linux/drivers/net/ethernet/intel/ice/ice_flex_pipe.c
Bruce Allan b370245b4b ice: suppress false cppcheck issues
Silence false errors, warnings and style issues reported by cppcheck.

Signed-off-by: Bruce Allan <bruce.w.allan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-14 17:12:17 -07:00

5448 lines
142 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include "ice_common.h"
#include "ice_flex_pipe.h"
#include "ice_flow.h"
/* To support tunneling entries by PF, the package will append the PF number to
* the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
*/
static const struct ice_tunnel_type_scan tnls[] = {
{ TNL_VXLAN, "TNL_VXLAN_PF" },
{ TNL_GENEVE, "TNL_GENEVE_PF" },
{ TNL_LAST, "" }
};
static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
/* SWITCH */
{
ICE_SID_XLT0_SW,
ICE_SID_XLT_KEY_BUILDER_SW,
ICE_SID_XLT1_SW,
ICE_SID_XLT2_SW,
ICE_SID_PROFID_TCAM_SW,
ICE_SID_PROFID_REDIR_SW,
ICE_SID_FLD_VEC_SW,
ICE_SID_CDID_KEY_BUILDER_SW,
ICE_SID_CDID_REDIR_SW
},
/* ACL */
{
ICE_SID_XLT0_ACL,
ICE_SID_XLT_KEY_BUILDER_ACL,
ICE_SID_XLT1_ACL,
ICE_SID_XLT2_ACL,
ICE_SID_PROFID_TCAM_ACL,
ICE_SID_PROFID_REDIR_ACL,
ICE_SID_FLD_VEC_ACL,
ICE_SID_CDID_KEY_BUILDER_ACL,
ICE_SID_CDID_REDIR_ACL
},
/* FD */
{
ICE_SID_XLT0_FD,
ICE_SID_XLT_KEY_BUILDER_FD,
ICE_SID_XLT1_FD,
ICE_SID_XLT2_FD,
ICE_SID_PROFID_TCAM_FD,
ICE_SID_PROFID_REDIR_FD,
ICE_SID_FLD_VEC_FD,
ICE_SID_CDID_KEY_BUILDER_FD,
ICE_SID_CDID_REDIR_FD
},
/* RSS */
{
ICE_SID_XLT0_RSS,
ICE_SID_XLT_KEY_BUILDER_RSS,
ICE_SID_XLT1_RSS,
ICE_SID_XLT2_RSS,
ICE_SID_PROFID_TCAM_RSS,
ICE_SID_PROFID_REDIR_RSS,
ICE_SID_FLD_VEC_RSS,
ICE_SID_CDID_KEY_BUILDER_RSS,
ICE_SID_CDID_REDIR_RSS
},
/* PE */
{
ICE_SID_XLT0_PE,
ICE_SID_XLT_KEY_BUILDER_PE,
ICE_SID_XLT1_PE,
ICE_SID_XLT2_PE,
ICE_SID_PROFID_TCAM_PE,
ICE_SID_PROFID_REDIR_PE,
ICE_SID_FLD_VEC_PE,
ICE_SID_CDID_KEY_BUILDER_PE,
ICE_SID_CDID_REDIR_PE
}
};
/**
* ice_sect_id - returns section ID
* @blk: block type
* @sect: section type
*
* This helper function returns the proper section ID given a block type and a
* section type.
*/
static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
{
return ice_sect_lkup[blk][sect];
}
/**
* ice_pkg_val_buf
* @buf: pointer to the ice buffer
*
* This helper function validates a buffer's header.
*/
static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
{
struct ice_buf_hdr *hdr;
u16 section_count;
u16 data_end;
hdr = (struct ice_buf_hdr *)buf->buf;
/* verify data */
section_count = le16_to_cpu(hdr->section_count);
if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
return NULL;
data_end = le16_to_cpu(hdr->data_end);
if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
return NULL;
return hdr;
}
/**
* ice_find_buf_table
* @ice_seg: pointer to the ice segment
*
* Returns the address of the buffer table within the ice segment.
