mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-27 13:05:03 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
900 lines
20 KiB
C
900 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* visemul.c: Emulation of VIS instructions.
|
|
*
|
|
* Copyright (C) 2006 David S. Miller (davem@davemloft.net)
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <asm/ptrace.h>
|
|
#include <asm/pstate.h>
|
|
#include <asm/fpumacro.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
/* OPF field of various VIS instructions. */
|
|
|
|
/* 000111011 - four 16-bit packs */
|
|
#define FPACK16_OPF 0x03b
|
|
|
|
/* 000111010 - two 32-bit packs */
|
|
#define FPACK32_OPF 0x03a
|
|
|
|
/* 000111101 - four 16-bit packs */
|
|
#define FPACKFIX_OPF 0x03d
|
|
|
|
/* 001001101 - four 16-bit expands */
|
|
#define FEXPAND_OPF 0x04d
|
|
|
|
/* 001001011 - two 32-bit merges */
|
|
#define FPMERGE_OPF 0x04b
|
|
|
|
/* 000110001 - 8-by-16-bit partitioned product */
|
|
#define FMUL8x16_OPF 0x031
|
|
|
|
/* 000110011 - 8-by-16-bit upper alpha partitioned product */
|
|
#define FMUL8x16AU_OPF 0x033
|
|
|
|
/* 000110101 - 8-by-16-bit lower alpha partitioned product */
|
|
#define FMUL8x16AL_OPF 0x035
|
|
|
|
/* 000110110 - upper 8-by-16-bit partitioned product */
|
|
#define FMUL8SUx16_OPF 0x036
|
|
|
|
/* 000110111 - lower 8-by-16-bit partitioned product */
|
|
#define FMUL8ULx16_OPF 0x037
|
|
|
|
/* 000111000 - upper 8-by-16-bit partitioned product */
|
|
#define FMULD8SUx16_OPF 0x038
|
|
|
|
/* 000111001 - lower unsigned 8-by-16-bit partitioned product */
|
|
#define FMULD8ULx16_OPF 0x039
|
|
|
|
/* 000101000 - four 16-bit compare; set rd if src1 > src2 */
|
|
#define FCMPGT16_OPF 0x028
|
|
|
|
/* 000101100 - two 32-bit compare; set rd if src1 > src2 */
|
|
#define FCMPGT32_OPF 0x02c
|
|
|
|
/* 000100000 - four 16-bit compare; set rd if src1 <= src2 */
|
|
#define FCMPLE16_OPF 0x020
|
|
|
|
/* 000100100 - two 32-bit compare; set rd if src1 <= src2 */
|
|
#define FCMPLE32_OPF 0x024
|
|
|
|
/* 000100010 - four 16-bit compare; set rd if src1 != src2 */
|
|
#define FCMPNE16_OPF 0x022
|
|
|
|
/* 000100110 - two 32-bit compare; set rd if src1 != src2 */
|
|
#define FCMPNE32_OPF 0x026
|
|
|
|
/* 000101010 - four 16-bit compare; set rd if src1 == src2 */
|
|
#define FCMPEQ16_OPF 0x02a
|
|
|
|
/* 000101110 - two 32-bit compare; set rd if src1 == src2 */
|
|
#define FCMPEQ32_OPF 0x02e
|
|
|
|
/* 000000000 - Eight 8-bit edge boundary processing */
|
|
#define EDGE8_OPF 0x000
|
|
|
|
/* 000000001 - Eight 8-bit edge boundary processing, no CC */
|
|
#define EDGE8N_OPF 0x001
|
|
|
|
/* 000000010 - Eight 8-bit edge boundary processing, little-endian */
|
|
#define EDGE8L_OPF 0x002
|
|
|
|
/* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC */
|
|
#define EDGE8LN_OPF 0x003
|
|
|
|
/* 000000100 - Four 16-bit edge boundary processing */
|
|
#define EDGE16_OPF 0x004
|
|
|
|
/* 000000101 - Four 16-bit edge boundary processing, no CC */
|
|
#define EDGE16N_OPF 0x005
|
|
|
|
/* 000000110 - Four 16-bit edge boundary processing, little-endian */
|
|
#define EDGE16L_OPF 0x006
|
|
|
|
/* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC */
|
|
#define EDGE16LN_OPF 0x007
|
|
|
|
/* 000001000 - Two 32-bit edge boundary processing */
|
|
#define EDGE32_OPF 0x008
|
|
|
|
/* 000001001 - Two 32-bit edge boundary processing, no CC */
