linux/fs/ext4/inode.c
Jan Kara e1c36595be ext4: fix WARN_ON from ext4_releasepage()
ext4_releasepage() warns when it is passed a page with PageChecked set.
However this can correctly happen when invalidate_inode_pages2_range()
invalidates pages - and we should fail the release in that case. Since
the page was dirty anyway, it won't be discarded and no harm has
happened but it's good to be safe. Also remove bogus page_has_buffers()
check - we are guaranteed page has buffers in this function.

Reported-by: Zheng Liu <gnehzuil.liu@gmail.com>
Tested-by: Zheng Liu <wenqing.lz@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Jan Kara <jack@suse.cz>
2013-03-10 22:19:00 -04:00

5044 lines
145 KiB
C

/*
* linux/fs/ext4/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 64-bit file support on 64-bit platforms by Jakub Jelinek
* (jj@sunsite.ms.mff.cuni.cz)
*
* Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
*/
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/jbd2.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/mpage.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include <linux/workqueue.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "truncate.h"
#include <trace/events/ext4.h>
#define MPAGE_DA_EXTENT_TAIL 0x01
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
__u16 csum_lo;
__u16 csum_hi = 0;
__u32 csum;
csum_lo = raw->i_checksum_lo;
raw->i_checksum_lo = 0;
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
csum_hi = raw->i_checksum_hi;
raw->i_checksum_hi = 0;
}
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
EXT4_INODE_SIZE(inode->i_sb));
raw->i_checksum_lo = csum_lo;
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
raw->i_checksum_hi = csum_hi;
return csum;
}
static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
__u32 provided, calculated;
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
cpu_to_le32(EXT4_OS_LINUX) ||
!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return 1;
provided = le16_to_cpu(raw->i_checksum_lo);
calculated = ext4_inode_csum(inode, raw, ei);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
else
calculated &= 0xFFFF;
return provided == calculated;
}
static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
__u32 csum;
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
cpu_to_le32(EXT4_OS_LINUX) ||
!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
return;
csum = ext4_inode_csum(inode, raw, ei);
raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}
static inline int ext4_begin_ordered_truncate(struct inode *inode,
loff_t new_size)
{
trace_ext4_begin_ordered_truncate(inode, new_size);
/*
* If jinode is zero, then we never opened the file for
* writing, so there's no need to call
* jbd2_journal_begin_ordered_truncate() since there's no
* outstanding writes we need to flush.
*/
if (!EXT4_I(inode)->jinode)
return 0;
return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
EXT4_I(inode)->jinode,
new_size);
}
static void ext4_invalidatepage(struct page *page, unsigned long offset);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
struct inode *inode, struct page *page, loff_t from,
loff_t length, int flags);
/*
* Test whether an inode is a fast symlink.
*/
static int ext4_inode_is_fast_symlink(struct inode *inode)
{
int ea_blocks = EXT4_I(inode)->i_file_acl ?
(inode->i_sb->s_blocksize >> 9) : 0;
return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}
/*
* Restart the transaction associated with *handle. This does a commit,
* so before we call here everything must be consistently dirtied against
* this transaction.
*/
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
int nblocks)
{
int ret;
/*
* Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
* moment, get_block can be called only for blocks inside i_size since
* page cache has been already dropped and writes are blocked by
* i_mutex. So we can safely drop the i_data_sem here.
*/
BUG_ON(EXT4_JOURNAL(inode) == NULL);
jbd_debug(2, "restarting handle %p\n", handle);
up_write(&EXT4_I(inode)->i_data_sem);
ret = ext4_journal_restart(handle, nblocks);
down_write(&EXT4_I(inode)->i_data_sem);
ext4_discard_preallocations(inode);
return ret;
}
/*
* Called at the last iput() if i_nlink is zero.
*/
void ext4_evict_inode(struct inode *inode)
{
handle_t *handle;
int err;
trace_ext4_evict_inode(inode);
ext4_ioend_wait(inode);
if (inode->i_nlink) {
/*
* When journalling data dirty buffers are tracked only in the
* journal. So although mm thinks everything is clean and
* ready for reaping the inode might still have some pages to
* write in the running transaction or waiting to be
* checkpointed. Thus calling jbd2_journal_invalidatepage()
* (via truncate_inode_pages()) to discard these buffers can
* cause data loss. Also even if we did not discard these
* buffers, we would have no way to find them after the inode
* is reaped and thus user could see stale data if he tries to
* read them before the transaction is checkpointed. So be
* careful and force everything to disk here... We use
* ei->i_datasync_tid to store the newest transaction
* containing inode's data.
*
* Note that directories do not have this problem because they
* don't use page cache.
*/
if (ext4_should_journal_data(inode) &&
(S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
jbd2_log_start_commit(journal, commit_tid);
jbd2_log_wait_commit(journal, commit_tid);
filemap_write_and_wait(&inode->i_data);
}
truncate_inode_pages(&inode->i_data, 0);
goto no_delete;
}
if (!is_bad_inode(inode))
dquot_initialize(inode);
if (ext4_should_order_data(inode))
ext4_begin_ordered_truncate(inode, 0);
truncate_inode_pages(&inode->i_data, 0);
if (is_bad_inode(inode))
goto no_delete;
/*
* Protect us against freezing - iput() caller didn't have to have any
* protection against it
*/
sb_start_intwrite(inode->i_sb);
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
ext4_blocks_for_truncate(inode)+3);
if (IS_ERR(handle)) {
ext4_std_error(inode->i_sb, PTR_ERR(handle));
/*
* If we're going to skip the normal cleanup, we still need to
* make sure that the in-core orphan linked list is properly
* cleaned up.
*/
ext4_orphan_del(NULL, inode);
sb_end_intwrite(inode->i_sb);
goto no_delete;
}
if (IS_SYNC(inode))
ext4_handle_sync(handle);
inode->i_size = 0;
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_warning(inode->i_sb,
"couldn't mark inode dirty (err %d)", err);
goto stop_handle;
}
if (inode->i_blocks)
ext4_truncate(inode);
/*
* ext4_ext_truncate() doesn't reserve any slop when it
* restarts journal transactions; therefore there may not be
* enough credits left in the handle to remove the inode from
* the orphan list and set the dtime field.
*/
if (!ext4_handle_has_enough_credits(handle, 3)) {
err = ext4_journal_extend(handle, 3);
if (err > 0)
err = ext4_journal_restart(handle, 3);
if (err != 0) {
ext4_warning(inode->i_sb,
"couldn't extend journal (err %d)", err);
stop_handle:
ext4_journal_stop(handle);
ext4_orphan_del(NULL, inode);
sb_end_intwrite(inode->i_sb);
goto no_delete;
}
}
/*
* Kill off the orphan record which ext4_truncate created.
* AKPM: I think this can be inside the above `if'.
* Note that ext4_orphan_del() has to be able to cope with the
* deletion of a non-existent orphan - this is because we don't
* know if ext4_truncate() actually created an orphan record.
* (Well, we could do this if we need to, but heck - it works)
*/
ext4_orphan_del(handle, inode);
EXT4_I(inode)->i_dtime = get_seconds();
/*
* One subtle ordering requirement: if anything has gone wrong
* (transaction abort, IO errors, whatever), then we can still
* do these next steps (the fs will already have been marked as
* having errors), but we can't free the inode if the mark_dirty
* fails.
*/
if (ext4_mark_inode_dirty(handle, inode))
/* If that failed, just do the required in-core inode clear. */
ext4_clear_inode(inode);
else
ext4_free_inode(handle, inode);
ext4_journal_stop(handle);
sb_end_intwrite(inode->i_sb);
return;
no_delete:
ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
}
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
{
return &EXT4_I(inode)->i_reserved_quota;
}
#endif
/*
* Calculate the number of metadata blocks need to reserve
* to allocate a block located at @lblock
*/
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
{
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
return ext4_ext_calc_metadata_amount(inode, lblock);
return ext4_ind_calc_metadata_amount(inode, lblock);
}
/*
* Called with i_data_sem down, which is important since we can call
* ext4_discard_preallocations() from here.
*/
void ext4_da_update_reserve_space(struct inode *inode,
int used, int quota_claim)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
spin_lock(&ei->i_block_reservation_lock);
trace_ext4_da_update_reserve_space(inode, used, quota_claim);
if (unlikely(used > ei->i_reserved_data_blocks)) {
ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
"with only %d reserved data blocks",
__func__, inode->i_ino, used,
ei->i_reserved_data_blocks);
WARN_ON(1);
used = ei->i_reserved_data_blocks;
}
if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
ext4_warning(inode->i_sb, "ino %lu, allocated %d "
"with only %d reserved metadata blocks "
"(releasing %d blocks with reserved %d data blocks)",
inode->i_ino, ei->i_allocated_meta_blocks,
ei->i_reserved_meta_blocks, used,
ei->i_reserved_data_blocks);
WARN_ON(1);
ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
}
/* Update per-inode reservations */
ei->i_reserved_data_blocks -= used;
ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
percpu_counter_sub(&sbi->s_dirtyclusters_counter,
used + ei->i_allocated_meta_blocks);
ei->i_allocated_meta_blocks = 0;
if (ei->i_reserved_data_blocks == 0) {
/*
* We can release all of the reserved metadata blocks
* only when we have written all of the delayed
* allocation blocks.
*/
percpu_counter_sub(&sbi->s_dirtyclusters_counter,
ei->i_reserved_meta_blocks);
ei->i_reserved_meta_blocks = 0;
ei->i_da_metadata_calc_len = 0;
}
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
/* Update quota subsystem for data blocks */
if (quota_claim)
dquot_claim_block(inode, EXT4_C2B(sbi, used));
else {
/*
* We did fallocate with an offset that is already delayed
* allocated. So on delayed allocated writeback we should
* not re-claim the quota for fallocated blocks.
*/
dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
}
/*
* If we have done all the pending block allocations and if
* there aren't any writers on the inode, we can discard the
* inode's preallocations.
*/
if ((ei->i_reserved_data_blocks == 0) &&
(atomic_read(&inode->i_writecount) == 0))
ext4_discard_preallocations(inode);
}
static int __check_block_validity(struct inode *inode, const char *func,
unsigned int line,
struct ext4_map_blocks *map)
{
if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
map->m_len)) {
ext4_error_inode(inode, func, line, map->m_pblk,
"lblock %lu mapped to illegal pblock "
"(length %d)", (unsigned long) map->m_lblk,
map->m_len);
return -EIO;
}
return 0;
}
#define check_block_validity(inode, map) \
__check_block_validity((inode), __func__, __LINE__, (map))
/*
* Return the number of contiguous dirty pages in a given inode
* starting at page frame idx.
*/
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
unsigned int max_pages)
{
struct address_space *mapping = inode->i_mapping;
pgoff_t index;
struct pagevec pvec;
pgoff_t num = 0;
int i, nr_pages, done = 0;
if (max_pages == 0)
return 0;
pagevec_init(&pvec, 0);
while (!done) {
index = idx;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
(pgoff_t)PAGEVEC_SIZE);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
struct buffer_head *bh, *head;
lock_page(page);
if (unlikely(page->mapping != mapping) ||
!PageDirty(page) ||
PageWriteback(page) ||
page->index != idx) {
done = 1;
unlock_page(page);
break;
}
if (page_has_buffers(page)) {
bh = head = page_buffers(page);
do {
if (!buffer_delay(bh) &&
!buffer_unwritten(bh))
done = 1;
bh = bh->b_this_page;
} while (!done && (bh != head));
}
unlock_page(page);
if (done)
break;
idx++;
num++;
if (num >= max_pages) {
done = 1;
break;
}
}
pagevec_release(&pvec);
}
return num;
}
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
struct inode *inode,
struct ext4_map_blocks *es_map,
struct ext4_map_blocks *map,
int flags)
{
int retval;
map->m_flags = 0;
/*
* There is a race window that the result is not the same.
* e.g. xfstests #223 when dioread_nolock enables. The reason
* is that we lookup a block mapping in extent status tree with
* out taking i_data_sem. So at the time the unwritten extent
* could be converted.
*/
if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
down_read((&EXT4_I(inode)->i_data_sem));
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
}
if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
up_read((&EXT4_I(inode)->i_data_sem));
/*
* Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
* because it shouldn't be marked in es_map->m_flags.
*/
map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
/*
* We don't check m_len because extent will be collpased in status
* tree. So the m_len might not equal.
*/
if (es_map->m_lblk != map->m_lblk ||
es_map->m_flags != map->m_flags ||
es_map->m_pblk != map->m_pblk) {
printk("ES cache assertation failed for inode: %lu "
"es_cached ex [%d/%d/%llu/%x] != "
"found ex [%d/%d/%llu/%x] retval %d flags %x\n",
inode->i_ino, es_map->m_lblk, es_map->m_len,
es_map->m_pblk, es_map->m_flags, map->m_lblk,
map->m_len, map->m_pblk, map->m_flags,
retval, flags);
}
}
#endif /* ES_AGGRESSIVE_TEST */
/*
* The ext4_map_blocks() function tries to look up the requested blocks,
* and returns if the blocks are already mapped.
*
* Otherwise it takes the write lock of the i_data_sem and allocate blocks
* and store the allocated blocks in the result buffer head and mark it
* mapped.
*
* If file type is extents based, it will call ext4_ext_map_blocks(),
* Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
* based files
*
* On success, it returns the number of blocks being mapped or allocate.
* if create==0 and the blocks are pre-allocated and uninitialized block,
* the result buffer head is unmapped. If the create ==1, it will make sure
* the buffer head is mapped.
*
* It returns 0 if plain look up failed (blocks have not been allocated), in
* that case, buffer head is unmapped
*
* It returns the error in case of allocation failure.
*/
int ext4_map_blocks(handle_t *handle, struct inode *inode,
struct ext4_map_blocks *map, int flags)
{
struct extent_status es;
int retval;
#ifdef ES_AGGRESSIVE_TEST
struct ext4_map_blocks orig_map;
memcpy(&orig_map, map, sizeof(*map));
#endif
map->m_flags = 0;
ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
"logical block %lu\n", inode->i_ino, flags, map->m_len,
(unsigned long) map->m_lblk);
/* Lookup extent status tree firstly */
if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
map->m_pblk = ext4_es_pblock(&es) +
map->m_lblk - es.es_lblk;
map->m_flags |= ext4_es_is_written(&es) ?
EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
retval = es.es_len - (map->m_lblk - es.es_lblk);
if (retval > map->m_len)
retval = map->m_len;
map->m_len = retval;
} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
retval = 0;
} else {
BUG_ON(1);
}
#ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle, inode, map,
&orig_map, flags);
#endif
goto found;
}
/*
* Try to see if we can get the block without requesting a new
* file system block.
*/
if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
down_read((&EXT4_I(inode)->i_data_sem));
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
}
if (retval > 0) {
int ret;
unsigned long long status;
#ifdef ES_AGGRESSIVE_TEST
if (retval != map->m_len) {
printk("ES len assertation failed for inode: %lu "
"retval %d != map->m_len %d "
"in %s (lookup)\n", inode->i_ino, retval,
map->m_len, __func__);
}
#endif
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
ext4_find_delalloc_range(inode, map->m_lblk,
map->m_lblk + map->m_len - 1))
status |= EXTENT_STATUS_DELAYED;
ret = ext4_es_insert_extent(inode, map->m_lblk,
map->m_len, map->m_pblk, status);
if (ret < 0)
retval = ret;
}
if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
up_read((&EXT4_I(inode)->i_data_sem));
found:
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
int ret = check_block_validity(inode, map);
if (ret != 0)
return ret;
}
/* If it is only a block(s) look up */
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
return retval;
/*
* Returns if the blocks have already allocated
*
* Note that if blocks have been preallocated
* ext4_ext_get_block() returns the create = 0
* with buffer head unmapped.
