrm_dev_state_flush);
void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
{
spin_lock_bh(&net->xfrm.xfrm_state_lock);
si->sadcnt = net->xfrm.state_num;
si->sadhcnt = net->xfrm.state_hmask;
si->sadhmcnt = xfrm_state_hashmax;
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_sad_getinfo);
static void
xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
const struct xfrm_tmpl *tmpl,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_afinfo_get_rcu(family);
if (!afinfo)
return;
afinfo->init_tempsel(&x->sel, fl);
if (family != tmpl->encap_family) {
afinfo = xfrm_state_afinfo_get_rcu(tmpl->encap_family);
if (!afinfo)
return;
}
afinfo->init_temprop(x, tmpl, daddr, saddr);
}
static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
const xfrm_address_t *daddr,
__be32 spi, u8 proto,
unsigned short family)
{
unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
struct xfrm_state *x;
hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
if (x->props.family != family ||
x->id.spi != spi ||
x->id.proto != proto ||
!xfrm_addr_equal(&x->id.daddr, daddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
if (!xfrm_state_hold_rcu(x))
continue;
return x;
}
return NULL;
}
static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
struct xfrm_state *x;
hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
if (x->props.family != family ||
x->id.proto != proto ||
!xfrm_addr_equal(&x->id.daddr, daddr, family) ||
!xfrm_addr_equal(&x->props.saddr, saddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
if (!xfrm_state_hold_rcu(x))
continue;
return x;
}
return NULL;
}
static inline struct xfrm_state *
__xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
{
struct net *net = xs_net(x);
u32 mark = x->mark.v & x->mark.m;
if (use_spi)
return __xfrm_state_lookup(net, mark, &x->id.daddr,
x->id.spi, x->id.proto, family);
else
return __xfrm_state_lookup_byaddr(net, mark,
&x->id.daddr,
&x->props.saddr,
x->id.proto, family);
}
static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
{
if (have_hash_collision &&
(net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
net->xfrm.state_num > net->xfrm.state_hmask)
schedule_work(&net->xfrm.state_hash_work);
}
static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
const struct flowi *fl, unsigned short family,
struct xfrm_state **best, int *acq_in_progress,
int *error)
{
/* Resolution logic:
* 1. There is a valid state with matching selector. Done.
* 2. Valid state with inappropriate selector. Skip.
*
* Entering area of "sysdeps".
*
* 3. If state is not valid, selector is temporary, it selects
* only session which triggered previous resolution. Key
* manager will do something to install a state with proper
* selector.
*/
if (x->km.state == XFRM_STATE_VALID) {
if ((x->sel.family &&
!xfrm_selector_match(&x->sel, fl, x->sel.family)) ||
!security_xfrm_state_pol_flow_match(x, pol, fl))
return;
if (!*best ||
(*best)->km.dying > x->km.dying ||
((*best)->km.dying == x->km.dying &&
(*best)->curlft.add_time < x->curlft.add_time))
*best = x;
} else if (x->km.state == XFRM_STATE_ACQ) {
*acq_in_progress = 1;
} else if (x->km.state == XFRM_STATE_ERROR ||
x->km.state == XFRM_STATE_EXPIRED) {
if (xfrm_selector_match(&x->sel, fl, x->sel.family) &&
security_xfrm_state_pol_flow_match(x, pol, fl))
*error = -ESRCH;
}
}
struct xfrm_state *
xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
const struct flowi *fl, struct xfrm_tmpl *tmpl,
struct xfrm_policy *pol, int *err,
unsigned short family)
{
static xfrm_address_t saddr_wildcard = { };
struct net *net = xp_net(pol);
unsigned int h, h_wildcard;
struct xfrm_state *x, *x0, *to_put;
int acquire_in_progress = 0;
int error = 0;
struct xfrm_state *best = NULL;
u32 mark = pol->mark.v & pol->mark.m;
unsigned short encap_family = tmpl->encap_family;
unsigned int sequence;
struct km_event c;
to_put = NULL;
sequence = read_seqcount_begin(&xfrm_state_hash_generation);
rcu_read_lock();
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, encap_family,
&best, &acquire_in_progress, &error);
}
if (best || acquire_in_progress)
goto found;
h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, encap_family,
&best, &acquire_in_progress, &error);
}
found:
x = best;
if (!x && !error && !acquire_in_progress) {
if (tmpl->id.spi &&
(x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
tmpl->id.proto, encap_family)) != NULL) {
to_put = x0;
error = -EEXIST;
goto out;
}
c.net = net;
/* If the KMs have no listeners (yet...), avoid allocating an SA
* for each and every packet - garbage collection might not
* handle the flood.