|
|
#define EDGE32N_OPF 0x009
|
|
|
|
/* 000001010 - Two 32-bit edge boundary processing, little-endian */
|
|
#define EDGE32L_OPF 0x00a
|
|
|
|
/* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC */
|
|
#define EDGE32LN_OPF 0x00b
|
|
|
|
/* 000111110 - distance between 8 8-bit components */
|
|
#define PDIST_OPF 0x03e
|
|
|
|
/* 000010000 - convert 8-bit 3-D address to blocked byte address */
|
|
#define ARRAY8_OPF 0x010
|
|
|
|
/* 000010010 - convert 16-bit 3-D address to blocked byte address */
|
|
#define ARRAY16_OPF 0x012
|
|
|
|
/* 000010100 - convert 32-bit 3-D address to blocked byte address */
|
|
#define ARRAY32_OPF 0x014
|
|
|
|
/* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE */
|
|
#define BMASK_OPF 0x019
|
|
|
|
/* 001001100 - Permute bytes as specified by GSR.MASK */
|
|
#define BSHUFFLE_OPF 0x04c
|
|
|
|
#define VIS_OPF_SHIFT 5
|
|
#define VIS_OPF_MASK (0x1ff << VIS_OPF_SHIFT)
|
|
|
|
#define RS1(INSN) (((INSN) >> 14) & 0x1f)
|
|
#define RS2(INSN) (((INSN) >> 0) & 0x1f)
|
|
#define RD(INSN) (((INSN) >> 25) & 0x1f)
|
|
|
|
static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
|
|
unsigned int rd, int from_kernel)
|
|
{
|
|
if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
|
|
if (from_kernel != 0)
|
|
__asm__ __volatile__("flushw");
|
|
else
|
|
flushw_user();
|
|
}
|
|
}
|
|
|
|
static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
|
|
{
|
|
unsigned long value, fp;
|
|
|
|
if (reg < 16)
|
|
return (!reg ? 0 : regs->u_regs[reg]);
|
|
|
|
fp = regs->u_regs[UREG_FP];
|
|
|
|
if (regs->tstate & TSTATE_PRIV) {
|
|
struct reg_window *win;
|
|
win = (struct reg_window *)(fp + STACK_BIAS);
|
|
value = win->locals[reg - 16];
|
|
} else if (!test_thread_64bit_stack(fp)) {
|
|
struct reg_window32 __user *win32;
|
|
win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
|
|
get_user(value, &win32->locals[reg - 16]);
|
|
} else {
|
|
struct reg_window __user *win;
|
|
win = (struct reg_window __user *)(fp + STACK_BIAS);
|
|
get_user(value, &win->locals[reg - 16]);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long fp = regs->u_regs[UREG_FP];
|
|
|
|
BUG_ON(reg < 16);
|
|
BUG_ON(regs->tstate & TSTATE_PRIV);
|
|
|
|
if (!test_thread_64bit_stack(fp)) {
|
|
struct reg_window32 __user *win32;
|
|
win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
|
|
return (unsigned long __user *)&win32->locals[reg - 16];
|
|
} else {
|
|
struct reg_window __user *win;
|
|
win = (struct reg_window __user *)(fp + STACK_BIAS);
|
|
return &win->locals[reg - 16];
|
|
}
|
|
}
|
|
|
|
static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
|
|
struct pt_regs *regs)
|
|
{
|
|
BUG_ON(reg >= 16);
|
|
BUG_ON(regs->tstate & TSTATE_PRIV);
|
|
|
|
return ®s->u_regs[reg];
|
|
}
|
|
|
|
static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
|
|
{
|
|
if (rd < 16) {
|
|
unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
|
|
|
|
*rd_kern = val;
|
|
} else {
|
|
unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
|
|
|
|
if (!test_thread_64bit_stack(regs->u_regs[UREG_FP]))
|
|
__put_user((u32)val, (u32 __user *)rd_user);
|
|
else
|
|
__put_user(val, rd_user);
|
|
}
|
|
}
|
|
|
|
static inline unsigned long fpd_regval(struct fpustate *f,
|
|
unsigned int insn_regnum)
|
|
{
|
|
insn_regnum = (((insn_regnum & 1) << 5) |
|
|