*/
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
return retval;
/*
* Here we clear m_flags because after allocating an new extent,
* it will be set again.
*/
map->m_flags &= ~EXT4_MAP_FLAGS;
/*
* New blocks allocate and/or writing to uninitialized extent
* will possibly result in updating i_data, so we take
* the write lock of i_data_sem, and call get_blocks()
* with create == 1 flag.
*/
down_write((&EXT4_I(inode)->i_data_sem));
/*
* if the caller is from delayed allocation writeout path
* we have already reserved fs blocks for allocation
* let the underlying get_block() function know to
* avoid double accounting
*/
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
/*
* We need to check for EXT4 here because migrate
* could have changed the inode type in between
*/
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags);
if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
/*
* We allocated new blocks which will result in
* i_data's format changing. Force the migrate
* to fail by clearing migrate flags
*/
ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
}
/*
* Update reserved blocks/metadata blocks after successful
* block allocation which had been deferred till now. We don't
* support fallocate for non extent files. So we can update
* reserve space here.
*/
if ((retval > 0) &&
(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
ext4_da_update_reserve_space(inode, retval, 1);
}
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
if (retval > 0) {
int ret;
unsigned long long status;
#ifdef ES_AGGRESSIVE_TEST
if (retval != map->m_len) {
printk("ES len assertation failed for inode: %lu "
"retval %d != map->m_len %d "
"in %s (allocation)\n", inode->i_ino, retval,
map->m_len, __func__);
}
#endif
/*
* If the extent has been zeroed out, we don't need to update
* extent status tree.
*/
if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
if (ext4_es_is_written(&es))
goto has_zeroout;
}
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
ext4_find_delalloc_range(inode, map->m_lblk,
map->m_lblk + map->m_len - 1))
status |= EXTENT_STATUS_DELAYED;
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
map->m_pblk, status);
if (ret < 0)
retval = ret;
}
has_zeroout:
up_write((&EXT4_I(inode)->i_data_sem));
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
int ret = check_block_validity(inode, map);
if (ret != 0)
return ret;
}
return retval;
}
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
static int _ext4_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int flags)
{
handle_t *handle = ext4_journal_current_handle();
struct ext4_map_blocks map;
int ret = 0, started = 0;
int dio_credits;
if (ext4_has_inline_data(inode))
return -ERANGE;
map.m_lblk = iblock;
map.m_len = bh->b_size >> inode->i_blkbits;
if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
/* Direct IO write... */
if (map.m_len > DIO_MAX_BLOCKS)
map.m_len = DIO_MAX_BLOCKS;
dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
dio_credits);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
return ret;
}
started = 1;
}
ret = ext4_map_blocks(handle, inode, &map, flags);
if (ret > 0) {
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ret = 0;
}
if (started)
ext4_journal_stop(handle);
return ret;
}
int ext4_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
return _ext4_get_block(inode, iblock, bh,
create ? EXT4_GET_BLOCKS_CREATE : 0);
}
/*
* `handle' can be NULL if create is zero
*/
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
ext4_lblk_t block, int create, int *errp)
{
struct ext4_map_blocks map;
struct buffer_head *bh;
int fatal = 0, err;
J_ASSERT(handle != NULL || create == 0);
map.m_lblk = block;
map.m_len = 1;
err = ext4_map_blocks(handle, inode, &map,
create ? EXT4_GET_BLOCKS_CREATE : 0);
/* ensure we send some value back into *errp */
*errp = 0;
if (create && err == 0)
err = -ENOSPC; /* should never happen */
if (err < 0)
*errp = err;
if (err <= 0)
return NULL;
bh = sb_getblk(inode->i_sb, map.m_pblk);
if (unlikely(!bh)) {
*errp = -ENOMEM;
return NULL;
}
if (map.m_flags & EXT4_MAP_NEW) {
J_ASSERT(create != 0);
J_ASSERT(handle != NULL);
/*
* Now that we do not always journal data, we should
* keep in mind whether this should always journal the
* new buffer as metadata. For now, regular file
* writes use ext4_get_block instead, so it's not a
* problem.
*/
lock_buffer(bh);
BUFFER_TRACE(bh, "call get_create_access");
fatal = ext4_journal_get_create_access(handle, bh);
if (!fatal && !buffer_uptodate(bh)) {
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
}
unlock_buffer(bh);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, inode, bh);
if (!fatal)
fatal = err;
} else {
BUFFER_TRACE(bh, "not a new buffer");
}
if (fatal) {
*errp = fatal;
brelse(bh);
bh = NULL;
}
return bh;
}
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
ext4_lblk_t block, int create, int *err)
{
struct buffer_head *bh;
bh = ext4_getblk(handle, inode, block, create, err);
if (!bh)
return bh;
if (buffer_uptodate(bh))
return bh;
ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return bh;
put_bh(bh);
*err = -EIO;
return NULL;
}
int ext4_walk_page_buffers(handle_t *handle,
struct buffer_head *head,
unsigned from,
unsigned to,
int *partial,
int (*fn)(handle_t *handle,
struct buffer_head *bh))
{
struct buffer_head *bh;
unsigned block_start, block_end;
unsigned blocksize = head->b_size;
int err, ret = 0;
struct buffer_head *next;
for (bh = head, block_start = 0;
ret == 0 && (bh != head || !block_start);
block_start = block_end, bh = next) {
next = bh->b_this_page;
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (partial && !buffer_uptodate(bh))
*partial = 1;
continue;
}
err = (*fn)(handle, bh);
if (!ret)
ret = err;
}
return ret;
}
/*
* To preserve ordering, it is essential that the hole instantiation and
* the data write be encapsulated in a single transaction. We cannot
* close off a transaction and start a new one between the ext4_get_block()
* and the commit_write(). So doing the jbd2_journal_start at the start of
* prepare_write() is the right place.
*
* Also, this function can nest inside ext4_writepage(). In that case, we
* *know* that ext4_writepage() has generated enough buffer credits to do the
* whole page. So we won't block on the journal in that case, which is good,
* because the caller may be PF_MEMALLOC.
*
* By accident, ext4 can be reentered when a transaction is open via
* quota file writes. If we were to commit the transaction while thus
* reentered, there can be a deadlock - we would be holding a quota
* lock, and the commit would never complete if another thread had a
* transaction open and was blocking on the quota lock - a ranking
* violation.
*
* So what we do is to rely on the fact that jbd2_journal_stop/journal_start
* will _not_ run commit under these circumstances because handle->h_ref
* is elevated. We'll still have enough credits for the tiny quotafile
* write.
*/
int do_journal_get_write_access(handle_t *handle,
struct buffer_head *bh)
{
int dirty = buffer_dirty(bh);
int ret;
if (!buffer_mapped(bh) || buffer_freed(bh))
return 0;
/*
* __block_write_begin() could have dirtied some buffers. Clean
* the dirty bit as jbd2_journal_get_write_access() could complain
* otherwise about fs integrity issues. Setting of the dirty bit
* by __block_write_begin() isn't a real problem here as we clear
* the bit before releasing a page lock and thus writeback cannot
* ever write the buffer.
*/
if (dirty)
clear_buffer_dirty(bh);
ret = ext4_journal_get_write_access(handle, bh);
if (!ret && dirty)
ret = ext4_handle_dirty_metadata(handle, NULL, bh);
return ret;
}
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create);
static int ext4_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
int ret, needed_blocks;
handle_t *handle;
int retries = 0;
struct page *page;
pgoff_t index;
unsigned from, to;
trace_ext4_write_begin(inode, pos, len, flags);
/*
* Reserve one block more for addition to orphan list in case
* we allocate blocks but write fails for some reason
*/
needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
index = pos >> PAGE_CACHE_SHIFT;
from = pos & (PAGE_CACHE_SIZE - 1);
to = from + len;
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
flags, pagep);
if (ret < 0)
return ret;
if (ret == 1)
return 0;
}
/*
* grab_cache_page_write_begin() can take a long time if the
* system is thrashing due to memory pressure, or if the page
* is being written back. So grab it first before we start
* the transaction handle. This also allows us to allocate
* the page (if needed) without using GFP_NOFS.
*/
retry_grab:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
unlock_page(page);
retry_journal:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
if (IS_ERR(handle)) {
page_cache_release(page);
return PTR_ERR(handle);
}
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
unlock_page(page);
page_cache_release(page);
ext4_journal_stop(handle);
goto retry_grab;
}
wait_on_page_writeback(page);
if (ext4_should_dioread_nolock(inode))
ret = __block_write_begin(page, pos, len, ext4_get_block_write);
else
ret = __block_write_begin(page, pos, len, ext4_get_block);
if (!ret && ext4_should_journal_data(inode)) {
ret = ext4_walk_page_buffers(handle, page_buffers(page),
from, to, NULL,
do_journal_get_write_access);
}
if (ret) {
unlock_page(page);
/*
* __block_write_begin may have instantiated a few blocks
* outside i_size. Trim these off again. Don't need
* i_size_read because we hold i_mutex.
*
* Add inode to orphan list in case we crash before
* truncate finishes
*/
if (pos + len > inode->i_size && ext4_can_truncate(inode))
ext4_orphan_add(handle, inode);
ext4_journal_stop(handle);
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might
* still be on the orphan list; we need to
* make sure the inode is removed from the
* orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
if (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_journal;
page_cache_release(page);
return ret;
}
*pagep = page;
return ret;
}
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
{
if (!buffer_mapped(bh) || buffer_freed(bh))
return 0;
set_buffer_uptodate(bh);
return ext4_handle_dirty_metadata(handle, NULL, bh);
}
static int ext4_generic_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
int i_size_changed = 0;
struct inode *inode = mapping->host;
handle_t *handle = ext4_journal_current_handle();
if (ext4_has_inline_data(inode))
copied = ext4_write_inline_data_end(inode, pos, len,
copied, page);
else
copied = block_write_end(file, mapping, pos,
len, copied, page, fsdata);
/*
* No need to use i_size_read() here, the i_size
* cannot change under us because we hold i_mutex.
*
* But it's important to update i_size while still holding page lock:
* page writeout could otherwise come in and zero beyond i_size.
*/
if (pos + copied > inode->i_size) {
i_size_write(inode, pos + copied);
i_size_changed = 1;
}
if (pos + copied > EXT4_I(inode)->i_disksize) {
/* We need to mark inode dirty even if
* new_i_size is less that inode->i_size
* bu greater than i_disksize.(hint delalloc)
*/
ext4_update_i_disksize(inode, (pos + copied));
i_size_changed = 1;
}
unlock_page(page);
page_cache_release(page);
/*
* Don't mark the inode dirty under page lock. First, it unnecessarily
* makes the holding time of page lock longer. Second, it forces lock
* ordering of page lock and transaction start for journaling
* filesystems.
*/
if (i_size_changed)
ext4_mark_inode_dirty(handle, inode);
return copied;
}
/*
* We need to pick up the new inode size which generic_commit_write gave us
* `file' can be NULL - eg, when called from page_symlink().
*
* ext4 never places buffers on inode->i_mapping->private_list. metadata
* buffers are managed internally.
*/
static int ext4_ordered_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
handle_t *handle = ext4_journal_current_handle();
struct inode *inode = mapping->host;
int ret = 0, ret2;
trace_ext4_ordered_write_end(inode, pos, len, copied);
ret = ext4_jbd2_file_inode(handle, inode);
if (ret == 0) {
ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
page, fsdata);
copied = ret2;
if (pos + len > inode->i_size && ext4_can_truncate(inode))
/* if we have allocated more blocks and copied
* less. We will have blocks allocated outside
* inode->i_size. So truncate them
*/
ext4_orphan_add(handle, inode);
if (ret2 < 0)
ret = ret2;
} else {
unlock_page(page);
page_cache_release(page);
}
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might still be
* on the orphan list; we need to make sure the inode
* is removed from the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret ? ret : copied;
}
static int ext4_writeback_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
handle_t *handle = ext4_journal_current_handle();
struct inode *inode = mapping->host;
int ret = 0, ret2;
trace_ext4_writeback_write_end(inode, pos, len, copied);
ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
page, fsdata);
copied = ret2;
if (pos + len > inode->i_size && ext4_can_truncate(inode))
/* if we have allocated more blocks and copied
* less. We will have blocks allocated outside
* inode->i_size. So truncate them
*/
ext4_orphan_add(handle, inode);
if (ret2 < 0)
ret = ret2;
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might still be
* on the orphan list; we need to make sure the inode
* is removed from the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret ? ret : copied;
}
static int ext4_journalled_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
handle_t *handle = ext4_journal_current_handle();
struct inode *inode = mapping->host;
int ret = 0, ret2;
int partial = 0;
unsigned from, to;
loff_t new_i_size;
trace_ext4_journalled_write_end(inode, pos, len, copied);
from = pos & (PAGE_CACHE_SIZE - 1);
to = from + len;
BUG_ON(!ext4_handle_valid(handle));
if (ext4_has_inline_data(inode))
copied = ext4_write_inline_data_end(inode, pos, len,
copied, page);
else {
if (copied < len) {
if (!PageUptodate(page))
copied = 0;
page_zero_new_buffers(page, from+copied, to);
}
ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
to, &partial, write_end_fn);
if (!partial)
SetPageUptodate(page);
}
new_i_size = pos + copied;
if (new_i_size > inode->i_size)
i_size_write(inode, pos+copied);
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
if (new_i_size > EXT4_I(inode)->i_disksize) {
ext4_update_i_disksize(inode, new_i_size);
ret2 = ext4_mark_inode_dirty(handle, inode);
if (!ret)
ret = ret2;
}
unlock_page(page);
page_cache_release(page);
if (pos + len > inode->i_size && ext4_can_truncate(inode))
/* if we have allocated more blocks and copied
* less. We will have blocks allocated outside
* inode->i_size. So truncate them
*/
ext4_orphan_add(handle, inode);
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might still be
* on the orphan list; we need to make sure the inode
* is removed from the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret ? ret : copied;
}
/*
* Reserve a single cluster located at lblock
*/
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
{
int retries = 0;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
unsigned int md_needed;
int ret;
ext4_lblk_t save_last_lblock;
int save_len;
/*
* We will charge metadata quota at writeout time; this saves
* us from metadata over-estimation, though we may go over by
* a small amount in the end. Here we just reserve for data.
*/
ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
if (ret)
return ret;
/*
* recalculate the amount of metadata blocks to reserve
* in order to allocate nrblocks
* worse case is one extent per block
*/
repeat:
spin_lock(&ei->i_block_reservation_lock);
/*
* ext4_calc_metadata_amount() has side effects, which we have
* to be prepared undo if we fail to claim space.
*/
save_len = ei->i_da_metadata_calc_len;
save_last_lblock = ei->i_da_metadata_calc_last_lblock;
md_needed = EXT4_NUM_B2C(sbi,
ext4_calc_metadata_amount(inode, lblock));
trace_ext4_da_reserve_space(inode, md_needed);
/*
* We do still charge estimated metadata to the sb though;
* we cannot afford to run out of free blocks.