*/
static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
{
struct ice_nvm_table *nvms;
nvms = (struct ice_nvm_table *)
(ice_seg->device_table +
le32_to_cpu(ice_seg->device_table_count));
return (__force struct ice_buf_table *)
(nvms->vers + le32_to_cpu(nvms->table_count));
}
/**
* ice_pkg_enum_buf
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This function will enumerate all the buffers in the ice segment. The first
* call is made with the ice_seg parameter non-NULL; on subsequent calls,
* ice_seg is set to NULL which continues the enumeration. When the function
* returns a NULL pointer, then the end of the buffers has been reached, or an
* unexpected value has been detected (for example an invalid section count or
* an invalid buffer end value).
*/
static struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (ice_seg) {
state->buf_table = ice_find_buf_table(ice_seg);
if (!state->buf_table)
return NULL;
state->buf_idx = 0;
return ice_pkg_val_buf(state->buf_table->buf_array);
}
if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
return ice_pkg_val_buf(state->buf_table->buf_array +
state->buf_idx);
else
return NULL;
}
/**
* ice_pkg_advance_sect
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
*
* This helper function will advance the section within the ice segment,
* also advancing the buffer if needed.
*/
static bool
ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
{
if (!ice_seg && !state->buf)
return false;
if (!ice_seg && state->buf)
if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
return true;
state->buf = ice_pkg_enum_buf(ice_seg, state);
if (!state->buf)
return false;
/* start of new buffer, reset section index */
state->sect_idx = 0;
return true;
}
/**
* ice_pkg_enum_section
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
*
* This function will enumerate all the sections of a particular type in the
* ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the matching
* sections has been reached.
*/
static void *
ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type)
{
u16 offset, size;
if (ice_seg)
state->type = sect_type;
if (!ice_pkg_advance_sect(ice_seg, state))
return NULL;
/* scan for next matching section */
while (state->buf->section_entry[state->sect_idx].type !=
cpu_to_le32(state->type))
if (!ice_pkg_advance_sect(NULL, state))
return NULL;
/* validate section */
offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
return NULL;
size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
return NULL;
/* make sure the section fits in the buffer */
if (offset + size > ICE_PKG_BUF_SIZE)
return NULL;
state->sect_type =
le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
/* calc pointer to this section */
state->sect = ((u8 *)state->buf) +
le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
return state->sect;
}
/**
* ice_pkg_enum_entry
* @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
* @state: pointer to the enum state
* @sect_type: section type to enumerate
* @offset: pointer to variable that receives the offset in the table (optional)
* @handler: function that handles access to the entries into the section type
*
* This function will enumerate all the entries in particular section type in
* the ice segment. The first call is made with the ice_seg parameter non-NULL;
* on subsequent calls, ice_seg is set to NULL which continues the enumeration.
* When the function returns a NULL pointer, then the end of the entries has
* been reached.
*
* Since each section may have a different header and entry size, the handler
* function is needed to determine the number and location entries in each
* section.
*
* The offset parameter is optional, but should be used for sections that
* contain an offset for each section table. For such cases, the section handler
* function must return the appropriate offset + index to give the absolution
* offset for each entry. For example, if the base for a section's header
* indicates a base offset of 10, and the index for the entry is 2, then
* section handler function should set the offset to 10 + 2 = 12.
*/
static void *
ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
u32 sect_type, u32 *offset,
void *(*handler)(u32 sect_type, void *section,
u32 index, u32 *offset))
{
void *entry;
if (ice_seg) {
if (!handler)
return NULL;
if (!ice_pkg_enum_section(ice_seg, state, sect_type))
return NULL;
state->entry_idx = 0;
state->handler = handler;
} else {
state->entry_idx++;
}
if (!state->handler)
return NULL;
/* get entry */
entry = state->handler(state->sect_type, state->sect, state->entry_idx,
offset);
if (!entry) {
/* end of a section, look for another section of this type */
if (!ice_pkg_enum_section(NULL, state, 0))
return NULL;
state->entry_idx = 0;
entry = state->handler(state->sect_type, state->sect,
state->entry_idx, offset);
}
return entry;
}
/**
* ice_boost_tcam_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the boost TCAM entry to be returned
* @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual boost TCAM entries.