(insn_regnum & 0x1e));
|
|
|
|
return *(unsigned long *) &f->regs[insn_regnum];
|
|
}
|
|
|
|
static inline unsigned long *fpd_regaddr(struct fpustate *f,
|
|
unsigned int insn_regnum)
|
|
{
|
|
insn_regnum = (((insn_regnum & 1) << 5) |
|
|
(insn_regnum & 0x1e));
|
|
|
|
return (unsigned long *) &f->regs[insn_regnum];
|
|
}
|
|
|
|
static inline unsigned int fps_regval(struct fpustate *f,
|
|
unsigned int insn_regnum)
|
|
{
|
|
return f->regs[insn_regnum];
|
|
}
|
|
|
|
static inline unsigned int *fps_regaddr(struct fpustate *f,
|
|
unsigned int insn_regnum)
|
|
{
|
|
return &f->regs[insn_regnum];
|
|
}
|
|
|
|
struct edge_tab {
|
|
u16 left, right;
|
|
};
|
|
static struct edge_tab edge8_tab[8] = {
|
|
{ 0xff, 0x80 },
|
|
{ 0x7f, 0xc0 },
|
|
{ 0x3f, 0xe0 },
|
|
{ 0x1f, 0xf0 },
|
|
{ 0x0f, 0xf8 },
|
|
{ 0x07, 0xfc },
|
|
{ 0x03, 0xfe },
|
|
{ 0x01, 0xff },
|
|
};
|
|
static struct edge_tab edge8_tab_l[8] = {
|
|
{ 0xff, 0x01 },
|
|
{ 0xfe, 0x03 },
|
|
{ 0xfc, 0x07 },
|
|
{ 0xf8, 0x0f },
|
|
{ 0xf0, 0x1f },
|
|
{ 0xe0, 0x3f },
|
|
{ 0xc0, 0x7f },
|
|
{ 0x80, 0xff },
|
|
};
|
|
static struct edge_tab edge16_tab[4] = {
|
|
{ 0xf, 0x8 },
|
|
{ 0x7, 0xc },
|
|
{ 0x3, 0xe },
|
|
{ 0x1, 0xf },
|
|
};
|
|
static struct edge_tab edge16_tab_l[4] = {
|
|
{ 0xf, 0x1 },
|
|
{ 0xe, 0x3 },
|
|
{ 0xc, 0x7 },
|
|
{ 0x8, 0xf },
|
|
};
|
|
static struct edge_tab edge32_tab[2] = {
|
|
{ 0x3, 0x2 },
|
|
{ 0x1, 0x3 },
|
|
};
|
|
static struct edge_tab edge32_tab_l[2] = {
|
|
{ 0x3, 0x1 },
|
|
{ 0x2, 0x3 },
|
|
};
|
|
|
|
static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
|
|
{
|
|
unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
|
|
u16 left, right;
|
|
|
|
maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
|
|
orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
|
|
orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
|
|
|
|
if (test_thread_flag(TIF_32BIT)) {
|
|
rs1 = rs1 & 0xffffffff;
|
|
rs2 = rs2 & 0xffffffff;
|
|
}
|
|
switch (opf) {
|
|
default:
|
|
case EDGE8_OPF:
|
|
case EDGE8N_OPF:
|
|
left = edge8_tab[rs1 & 0x7].left;
|
|
right = edge8_tab[rs2 & 0x7].right;
|
|
break;
|
|
case EDGE8L_OPF:
|
|
case EDGE8LN_OPF:
|
|
left = edge8_tab_l[rs1 & 0x7].left;
|
|
right = edge8_tab_l[rs2 & 0x7].right;
|
|
break;
|
|
|
|
case EDGE16_OPF:
|
|
case EDGE16N_OPF:
|
|
left = edge16_tab[(rs1 >> 1) & 0x3].left;
|
|
right = edge16_tab[(rs2 >> 1) & 0x3].right;
|
|
break;
|
|
|
|
case EDGE16L_OPF:
|
|
case EDGE16LN_OPF:
|
|
left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
|
|
right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
|
|
break;
|
|
|
|
case EDGE32_OPF:
|
|
case EDGE32N_OPF:
|
|
left = edge32_tab[(rs1 >> 2) & 0x1].left;
|
|
right = edge32_tab[(rs2 >> 2) & 0x1].right;
|
|
break;
|
|
|
|
case EDGE32L_OPF:
|
|
case EDGE32LN_OPF:
|
|
left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
|
|
right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
|
|
break;
|
|
}
|
|
|
|
if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
|
|
rd_val = right & left;
|
|
else
|
|
rd_val = left;
|
|
|
|
store_reg(regs, rd_val, RD(insn));
|
|
|
|
switch (opf) {
|
|
case EDGE8_OPF:
|
|
case EDGE8L_OPF:
|
|
case EDGE16_OPF:
|
|
case EDGE16L_OPF:
|
|
case EDGE32_OPF:
|
|
case EDGE32L_OPF: {
|
|
unsigned long ccr, tstate;
|
|
|
|
__asm__ __volatile__("subcc %1, %2, %%g0\n\t"
|
|