*/
if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
ei->i_da_metadata_calc_len = save_len;
ei->i_da_metadata_calc_last_lblock = save_last_lblock;
spin_unlock(&ei->i_block_reservation_lock);
if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
yield();
goto repeat;
}
dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
return -ENOSPC;
}
ei->i_reserved_data_blocks++;
ei->i_reserved_meta_blocks += md_needed;
spin_unlock(&ei->i_block_reservation_lock);
return 0; /* success */
}
static void ext4_da_release_space(struct inode *inode, int to_free)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
if (!to_free)
return; /* Nothing to release, exit */
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
trace_ext4_da_release_space(inode, to_free);
if (unlikely(to_free > ei->i_reserved_data_blocks)) {
/*
* if there aren't enough reserved blocks, then the
* counter is messed up somewhere. Since this
* function is called from invalidate page, it's
* harmless to return without any action.
*/
ext4_warning(inode->i_sb, "ext4_da_release_space: "
"ino %lu, to_free %d with only %d reserved "
"data blocks", inode->i_ino, to_free,
ei->i_reserved_data_blocks);
WARN_ON(1);
to_free = ei->i_reserved_data_blocks;
}
ei->i_reserved_data_blocks -= to_free;
if (ei->i_reserved_data_blocks == 0) {
/*
* We can release all of the reserved metadata blocks
* only when we have written all of the delayed
* allocation blocks.
* Note that in case of bigalloc, i_reserved_meta_blocks,
* i_reserved_data_blocks, etc. refer to number of clusters.
*/
percpu_counter_sub(&sbi->s_dirtyclusters_counter,
ei->i_reserved_meta_blocks);
ei->i_reserved_meta_blocks = 0;
ei->i_da_metadata_calc_len = 0;
}
/* update fs dirty data blocks counter */
percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
}
static void ext4_da_page_release_reservation(struct page *page,
unsigned long offset)
{
int to_release = 0;
struct buffer_head *head, *bh;
unsigned int curr_off = 0;
struct inode *inode = page->mapping->host;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
int num_clusters;
ext4_fsblk_t lblk;
head = page_buffers(page);
bh = head;
do {
unsigned int next_off = curr_off + bh->b_size;
if ((offset <= curr_off) && (buffer_delay(bh))) {
to_release++;
clear_buffer_delay(bh);
}
curr_off = next_off;
} while ((bh = bh->b_this_page) != head);
if (to_release) {
lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
ext4_es_remove_extent(inode, lblk, to_release);
}
/* If we have released all the blocks belonging to a cluster, then we
* need to release the reserved space for that cluster. */
num_clusters = EXT4_NUM_B2C(sbi, to_release);
while (num_clusters > 0) {
lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
((num_clusters - 1) << sbi->s_cluster_bits);
if (sbi->s_cluster_ratio == 1 ||
!ext4_find_delalloc_cluster(inode, lblk))
ext4_da_release_space(inode, 1);
num_clusters--;
}
}
/*
* Delayed allocation stuff
*/
/*
* mpage_da_submit_io - walks through extent of pages and try to write
* them with writepage() call back
*
* @mpd->inode: inode
* @mpd->first_page: first page of the extent
* @mpd->next_page: page after the last page of the extent
*
* By the time mpage_da_submit_io() is called we expect all blocks
* to be allocated. this may be wrong if allocation failed.
*
* As pages are already locked by write_cache_pages(), we can't use it
*/
static int mpage_da_submit_io(struct mpage_da_data *mpd,
struct ext4_map_blocks *map)
{
struct pagevec pvec;
unsigned long index, end;
int ret = 0, err, nr_pages, i;
struct inode *inode = mpd->inode;
struct address_space *mapping = inode->i_mapping;
loff_t size = i_size_read(inode);
unsigned int len, block_start;
struct buffer_head *bh, *page_bufs = NULL;
sector_t pblock = 0, cur_logical = 0;
struct ext4_io_submit io_submit;
BUG_ON(mpd->next_page <= mpd->first_page);
memset(&io_submit, 0, sizeof(io_submit));
/*
* We need to start from the first_page to the next_page - 1
* to make sure we also write the mapped dirty buffer_heads.
* If we look at mpd->b_blocknr we would only be looking
* at the currently mapped buffer_heads.
*/
index = mpd->first_page;
end = mpd->next_page - 1;
pagevec_init(&pvec, 0);
while (index <= end) {
nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
int skip_page = 0;
struct page *page = pvec.pages[i];
index = page->index;
if (index > end)
break;
if (index == size >> PAGE_CACHE_SHIFT)
len = size & ~PAGE_CACHE_MASK;
else
len = PAGE_CACHE_SIZE;
if (map) {
cur_logical = index << (PAGE_CACHE_SHIFT -
inode->i_blkbits);
pblock = map->m_pblk + (cur_logical -
map->m_lblk);
}
index++;
BUG_ON(!PageLocked(page));
BUG_ON(PageWriteback(page));
bh = page_bufs = page_buffers(page);
block_start = 0;
do {
if (map && (cur_logical >= map->m_lblk) &&
(cur_logical <= (map->m_lblk +
(map->m_len - 1)))) {
if (buffer_delay(bh)) {
clear_buffer_delay(bh);
bh->b_blocknr = pblock;
}
if (buffer_unwritten(bh) ||
buffer_mapped(bh))
BUG_ON(bh->b_blocknr != pblock);
if (map->m_flags & EXT4_MAP_UNINIT)
set_buffer_uninit(bh);
clear_buffer_unwritten(bh);
}
/*
* skip page if block allocation undone and
* block is dirty
*/
if (ext4_bh_delay_or_unwritten(NULL, bh))
skip_page = 1;
bh = bh->b_this_page;
block_start += bh->b_size;
cur_logical++;
pblock++;
} while (bh != page_bufs);
if (skip_page) {
unlock_page(page);
continue;
}
clear_page_dirty_for_io(page);
err = ext4_bio_write_page(&io_submit, page, len,
mpd->wbc);
if (!err)
mpd->pages_written++;
/*
* In error case, we have to continue because
* remaining pages are still locked
*/
if (ret == 0)
ret = err;
}
pagevec_release(&pvec);
}
ext4_io_submit(&io_submit);
return ret;
}
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
{
int nr_pages, i;
pgoff_t index, end;
struct pagevec pvec;
struct inode *inode = mpd->inode;
struct address_space *mapping = inode->i_mapping;
ext4_lblk_t start, last;
index = mpd->first_page;
end = mpd->next_page - 1;
start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
ext4_es_remove_extent(inode, start, last - start + 1);
pagevec_init(&pvec, 0);
while (index <= end) {
nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (page->index > end)
break;
BUG_ON(!PageLocked(page));
BUG_ON(PageWriteback(page));
block_invalidatepage(page, 0);
ClearPageUptodate(page);
unlock_page(page);
}
index = pvec.pages[nr_pages - 1]->index + 1;
pagevec_release(&pvec);
}
return;
}
static void ext4_print_free_blocks(struct inode *inode)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct super_block *sb = inode->i_sb;
ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
EXT4_C2B(EXT4_SB(inode->i_sb),
ext4_count_free_clusters(inode->i_sb)));
ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
(long long) EXT4_C2B(EXT4_SB(inode->i_sb),
percpu_counter_sum(&sbi->s_freeclusters_counter)));
ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
(long long) EXT4_C2B(EXT4_SB(inode->i_sb),
percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
ext4_msg(sb, KERN_CRIT, "Block reservation details");
ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
EXT4_I(inode)->i_reserved_data_blocks);
ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
EXT4_I(inode)->i_reserved_meta_blocks);
return;
}
/*
* mpage_da_map_and_submit - go through given space, map them
* if necessary, and then submit them for I/O
*
* @mpd - bh describing space
*
* The function skips space we know is already mapped to disk blocks.
*
*/
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
{
int err, blks, get_blocks_flags;
struct ext4_map_blocks map, *mapp = NULL;
sector_t next = mpd->b_blocknr;
unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
handle_t *handle = NULL;
/*
* If the blocks are mapped already, or we couldn't accumulate
* any blocks, then proceed immediately to the submission stage.
*/
if ((mpd->b_size == 0) ||
((mpd->b_state & (1 << BH_Mapped)) &&
!(mpd->b_state & (1 << BH_Delay)) &&
!(mpd->b_state & (1 << BH_Unwritten))))
goto submit_io;
handle = ext4_journal_current_handle();
BUG_ON(!handle);
/*
* Call ext4_map_blocks() to allocate any delayed allocation
* blocks, or to convert an uninitialized extent to be
* initialized (in the case where we have written into
* one or more preallocated blocks).
*
* We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
* indicate that we are on the delayed allocation path. This
* affects functions in many different parts of the allocation
* call path. This flag exists primarily because we don't
* want to change *many* call functions, so ext4_map_blocks()
* will set the EXT4_STATE_DELALLOC_RESERVED flag once the
* inode's allocation semaphore is taken.
*
* If the blocks in questions were delalloc blocks, set
* EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
* variables are updated after the blocks have been allocated.
*/
map.m_lblk = next;
map.m_len = max_blocks;
get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
if (ext4_should_dioread_nolock(mpd->inode))
get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
if (mpd->b_state & (1 << BH_Delay))
get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
if (blks < 0) {
struct super_block *sb = mpd->inode->i_sb;
err = blks;
/*
* If get block returns EAGAIN or ENOSPC and there
* appears to be free blocks we will just let
* mpage_da_submit_io() unlock all of the pages.
*/
if (err == -EAGAIN)
goto submit_io;
if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
mpd->retval = err;
goto submit_io;
}
/*
* get block failure will cause us to loop in
* writepages, because a_ops->writepage won't be able
* to make progress. The page will be redirtied by
* writepage and writepages will again try to write
* the same.
*/
if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
ext4_msg(sb, KERN_CRIT,
"delayed block allocation failed for inode %lu "
"at logical offset %llu with max blocks %zd "
"with error %d", mpd->inode->i_ino,
(unsigned long long) next,
mpd->b_size >> mpd->inode->i_blkbits, err);
ext4_msg(sb, KERN_CRIT,
"This should not happen!! Data will be lost");
if (err == -ENOSPC)
ext4_print_free_blocks(mpd->inode);
}
/* invalidate all the pages */
ext4_da_block_invalidatepages(mpd);
/* Mark this page range as having been completed */
mpd->io_done = 1;
return;
}
BUG_ON(blks == 0);
mapp = &map;
if (map.m_flags & EXT4_MAP_NEW) {
struct block_device *bdev = mpd->inode->i_sb->s_bdev;
int i;
for (i = 0; i < map.m_len; i++)
unmap_underlying_metadata(bdev, map.m_pblk + i);
}
/*
* Update on-disk size along with block allocation.
*/
disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
if (disksize > i_size_read(mpd->inode))
disksize = i_size_read(mpd->inode);
if (disksize > EXT4_I(mpd->inode)->i_disksize) {
ext4_update_i_disksize(mpd->inode, disksize);
err = ext4_mark_inode_dirty(handle, mpd->inode);
if (err)
ext4_error(mpd->inode->i_sb,
"Failed to mark inode %lu dirty",
mpd->inode->i_ino);
}
submit_io:
mpage_da_submit_io(mpd, mapp);
mpd->io_done = 1;
}
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
(1 << BH_Delay) | (1 << BH_Unwritten))
/*
* mpage_add_bh_to_extent - try to add one more block to extent of blocks
*
* @mpd->lbh - extent of blocks
* @logical - logical number of the block in the file
* @b_state - b_state of the buffer head added
*
* the function is used to collect contig. blocks in same state
*/
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
unsigned long b_state)
{
sector_t next;
int blkbits = mpd->inode->i_blkbits;
int nrblocks = mpd->b_size >> blkbits;
/*
* XXX Don't go larger than mballoc is willing to allocate
* This is a stopgap solution. We eventually need to fold
* mpage_da_submit_io() into this function and then call
* ext4_map_blocks() multiple times in a loop
*/
if (nrblocks >= (8*1024*1024 >> blkbits))
goto flush_it;
/* check if the reserved journal credits might overflow */
if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
if (nrblocks >= EXT4_MAX_TRANS_DATA) {
/*
* With non-extent format we are limited by the journal
* credit available. Total credit needed to insert
* nrblocks contiguous blocks is dependent on the
* nrblocks. So limit nrblocks.
*/
goto flush_it;
}
}
/*
* First block in the extent
*/
if (mpd->b_size == 0) {
mpd->b_blocknr = logical;
mpd->b_size = 1 << blkbits;
mpd->b_state = b_state & BH_FLAGS;
return;
}
next = mpd->b_blocknr + nrblocks;
/*
* Can we merge the block to our big extent?
*/
if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
mpd->b_size += 1 << blkbits;
return;
}
flush_it:
/*
* We couldn't merge the block to our extent, so we
* need to flush current extent and start new one
*/
mpage_da_map_and_submit(mpd);
return;
}
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
{
return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
}
/*
* This function is grabs code from the very beginning of
* ext4_map_blocks, but assumes that the caller is from delayed write
* time. This function looks up the requested blocks and sets the
* buffer delay bit under the protection of i_data_sem.
*/
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
struct ext4_map_blocks *map,
struct buffer_head *bh)
{
struct extent_status es;
int retval;
sector_t invalid_block = ~((sector_t) 0xffff);
#ifdef ES_AGGRESSIVE_TEST
struct ext4_map_blocks orig_map;
memcpy(&orig_map, map, sizeof(*map));
#endif
if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
invalid_block = ~0;
map->m_flags = 0;
ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
"logical block %lu\n", inode->i_ino, map->m_len,
(unsigned long) map->m_lblk);
/* Lookup extent status tree firstly */
if (ext4_es_lookup_extent(inode, iblock, &es)) {
if (ext4_es_is_hole(&es)) {
retval = 0;
down_read((&EXT4_I(inode)->i_data_sem));
goto add_delayed;
}
/*
* Delayed extent could be allocated by fallocate.
* So we need to check it.
*/
if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
map_bh(bh, inode->i_sb, invalid_block);
set_buffer_new(bh);
set_buffer_delay(bh);
return 0;
}
map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
retval = es.es_len - (iblock - es.es_lblk);
if (retval > map->m_len)
retval = map->m_len;
map->m_len = retval;
if (ext4_es_is_written(&es))
map->m_flags |= EXT4_MAP_MAPPED;
else if (ext4_es_is_unwritten(&es))
map->m_flags |= EXT4_MAP_UNWRITTEN;
else
BUG_ON(1);
#ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
return retval;
}
/*
* Try to see if we can get the block without requesting a new
* file system block.
*/
down_read((&EXT4_I(inode)->i_data_sem));
if (ext4_has_inline_data(inode)) {
/*
* We will soon create blocks for this page, and let
* us pretend as if the blocks aren't allocated yet.
* In case of clusters, we have to handle the work
* of mapping from cluster so that the reserved space
* is calculated properly.