*/
static void *
ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
{
struct ice_boost_tcam_section *boost;
if (!section)
return NULL;
if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
return NULL;
/* cppcheck-suppress nullPointer */
if (index > ICE_MAX_BST_TCAMS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
boost = section;
if (index >= le16_to_cpu(boost->count))
return NULL;
return boost->tcam + index;
}
/**
* ice_find_boost_entry
* @ice_seg: pointer to the ice segment (non-NULL)
* @addr: Boost TCAM address of entry to search for
* @entry: returns pointer to the entry
*
* Finds a particular Boost TCAM entry and returns a pointer to that entry
* if it is found. The ice_seg parameter must not be NULL since the first call
* to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
*/
static enum ice_status
ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
struct ice_boost_tcam_entry **entry)
{
struct ice_boost_tcam_entry *tcam;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
if (!ice_seg)
return ICE_ERR_PARAM;
do {
tcam = ice_pkg_enum_entry(ice_seg, &state,
ICE_SID_RXPARSER_BOOST_TCAM, NULL,
ice_boost_tcam_handler);
if (tcam && le16_to_cpu(tcam->addr) == addr) {
*entry = tcam;
return 0;
}
ice_seg = NULL;
} while (tcam);
*entry = NULL;
return ICE_ERR_CFG;
}
/**
* ice_label_enum_handler
* @sect_type: section type
* @section: pointer to section
* @index: index of the label entry to be returned
* @offset: pointer to receive absolute offset, always zero for label sections
*
* This is a callback function that can be passed to ice_pkg_enum_entry.
* Handles enumeration of individual label entries.
*/
static void *
ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
u32 *offset)
{
struct ice_label_section *labels;
if (!section)
return NULL;
/* cppcheck-suppress nullPointer */
if (index > ICE_MAX_LABELS_IN_BUF)
return NULL;
if (offset)
*offset = 0;
labels = section;
if (index >= le16_to_cpu(labels->count))
return NULL;
return labels->label + index;
}
/**
* ice_enum_labels
* @ice_seg: pointer to the ice segment (NULL on subsequent calls)
* @type: the section type that will contain the label (0 on subsequent calls)
* @state: ice_pkg_enum structure that will hold the state of the enumeration
* @value: pointer to a value that will return the label's value if found
*
* Enumerates a list of labels in the package. The caller will call
* ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
* ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
* the end of the list has been reached.
*/
static char *
ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
u16 *value)
{
struct ice_label *label;
/* Check for valid label section on first call */
if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
return NULL;
label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
ice_label_enum_handler);
if (!label)
return NULL;
*value = le16_to_cpu(label->value);
return label->name;
}
/**
* ice_init_pkg_hints
* @hw: pointer to the HW structure
* @ice_seg: pointer to the segment of the package scan (non-NULL)
*
* This function will scan the package and save off relevant information
* (hints or metadata) for driver use. The ice_seg parameter must not be NULL
* since the first call to ice_enum_labels requires a pointer to an actual
* ice_seg structure.
*/
static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_pkg_enum state;
char *label_name;
u16 val;
int i;
memset(&hw->tnl, 0, sizeof(hw->tnl));
memset(&state, 0, sizeof(state));
if (!ice_seg)
return;
label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
&val);
while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
for (i = 0; tnls[i].type != TNL_LAST; i++) {
size_t len = strlen(tnls[i].label_prefix);
/* Look for matching label start, before continuing */
if (strncmp(label_name, tnls[i].label_prefix, len))
continue;
/* Make sure this label matches our PF. Note that the PF
* character ('0' - '7') will be located where our
* prefix string's null terminator is located.