*/
if (!km_is_alive(&c)) {
error = -ESRCH;
goto out;
}
x = xfrm_state_alloc(net);
if (x == NULL) {
error = -ENOMEM;
goto out;
}
/* Initialize temporary state matching only
* to current session. */
xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
memcpy(&x->mark, &pol->mark, sizeof(x->mark));
error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
if (error) {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
goto out;
}
if (km_query(x, tmpl, pol) == 0) {
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x->km.state = XFRM_STATE_ACQ;
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, daddr, saddr, encap_family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
}
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
} else {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
error = -ESRCH;
}
}
out:
if (x) {
if (!xfrm_state_hold_rcu(x)) {
*err = -EAGAIN;
x = NULL;
}
} else {
*err = acquire_in_progress ? -EAGAIN : error;
}
rcu_read_unlock();
if (to_put)
xfrm_state_put(to_put);
if (read_seqcount_retry(&xfrm_state_hash_generation, sequence)) {
*err = -EAGAIN;
if (x) {
xfrm_state_put(x);
x = NULL;
}
}
return x;
}
struct xfrm_state *
xfrm_stateonly_find(struct net *net, u32 mark,
xfrm_address_t *daddr, xfrm_address_t *saddr,
unsigned short family, u8 mode, u8 proto, u32 reqid)
{
unsigned int h;
struct xfrm_state *rx = NULL, *x = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, family) &&
mode == x->props.mode &&
proto == x->id.proto &&
x->km.state == XFRM_STATE_VALID) {
rx = x;
break;
}
}
if (rx)
xfrm_state_hold(rx);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return rx;
}
EXPORT_SYMBOL(xfrm_stateonly_find);
struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
unsigned short family)
{
struct xfrm_state *x;
struct xfrm_state_walk *w;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
list_for_each_entry(w, &net->xfrm.state_all, all) {
x = container_of(w, struct xfrm_state, km);
if (x->props.family != family ||
x->id.spi != spi)
continue;
xfrm_state_hold(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return NULL;
}
EXPORT_SYMBOL(xfrm_state_lookup_byspi);
static void __xfrm_state_insert(struct xfrm_state *x)
{
struct net *net = xs_net(x);
unsigned int h;
list_add(&x->km.all, &net->xfrm.state_all);
h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
x->props.family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
}
tasklet_hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
if (x->replay_maxage)
mod_timer(&x->rtimer, jiffies + x->replay_maxage);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
/* net->xfrm.xfrm_state_lock is held */
static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
{
struct net *net = xs_net(xnew);
unsigned short family = xnew->props.family;
u32 reqid = xnew->props.reqid;
struct xfrm_state *x;
unsigned int h;
u32 mark = xnew->mark.v & xnew->mark.m;
h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
(mark & x->mark.m) == x->mark.v &&
xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
x->genid++;
}
}
void xfrm_state_insert(struct xfrm_state *x)
{
struct net *net = xs_net(x);
spin_lock_bh(&net->xfrm.xfrm_state_lock);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_insert);
/* net->xfrm.xfrm_state_lock is held */
static struct xfrm_state *__find_acq_core(struct net *net,
const struct xfrm_mark *m,
unsigned short family, u8 mode,
u32 reqid, u8 proto,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
int create)
{
unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
struct xfrm_state *x;
u32 mark = m->v & m->m;
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.reqid != reqid ||
x->props.mode != mode ||
x->props.family != family ||
x->km.state != XFRM_STATE_ACQ ||
x->id.spi != 0 ||
x->id.proto != proto ||
(mark & x->mark.m) != x->mark.v ||
!xfrm_addr_equal(&x->id.daddr, daddr, family) ||