*/
if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
ext4_find_delalloc_cluster(inode, map->m_lblk))
map->m_flags |= EXT4_MAP_FROM_CLUSTER;
retval = 0;
} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
retval = ext4_ext_map_blocks(NULL, inode, map,
EXT4_GET_BLOCKS_NO_PUT_HOLE);
else
retval = ext4_ind_map_blocks(NULL, inode, map,
EXT4_GET_BLOCKS_NO_PUT_HOLE);
add_delayed:
if (retval == 0) {
int ret;
/*
* XXX: __block_prepare_write() unmaps passed block,
* is it OK?
*/
/* If the block was allocated from previously allocated cluster,
* then we dont need to reserve it again. */
if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
ret = ext4_da_reserve_space(inode, iblock);
if (ret) {
/* not enough space to reserve */
retval = ret;
goto out_unlock;
}
}
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
~0, EXTENT_STATUS_DELAYED);
if (ret) {
retval = ret;
goto out_unlock;
}
/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
* and it should not appear on the bh->b_state.
*/
map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
map_bh(bh, inode->i_sb, invalid_block);
set_buffer_new(bh);
set_buffer_delay(bh);
} else if (retval > 0) {
int ret;
unsigned long long status;
#ifdef ES_AGGRESSIVE_TEST
if (retval != map->m_len) {
printk("ES len assertation failed for inode: %lu "
"retval %d != map->m_len %d "
"in %s (lookup)\n", inode->i_ino, retval,
map->m_len, __func__);
}
#endif
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
map->m_pblk, status);
if (ret != 0)
retval = ret;
}
out_unlock:
up_read((&EXT4_I(inode)->i_data_sem));
return retval;
}
/*
* This is a special get_blocks_t callback which is used by
* ext4_da_write_begin(). It will either return mapped block or
* reserve space for a single block.
*
* For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
* We also have b_blocknr = -1 and b_bdev initialized properly
*
* For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
* We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
* initialized properly.
*/
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
struct ext4_map_blocks map;
int ret = 0;
BUG_ON(create == 0);
BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
map.m_lblk = iblock;
map.m_len = 1;
/*
* first, we need to know whether the block is allocated already
* preallocated blocks are unmapped but should treated
* the same as allocated blocks.
*/
ret = ext4_da_map_blocks(inode, iblock, &map, bh);
if (ret <= 0)
return ret;
map_bh(bh, inode->i_sb, map.m_pblk);
bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
if (buffer_unwritten(bh)) {
/* A delayed write to unwritten bh should be marked
* new and mapped. Mapped ensures that we don't do
* get_block multiple times when we write to the same
* offset and new ensures that we do proper zero out
* for partial write.
*/
set_buffer_new(bh);
set_buffer_mapped(bh);
}
return 0;
}
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
get_bh(bh);
return 0;
}
static int bput_one(handle_t *handle, struct buffer_head *bh)
{
put_bh(bh);
return 0;
}
static int __ext4_journalled_writepage(struct page *page,
unsigned int len)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
struct buffer_head *page_bufs = NULL;
handle_t *handle = NULL;
int ret = 0, err = 0;
int inline_data = ext4_has_inline_data(inode);
struct buffer_head *inode_bh = NULL;
ClearPageChecked(page);
if (inline_data) {
BUG_ON(page->index != 0);
BUG_ON(len > ext4_get_max_inline_size(inode));
inode_bh = ext4_journalled_write_inline_data(inode, len, page);
if (inode_bh == NULL)
goto out;
} else {
page_bufs = page_buffers(page);
if (!page_bufs) {
BUG();
goto out;
}
ext4_walk_page_buffers(handle, page_bufs, 0, len,
NULL, bget_one);
}
/* As soon as we unlock the page, it can go away, but we have
* references to buffers so we are safe */
unlock_page(page);
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
ext4_writepage_trans_blocks(inode));
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out;
}
BUG_ON(!ext4_handle_valid(handle));
if (inline_data) {
ret = ext4_journal_get_write_access(handle, inode_bh);
err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
} else {
ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
do_journal_get_write_access);
err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
write_end_fn);
}
if (ret == 0)
ret = err;
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
if (!ext4_has_inline_data(inode))
ext4_walk_page_buffers(handle, page_bufs, 0, len,
NULL, bput_one);
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
out:
brelse(inode_bh);
return ret;
}
/*
* Note that we don't need to start a transaction unless we're journaling data
* because we should have holes filled from ext4_page_mkwrite(). We even don't
* need to file the inode to the transaction's list in ordered mode because if
* we are writing back data added by write(), the inode is already there and if
* we are writing back data modified via mmap(), no one guarantees in which
* transaction the data will hit the disk. In case we are journaling data, we
* cannot start transaction directly because transaction start ranks above page
* lock so we have to do some magic.
*
* This function can get called via...
* - ext4_da_writepages after taking page lock (have journal handle)
* - journal_submit_inode_data_buffers (no journal handle)
* - shrink_page_list via the kswapd/direct reclaim (no journal handle)
* - grab_page_cache when doing write_begin (have journal handle)
*
* We don't do any block allocation in this function. If we have page with
* multiple blocks we need to write those buffer_heads that are mapped. This
* is important for mmaped based write. So if we do with blocksize 1K
* truncate(f, 1024);
* a = mmap(f, 0, 4096);
* a[0] = 'a';
* truncate(f, 4096);
* we have in the page first buffer_head mapped via page_mkwrite call back
* but other buffer_heads would be unmapped but dirty (dirty done via the
* do_wp_page). So writepage should write the first block. If we modify
* the mmap area beyond 1024 we will again get a page_fault and the
* page_mkwrite callback will do the block allocation and mark the
* buffer_heads mapped.
*
* We redirty the page if we have any buffer_heads that is either delay or
* unwritten in the page.
*
* We can get recursively called as show below.
*
* ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
* ext4_writepage()
*
* But since we don't do any block allocation we should not deadlock.
* Page also have the dirty flag cleared so we don't get recurive page_lock.
*/
static int ext4_writepage(struct page *page,
struct writeback_control *wbc)
{
int ret = 0;
loff_t size;
unsigned int len;
struct buffer_head *page_bufs = NULL;
struct inode *inode = page->mapping->host;
struct ext4_io_submit io_submit;
trace_ext4_writepage(page);
size = i_size_read(inode);
if (page->index == size >> PAGE_CACHE_SHIFT)
len = size & ~PAGE_CACHE_MASK;
else
len = PAGE_CACHE_SIZE;
page_bufs = page_buffers(page);
/*
* We cannot do block allocation or other extent handling in this
* function. If there are buffers needing that, we have to redirty
* the page. But we may reach here when we do a journal commit via
* journal_submit_inode_data_buffers() and in that case we must write
* allocated buffers to achieve data=ordered mode guarantees.
*/
if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
ext4_bh_delay_or_unwritten)) {
redirty_page_for_writepage(wbc, page);
if (current->flags & PF_MEMALLOC) {
/*
* For memory cleaning there's no point in writing only
* some buffers. So just bail out. Warn if we came here
* from direct reclaim.
*/
WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
== PF_MEMALLOC);
unlock_page(page);
return 0;
}
}
if (PageChecked(page) && ext4_should_journal_data(inode))
/*
* It's mmapped pagecache. Add buffers and journal it. There
* doesn't seem much point in redirtying the page here.
*/
return __ext4_journalled_writepage(page, len);
memset(&io_submit, 0, sizeof(io_submit));
ret = ext4_bio_write_page(&io_submit, page, len, wbc);
ext4_io_submit(&io_submit);
return ret;
}
/*
* This is called via ext4_da_writepages() to
* calculate the total number of credits to reserve to fit
* a single extent allocation into a single transaction,
* ext4_da_writpeages() will loop calling this before
* the block allocation.
*/
static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
/*
* With non-extent format the journal credit needed to
* insert nrblocks contiguous block is dependent on
* number of contiguous block. So we will limit
* number of contiguous block to a sane value
*/
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
(max_blocks > EXT4_MAX_TRANS_DATA))
max_blocks = EXT4_MAX_TRANS_DATA;
return ext4_chunk_trans_blocks(inode, max_blocks);
}
/*
* write_cache_pages_da - walk the list of dirty pages of the given
* address space and accumulate pages that need writing, and call
* mpage_da_map_and_submit to map a single contiguous memory region
* and then write them.
*/
static int write_cache_pages_da(handle_t *handle,
struct address_space *mapping,
struct writeback_control *wbc,
struct mpage_da_data *mpd,
pgoff_t *done_index)
{
struct buffer_head *bh, *head;
struct inode *inode = mapping->host;
struct pagevec pvec;
unsigned int nr_pages;
sector_t logical;
pgoff_t index, end;
long nr_to_write = wbc->nr_to_write;
int i, tag, ret = 0;
memset(mpd, 0, sizeof(struct mpage_da_data));
mpd->wbc = wbc;
mpd->inode = inode;
pagevec_init(&pvec, 0);
index = wbc->range_start >> PAGE_CACHE_SHIFT;
end = wbc->range_end >> PAGE_CACHE_SHIFT;
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
*done_index = index;
while (index <= end) {
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
return 0;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/*
* At this point, the page may be truncated or
* invalidated (changing page->mapping to NULL), or
* even swizzled back from swapper_space to tmpfs file
* mapping. However, page->index will not change
* because we have a reference on the page.
*/
if (page->index > end)
goto out;
*done_index = page->index + 1;
/*
* If we can't merge this page, and we have
* accumulated an contiguous region, write it
*/
if ((mpd->next_page != page->index) &&
(mpd->next_page != mpd->first_page)) {
mpage_da_map_and_submit(mpd);
goto ret_extent_tail;
}
lock_page(page);
/*
* If the page is no longer dirty, or its
* mapping no longer corresponds to inode we
* are writing (which means it has been
* truncated or invalidated), or the page is
* already under writeback and we are not
* doing a data integrity writeback, skip the page
*/
if (!PageDirty(page) ||
(PageWriteback(page) &&
(wbc->sync_mode == WB_SYNC_NONE)) ||
unlikely(page->mapping != mapping)) {
unlock_page(page);
continue;
}
wait_on_page_writeback(page);
BUG_ON(PageWriteback(page));
/*
* If we have inline data and arrive here, it means that
* we will soon create the block for the 1st page, so
* we'd better clear the inline data here.
*/
if (ext4_has_inline_data(inode)) {
BUG_ON(ext4_test_inode_state(inode,
EXT4_STATE_MAY_INLINE_DATA));
ext4_destroy_inline_data(handle, inode);
}
if (mpd->next_page != page->index)
mpd->first_page = page->index;
mpd->next_page = page->index + 1;
logical = (sector_t) page->index <<
(PAGE_CACHE_SHIFT - inode->i_blkbits);
/* Add all dirty buffers to mpd */
head = page_buffers(page);
bh = head;
do {
BUG_ON(buffer_locked(bh));
/*
* We need to try to allocate unmapped blocks
* in the same page. Otherwise we won't make
* progress with the page in ext4_writepage
*/
if (ext4_bh_delay_or_unwritten(NULL, bh)) {
mpage_add_bh_to_extent(mpd, logical,
bh->b_state);
if (mpd->io_done)
goto ret_extent_tail;
} else if (buffer_dirty(bh) &&
buffer_mapped(bh)) {
/*
* mapped dirty buffer. We need to
* update the b_state because we look
* at b_state in mpage_da_map_blocks.
* We don't update b_size because if we
* find an unmapped buffer_head later
* we need to use the b_state flag of
* that buffer_head.
*/
if (mpd->b_size == 0)
mpd->b_state =
bh->b_state & BH_FLAGS;
}
logical++;
} while ((bh = bh->b_this_page) != head);
if (nr_to_write > 0) {
nr_to_write--;
if (nr_to_write == 0 &&
wbc->sync_mode == WB_SYNC_NONE)
/*
* We stop writing back only if we are
* not doing integrity sync. In case of
* integrity sync we have to keep going
* because someone may be concurrently
* dirtying pages, and we might have
* synced a lot of newly appeared dirty
* pages, but have not synced all of the
* old dirty pages.
*/
goto out;
}
}
pagevec_release(&pvec);
cond_resched();
}
return 0;
ret_extent_tail:
ret = MPAGE_DA_EXTENT_TAIL;
out:
pagevec_release(&pvec);
cond_resched();
return ret;
}
static int ext4_da_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
pgoff_t index;
int range_whole = 0;
handle_t *handle = NULL;
struct mpage_da_data mpd;
struct inode *inode = mapping->host;
int pages_written = 0;
unsigned int max_pages;
int range_cyclic, cycled = 1, io_done = 0;
int needed_blocks, ret = 0;
long desired_nr_to_write, nr_to_writebump = 0;
loff_t range_start = wbc->range_start;
struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
pgoff_t done_index = 0;
pgoff_t end;
struct blk_plug plug;
trace_ext4_da_writepages(inode, wbc);
/*
* No pages to write? This is mainly a kludge to avoid starting
* a transaction for special inodes like journal inode on last iput()
* because that could violate lock ordering on umount
*/
if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
return 0;
/*
* If the filesystem has aborted, it is read-only, so return
* right away instead of dumping stack traces later on that
* will obscure the real source of the problem. We test
* EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
* the latter could be true if the filesystem is mounted
* read-only, and in that case, ext4_da_writepages should
* *never* be called, so if that ever happens, we would want
* the stack trace.
*/
if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
return -EROFS;
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
range_cyclic = wbc->range_cyclic;
if (wbc->range_cyclic) {
index = mapping->writeback_index;
if (index)
cycled = 0;
wbc->range_start = index << PAGE_CACHE_SHIFT;
wbc->range_end = LLONG_MAX;
wbc->range_cyclic = 0;
end = -1;
} else {
index = wbc->range_start >> PAGE_CACHE_SHIFT;
end = wbc->range_end >> PAGE_CACHE_SHIFT;
}
/*
* This works around two forms of stupidity. The first is in
* the writeback code, which caps the maximum number of pages
* written to be 1024 pages. This is wrong on multiple
* levels; different architectues have a different page size,
* which changes the maximum amount of data which gets
* written. Secondly, 4 megabytes is way too small. XFS
* forces this value to be 16 megabytes by multiplying
* nr_to_write parameter by four, and then relies on its
* allocator to allocate larger extents to make them
* contiguous. Unfortunately this brings us to the second
* stupidity, which is that ext4's mballoc code only allocates
* at most 2048 blocks. So we force contiguous writes up to
* the number of dirty blocks in the inode, or
* sbi->max_writeback_mb_bump whichever is smaller.
*/
max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
if (!range_cyclic && range_whole) {
if (wbc->nr_to_write == LONG_MAX)
desired_nr_to_write = wbc->nr_to_write;
else
desired_nr_to_write = wbc->nr_to_write * 8;
} else
desired_nr_to_write = ext4_num_dirty_pages(inode, index,
max_pages);
if (desired_nr_to_write > max_pages)
desired_nr_to_write = max_pages;
if (wbc->nr_to_write < desired_nr_to_write) {
nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
wbc->nr_to_write = desired_nr_to_write;
}
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, index, end);
blk_start_plug(&plug);
while (!ret && wbc->nr_to_write > 0) {
/*
* we insert one extent at a time. So we need
* credit needed for single extent allocation.
* journalled mode is currently not supported
* by delalloc
*/
BUG_ON(ext4_should_journal_data(inode));
needed_blocks = ext4_da_writepages_trans_blocks(inode);
/* start a new transaction*/
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
needed_blocks);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
"%ld pages, ino %lu; err %d", __func__,
wbc->nr_to_write, inode->i_ino, ret);
blk_finish_plug(&plug);
goto out_writepages;
}
/*
* Now call write_cache_pages_da() to find the next
* contiguous region of logical blocks that need
* blocks to be allocated by ext4 and submit them.