*/
if ((label_name[len] - '0') == hw->pf_id) {
hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
hw->tnl.tbl[hw->tnl.count].valid = false;
hw->tnl.tbl[hw->tnl.count].boost_addr = val;
hw->tnl.tbl[hw->tnl.count].port = 0;
hw->tnl.count++;
break;
}
}
label_name = ice_enum_labels(NULL, 0, &state, &val);
}
/* Cache the appropriate boost TCAM entry pointers */
for (i = 0; i < hw->tnl.count; i++) {
ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
&hw->tnl.tbl[i].boost_entry);
if (hw->tnl.tbl[i].boost_entry) {
hw->tnl.tbl[i].valid = true;
if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
}
}
}
/* Key creation */
#define ICE_DC_KEY 0x1 /* don't care */
#define ICE_DC_KEYINV 0x1
#define ICE_NM_KEY 0x0 /* never match */
#define ICE_NM_KEYINV 0x0
#define ICE_0_KEY 0x1 /* match 0 */
#define ICE_0_KEYINV 0x0
#define ICE_1_KEY 0x0 /* match 1 */
#define ICE_1_KEYINV 0x1
/**
* ice_gen_key_word - generate 16-bits of a key/mask word
* @val: the value
* @valid: valid bits mask (change only the valid bits)
* @dont_care: don't care mask
* @nvr_mtch: never match mask
* @key: pointer to an array of where the resulting key portion
* @key_inv: pointer to an array of where the resulting key invert portion
*
* This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
* and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
* of key and 8 bits of key invert.
*
* '0' = b01, always match a 0 bit
* '1' = b10, always match a 1 bit
* '?' = b11, don't care bit (always matches)
* '~' = b00, never match bit
*
* Input:
* val: b0 1 0 1 0 1
* dont_care: b0 0 1 1 0 0
* never_mtch: b0 0 0 0 1 1
* ------------------------------
* Result: key: b01 10 11 11 00 00
*/
static enum ice_status
ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
u8 *key_inv)
{
u8 in_key = *key, in_key_inv = *key_inv;
u8 i;
/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
return ICE_ERR_CFG;
*key = 0;
*key_inv = 0;
/* encode the 8 bits into 8-bit key and 8-bit key invert */
for (i = 0; i < 8; i++) {
*key >>= 1;
*key_inv >>= 1;
if (!(valid & 0x1)) { /* change only valid bits */
*key |= (in_key & 0x1) << 7;
*key_inv |= (in_key_inv & 0x1) << 7;
} else if (dont_care & 0x1) { /* don't care bit */
*key |= ICE_DC_KEY << 7;
*key_inv |= ICE_DC_KEYINV << 7;
} else if (nvr_mtch & 0x1) { /* never match bit */
*key |= ICE_NM_KEY << 7;
*key_inv |= ICE_NM_KEYINV << 7;
} else if (val & 0x01) { /* exact 1 match */
*key |= ICE_1_KEY << 7;
*key_inv |= ICE_1_KEYINV << 7;
} else { /* exact 0 match */
*key |= ICE_0_KEY << 7;
*key_inv |= ICE_0_KEYINV << 7;
}
dont_care >>= 1;
nvr_mtch >>= 1;
valid >>= 1;
val >>= 1;
in_key >>= 1;
in_key_inv >>= 1;
}
return 0;
}
/**
* ice_bits_max_set - determine if the number of bits set is within a maximum
* @mask: pointer to the byte array which is the mask
* @size: the number of bytes in the mask
* @max: the max number of set bits
*
* This function determines if there are at most 'max' number of bits set in an
* array. Returns true if the number for bits set is <= max or will return false
* otherwise.
*/
static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
{
u16 count = 0;
u16 i;
/* check each byte */
for (i = 0; i < size; i++) {
/* if 0, go to next byte */
if (!mask[i])
continue;
/* We know there is at least one set bit in this byte because of
* the above check; if we already have found 'max' number of
* bits set, then we can return failure now.
*/
if (count == max)
return false;
/* count the bits in this byte, checking threshold */
count += hweight8(mask[i]);
if (count > max)
return false;
}
return true;
}
/**
* ice_set_key - generate a variable sized key with multiples of 16-bits
* @key: pointer to where the key will be stored
* @size: the size of the complete key in bytes (must be even)
* @val: array of 8-bit values that makes up the value portion of the key
* @upd: array of 8-bit masks that determine what key portion to update
* @dc: array of 8-bit masks that make up the don't care mask
* @nm: array of 8-bit masks that make up the never match mask
* @off: the offset of the first byte in the key to update
* @len: the number of bytes in the key update
*
* This function generates a key from a value, a don't care mask and a never
* match mask.