"rd %%ccr, %0"
|
|
: "=r" (ccr)
|
|
: "r" (orig_rs1), "r" (orig_rs2)
|
|
: "cc");
|
|
tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
|
|
regs->tstate = tstate | (ccr << 32UL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
|
|
{
|
|
unsigned long rs1, rs2, rd_val;
|
|
unsigned int bits, bits_mask;
|
|
|
|
maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
|
|
rs1 = fetch_reg(RS1(insn), regs);
|
|
rs2 = fetch_reg(RS2(insn), regs);
|
|
|
|
bits = (rs2 > 5 ? 5 : rs2);
|
|
bits_mask = (1UL << bits) - 1UL;
|
|
|
|
rd_val = ((((rs1 >> 11) & 0x3) << 0) |
|
|
(((rs1 >> 33) & 0x3) << 2) |
|
|
(((rs1 >> 55) & 0x1) << 4) |
|
|
(((rs1 >> 13) & 0xf) << 5) |
|
|
(((rs1 >> 35) & 0xf) << 9) |
|
|
(((rs1 >> 56) & 0xf) << 13) |
|
|
(((rs1 >> 17) & bits_mask) << 17) |
|
|
(((rs1 >> 39) & bits_mask) << (17 + bits)) |
|
|
(((rs1 >> 60) & 0xf) << (17 + (2*bits))));
|
|
|
|
switch (opf) {
|
|
case ARRAY16_OPF:
|
|
rd_val <<= 1;
|
|
break;
|
|
|
|
case ARRAY32_OPF:
|
|
rd_val <<= 2;
|
|
}
|
|
|
|
store_reg(regs, rd_val, RD(insn));
|
|
}
|
|
|
|
static void bmask(struct pt_regs *regs, unsigned int insn)
|
|
{
|
|
unsigned long rs1, rs2, rd_val, gsr;
|
|
|
|
maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
|
|
rs1 = fetch_reg(RS1(insn), regs);
|
|
rs2 = fetch_reg(RS2(insn), regs);
|
|
rd_val = rs1 + rs2;
|
|
|
|
store_reg(regs, rd_val, RD(insn));
|
|
|
|
gsr = current_thread_info()->gsr[0] & 0xffffffff;
|
|
gsr |= rd_val << 32UL;
|
|
current_thread_info()->gsr[0] = gsr;
|
|
}
|
|
|
|
static void bshuffle(struct pt_regs *regs, unsigned int insn)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
unsigned long rs1, rs2, rd_val;
|
|
unsigned long bmask, i;
|
|
|
|
bmask = current_thread_info()->gsr[0] >> 32UL;
|
|
|
|
rs1 = fpd_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
|
|
rd_val = 0UL;
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned long which = (bmask >> (i * 4)) & 0xf;
|
|
unsigned long byte;
|
|
|
|
if (which < 8)
|
|
byte = (rs1 >> (which * 8)) & 0xff;
|
|
else
|
|
byte = (rs2 >> ((which-8)*8)) & 0xff;
|
|
rd_val |= (byte << (i * 8));
|
|
}
|
|
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
}
|
|
|
|
static void pdist(struct pt_regs *regs, unsigned int insn)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
unsigned long rs1, rs2, *rd, rd_val;
|
|
unsigned long i;
|
|
|
|
rs1 = fpd_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
rd = fpd_regaddr(f, RD(insn));
|
|
|
|
rd_val = *rd;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
s16 s1, s2;
|
|
|
|
s1 = (rs1 >> (56 - (i * 8))) & 0xff;
|
|
s2 = (rs2 >> (56 - (i * 8))) & 0xff;
|
|
|
|
/* Absolute value of difference. */
|
|
s1 -= s2;
|
|
if (s1 < 0)
|
|
s1 = ~s1 + 1;
|
|
|
|
rd_val += s1;
|
|
}
|
|
|
|
*rd = rd_val;
|
|
}
|
|
|
|
static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
unsigned long rs1, rs2, gsr, scale, rd_val;
|
|
|
|
gsr = current_thread_info()->gsr[0];
|
|
scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
|
|
switch (opf) {
|
|
case FPACK16_OPF: {
|
|
unsigned long byte;
|
|
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
rd_val = 0;
|
|
for (byte = 0; byte < 4; byte++) {
|
|
unsigned int val;
|
|
s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
|
|
int scaled = src << scale;
|
|
int from_fixed = scaled >> 7;
|
|
|
|
val = ((from_fixed < 0) ?