*/
ret = write_cache_pages_da(handle, mapping,
wbc, &mpd, &done_index);
/*
* If we have a contiguous extent of pages and we
* haven't done the I/O yet, map the blocks and submit
* them for I/O.
*/
if (!mpd.io_done && mpd.next_page != mpd.first_page) {
mpage_da_map_and_submit(&mpd);
ret = MPAGE_DA_EXTENT_TAIL;
}
trace_ext4_da_write_pages(inode, &mpd);
wbc->nr_to_write -= mpd.pages_written;
ext4_journal_stop(handle);
if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
/* commit the transaction which would
* free blocks released in the transaction
* and try again
*/
jbd2_journal_force_commit_nested(sbi->s_journal);
ret = 0;
} else if (ret == MPAGE_DA_EXTENT_TAIL) {
/*
* Got one extent now try with rest of the pages.
* If mpd.retval is set -EIO, journal is aborted.
* So we don't need to write any more.
*/
pages_written += mpd.pages_written;
ret = mpd.retval;
io_done = 1;
} else if (wbc->nr_to_write)
/*
* There is no more writeout needed
* or we requested for a noblocking writeout
* and we found the device congested
*/
break;
}
blk_finish_plug(&plug);
if (!io_done && !cycled) {
cycled = 1;
index = 0;
wbc->range_start = index << PAGE_CACHE_SHIFT;
wbc->range_end = mapping->writeback_index - 1;
goto retry;
}
/* Update index */
wbc->range_cyclic = range_cyclic;
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
/*
* set the writeback_index so that range_cyclic
* mode will write it back later
*/
mapping->writeback_index = done_index;
out_writepages:
wbc->nr_to_write -= nr_to_writebump;
wbc->range_start = range_start;
trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
return ret;
}
static int ext4_nonda_switch(struct super_block *sb)
{
s64 free_blocks, dirty_blocks;
struct ext4_sb_info *sbi = EXT4_SB(sb);
/*
* switch to non delalloc mode if we are running low
* on free block. The free block accounting via percpu
* counters can get slightly wrong with percpu_counter_batch getting
* accumulated on each CPU without updating global counters
* Delalloc need an accurate free block accounting. So switch
* to non delalloc when we are near to error range.
*/
free_blocks = EXT4_C2B(sbi,
percpu_counter_read_positive(&sbi->s_freeclusters_counter));
dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
/*
* Start pushing delalloc when 1/2 of free blocks are dirty.
*/
if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
!writeback_in_progress(sb->s_bdi) &&
down_read_trylock(&sb->s_umount)) {
writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
up_read(&sb->s_umount);
}
if (2 * free_blocks < 3 * dirty_blocks ||
free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
/*
* free block count is less than 150% of dirty blocks
* or free blocks is less than watermark
*/
return 1;
}
return 0;
}
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
int ret, retries = 0;
struct page *page;
pgoff_t index;
struct inode *inode = mapping->host;
handle_t *handle;
index = pos >> PAGE_CACHE_SHIFT;
if (ext4_nonda_switch(inode->i_sb)) {
*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
return ext4_write_begin(file, mapping, pos,
len, flags, pagep, fsdata);
}
*fsdata = (void *)0;
trace_ext4_da_write_begin(inode, pos, len, flags);
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
ret = ext4_da_write_inline_data_begin(mapping, inode,
pos, len, flags,
pagep, fsdata);
if (ret < 0)
return ret;
if (ret == 1)
return 0;
}
/*
* grab_cache_page_write_begin() can take a long time if the
* system is thrashing due to memory pressure, or if the page
* is being written back. So grab it first before we start
* the transaction handle. This also allows us to allocate
* the page (if needed) without using GFP_NOFS.
*/
retry_grab:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
unlock_page(page);
/*
* With delayed allocation, we don't log the i_disksize update
* if there is delayed block allocation. But we still need
* to journalling the i_disksize update if writes to the end
* of file which has an already mapped buffer.
*/
retry_journal:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
if (IS_ERR(handle)) {
page_cache_release(page);
return PTR_ERR(handle);
}
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
unlock_page(page);
page_cache_release(page);
ext4_journal_stop(handle);
goto retry_grab;
}
/* In case writeback began while the page was unlocked */
wait_on_page_writeback(page);
ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
if (ret < 0) {
unlock_page(page);
ext4_journal_stop(handle);
/*
* block_write_begin may have instantiated a few blocks
* outside i_size. Trim these off again. Don't need
* i_size_read because we hold i_mutex.
*/
if (pos + len > inode->i_size)
ext4_truncate_failed_write(inode);
if (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_journal;
page_cache_release(page);
return ret;
}
*pagep = page;
return ret;
}
/*
* Check if we should update i_disksize
* when write to the end of file but not require block allocation
*/
static int ext4_da_should_update_i_disksize(struct page *page,
unsigned long offset)
{
struct buffer_head *bh;
struct inode *inode = page->mapping->host;
unsigned int idx;
int i;
bh = page_buffers(page);
idx = offset >> inode->i_blkbits;
for (i = 0; i < idx; i++)
bh = bh->b_this_page;
if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
return 0;
return 1;
}
static int ext4_da_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
int ret = 0, ret2;
handle_t *handle = ext4_journal_current_handle();
loff_t new_i_size;
unsigned long start, end;
int write_mode = (int)(unsigned long)fsdata;
if (write_mode == FALL_BACK_TO_NONDELALLOC) {
switch (ext4_inode_journal_mode(inode)) {
case EXT4_INODE_ORDERED_DATA_MODE:
return ext4_ordered_write_end(file, mapping, pos,
len, copied, page, fsdata);
case EXT4_INODE_WRITEBACK_DATA_MODE:
return ext4_writeback_write_end(file, mapping, pos,
len, copied, page, fsdata);
default:
BUG();
}
}
trace_ext4_da_write_end(inode, pos, len, copied);
start = pos & (PAGE_CACHE_SIZE - 1);
end = start + copied - 1;
/*
* generic_write_end() will run mark_inode_dirty() if i_size
* changes. So let's piggyback the i_disksize mark_inode_dirty
* into that.
*/
new_i_size = pos + copied;
if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
if (ext4_has_inline_data(inode) ||
ext4_da_should_update_i_disksize(page, end)) {
down_write(&EXT4_I(inode)->i_data_sem);
if (new_i_size > EXT4_I(inode)->i_disksize)
EXT4_I(inode)->i_disksize = new_i_size;
up_write(&EXT4_I(inode)->i_data_sem);
/* We need to mark inode dirty even if
* new_i_size is less that inode->i_size
* bu greater than i_disksize.(hint delalloc)
*/
ext4_mark_inode_dirty(handle, inode);
}
}
if (write_mode != CONVERT_INLINE_DATA &&
ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
ext4_has_inline_data(inode))
ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
page);
else
ret2 = generic_write_end(file, mapping, pos, len, copied,
page, fsdata);
copied = ret2;
if (ret2 < 0)
ret = ret2;
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
return ret ? ret : copied;
}
static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
/*
* Drop reserved blocks
*/
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
goto out;
ext4_da_page_release_reservation(page, offset);
out:
ext4_invalidatepage(page, offset);
return;
}
/*
* Force all delayed allocation blocks to be allocated for a given inode.
*/
int ext4_alloc_da_blocks(struct inode *inode)
{
trace_ext4_alloc_da_blocks(inode);
if (!EXT4_I(inode)->i_reserved_data_blocks &&
!EXT4_I(inode)->i_reserved_meta_blocks)
return 0;
/*
* We do something simple for now. The filemap_flush() will
* also start triggering a write of the data blocks, which is
* not strictly speaking necessary (and for users of
* laptop_mode, not even desirable). However, to do otherwise
* would require replicating code paths in:
*
* ext4_da_writepages() ->
* write_cache_pages() ---> (via passed in callback function)
* __mpage_da_writepage() -->
* mpage_add_bh_to_extent()
* mpage_da_map_blocks()
*
* The problem is that write_cache_pages(), located in
* mm/page-writeback.c, marks pages clean in preparation for
* doing I/O, which is not desirable if we're not planning on
* doing I/O at all.
*
* We could call write_cache_pages(), and then redirty all of
* the pages by calling redirty_page_for_writepage() but that
* would be ugly in the extreme. So instead we would need to
* replicate parts of the code in the above functions,
* simplifying them because we wouldn't actually intend to
* write out the pages, but rather only collect contiguous
* logical block extents, call the multi-block allocator, and
* then update the buffer heads with the block allocations.
*
* For now, though, we'll cheat by calling filemap_flush(),
* which will map the blocks, and start the I/O, but not
* actually wait for the I/O to complete.
*/
return filemap_flush(inode->i_mapping);
}
/*
* bmap() is special. It gets used by applications such as lilo and by
* the swapper to find the on-disk block of a specific piece of data.
*
* Naturally, this is dangerous if the block concerned is still in the
* journal. If somebody makes a swapfile on an ext4 data-journaling
* filesystem and enables swap, then they may get a nasty shock when the
* data getting swapped to that swapfile suddenly gets overwritten by
* the original zero's written out previously to the journal and
* awaiting writeback in the kernel's buffer cache.
*
* So, if we see any bmap calls here on a modified, data-journaled file,
* take extra steps to flush any blocks which might be in the cache.
*/
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
journal_t *journal;
int err;
/*
* We can get here for an inline file via the FIBMAP ioctl
*/
if (ext4_has_inline_data(inode))
return 0;
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
test_opt(inode->i_sb, DELALLOC)) {
/*
* With delalloc we want to sync the file
* so that we can make sure we allocate
* blocks for file
*/
filemap_write_and_wait(mapping);
}
if (EXT4_JOURNAL(inode) &&
ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
/*
* This is a REALLY heavyweight approach, but the use of
* bmap on dirty files is expected to be extremely rare:
* only if we run lilo or swapon on a freshly made file
* do we expect this to happen.
*
* (bmap requires CAP_SYS_RAWIO so this does not
* represent an unprivileged user DOS attack --- we'd be
* in trouble if mortal users could trigger this path at
* will.)
*
* NB. EXT4_STATE_JDATA is not set on files other than
* regular files. If somebody wants to bmap a directory
* or symlink and gets confused because the buffer
* hasn't yet been flushed to disk, they deserve
* everything they get.
*/
ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
journal = EXT4_JOURNAL(inode);
jbd2_journal_lock_updates(journal);
err = jbd2_journal_flush(journal);
jbd2_journal_unlock_updates(journal);
if (err)
return 0;
}
return generic_block_bmap(mapping, block, ext4_get_block);
}
static int ext4_readpage(struct file *file, struct page *page)
{
int ret = -EAGAIN;
struct inode *inode = page->mapping->host;
trace_ext4_readpage(page);
if (ext4_has_inline_data(inode))
ret = ext4_readpage_inline(inode, page);
if (ret == -EAGAIN)
return mpage_readpage(page, ext4_get_block);
return ret;
}
static int
ext4_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = mapping->host;
/* If the file has inline data, no need to do readpages. */
if (ext4_has_inline_data(inode))
return 0;
return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
}
static void ext4_invalidatepage(struct page *page, unsigned long offset)
{
trace_ext4_invalidatepage(page, offset);
/* No journalling happens on data buffers when this function is used */
WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
block_invalidatepage(page, offset);
}
static int __ext4_journalled_invalidatepage(struct page *page,
unsigned long offset)
{
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
trace_ext4_journalled_invalidatepage(page, offset);
/*
* If it's a full truncate we just forget about the pending dirtying
*/
if (offset == 0)
ClearPageChecked(page);
return jbd2_journal_invalidatepage(journal, page, offset);
}
/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
unsigned long offset)
{
WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
}
static int ext4_releasepage(struct page *page, gfp_t wait)
{
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
trace_ext4_releasepage(page);
/* Page has dirty journalled data -> cannot release */
if (PageChecked(page))
return 0;
if (journal)
return jbd2_journal_try_to_free_buffers(journal, page, wait);
else
return try_to_free_buffers(page);
}
/*
* ext4_get_block used when preparing for a DIO write or buffer write.
* We allocate an uinitialized extent if blocks haven't been allocated.
* The extent will be converted to initialized after the IO is complete.
*/
int ext4_get_block_write(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
inode->i_ino, create);
return _ext4_get_block(inode, iblock, bh_result,
EXT4_GET_BLOCKS_IO_CREATE_EXT);
}
static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
inode->i_ino, create);
return _ext4_get_block(inode, iblock, bh_result,
EXT4_GET_BLOCKS_NO_LOCK);
}
static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
ssize_t size, void *private, int ret,
bool is_async)
{
struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
ext4_io_end_t *io_end = iocb->private;
/* if not async direct IO or dio with 0 bytes write, just return */
if (!io_end || !size)
goto out;
ext_debug("ext4_end_io_dio(): io_end 0x%p "
"for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
iocb->private, io_end->inode->i_ino, iocb, offset,
size);
iocb->private = NULL;
/* if not aio dio with unwritten extents, just free io and return */
if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
ext4_free_io_end(io_end);
out:
inode_dio_done(inode);
if (is_async)
aio_complete(iocb, ret, 0);
return;
}
io_end->offset = offset;
io_end->size = size;
if (is_async) {
io_end->iocb = iocb;
io_end->result = ret;
}
ext4_add_complete_io(io_end);
}
/*
* For ext4 extent files, ext4 will do direct-io write to holes,
* preallocated extents, and those write extend the file, no need to
* fall back to buffered IO.
*
* For holes, we fallocate those blocks, mark them as uninitialized
* If those blocks were preallocated, we mark sure they are split, but
* still keep the range to write as uninitialized.
*
* The unwritten extents will be converted to written when DIO is completed.
* For async direct IO, since the IO may still pending when return, we
* set up an end_io call back function, which will do the conversion
* when async direct IO completed.
*
* If the O_DIRECT write will extend the file then add this inode to the
* orphan list. So recovery will truncate it back to the original size
* if the machine crashes during the write.
*
*/
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
const struct iovec *iov, loff_t offset,
unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
size_t count = iov_length(iov, nr_segs);
int overwrite = 0;
get_block_t *get_block_func = NULL;
int dio_flags = 0;
loff_t final_size = offset + count;
/* Use the old path for reads and writes beyond i_size. */
if (rw != WRITE || final_size > inode->i_size)
return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
BUG_ON(iocb->private == NULL);
/* If we do a overwrite dio, i_mutex locking can be released */
overwrite = *((int *)iocb->private);
if (overwrite) {
atomic_inc(&inode->i_dio_count);
down_read(&EXT4_I(inode)->i_data_sem);
mutex_unlock(&inode->i_mutex);
}
/*
* We could direct write to holes and fallocate.
*
* Allocated blocks to fill the hole are marked as
* uninitialized to prevent parallel buffered read to expose
* the stale data before DIO complete the data IO.
*
* As to previously fallocated extents, ext4 get_block will
* just simply mark the buffer mapped but still keep the
* extents uninitialized.
*
* For non AIO case, we will convert those unwritten extents
* to written after return back from blockdev_direct_IO.