!xfrm_addr_equal(&x->props.saddr, saddr, family))
continue;
xfrm_state_hold(x);
return x;
}
if (!create)
return NULL;
x = xfrm_state_alloc(net);
if (likely(x)) {
switch (family) {
case AF_INET:
x->sel.daddr.a4 = daddr->a4;
x->sel.saddr.a4 = saddr->a4;
x->sel.prefixlen_d = 32;
x->sel.prefixlen_s = 32;
x->props.saddr.a4 = saddr->a4;
x->id.daddr.a4 = daddr->a4;
break;
case AF_INET6:
x->sel.daddr.in6 = daddr->in6;
x->sel.saddr.in6 = saddr->in6;
x->sel.prefixlen_d = 128;
x->sel.prefixlen_s = 128;
x->props.saddr.in6 = saddr->in6;
x->id.daddr.in6 = daddr->in6;
break;
}
x->km.state = XFRM_STATE_ACQ;
x->id.proto = proto;
x->props.family = family;
x->props.mode = mode;
x->props.reqid = reqid;
x->mark.v = m->v;
x->mark.m = m->m;
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
xfrm_state_hold(x);
tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h);
h = xfrm_src_hash(net, daddr, saddr, family);
hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
return x;
}
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
int xfrm_state_add(struct xfrm_state *x)
{
struct net *net = xs_net(x);
struct xfrm_state *x1, *to_put;
int family;
int err;
u32 mark = x->mark.v & x->mark.m;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
family = x->props.family;
to_put = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, family);
if (x1) {
to_put = x1;
x1 = NULL;
err = -EEXIST;
goto out;
}
if (use_spi && x->km.seq) {
x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
if (x1 && ((x1->id.proto != x->id.proto) ||
!xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
to_put = x1;
x1 = NULL;
}
}
if (use_spi && !x1)
x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
x->props.reqid, x->id.proto,
&x->id.daddr, &x->props.saddr, 0);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (x1) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
}
if (to_put)
xfrm_state_put(to_put);
return err;
}
EXPORT_SYMBOL(xfrm_state_add);
#ifdef CONFIG_XFRM_MIGRATE
static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
struct xfrm_encap_tmpl *encap)
{
struct net *net = xs_net(orig);
struct xfrm_state *x = xfrm_state_alloc(net);
if (!x)
goto out;
memcpy(&x->id, &orig->id, sizeof(x->id));
memcpy(&x->sel, &orig->sel, sizeof(x->sel));
memcpy(&x->lft, &orig->lft, sizeof(x->lft));
x->props.mode = orig->props.mode;
x->props.replay_window = orig->props.replay_window;
x->props.reqid = orig->props.reqid;
x->props.family = orig->props.family;
x->props.saddr = orig->props.saddr;
if (orig->aalg) {
x->aalg = xfrm_algo_auth_clone(orig->aalg);
if (!x->aalg)
goto error;
}
x->props.aalgo = orig->props.aalgo;
if (orig->aead) {
x->aead = xfrm_algo_aead_clone(orig->aead);
if (!x->aead)
goto error;
}
if (orig->ealg) {
x->ealg = xfrm_algo_clone(orig->ealg);
if (!x->ealg)
goto error;
}
x->props.ealgo = orig->props.ealgo;
if (orig->calg) {
x->calg = xfrm_algo_clone(orig->calg);
if (!x->calg)
goto error;
}
x->props.calgo = orig->props.calgo;
if (encap || orig->encap) {
if (encap)
x->encap = kmemdup(encap, sizeof(*x->encap),
GFP_KERNEL);
else
x->encap = kmemdup(orig->encap, sizeof(*x->encap),
GFP_KERNEL);
if (!x->encap)
goto error;
}
if (orig->coaddr) {
x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
GFP_KERNEL);
if (!x->coaddr)
goto error;
}
if (orig->replay_esn) {
if (xfrm_replay_clone(x, orig))
goto error;
}
memcpy(&x->mark, &orig->mark, sizeof(x->mark));
if (xfrm_init_state(x) < 0)
goto error;
x->props.flags = orig->props.flags;
x->props.extra_flags = orig->props.extra_flags;
x->tfcpad = orig->tfcpad;
x->replay_maxdiff = orig->replay_maxdiff;
x->replay_maxage = orig->replay_maxage;
x->curlft.add_time = orig->curlft.add_time;
x->km.state = orig->km.state;
x->km.seq = orig->km.seq;
x->replay = orig->replay;
x->preplay = orig->preplay;
return x;
error:
xfrm_state_put(x);
out:
return NULL;
}
struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net)
{
unsigned int h;
struct xfrm_state *x = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (m->reqid) {
h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
m->reqid, m->old_family);
hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (m->reqid && x->props.reqid != m->reqid)
continue;
if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
m->old_family) ||
!xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
break;
}
} else {
h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
m->old_family);
hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
m->old_family) ||
!xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
break;
}
}
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_migrate_state_find);
struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
struct xfrm_migrate *m,
struct xfrm_encap_tmpl *encap)
{
struct xfrm_state *xc;
xc = xfrm_state_clone(x, encap);
if (!xc)
return NULL;
memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
/* add state */
if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
/* a care is needed when the destination address of the
state is to be updated as it is a part of triplet */
xfrm_state_insert(xc);
} else {
if (xfrm_state_add(xc) < 0)
goto error;
}
return xc;
error:
xfrm_state_put(xc);
return NULL;
}
EXPORT_SYMBOL(xfrm_state_migrate);
#endif
int xfrm_state_update(struct xfrm_state *x)
{
struct xfrm_state *x1, *to_put;
int err;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
struct net *net = xs_net(x);
to_put = NULL;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, x->props.family);
err = -ESRCH;
if (!x1)
goto out;
if (xfrm_state_kern(x1)) {
to_put = x1;
err = -EEXIST;
goto out;
}
if (x1->km.state == XFRM_STATE_ACQ) {
__xfrm_state_insert(x);
x = NULL;
}
err = 0;
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
if (to_put)
xfrm_state_put(to_put);
if (err)
return err;
if (!x) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
return 0;
}
err = -EINVAL;
spin_lock_bh(&x1->lock);
if (likely(x1->km.state == XFRM_STATE_VALID)) {
if (x->encap && x1->encap)
memcpy(x1->encap, x->encap, sizeof(*x1->encap));
if (x->coaddr && x1->coaddr) {
memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
}
if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
x1->km.dying = 0;
tasklet_hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
if (x1->curlft.use_time)
xfrm_state_check_expire(x1);
err = 0;
x->km.state = XFRM_STATE_DEAD;
__xfrm_state_put(x);
}
spin_unlock_bh(&x1->lock);
xfrm_state_put(x1);
return err;
}
EXPORT_SYMBOL(xfrm_state_update);
int xfrm_state_check_expire(struct xfrm_state *x)
{
if (!x->curlft.use_time)
x->curlft.use_time = get_seconds();
if (x->curlft.bytes >= x->lft.hard_byte_limit ||
x->curlft.packets >= x->lft.hard_packet_limit) {
x->km.state = XFRM_STATE_EXPIRED;
tasklet_hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL);
return -EINVAL;
}
if (!x->km.dying &&
(x->curlft.bytes >= x->lft.soft_byte_limit ||
x->curlft.packets >= x->lft.soft_packet_limit)) {
x->km.dying = 1;
km_state_expired(x, 0, 0);
}
return 0;
}
EXPORT_SYMBOL(xfrm_state_check_expire);
struct xfrm_state *
xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
rcu_read_lock();
x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
rcu_read_unlock();
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup);
struct xfrm_state *
xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
struct xfrm_state *
xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
u8 proto, const xfrm_address_t *daddr,
const xfrm_address_t *saddr, int create, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __find_acq_core(net, mark, family, mode, reqid, proto, daddr, saddr, create);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq);
#ifdef CONFIG_XFRM_SUB_POLICY
int
xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
unsigned short family, struct net *net)
{
int i;
int err = 0;
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
return -EAFNOSUPPORT;
spin_lock_bh(&net->xfrm.xfrm_state_lock); /*FIXME*/
if (afinfo->tmpl_sort)
err = afinfo->tmpl_sort(dst, src, n);
else
for (i = 0; i < n; i++)
dst[i] = src[i];
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_tmpl_sort);
int
xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
unsigned short family)
{
int i;
int err = 0;
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
struct net *net = xs_net(*src);
if (!afinfo)
return -EAFNOSUPPORT;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (afinfo->state_sort)
err = afinfo->state_sort(dst, src, n);
else
for (i = 0; i < n; i++)
dst[i] = src[i];
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(xfrm_state_sort);
#endif
/* Silly enough, but I'm lazy to build resolution list */
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
int i;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct xfrm_state *x;
hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
if (x->km.seq == seq &&
(mark & x->mark.m) == x->mark.v &&
x->km.state == XFRM_STATE_ACQ) {
xfrm_state_hold(x);
return x;
}
}
}
return NULL;
}
struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
struct xfrm_state *x;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
x = __xfrm_find_acq_byseq(net, mark, seq);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq_byseq);
u32 xfrm_get_acqseq(void)
{
u32 res;
static atomic_t acqseq;
do {
res = atomic_inc_return(&acqseq);
} while (!res);
return res;
}
EXPORT_SYMBOL(xfrm_get_acqseq);
int verify_spi_info(u8 proto, u32 min, u32 max)
{
switch (proto) {
case IPPROTO_AH:
case IPPROTO_ESP:
break;
case IPPROTO_COMP:
/* IPCOMP spi is 16-bits. */
if (max >= 0x10000)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (min > max)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL(verify_spi_info);
int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
{
struct net *net = xs_net(x);
unsigned int h;
struct xfrm_state *x0;
int err = -ENOENT;
__be32 minspi = htonl(low);
__be32 maxspi = htonl(high);
u32 mark = x->mark.v & x->mark.m;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto unlock;
err = 0;
if (x->id.spi)
goto unlock;
err = -ENOENT;
if (minspi == maxspi) {
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
if (x0) {
xfrm_state_put(x0);
goto unlock;
}
x->id.spi = minspi;
} else {
u32 spi = 0;
for (h = 0; h < high-low+1; h++) {
spi = low + prandom_u32()%(high-low+1);
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
if (x0 == NULL) {
x->id.spi = htonl(spi);
break;
}
xfrm_state_put(x0);
}
}
if (x->id.spi) {
spin_lock_bh(&net->xfrm.xfrm_state_lock);
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
err = 0;
}
unlock:
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_alloc_spi);
static bool __xfrm_state_filter_match(struct xfrm_state *x,
struct xfrm_address_filter *filter)
{
if (filter) {
if ((filter->family == AF_INET ||
filter->family == AF_INET6) &&
x->props.family != filter->family)
return false;
return addr_match(&x->props.saddr, &filter->saddr,
filter->splen) &&
addr_match(&x->id.daddr, &filter->daddr,
filter->dplen);
}
return true;
}
int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
int (*func)(struct xfrm_state *, int, void*),
void *data)
{
struct xfrm_state *state;
struct xfrm_state_walk *x;
int err = 0;
if (walk->seq != 0 && list_empty(&walk->all))
return 0;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
if (list_empty(&walk->all))
x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
else
x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
list_for_each_entry_from(x, &net->xfrm.state_all, all) {
if (x->state == XFRM_STATE_DEAD)
continue;
state = container_of(x, struct xfrm_state, km);