|
|
0 :
|
|
(from_fixed > 255) ?
|
|
255 : from_fixed);
|
|
|
|
rd_val |= (val << (8 * byte));
|
|
}
|
|
*fps_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FPACK32_OPF: {
|
|
unsigned long word;
|
|
|
|
rs1 = fpd_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
|
|
for (word = 0; word < 2; word++) {
|
|
unsigned long val;
|
|
s32 src = (rs2 >> (word * 32UL));
|
|
s64 scaled = src << scale;
|
|
s64 from_fixed = scaled >> 23;
|
|
|
|
val = ((from_fixed < 0) ?
|
|
0 :
|
|
(from_fixed > 255) ?
|
|
255 : from_fixed);
|
|
|
|
rd_val |= (val << (32 * word));
|
|
}
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FPACKFIX_OPF: {
|
|
unsigned long word;
|
|
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
for (word = 0; word < 2; word++) {
|
|
long val;
|
|
s32 src = (rs2 >> (word * 32UL));
|
|
s64 scaled = src << scale;
|
|
s64 from_fixed = scaled >> 16;
|
|
|
|
val = ((from_fixed < -32768) ?
|
|
-32768 :
|
|
(from_fixed > 32767) ?
|
|
32767 : from_fixed);
|
|
|
|
rd_val |= ((val & 0xffff) << (word * 16));
|
|
}
|
|
*fps_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FEXPAND_OPF: {
|
|
unsigned long byte;
|
|
|
|
rs2 = fps_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
for (byte = 0; byte < 4; byte++) {
|
|
unsigned long val;
|
|
u8 src = (rs2 >> (byte * 8)) & 0xff;
|
|
|
|
val = src << 4;
|
|
|
|
rd_val |= (val << (byte * 16));
|
|
}
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FPMERGE_OPF: {
|
|
rs1 = fps_regval(f, RS1(insn));
|
|
rs2 = fps_regval(f, RS2(insn));
|
|
|
|
rd_val = (((rs2 & 0x000000ff) << 0) |
|
|
((rs1 & 0x000000ff) << 8) |
|
|
((rs2 & 0x0000ff00) << 8) |
|
|
((rs1 & 0x0000ff00) << 16) |
|
|
((rs2 & 0x00ff0000) << 16) |
|
|
((rs1 & 0x00ff0000) << 24) |
|
|
((rs2 & 0xff000000) << 24) |
|
|
((rs1 & 0xff000000) << 32));
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
unsigned long rs1, rs2, rd_val;
|
|
|
|
switch (opf) {
|
|
case FMUL8x16_OPF: {
|
|
unsigned long byte;
|
|
|
|
rs1 = fps_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
for (byte = 0; byte < 4; byte++) {
|
|
u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
|
|
s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
|
|
u32 prod = src1 * src2;
|
|
u16 scaled = ((prod & 0x00ffff00) >> 8);
|
|
|
|
/* Round up. */
|
|
if (prod & 0x80)
|
|
scaled++;
|
|
rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
|
|
}
|
|
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FMUL8x16AU_OPF:
|
|
case FMUL8x16AL_OPF: {
|
|
unsigned long byte;
|
|
s16 src2;
|
|
|
|
rs1 = fps_regval(f, RS1(insn));
|
|
rs2 = fps_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
|
|
for (byte = 0; byte < 4; byte++) {
|
|
u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
|
|
u32 prod = src1 * src2;
|
|
u16 scaled = ((prod & 0x00ffff00) >> 8);
|
|
|
|
/* Round up. */
|
|
if (prod & 0x80)
|
|
scaled++;
|
|
rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
|
|
}
|
|
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FMUL8SUx16_OPF:
|
|
case FMUL8ULx16_OPF: {
|
|
unsigned long byte, ushift;
|
|
|
|
rs1 = fpd_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
|
|
for (byte = 0; byte < 4; byte++) {
|
|