*
* For async DIO, the conversion needs to be deferred when the
* IO is completed. The ext4 end_io callback function will be
* called to take care of the conversion work. Here for async
* case, we allocate an io_end structure to hook to the iocb.
*/
iocb->private = NULL;
ext4_inode_aio_set(inode, NULL);
if (!is_sync_kiocb(iocb)) {
ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
if (!io_end) {
ret = -ENOMEM;
goto retake_lock;
}
io_end->flag |= EXT4_IO_END_DIRECT;
iocb->private = io_end;
/*
* we save the io structure for current async direct
* IO, so that later ext4_map_blocks() could flag the
* io structure whether there is a unwritten extents
* needs to be converted when IO is completed.
*/
ext4_inode_aio_set(inode, io_end);
}
if (overwrite) {
get_block_func = ext4_get_block_write_nolock;
} else {
get_block_func = ext4_get_block_write;
dio_flags = DIO_LOCKING;
}
ret = __blockdev_direct_IO(rw, iocb, inode,
inode->i_sb->s_bdev, iov,
offset, nr_segs,
get_block_func,
ext4_end_io_dio,
NULL,
dio_flags);
if (iocb->private)
ext4_inode_aio_set(inode, NULL);
/*
* The io_end structure takes a reference to the inode, that
* structure needs to be destroyed and the reference to the
* inode need to be dropped, when IO is complete, even with 0
* byte write, or failed.
*
* In the successful AIO DIO case, the io_end structure will
* be destroyed and the reference to the inode will be dropped
* after the end_io call back function is called.
*
* In the case there is 0 byte write, or error case, since VFS
* direct IO won't invoke the end_io call back function, we
* need to free the end_io structure here.
*/
if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
ext4_free_io_end(iocb->private);
iocb->private = NULL;
} else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
EXT4_STATE_DIO_UNWRITTEN)) {
int err;
/*
* for non AIO case, since the IO is already
* completed, we could do the conversion right here
*/
err = ext4_convert_unwritten_extents(inode,
offset, ret);
if (err < 0)
ret = err;
ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
}
retake_lock:
/* take i_mutex locking again if we do a ovewrite dio */
if (overwrite) {
inode_dio_done(inode);
up_read(&EXT4_I(inode)->i_data_sem);
mutex_lock(&inode->i_mutex);
}
return ret;
}
static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
const struct iovec *iov, loff_t offset,
unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
/*
* If we are doing data journalling we don't support O_DIRECT
*/
if (ext4_should_journal_data(inode))
return 0;
/* Let buffer I/O handle the inline data case. */
if (ext4_has_inline_data(inode))
return 0;
trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
else
ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
trace_ext4_direct_IO_exit(inode, offset,
iov_length(iov, nr_segs), rw, ret);
return ret;
}
/*
* Pages can be marked dirty completely asynchronously from ext4's journalling
* activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
* much here because ->set_page_dirty is called under VFS locks. The page is
* not necessarily locked.
*
* We cannot just dirty the page and leave attached buffers clean, because the
* buffers' dirty state is "definitive". We cannot just set the buffers dirty
* or jbddirty because all the journalling code will explode.
*
* So what we do is to mark the page "pending dirty" and next time writepage
* is called, propagate that into the buffers appropriately.
*/
static int ext4_journalled_set_page_dirty(struct page *page)
{
SetPageChecked(page);
return __set_page_dirty_nobuffers(page);
}
static const struct address_space_operations ext4_ordered_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.write_begin = ext4_write_begin,
.write_end = ext4_ordered_write_end,
.bmap = ext4_bmap,
.invalidatepage = ext4_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations ext4_writeback_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.write_begin = ext4_write_begin,
.write_end = ext4_writeback_write_end,
.bmap = ext4_bmap,
.invalidatepage = ext4_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations ext4_journalled_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.write_begin = ext4_write_begin,
.write_end = ext4_journalled_write_end,
.set_page_dirty = ext4_journalled_set_page_dirty,
.bmap = ext4_bmap,
.invalidatepage = ext4_journalled_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations ext4_da_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.writepages = ext4_da_writepages,
.write_begin = ext4_da_write_begin,
.write_end = ext4_da_write_end,
.bmap = ext4_bmap,
.invalidatepage = ext4_da_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
void ext4_set_aops(struct inode *inode)
{
switch (ext4_inode_journal_mode(inode)) {
case EXT4_INODE_ORDERED_DATA_MODE:
if (test_opt(inode->i_sb, DELALLOC))
inode->i_mapping->a_ops = &ext4_da_aops;
else
inode->i_mapping->a_ops = &ext4_ordered_aops;
break;
case EXT4_INODE_WRITEBACK_DATA_MODE:
if (test_opt(inode->i_sb, DELALLOC))
inode->i_mapping->a_ops = &ext4_da_aops;
else
inode->i_mapping->a_ops = &ext4_writeback_aops;
break;
case EXT4_INODE_JOURNAL_DATA_MODE:
inode->i_mapping->a_ops = &ext4_journalled_aops;
break;
default:
BUG();
}
}
/*
* ext4_discard_partial_page_buffers()
* Wrapper function for ext4_discard_partial_page_buffers_no_lock.
* This function finds and locks the page containing the offset
* "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
* Calling functions that already have the page locked should call
* ext4_discard_partial_page_buffers_no_lock directly.
*/
int ext4_discard_partial_page_buffers(handle_t *handle,
struct address_space *mapping, loff_t from,
loff_t length, int flags)
{
struct inode *inode = mapping->host;
struct page *page;
int err = 0;
page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
mapping_gfp_mask(mapping) & ~__GFP_FS);
if (!page)
return -ENOMEM;
err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
from, length, flags);
unlock_page(page);
page_cache_release(page);
return err;
}
/*
* ext4_discard_partial_page_buffers_no_lock()
* Zeros a page range of length 'length' starting from offset 'from'.
* Buffer heads that correspond to the block aligned regions of the
* zeroed range will be unmapped. Unblock aligned regions
* will have the corresponding buffer head mapped if needed so that
* that region of the page can be updated with the partial zero out.
*
* This function assumes that the page has already been locked. The
* The range to be discarded must be contained with in the given page.
* If the specified range exceeds the end of the page it will be shortened
* to the end of the page that corresponds to 'from'. This function is
* appropriate for updating a page and it buffer heads to be unmapped and
* zeroed for blocks that have been either released, or are going to be
* released.
*
* handle: The journal handle
* inode: The files inode
* page: A locked page that contains the offset "from"
* from: The starting byte offset (from the beginning of the file)
* to begin discarding
* len: The length of bytes to discard
* flags: Optional flags that may be used:
*
* EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
* Only zero the regions of the page whose buffer heads
* have already been unmapped. This flag is appropriate
* for updating the contents of a page whose blocks may
* have already been released, and we only want to zero
* out the regions that correspond to those released blocks.
*
* Returns zero on success or negative on failure.
*/
static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
struct inode *inode, struct page *page, loff_t from,
loff_t length, int flags)
{
ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
unsigned int offset = from & (PAGE_CACHE_SIZE-1);
unsigned int blocksize, max, pos;
ext4_lblk_t iblock;
struct buffer_head *bh;
int err = 0;
blocksize = inode->i_sb->s_blocksize;
max = PAGE_CACHE_SIZE - offset;
if (index != page->index)
return -EINVAL;
/*
* correct length if it does not fall between
* 'from' and the end of the page
*/
if (length > max || length < 0)
length = max;
iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
/* Find the buffer that contains "offset" */
bh = page_buffers(page);
pos = blocksize;
while (offset >= pos) {
bh = bh->b_this_page;
iblock++;
pos += blocksize;
}
pos = offset;
while (pos < offset + length) {
unsigned int end_of_block, range_to_discard;
err = 0;
/* The length of space left to zero and unmap */
range_to_discard = offset + length - pos;
/* The length of space until the end of the block */
end_of_block = blocksize - (pos & (blocksize-1));
/*
* Do not unmap or zero past end of block
* for this buffer head
*/
if (range_to_discard > end_of_block)
range_to_discard = end_of_block;
/*
* Skip this buffer head if we are only zeroing unampped
* regions of the page
*/
if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
buffer_mapped(bh))
goto next;
/* If the range is block aligned, unmap */
if (range_to_discard == blocksize) {
clear_buffer_dirty(bh);
bh->b_bdev = NULL;
clear_buffer_mapped(bh);
clear_buffer_req(bh);
clear_buffer_new(bh);
clear_buffer_delay(bh);
clear_buffer_unwritten(bh);
clear_buffer_uptodate(bh);
zero_user(page, pos, range_to_discard);
BUFFER_TRACE(bh, "Buffer discarded");
goto next;
}
/*
* If this block is not completely contained in the range
* to be discarded, then it is not going to be released. Because
* we need to keep this block, we need to make sure this part
* of the page is uptodate before we modify it by writeing
* partial zeros on it.
*/
if (!buffer_mapped(bh)) {
/*
* Buffer head must be mapped before we can read
* from the block
*/
BUFFER_TRACE(bh, "unmapped");
ext4_get_block(inode, iblock, bh, 0);
/* unmapped? It's a hole - nothing to do */
if (!buffer_mapped(bh)) {
BUFFER_TRACE(bh, "still unmapped");
goto next;
}
}
/* Ok, it's mapped. Make sure it's up-to-date */
if (PageUptodate(page))
set_buffer_uptodate(bh);
if (!buffer_uptodate(bh)) {
err = -EIO;
ll_rw_block(READ, 1, &bh);
wait_on_buffer(bh);
/* Uhhuh. Read error. Complain and punt.*/
if (!buffer_uptodate(bh))
goto next;
}
if (ext4_should_journal_data(inode)) {
BUFFER_TRACE(bh, "get write access");
err = ext4_journal_get_write_access(handle, bh);
if (err)
goto next;
}
zero_user(page, pos, range_to_discard);
err = 0;
if (ext4_should_journal_data(inode)) {
err = ext4_handle_dirty_metadata(handle, inode, bh);
} else
mark_buffer_dirty(bh);
BUFFER_TRACE(bh, "Partial buffer zeroed");
next:
bh = bh->b_this_page;
iblock++;
pos += range_to_discard;
}
return err;
}
int ext4_can_truncate(struct inode *inode)
{
if (S_ISREG(inode->i_mode))
return 1;
if (S_ISDIR(inode->i_mode))
return 1;
if (S_ISLNK(inode->i_mode))
return !ext4_inode_is_fast_symlink(inode);
return 0;
}
/*
* ext4_punch_hole: punches a hole in a file by releaseing the blocks
* associated with the given offset and length
*
* @inode: File inode
* @offset: The offset where the hole will begin
* @len: The length of the hole
*
* Returns: 0 on success or negative on failure
*/
int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
{
struct inode *inode = file->f_path.dentry->d_inode;
if (!S_ISREG(inode->i_mode))
return -EOPNOTSUPP;
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
return ext4_ind_punch_hole(file, offset, length);
if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
/* TODO: Add support for bigalloc file systems */
return -EOPNOTSUPP;
}
trace_ext4_punch_hole(inode, offset, length);
return ext4_ext_punch_hole(file, offset, length);
}
/*
* ext4_truncate()
*
* We block out ext4_get_block() block instantiations across the entire
* transaction, and VFS/VM ensures that ext4_truncate() cannot run
* simultaneously on behalf of the same inode.
*
* As we work through the truncate and commit bits of it to the journal there
* is one core, guiding principle: the file's tree must always be consistent on
* disk. We must be able to restart the truncate after a crash.
*
* The file's tree may be transiently inconsistent in memory (although it
* probably isn't), but whenever we close off and commit a journal transaction,
* the contents of (the filesystem + the journal) must be consistent and
* restartable. It's pretty simple, really: bottom up, right to left (although
* left-to-right works OK too).
*
* Note that at recovery time, journal replay occurs *before* the restart of
* truncate against the orphan inode list.
*
* The committed inode has the new, desired i_size (which is the same as
* i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
* that this inode's truncate did not complete and it will again call
* ext4_truncate() to have another go. So there will be instantiated blocks
* to the right of the truncation point in a crashed ext4 filesystem. But
* that's fine - as long as they are linked from the inode, the post-crash
* ext4_truncate() run will find them and release them.
*/
void ext4_truncate(struct inode *inode)
{
trace_ext4_truncate_enter(inode);
if (!ext4_can_truncate(inode))
return;
ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
if (ext4_has_inline_data(inode)) {
int has_inline = 1;
ext4_inline_data_truncate(inode, &has_inline);
if (has_inline)
return;
}
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
ext4_ext_truncate(inode);
else
ext4_ind_truncate(inode);
trace_ext4_truncate_exit(inode);
}
/*
* ext4_get_inode_loc returns with an extra refcount against the inode's
* underlying buffer_head on success. If 'in_mem' is true, we have all
* data in memory that is needed to recreate the on-disk version of this
* inode.
*/
static int __ext4_get_inode_loc(struct inode *inode,
struct ext4_iloc *iloc, int in_mem)
{
struct ext4_group_desc *gdp;
struct buffer_head *bh;
struct super_block *sb = inode->i_sb;
ext4_fsblk_t block;
int inodes_per_block, inode_offset;
iloc->bh = NULL;
if (!ext4_valid_inum(sb, inode->i_ino))
return -EIO;
iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
if (!gdp)
return -EIO;
/*
* Figure out the offset within the block group inode table
*/
inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
inode_offset = ((inode->i_ino - 1) %
EXT4_INODES_PER_GROUP(sb));
block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
bh = sb_getblk(sb, block);
if (unlikely(!bh))
return -ENOMEM;
if (!buffer_uptodate(bh)) {
lock_buffer(bh);
/*
* If the buffer has the write error flag, we have failed
* to write out another inode in the same block. In this
* case, we don't have to read the block because we may
* read the old inode data successfully.
*/
if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
set_buffer_uptodate(bh);
if (buffer_uptodate(bh)) {
/* someone brought it uptodate while we waited */
unlock_buffer(bh);
goto has_buffer;
}
/*
* If we have all information of the inode in memory and this
* is the only valid inode in the block, we need not read the
* block.
*/
if (in_mem) {
struct buffer_head *bitmap_bh;
int i, start;
start = inode_offset & ~(inodes_per_block - 1);
/* Is the inode bitmap in cache? */
bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
if (unlikely(!bitmap_bh))
goto make_io;
/*
* If the inode bitmap isn't in cache then the
* optimisation may end up performing two reads instead
* of one, so skip it.
*/
if (!buffer_uptodate(bitmap_bh)) {
brelse(bitmap_bh);
goto make_io;
}
for (i = start; i < start + inodes_per_block; i++) {
if (i == inode_offset)
continue;
if (ext4_test_bit(i, bitmap_bh->b_data))
break;
}
brelse(bitmap_bh);
if (i == start + inodes_per_block) {
/* all other inodes are free, so skip I/O */
memset(bh->b_data, 0, bh->b_size);
set_buffer_uptodate(bh);
unlock_buffer(bh);
goto has_buffer;
}
}
make_io:
/*
* If we need to do any I/O, try to pre-readahead extra
* blocks from the inode table.