if (!xfrm_id_proto_match(state->id.proto, walk->proto))
continue;
if (!__xfrm_state_filter_match(state, walk->filter))
continue;
err = func(state, walk->seq, data);
if (err) {
list_move_tail(&walk->all, &x->all);
goto out;
}
walk->seq++;
}
if (walk->seq == 0) {
err = -ENOENT;
goto out;
}
list_del_init(&walk->all);
out:
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_walk);
void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
struct xfrm_address_filter *filter)
{
INIT_LIST_HEAD(&walk->all);
walk->proto = proto;
walk->state = XFRM_STATE_DEAD;
walk->seq = 0;
walk->filter = filter;
}
EXPORT_SYMBOL(xfrm_state_walk_init);
void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
{
kfree(walk->filter);
if (list_empty(&walk->all))
return;
spin_lock_bh(&net->xfrm.xfrm_state_lock);
list_del(&walk->all);
spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_walk_done);
static void xfrm_replay_timer_handler(struct timer_list *t)
{
struct xfrm_state *x = from_timer(x, t, rtimer);
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_VALID) {
if (xfrm_aevent_is_on(xs_net(x)))
x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
else
x->xflags |= XFRM_TIME_DEFER;
}
spin_unlock(&x->lock);
}
static LIST_HEAD(xfrm_km_list);
void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list)
if (km->notify_policy)
km->notify_policy(xp, dir, c);
rcu_read_unlock();
}
void km_state_notify(struct xfrm_state *x, const struct km_event *c)
{
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list)
if (km->notify)
km->notify(x, c);
rcu_read_unlock();
}
EXPORT_SYMBOL(km_policy_notify);
EXPORT_SYMBOL(km_state_notify);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
{
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_EXPIRE;
km_state_notify(x, &c);
}
EXPORT_SYMBOL(km_state_expired);
/*
* We send to all registered managers regardless of failure
* We are happy with one success
*/
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
{
int err = -EINVAL, acqret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
acqret = km->acquire(x, t, pol);
if (!acqret)
err = acqret;
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_query);
int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
int err = -EINVAL;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->new_mapping)
err = km->new_mapping(x, ipaddr, sport);
if (!err)
break;
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_new_mapping);
void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
{
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_POLEXPIRE;
km_policy_notify(pol, dir, &c);
}
EXPORT_SYMBOL(km_policy_expired);
#ifdef CONFIG_XFRM_MIGRATE
int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
const struct xfrm_migrate *m, int num_migrate,
const struct xfrm_kmaddress *k,
const struct xfrm_encap_tmpl *encap)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->migrate) {
ret = km->migrate(sel, dir, type, m, num_migrate, k,
encap);
if (!ret)
err = ret;
}
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_migrate);
#endif
int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->report) {
ret = km->report(net, proto, sel, addr);
if (!ret)
err = ret;
}
}
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(km_report);
bool km_is_alive(const struct km_event *c)
{
struct xfrm_mgr *km;
bool is_alive = false;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
if (km->is_alive && km->is_alive(c)) {
is_alive = true;
break;
}
}
rcu_read_unlock();
return is_alive;
}
EXPORT_SYMBOL(km_is_alive);
int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
{
int err;
u8 *data;
struct xfrm_mgr *km;
struct xfrm_policy *pol = NULL;
if (optlen <= 0 || optlen > PAGE_SIZE)
return -EMSGSIZE;
data = memdup_user(optval, optlen);
if (IS_ERR(data))
return PTR_ERR(data);
err = -EINVAL;
rcu_read_lock();