u16 src1;
|
|
s16 src2;
|
|
u32 prod;
|
|
u16 scaled;
|
|
|
|
src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
|
|
src2 = ((rs2 >> (16 * byte)) & 0xffff);
|
|
prod = src1 * src2;
|
|
scaled = ((prod & 0x00ffff00) >> 8);
|
|
|
|
/* Round up. */
|
|
if (prod & 0x80)
|
|
scaled++;
|
|
rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
|
|
}
|
|
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
|
|
case FMULD8SUx16_OPF:
|
|
case FMULD8ULx16_OPF: {
|
|
unsigned long byte, ushift;
|
|
|
|
rs1 = fps_regval(f, RS1(insn));
|
|
rs2 = fps_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
|
|
for (byte = 0; byte < 2; byte++) {
|
|
u16 src1;
|
|
s16 src2;
|
|
u32 prod;
|
|
u16 scaled;
|
|
|
|
src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
|
|
src2 = ((rs2 >> (16 * byte)) & 0xffff);
|
|
prod = src1 * src2;
|
|
scaled = ((prod & 0x00ffff00) >> 8);
|
|
|
|
/* Round up. */
|
|
if (prod & 0x80)
|
|
scaled++;
|
|
rd_val |= ((scaled & 0xffffUL) <<
|
|
((byte * 32UL) + 7UL));
|
|
}
|
|
*fpd_regaddr(f, RD(insn)) = rd_val;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
|
|
{
|
|
struct fpustate *f = FPUSTATE;
|
|
unsigned long rs1, rs2, rd_val, i;
|
|
|
|
rs1 = fpd_regval(f, RS1(insn));
|
|
rs2 = fpd_regval(f, RS2(insn));
|
|
|
|
rd_val = 0;
|
|
|
|
switch (opf) {
|
|
case FCMPGT16_OPF:
|
|
for (i = 0; i < 4; i++) {
|
|
s16 a = (rs1 >> (i * 16)) & 0xffff;
|
|
s16 b = (rs2 >> (i * 16)) & 0xffff;
|
|
|
|
if (a > b)
|
|
rd_val |= 8 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPGT32_OPF:
|
|
for (i = 0; i < 2; i++) {
|
|
s32 a = (rs1 >> (i * 32)) & 0xffffffff;
|
|
s32 b = (rs2 >> (i * 32)) & 0xffffffff;
|
|
|
|
if (a > b)
|
|
rd_val |= 2 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPLE16_OPF:
|
|
for (i = 0; i < 4; i++) {
|
|
s16 a = (rs1 >> (i * 16)) & 0xffff;
|
|
s16 b = (rs2 >> (i * 16)) & 0xffff;
|
|
|
|
if (a <= b)
|
|
rd_val |= 8 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPLE32_OPF:
|
|
for (i = 0; i < 2; i++) {
|
|
s32 a = (rs1 >> (i * 32)) & 0xffffffff;
|
|
s32 b = (rs2 >> (i * 32)) & 0xffffffff;
|
|
|
|
if (a <= b)
|
|
rd_val |= 2 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPNE16_OPF:
|
|
for (i = 0; i < 4; i++) {
|
|
s16 a = (rs1 >> (i * 16)) & 0xffff;
|
|
s16 b = (rs2 >> (i * 16)) & 0xffff;
|
|
|
|
if (a != b)
|
|
rd_val |= 8 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPNE32_OPF:
|
|
for (i = 0; i < 2; i++) {
|
|
s32 a = (rs1 >> (i * 32)) & 0xffffffff;
|
|
s32 b = (rs2 >> (i * 32)) & 0xffffffff;
|
|
|
|
if (a != b)
|
|
rd_val |= 2 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPEQ16_OPF:
|
|
for (i = 0; i < 4; i++) {
|
|
s16 a = (rs1 >> (i * 16)) & 0xffff;
|
|
s16 b = (rs2 >> (i * 16)) & 0xffff;
|
|
|
|
if (a == b)
|
|
rd_val |= 8 >> i;
|
|
}
|
|
break;
|
|
|
|
case FCMPEQ32_OPF:
|
|
for (i = 0; i < 2; i++) {
|
|
s32 a = (rs1 >> (i * 32)) & 0xffffffff;
|
|
s32 b = (rs2 >> (i * 32)) & 0xffffffff;
|
|
|
|
if (a == b)
|
|
rd_val |= 2 >> i;
|
|
}
|
|
break;
|
|
}
|
|
|
|
maybe_flush_windows(0, 0, RD(insn), 0);
|
|
store_reg(regs, rd_val, RD(insn));
|
|
}
|
|
|
|
/* Emulate the VIS instructions which are not implemented in
|
|
* hardware on Niagara.