*/
if (EXT4_SB(sb)->s_inode_readahead_blks) {
ext4_fsblk_t b, end, table;
unsigned num;
table = ext4_inode_table(sb, gdp);
/* s_inode_readahead_blks is always a power of 2 */
b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
if (table > b)
b = table;
end = b + EXT4_SB(sb)->s_inode_readahead_blks;
num = EXT4_INODES_PER_GROUP(sb);
if (ext4_has_group_desc_csum(sb))
num -= ext4_itable_unused_count(sb, gdp);
table += num / inodes_per_block;
if (end > table)
end = table;
while (b <= end)
sb_breadahead(sb, b++);
}
/*
* There are other valid inodes in the buffer, this inode
* has in-inode xattrs, or we don't have this inode in memory.
* Read the block from disk.
*/
trace_ext4_load_inode(inode);
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(READ | REQ_META | REQ_PRIO, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
EXT4_ERROR_INODE_BLOCK(inode, block,
"unable to read itable block");
brelse(bh);
return -EIO;
}
}
has_buffer:
iloc->bh = bh;
return 0;
}
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
{
/* We have all inode data except xattrs in memory here. */
return __ext4_get_inode_loc(inode, iloc,
!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
}
void ext4_set_inode_flags(struct inode *inode)
{
unsigned int flags = EXT4_I(inode)->i_flags;
inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
if (flags & EXT4_SYNC_FL)
inode->i_flags |= S_SYNC;
if (flags & EXT4_APPEND_FL)
inode->i_flags |= S_APPEND;
if (flags & EXT4_IMMUTABLE_FL)
inode->i_flags |= S_IMMUTABLE;
if (flags & EXT4_NOATIME_FL)
inode->i_flags |= S_NOATIME;
if (flags & EXT4_DIRSYNC_FL)
inode->i_flags |= S_DIRSYNC;
}
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
unsigned int vfs_fl;
unsigned long old_fl, new_fl;
do {
vfs_fl = ei->vfs_inode.i_flags;
old_fl = ei->i_flags;
new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
EXT4_DIRSYNC_FL);
if (vfs_fl & S_SYNC)
new_fl |= EXT4_SYNC_FL;
if (vfs_fl & S_APPEND)
new_fl |= EXT4_APPEND_FL;
if (vfs_fl & S_IMMUTABLE)
new_fl |= EXT4_IMMUTABLE_FL;
if (vfs_fl & S_NOATIME)
new_fl |= EXT4_NOATIME_FL;
if (vfs_fl & S_DIRSYNC)
new_fl |= EXT4_DIRSYNC_FL;
} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
}
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
blkcnt_t i_blocks ;
struct inode *inode = &(ei->vfs_inode);
struct super_block *sb = inode->i_sb;
if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
/* we are using combined 48 bit field */
i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
le32_to_cpu(raw_inode->i_blocks_lo);
if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
/* i_blocks represent file system block size */
return i_blocks << (inode->i_blkbits - 9);
} else {
return i_blocks;
}
} else {
return le32_to_cpu(raw_inode->i_blocks_lo);
}
}
static inline void ext4_iget_extra_inode(struct inode *inode,
struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
__le32 *magic = (void *)raw_inode +
EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ext4_find_inline_data_nolock(inode);
} else
EXT4_I(inode)->i_inline_off = 0;
}
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
{
struct ext4_iloc iloc;
struct ext4_inode *raw_inode;
struct ext4_inode_info *ei;
struct inode *inode;
journal_t *journal = EXT4_SB(sb)->s_journal;
long ret;
int block;
uid_t i_uid;
gid_t i_gid;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ei = EXT4_I(inode);
iloc.bh = NULL;
ret = __ext4_get_inode_loc(inode, &iloc, 0);
if (ret < 0)
goto bad_inode;
raw_inode = ext4_raw_inode(&iloc);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
EXT4_INODE_SIZE(inode->i_sb)) {
EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
EXT4_INODE_SIZE(inode->i_sb));
ret = -EIO;
goto bad_inode;
}
} else
ei->i_extra_isize = 0;
/* Precompute checksum seed for inode metadata */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
__u32 csum;
__le32 inum = cpu_to_le32(inode->i_ino);
__le32 gen = raw_inode->i_generation;
csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
sizeof(inum));
ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
sizeof(gen));
}
if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
EXT4_ERROR_INODE(inode, "checksum invalid");
ret = -EIO;
goto bad_inode;
}
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
if (!(test_opt(inode->i_sb, NO_UID32))) {
i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
}
i_uid_write(inode, i_uid);
i_gid_write(inode, i_gid);
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ei->i_inline_off = 0;
ei->i_dir_start_lookup = 0;
ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
/* We now have enough fields to check if the inode was active or not.
* This is needed because nfsd might try to access dead inodes
* the test is that same one that e2fsck uses
* NeilBrown 1999oct15
*/
if (inode->i_nlink == 0) {
if (inode->i_mode == 0 ||
!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
/* this inode is deleted */
ret = -ESTALE;
goto bad_inode;
}
/* The only unlinked inodes we let through here have
* valid i_mode and are being read by the orphan
* recovery code: that's fine, we're about to complete
* the process of deleting those. */
}
ei->i_flags = le32_to_cpu(raw_inode->i_flags);
inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
ei->i_file_acl |=
((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
inode->i_size = ext4_isize(raw_inode);
ei->i_disksize = inode->i_size;
#ifdef CONFIG_QUOTA
ei->i_reserved_quota = 0;
#endif
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
ei->i_block_group = iloc.block_group;
ei->i_last_alloc_group = ~0;
/*
* NOTE! The in-memory inode i_data array is in little-endian order
* even on big-endian machines: we do NOT byteswap the block numbers!
*/
for (block = 0; block < EXT4_N_BLOCKS; block++)
ei->i_data[block] = raw_inode->i_block[block];
INIT_LIST_HEAD(&ei->i_orphan);
/*
* Set transaction id's of transactions that have to be committed
* to finish f[data]sync. We set them to currently running transaction
* as we cannot be sure that the inode or some of its metadata isn't
* part of the transaction - the inode could have been reclaimed and
* now it is reread from disk.
*/
if (journal) {
transaction_t *transaction;
tid_t tid;
read_lock(&journal->j_state_lock);
if (journal->j_running_transaction)
transaction = journal->j_running_transaction;
else
transaction = journal->j_committing_transaction;
if (transaction)
tid = transaction->t_tid;
else
tid = journal->j_commit_sequence;
read_unlock(&journal->j_state_lock);
ei->i_sync_tid = tid;
ei->i_datasync_tid = tid;
}
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
if (ei->i_extra_isize == 0) {
/* The extra space is currently unused. Use it. */
ei->i_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
} else {
ext4_iget_extra_inode(inode, raw_inode, ei);
}
}
EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
inode->i_version |=
(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
}
ret = 0;
if (ei->i_file_acl &&
!ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
ei->i_file_acl);
ret = -EIO;
goto bad_inode;
} else if (!ext4_has_inline_data(inode)) {
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
(S_ISLNK(inode->i_mode) &&
!ext4_inode_is_fast_symlink(inode))))
/* Validate extent which is part of inode */
ret = ext4_ext_check_inode(inode);
} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
(S_ISLNK(inode->i_mode) &&
!ext4_inode_is_fast_symlink(inode))) {
/* Validate block references which are part of inode */
ret = ext4_ind_check_inode(inode);
}
}
if (ret)
goto bad_inode;
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ext4_dir_inode_operations;
inode->i_fop = &ext4_dir_operations;
} else if (S_ISLNK(inode->i_mode)) {
if (ext4_inode_is_fast_symlink(inode)) {
inode->i_op = &ext4_fast_symlink_inode_operations;
nd_terminate_link(ei->i_data, inode->i_size,
sizeof(ei->i_data) - 1);
} else {
inode->i_op = &ext4_symlink_inode_operations;
ext4_set_aops(inode);
}
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &ext4_special_inode_operations;
if (raw_inode->i_block[0])
init_special_inode(inode, inode->i_mode,
old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
else
init_special_inode(inode, inode->i_mode,
new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
} else {
ret = -EIO;
EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
goto bad_inode;
}
brelse(iloc.bh);
ext4_set_inode_flags(inode);
unlock_new_inode(inode);
return inode;
bad_inode:
brelse(iloc.bh);
iget_failed(inode);
return ERR_PTR(ret);
}
static int ext4_inode_blocks_set(handle_t *handle,
struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
struct inode *inode = &(ei->vfs_inode);
u64 i_blocks = inode->i_blocks;
struct super_block *sb = inode->i_sb;
if (i_blocks <= ~0U) {
/*
* i_blocks can be represented in a 32 bit variable
* as multiple of 512 bytes
*/
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = 0;
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
return 0;
}
if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
return -EFBIG;
if (i_blocks <= 0xffffffffffffULL) {
/*
* i_blocks can be represented in a 48 bit variable
* as multiple of 512 bytes
*/
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
} else {
ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
/* i_block is stored in file system block size */
i_blocks = i_blocks >> (inode->i_blkbits - 9);
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
}
return 0;
}
/*
* Post the struct inode info into an on-disk inode location in the
* buffer-cache. This gobbles the caller's reference to the
* buffer_head in the inode location struct.
*
* The caller must have write access to iloc->bh.
*/
static int ext4_do_update_inode(handle_t *handle,
struct inode *inode,
struct ext4_iloc *iloc)
{
struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
struct ext4_inode_info *ei = EXT4_I(inode);
struct buffer_head *bh = iloc->bh;
int err = 0, rc, block;
int need_datasync = 0;
uid_t i_uid;
gid_t i_gid;
/* For fields not not tracking in the in-memory inode,
* initialise them to zero for new inodes. */
if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ext4_get_inode_flags(ei);
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
i_uid = i_uid_read(inode);
i_gid = i_gid_read(inode);
if (!(test_opt(inode->i_sb, NO_UID32))) {
raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
/*
* Fix up interoperability with old kernels. Otherwise, old inodes get
* re-used with the upper 16 bits of the uid/gid intact
*/
if (!ei->i_dtime) {
raw_inode->i_uid_high =
cpu_to_le16(high_16_bits(i_uid));
raw_inode->i_gid_high =
cpu_to_le16(high_16_bits(i_gid));
} else {
raw_inode->i_uid_high = 0;
raw_inode->i_gid_high = 0;
}
} else {
raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
raw_inode->i_uid_high = 0;
raw_inode->i_gid_high = 0;
}
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
if (ext4_inode_blocks_set(handle, raw_inode, ei))
goto out_brelse;
raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
cpu_to_le32(EXT4_OS_HURD))
raw_inode->i_file_acl_high =
cpu_to_le16(ei->i_file_acl >> 32);
raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
if (ei->i_disksize != ext4_isize(raw_inode)) {
ext4_isize_set(raw_inode, ei->i_disksize);
need_datasync = 1;
}
if (ei->i_disksize > 0x7fffffffULL) {
struct super_block *sb = inode->i_sb;
if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
EXT4_SB(sb)->s_es->s_rev_level ==
cpu_to_le32(EXT4_GOOD_OLD_REV)) {
/* If this is the first large file
* created, add a flag to the superblock.
*/
err = ext4_journal_get_write_access(handle,
EXT4_SB(sb)->s_sbh);
if (err)
goto out_brelse;
ext4_update_dynamic_rev(sb);
EXT4_SET_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
ext4_handle_sync(handle);
err = ext4_handle_dirty_super(handle, sb);
}
}
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
raw_inode->i_block[0] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
raw_inode->i_block[1] = 0;
} else {
raw_inode->i_block[0] = 0;
raw_inode->i_block[1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
raw_inode->i_block[2] = 0;
}
} else if (!ext4_has_inline_data(inode)) {
for (block = 0; block < EXT4_N_BLOCKS; block++)
raw_inode->i_block[block] = ei->i_data[block];
}
raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
if (ei->i_extra_isize) {
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
raw_inode->i_version_hi =
cpu_to_le32(inode->i_version >> 32);
raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
}
ext4_inode_csum_set(inode, raw_inode, ei);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
rc = ext4_handle_dirty_metadata(handle, NULL, bh);
if (!err)
err = rc;
ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ext4_update_inode_fsync_trans(handle, inode, need_datasync);
out_brelse:
brelse(bh);
ext4_std_error(inode->i_sb, err);
return err;
}
/*
* ext4_write_inode()
*
* We are called from a few places:
*
* - Within generic_file_write() for O_SYNC files.
* Here, there will be no transaction running. We wait for any running
* transaction to commit.
*
* - Within sys_sync(), kupdate and such.
* We wait on commit, if tol to.
*
* - Within prune_icache() (PF_MEMALLOC == true)
* Here we simply return. We can't afford to block kswapd on the
* journal commit.
*
* In all cases it is actually safe for us to return without doing anything,
* because the inode has been copied into a raw inode buffer in
* ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
* knfsd.
*
* Note that we are absolutely dependent upon all inode dirtiers doing the
* right thing: they *must* call mark_inode_dirty() after dirtying info in
* which we are interested.
*
* It would be a bug for them to not do this. The code:
*
* mark_inode_dirty(inode)
* stuff();
* inode->i_size = expr;
*
* is in error because a kswapd-driven write_inode() could occur while
* `stuff()' is running, and the new i_size will be lost. Plus the inode
* will no longer be on the superblock's dirty inode list.
*/
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
{
int err;
if (current->flags & PF_MEMALLOC)
return 0;
if (EXT4_SB(inode->i_sb)->s_journal) {
if (ext4_journal_current_handle()) {
jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
dump_stack();
return -EIO;
}
if (wbc->sync_mode != WB_SYNC_ALL)
return 0;
err = ext4_force_commit(inode->i_sb);
} else {
struct ext4_iloc iloc;
err = __ext4_get_inode_loc(inode, &iloc, 0);
if (err)
return err;
if (wbc->sync_mode == WB_SYNC_ALL)
sync_dirty_buffer(iloc.bh);
if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
"IO error syncing inode");
err = -EIO;
}
brelse(iloc.bh);
}
return err;
}
/*
* In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
* buffers that are attached to a page stradding i_size and are undergoing
* commit. In that case we have to wait for commit to finish and try again.
*/
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
struct page *page;
unsigned offset;
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
tid_t commit_tid = 0;
int ret;
offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
/*
* All buffers in the last page remain valid? Then there's nothing to
* do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
* blocksize case
*/
if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
return;
while (1) {
page = find_lock_page(inode->i_mapping,
inode->i_size >> PAGE_CACHE_SHIFT);
if (!page)
return;
ret = __ext4_journalled_invalidatepage(page, offset);
unlock_page(page);
page_cache_release(page);
if (ret != -EBUSY)
return;
commit_tid = 0;
read_lock(&journal->j_state_lock);
if (journal->j_committing_transaction)
commit_tid = journal->j_committing_transaction->t_tid;
read_unlock(&journal->j_state_lock);
if (commit_tid)
jbd2_log_wait_commit(journal, commit_tid);
}
}
/*
* ext4_setattr()
*
* Called from notify_change.
*
* We want to trap VFS attempts to truncate the file as soon as
* possible. In particular, we want to make sure that when the VFS
* shrinks i_size, we put the inode on the orphan list and modify
* i_disksize immediately, so that during the subsequent flushing of
* dirty pages and freeing of disk blocks, we can guarantee that any
* commit will leave the blocks being flushed in an unused state on
* disk. (On recovery, the inode will get truncated and the blocks will
* be freed, so we have a strong guarantee that no future commit will
* leave these blocks visible to the user.)