list_for_each_entry_rcu(km, &xfrm_km_list, list) {
pol = km->compile_policy(sk, optname, data,
optlen, &err);
if (err >= 0)
break;
}
rcu_read_unlock();
if (err >= 0) {
xfrm_sk_policy_insert(sk, err, pol);
xfrm_pol_put(pol);
__sk_dst_reset(sk);
err = 0;
}
kfree(data);
return err;
}
EXPORT_SYMBOL(xfrm_user_policy);
static DEFINE_SPINLOCK(xfrm_km_lock);
int xfrm_register_km(struct xfrm_mgr *km)
{
spin_lock_bh(&xfrm_km_lock);
list_add_tail_rcu(&km->list, &xfrm_km_list);
spin_unlock_bh(&xfrm_km_lock);
return 0;
}
EXPORT_SYMBOL(xfrm_register_km);
int xfrm_unregister_km(struct xfrm_mgr *km)
{
spin_lock_bh(&xfrm_km_lock);
list_del_rcu(&km->list);
spin_unlock_bh(&xfrm_km_lock);
synchronize_rcu();
return 0;
}
EXPORT_SYMBOL(xfrm_unregister_km);
int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0;
if (WARN_ON(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_afinfo_lock);
if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
err = -EEXIST;
else
rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
spin_unlock_bh(&xfrm_state_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_register_afinfo);
int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0, family = afinfo->family;
if (WARN_ON(family >= NPROTO))
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_afinfo_lock);
if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
err = -EINVAL;
else
RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
}
spin_unlock_bh(&xfrm_state_afinfo_lock);
synchronize_rcu();
return err;
}
EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
{
if (unlikely(family >= NPROTO))
return NULL;
return rcu_dereference(xfrm_state_afinfo[family]);
}
struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
{
struct xfrm_state_afinfo *afinfo;
if (unlikely(family >= NPROTO))
return NULL;
rcu_read_lock();
afinfo = rcu_dereference(xfrm_state_afinfo[family]);
if (unlikely(!afinfo))
rcu_read_unlock();
return afinfo;
}
/* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
void xfrm_state_delete_tunnel(struct xfrm_state *x)
{
if (x->tunnel) {
struct xfrm_state *t = x->tunnel;
if (atomic_read(&t->tunnel_users) == 2)
xfrm_state_delete(t);
atomic_dec(&t->tunnel_users);
xfrm_state_put(t);
x->tunnel = NULL;
}
}
EXPORT_SYMBOL(xfrm_state_delete_tunnel);
int xfrm_state_mtu(struct xfrm_state *x, int mtu)
{
const struct xfrm_type *type = READ_ONCE(x->type);
if (x->km.state == XFRM_STATE_VALID &&
type && type->get_mtu)
return type->get_mtu(x, mtu);
return mtu - x->props.header_len;
}
int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode *inner_mode;
int family = x->props.family;
int err;
err = -EAFNOSUPPORT;
afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
goto error;
err = 0;
if (afinfo->init_flags)
err = afinfo->init_flags(x);
rcu_read_unlock();
if (err)
goto error;
err = -EPROTONOSUPPORT;
if (x->sel.family != AF_UNSPEC) {
inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
family != x->sel.family) {
xfrm_put_mode(inner_mode);
goto error;
}
x->inner_mode = inner_mode;
} else {
struct xfrm_mode *inner_mode_iaf;
int iafamily = AF_INET;
inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) {
xfrm_put_mode(inner_mode);
goto error;
}
x->inner_mode = inner_mode;
if (x->props.family == AF_INET)
iafamily = AF_INET6;
inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
if (inner_mode_iaf) {
if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
x->inner_mode_iaf = inner_mode_iaf;
else
xfrm_put_mode(inner_mode_iaf);
}
}
x->type = xfrm_get_type(x->id.proto, family);
if (x->type == NULL)
goto error;
x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);
err = x->type->init_state(x);
if (err)
goto error;
x->outer_mode = xfrm_get_mode(x->props.mode, family);
if (x->outer_mode == NULL) {
err = -EPROTONOSUPPORT;
goto error;
}
if (init_replay) {
err = xfrm_init_replay(x);
if (err)
goto error;
}