|
|
*/
|
|
int vis_emul(struct pt_regs *regs, unsigned int insn)
|
|
{
|
|
unsigned long pc = regs->tpc;
|
|
unsigned int opf;
|
|
|
|
BUG_ON(regs->tstate & TSTATE_PRIV);
|
|
|
|
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
|
|
|
|
if (test_thread_flag(TIF_32BIT))
|
|
pc = (u32)pc;
|
|
|
|
if (get_user(insn, (u32 __user *) pc))
|
|
return -EFAULT;
|
|
|
|
save_and_clear_fpu();
|
|
|
|
opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
|
|
switch (opf) {
|
|
default:
|
|
return -EINVAL;
|
|
|
|
/* Pixel Formatting Instructions. */
|
|
case FPACK16_OPF:
|
|
case FPACK32_OPF:
|
|
case FPACKFIX_OPF:
|
|
case FEXPAND_OPF:
|
|
case FPMERGE_OPF:
|
|
pformat(regs, insn, opf);
|
|
break;
|
|
|
|
/* Partitioned Multiply Instructions */
|
|
case FMUL8x16_OPF:
|
|
case FMUL8x16AU_OPF:
|
|
case FMUL8x16AL_OPF:
|
|
case FMUL8SUx16_OPF:
|
|
case FMUL8ULx16_OPF:
|
|
case FMULD8SUx16_OPF:
|
|
case FMULD8ULx16_OPF:
|
|
pmul(regs, insn, opf);
|
|
break;
|
|
|
|
/* Pixel Compare Instructions */
|
|
case FCMPGT16_OPF:
|
|
case FCMPGT32_OPF:
|
|
case FCMPLE16_OPF:
|
|
case FCMPLE32_OPF:
|
|
case FCMPNE16_OPF:
|
|
case FCMPNE32_OPF:
|
|
case FCMPEQ16_OPF:
|
|
case FCMPEQ32_OPF:
|
|
pcmp(regs, insn, opf);
|
|
break;
|
|
|
|
/* Edge Handling Instructions */
|
|
case EDGE8_OPF:
|
|
case EDGE8N_OPF:
|
|
case EDGE8L_OPF:
|
|
case EDGE8LN_OPF:
|
|
case EDGE16_OPF:
|
|
case EDGE16N_OPF:
|
|
case EDGE16L_OPF:
|
|
case EDGE16LN_OPF:
|
|
case EDGE32_OPF:
|
|
case EDGE32N_OPF:
|
|
case EDGE32L_OPF:
|
|
case EDGE32LN_OPF:
|
|
edge(regs, insn, opf);
|
|
break;
|
|
|
|
/* Pixel Component Distance */
|
|
case PDIST_OPF:
|
|
pdist(regs, insn);
|
|
break;
|
|
|
|
/* Three-Dimensional Array Addressing Instructions */
|
|
case ARRAY8_OPF:
|
|
case ARRAY16_OPF:
|
|
case ARRAY32_OPF:
|
|
array(regs, insn, opf);
|
|
break;
|
|
|
|
/* Byte Mask and Shuffle Instructions */
|
|
case BMASK_OPF:
|
|
bmask(regs, insn);
|
|
break;
|
|
|
|
case BSHUFFLE_OPF:
|
|
bshuffle(regs, insn);
|
|
break;
|
|
}
|
|
|
|
regs->tpc = regs->tnpc;
|
|
regs->tnpc += 4;
|
|
return 0;
|
|
}
|