*
* Another thing we have to assure is that if we are in ordered mode
* and inode is still attached to the committing transaction, we must
* we start writeout of all the dirty pages which are being truncated.
* This way we are sure that all the data written in the previous
* transaction are already on disk (truncate waits for pages under
* writeback).
*
* Called with inode->i_mutex down.
*/
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
int error, rc = 0;
int orphan = 0;
const unsigned int ia_valid = attr->ia_valid;
error = inode_change_ok(inode, attr);
if (error)
return error;
if (is_quota_modification(inode, attr))
dquot_initialize(inode);
if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
(ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
handle_t *handle;
/* (user+group)*(old+new) structure, inode write (sb,
* inode block, ? - but truncate inode update has it) */
handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
if (IS_ERR(handle)) {
error = PTR_ERR(handle);
goto err_out;
}
error = dquot_transfer(inode, attr);
if (error) {
ext4_journal_stop(handle);
return error;
}
/* Update corresponding info in inode so that everything is in
* one transaction */
if (attr->ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (attr->ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
error = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
}
if (attr->ia_valid & ATTR_SIZE) {
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
if (attr->ia_size > sbi->s_bitmap_maxbytes)
return -EFBIG;
}
}
if (S_ISREG(inode->i_mode) &&
attr->ia_valid & ATTR_SIZE &&
(attr->ia_size < inode->i_size)) {
handle_t *handle;
handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
if (IS_ERR(handle)) {
error = PTR_ERR(handle);
goto err_out;
}
if (ext4_handle_valid(handle)) {
error = ext4_orphan_add(handle, inode);
orphan = 1;
}
EXT4_I(inode)->i_disksize = attr->ia_size;
rc = ext4_mark_inode_dirty(handle, inode);
if (!error)
error = rc;
ext4_journal_stop(handle);
if (ext4_should_order_data(inode)) {
error = ext4_begin_ordered_truncate(inode,
attr->ia_size);
if (error) {
/* Do as much error cleanup as possible */
handle = ext4_journal_start(inode,
EXT4_HT_INODE, 3);
if (IS_ERR(handle)) {
ext4_orphan_del(NULL, inode);
goto err_out;
}
ext4_orphan_del(handle, inode);
orphan = 0;
ext4_journal_stop(handle);
goto err_out;
}
}
}
if (attr->ia_valid & ATTR_SIZE) {
if (attr->ia_size != inode->i_size) {
loff_t oldsize = inode->i_size;
i_size_write(inode, attr->ia_size);
/*
* Blocks are going to be removed from the inode. Wait
* for dio in flight. Temporarily disable
* dioread_nolock to prevent livelock.
*/
if (orphan) {
if (!ext4_should_journal_data(inode)) {
ext4_inode_block_unlocked_dio(inode);
inode_dio_wait(inode);
ext4_inode_resume_unlocked_dio(inode);
} else
ext4_wait_for_tail_page_commit(inode);
}
/*
* Truncate pagecache after we've waited for commit
* in data=journal mode to make pages freeable.
*/
truncate_pagecache(inode, oldsize, inode->i_size);
}
ext4_truncate(inode);
}
if (!rc) {
setattr_copy(inode, attr);
mark_inode_dirty(inode);
}
/*
* If the call to ext4_truncate failed to get a transaction handle at
* all, we need to clean up the in-core orphan list manually.
*/
if (orphan && inode->i_nlink)
ext4_orphan_del(NULL, inode);
if (!rc && (ia_valid & ATTR_MODE))
rc = ext4_acl_chmod(inode);
err_out:
ext4_std_error(inode->i_sb, error);
if (!error)
error = rc;
return error;
}
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat)
{
struct inode *inode;
unsigned long delalloc_blocks;
inode = dentry->d_inode;
generic_fillattr(inode, stat);
/*
* We can't update i_blocks if the block allocation is delayed
* otherwise in the case of system crash before the real block
* allocation is done, we will have i_blocks inconsistent with
* on-disk file blocks.
* We always keep i_blocks updated together with real
* allocation. But to not confuse with user, stat
* will return the blocks that include the delayed allocation
* blocks for this file.
*/
delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
EXT4_I(inode)->i_reserved_data_blocks);
stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
return 0;
}
static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
return ext4_ind_trans_blocks(inode, nrblocks, chunk);
return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
}
/*
* Account for index blocks, block groups bitmaps and block group
* descriptor blocks if modify datablocks and index blocks
* worse case, the indexs blocks spread over different block groups
*
* If datablocks are discontiguous, they are possible to spread over
* different block groups too. If they are contiguous, with flexbg,
* they could still across block group boundary.
*
* Also account for superblock, inode, quota and xattr blocks
*/
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
int gdpblocks;
int idxblocks;
int ret = 0;
/*
* How many index blocks need to touch to modify nrblocks?
* The "Chunk" flag indicating whether the nrblocks is
* physically contiguous on disk
*
* For Direct IO and fallocate, they calls get_block to allocate
* one single extent at a time, so they could set the "Chunk" flag
*/
idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
ret = idxblocks;
/*
* Now let's see how many group bitmaps and group descriptors need
* to account
*/
groups = idxblocks;
if (chunk)
groups += 1;
else
groups += nrblocks;
gdpblocks = groups;
if (groups > ngroups)
groups = ngroups;
if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
/* bitmaps and block group descriptor blocks */
ret += groups + gdpblocks;
/* Blocks for super block, inode, quota and xattr blocks */
ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
return ret;
}
/*
* Calculate the total number of credits to reserve to fit
* the modification of a single pages into a single transaction,
* which may include multiple chunks of block allocations.
*
* This could be called via ext4_write_begin()
*
* We need to consider the worse case, when
* one new block per extent.
*/
int ext4_writepage_trans_blocks(struct inode *inode)
{
int bpp = ext4_journal_blocks_per_page(inode);
int ret;
ret = ext4_meta_trans_blocks(inode, bpp, 0);
/* Account for data blocks for journalled mode */
if (ext4_should_journal_data(inode))
ret += bpp;
return ret;
}
/*
* Calculate the journal credits for a chunk of data modification.
*
* This is called from DIO, fallocate or whoever calling
* ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
*
* journal buffers for data blocks are not included here, as DIO
* and fallocate do no need to journal data buffers.
*/
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
return ext4_meta_trans_blocks(inode, nrblocks, 1);
}
/*
* The caller must have previously called ext4_reserve_inode_write().
* Give this, we know that the caller already has write access to iloc->bh.
*/
int ext4_mark_iloc_dirty(handle_t *handle,
struct inode *inode, struct ext4_iloc *iloc)
{
int err = 0;
if (IS_I_VERSION(inode))
inode_inc_iversion(inode);
/* the do_update_inode consumes one bh->b_count */
get_bh(iloc->bh);
/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
err = ext4_do_update_inode(handle, inode, iloc);
put_bh(iloc->bh);
return err;
}
/*
* On success, We end up with an outstanding reference count against
* iloc->bh. This _must_ be cleaned up later.
*/
int
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
struct ext4_iloc *iloc)
{
int err;
err = ext4_get_inode_loc(inode, iloc);
if (!err) {
BUFFER_TRACE(iloc->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, iloc->bh);
if (err) {
brelse(iloc->bh);
iloc->bh = NULL;
}
}
ext4_std_error(inode->i_sb, err);
return err;
}
/*
* Expand an inode by new_extra_isize bytes.
* Returns 0 on success or negative error number on failure.
*/
static int ext4_expand_extra_isize(struct inode *inode,
unsigned int new_extra_isize,
struct ext4_iloc iloc,
handle_t *handle)
{
struct ext4_inode *raw_inode;
struct ext4_xattr_ibody_header *header;
if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
return 0;
raw_inode = ext4_raw_inode(&iloc);
header = IHDR(inode, raw_inode);
/* No extended attributes present */
if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
new_extra_isize);
EXT4_I(inode)->i_extra_isize = new_extra_isize;
return 0;
}
/* try to expand with EAs present */
return ext4_expand_extra_isize_ea(inode, new_extra_isize,
raw_inode, handle);
}
/*
* What we do here is to mark the in-core inode as clean with respect to inode
* dirtiness (it may still be data-dirty).
* This means that the in-core inode may be reaped by prune_icache
* without having to perform any I/O. This is a very good thing,
* because *any* task may call prune_icache - even ones which
* have a transaction open against a different journal.
*
* Is this cheating? Not really. Sure, we haven't written the
* inode out, but prune_icache isn't a user-visible syncing function.
* Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
* we start and wait on commits.
*/
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
{
struct ext4_iloc iloc;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
static unsigned int mnt_count;
int err, ret;
might_sleep();
trace_ext4_mark_inode_dirty(inode, _RET_IP_);
err = ext4_reserve_inode_write(handle, inode, &iloc);
if (ext4_handle_valid(handle) &&
EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
!ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
/*
* We need extra buffer credits since we may write into EA block
* with this same handle. If journal_extend fails, then it will
* only result in a minor loss of functionality for that inode.
* If this is felt to be critical, then e2fsck should be run to
* force a large enough s_min_extra_isize.
*/
if ((jbd2_journal_extend(handle,
EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
ret = ext4_expand_extra_isize(inode,
sbi->s_want_extra_isize,
iloc, handle);
if (ret) {
ext4_set_inode_state(inode,
EXT4_STATE_NO_EXPAND);
if (mnt_count !=
le16_to_cpu(sbi->s_es->s_mnt_count)) {
ext4_warning(inode->i_sb,
"Unable to expand inode %lu. Delete"
" some EAs or run e2fsck.",
inode->i_ino);
mnt_count =
le16_to_cpu(sbi->s_es->s_mnt_count);
}
}
}
}
if (!err)
err = ext4_mark_iloc_dirty(handle, inode, &iloc);
return err;
}
/*
* ext4_dirty_inode() is called from __mark_inode_dirty()
*
* We're really interested in the case where a file is being extended.
* i_size has been changed by generic_commit_write() and we thus need
* to include the updated inode in the current transaction.
*
* Also, dquot_alloc_block() will always dirty the inode when blocks
* are allocated to the file.
*
* If the inode is marked synchronous, we don't honour that here - doing
* so would cause a commit on atime updates, which we don't bother doing.
* We handle synchronous inodes at the highest possible level.
*/
void ext4_dirty_inode(struct inode *inode, int flags)
{
handle_t *handle;
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
if (IS_ERR(handle))
goto out;
ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
out:
return;
}
#if 0
/*
* Bind an inode's backing buffer_head into this transaction, to prevent
* it from being flushed to disk early. Unlike
* ext4_reserve_inode_write, this leaves behind no bh reference and
* returns no iloc structure, so the caller needs to repeat the iloc
* lookup to mark the inode dirty later.
*/
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
{
struct ext4_iloc iloc;
int err = 0;
if (handle) {
err = ext4_get_inode_loc(inode, &iloc);
if (!err) {
BUFFER_TRACE(iloc.bh, "get_write_access");
err = jbd2_journal_get_write_access(handle, iloc.bh);
if (!err)
err = ext4_handle_dirty_metadata(handle,
NULL,
iloc.bh);
brelse(iloc.bh);
}
}
ext4_std_error(inode->i_sb, err);
return err;
}
#endif
int ext4_change_inode_journal_flag(struct inode *inode, int val)
{
journal_t *journal;
handle_t *handle;
int err;
/*
* We have to be very careful here: changing a data block's
* journaling status dynamically is dangerous. If we write a
* data block to the journal, change the status and then delete
* that block, we risk forgetting to revoke the old log record
* from the journal and so a subsequent replay can corrupt data.
* So, first we make sure that the journal is empty and that
* nobody is changing anything.
*/
journal = EXT4_JOURNAL(inode);
if (!journal)
return 0;
if (is_journal_aborted(journal))
return -EROFS;
/* We have to allocate physical blocks for delalloc blocks
* before flushing journal. otherwise delalloc blocks can not
* be allocated any more. even more truncate on delalloc blocks
* could trigger BUG by flushing delalloc blocks in journal.
* There is no delalloc block in non-journal data mode.
*/
if (val && test_opt(inode->i_sb, DELALLOC)) {
err = ext4_alloc_da_blocks(inode);
if (err < 0)
return err;
}
/* Wait for all existing dio workers */
ext4_inode_block_unlocked_dio(inode);
inode_dio_wait(inode);
jbd2_journal_lock_updates(journal);
/*
* OK, there are no updates running now, and all cached data is
* synced to disk. We are now in a completely consistent state
* which doesn't have anything in the journal, and we know that
* no filesystem updates are running, so it is safe to modify
* the inode's in-core data-journaling state flag now.
*/
if (val)
ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
else {
jbd2_journal_flush(journal);
ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
}
ext4_set_aops(inode);
jbd2_journal_unlock_updates(journal);
ext4_inode_resume_unlocked_dio(inode);
/* Finally we can mark the inode as dirty. */
handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
if (IS_ERR(handle))
return PTR_ERR(handle);
err = ext4_mark_inode_dirty(handle, inode);
ext4_handle_sync(handle);
ext4_journal_stop(handle);
ext4_std_error(inode->i_sb, err);
return err;
}
static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
return !buffer_mapped(bh);
}
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page = vmf->page;
loff_t size;
unsigned long len;
int ret;
struct file *file = vma->vm_file;
struct inode *inode = file->f_path.dentry->d_inode;
struct address_space *mapping = inode->i_mapping;
handle_t *handle;
get_block_t *get_block;
int retries = 0;
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
/* Delalloc case is easy... */
if (test_opt(inode->i_sb, DELALLOC) &&
!ext4_should_journal_data(inode) &&
!ext4_nonda_switch(inode->i_sb)) {
do {
ret = __block_page_mkwrite(vma, vmf,
ext4_da_get_block_prep);
} while (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries));
goto out_ret;
}
lock_page(page);
size = i_size_read(inode);
/* Page got truncated from under us? */
if (page->mapping != mapping || page_offset(page) > size) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
goto out;
}
if (page->index == size >> PAGE_CACHE_SHIFT)
len = size & ~PAGE_CACHE_MASK;
else
len = PAGE_CACHE_SIZE;
/*
* Return if we have all the buffers mapped. This avoids the need to do
* journal_start/journal_stop which can block and take a long time
*/
if (page_has_buffers(page)) {
if (!ext4_walk_page_buffers(NULL, page_buffers(page),
0, len, NULL,
ext4_bh_unmapped)) {
/* Wait so that we don't change page under IO */
wait_on_page_writeback(page);
ret = VM_FAULT_LOCKED;
goto out;
}
}
unlock_page(page);
/* OK, we need to fill the hole... */
if (ext4_should_dioread_nolock(inode))
get_block = ext4_get_block_write;
else
get_block = ext4_get_block;
retry_alloc:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
ext4_writepage_trans_blocks(inode));
if (IS_ERR(handle)) {
ret = VM_FAULT_SIGBUS;
goto out;
}
ret = __block_page_mkwrite(vma, vmf, get_block);
if (!ret && ext4_should_journal_data(inode)) {
if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
unlock_page(page);
ret = VM_FAULT_SIGBUS;
ext4_journal_stop(handle);
goto out;
}
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
}
ext4_journal_stop(handle);
if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_alloc;
out_ret:
ret = block_page_mkwrite_return(ret);
out:
sb_end_pagefault(inode->i_sb);
return ret;
}