x->km.state = XFRM_STATE_VALID;
error:
return err;
}
EXPORT_SYMBOL(__xfrm_init_state);
int xfrm_init_state(struct xfrm_state *x)
{
return __xfrm_init_state(x, true, false);
}
EXPORT_SYMBOL(xfrm_init_state);
int __net_init xfrm_state_init(struct net *net)
{
unsigned int sz;
INIT_LIST_HEAD(&net->xfrm.state_all);
sz = sizeof(struct hlist_head) * 8;
net->xfrm.state_bydst = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bydst)
goto out_bydst;
net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bysrc)
goto out_bysrc;
net->xfrm.state_byspi = xfrm_hash_alloc(sz);
if (!net->xfrm.state_byspi)
goto out_byspi;
net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
net->xfrm.state_num = 0;
INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
spin_lock_init(&net->xfrm.xfrm_state_lock);
return 0;
out_byspi:
xfrm_hash_free(net->xfrm.state_bysrc, sz);
out_bysrc:
xfrm_hash_free(net->xfrm.state_bydst, sz);
out_bydst:
return -ENOMEM;
}
void xfrm_state_fini(struct net *net)
{
unsigned int sz;
flush_work(&net->xfrm.state_hash_work);
xfrm_state_flush(net, IPSEC_PROTO_ANY, false);
flush_work(&xfrm_state_gc_work);
WARN_ON(!list_empty(&net->xfrm.state_all));
sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
WARN_ON(!hlist_empty(net->xfrm.state_byspi));
xfrm_hash_free(net->xfrm.state_byspi, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
xfrm_hash_free(net->xfrm.state_bysrc, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bydst));
xfrm_hash_free(net->xfrm.state_bydst, sz);
}
#ifdef CONFIG_AUDITSYSCALL
static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
struct audit_buffer *audit_buf)
{
struct xfrm_sec_ctx *ctx = x->security;
u32 spi = ntohl(x->id.spi);
if (ctx)
audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
switch (x->props.family) {
case AF_INET:
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&x->props.saddr.a4, &x->id.daddr.a4);
break;
case AF_INET6:
audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
x->props.saddr.a6, x->id.daddr.a6);
break;
}
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
}
static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
struct audit_buffer *audit_buf)
{
const struct iphdr *iph4;
const struct ipv6hdr *iph6;
switch (family) {
case AF_INET:
iph4 = ip_hdr(skb);
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&iph4->saddr, &iph4->daddr);
break;
case AF_INET6:
iph6 = ipv6_hdr(skb);
audit_log_format(audit_buf,
" src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
&iph6->saddr, &iph6->daddr,
iph6->flow_lbl[0] & 0x0f,
iph6->flow_lbl[1],
iph6->flow_lbl[2]);
break;
}
}
void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-add");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(task_valid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-delete");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(task_valid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
struct sk_buff *skb)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replay-overflow");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
/* don't record the sequence number because it's inherent in this kind
* of audit message */
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
void xfrm_audit_state_replay(struct xfrm_state *x,
struct sk_buff *skb, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replayed-pkt");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
__be32 net_spi, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
void xfrm_audit_state_icvfail(struct xfrm_state *x,
struct sk_buff *skb, u8 proto)
{
struct audit_buffer *audit_buf;
__be32 net_spi;
__be32 net_seq;
audit_buf = xfrm_audit_start("SA-icv-failure");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
u32 spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
}
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
#endif /* CONFIG_AUDITSYSCALL */