* upd, dc, and nm are optional parameters, and can be NULL:
* upd == NULL --> upd mask is all 1's (update all bits)
* dc == NULL --> dc mask is all 0's (no don't care bits)
* nm == NULL --> nm mask is all 0's (no never match bits)
*/
static enum ice_status
ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
u16 len)
{
u16 half_size;
u16 i;
/* size must be a multiple of 2 bytes. */
if (size % 2)
return ICE_ERR_CFG;
half_size = size / 2;
if (off + len > half_size)
return ICE_ERR_CFG;
/* Make sure at most one bit is set in the never match mask. Having more
* than one never match mask bit set will cause HW to consume excessive
* power otherwise; this is a power management efficiency check.
*/
#define ICE_NVR_MTCH_BITS_MAX 1
if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
return ICE_ERR_CFG;
for (i = 0; i < len; i++)
if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
dc ? dc[i] : 0, nm ? nm[i] : 0,
key + off + i, key + half_size + off + i))
return ICE_ERR_CFG;
return 0;
}
/**
* ice_acquire_global_cfg_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the global config lock for reading
* or writing of the package. When attempting to obtain write access, the
* caller must check for the following two return values:
*
* ICE_SUCCESS - Means the caller has acquired the global config lock
* and can perform writing of the package.
* ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
* package or has found that no update was necessary; in
* this case, the caller can just skip performing any
* update of the package.
*/
static enum ice_status
ice_acquire_global_cfg_lock(struct ice_hw *hw,
enum ice_aq_res_access_type access)
{
enum ice_status status;
status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
ICE_GLOBAL_CFG_LOCK_TIMEOUT);
if (!status)
mutex_lock(&ice_global_cfg_lock_sw);
else if (status == ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
return status;
}
/**
* ice_release_global_cfg_lock
* @hw: pointer to the HW structure
*
* This function will release the global config lock.
*/
static void ice_release_global_cfg_lock(struct ice_hw *hw)
{
mutex_unlock(&ice_global_cfg_lock_sw);
ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
}
/**
* ice_acquire_change_lock
* @hw: pointer to the HW structure
* @access: access type (read or write)
*
* This function will request ownership of the change lock.
*/
static enum ice_status
ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
ICE_CHANGE_LOCK_TIMEOUT);
}
/**
* ice_release_change_lock
* @hw: pointer to the HW structure
*
* This function will release the change lock using the proper Admin Command.
*/
static void ice_release_change_lock(struct ice_hw *hw)
{
ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
}
/**
* ice_aq_download_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package buffer to transfer
* @buf_size: the size of the package buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Download Package (0x0C40)
*/
static enum ice_status
ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
u16 buf_size, bool last_buf, u32 *error_offset,
u32 *error_info, struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_aq_update_pkg
* @hw: pointer to the hardware structure
* @pkg_buf: the package cmd buffer
* @buf_size: the size of the package cmd buffer
* @last_buf: last buffer indicator
* @error_offset: returns error offset
* @error_info: returns error information
* @cd: pointer to command details structure or NULL
*
* Update Package (0x0C42)
*/
static enum ice_status
ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
bool last_buf, u32 *error_offset, u32 *error_info,
struct ice_sq_cd *cd)
{
struct ice_aqc_download_pkg *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (error_offset)
*error_offset = 0;
if (error_info)
*error_info = 0;
cmd = &desc.params.download_pkg;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (last_buf)
cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
if (status == ICE_ERR_AQ_ERROR) {
/* Read error from buffer only when the FW returned an error */
struct ice_aqc_download_pkg_resp *resp;
resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
if (error_offset)
*error_offset = le32_to_cpu(resp->error_offset);
if (error_info)
*error_info = le32_to_cpu(resp->error_info);
}
return status;
}
/**
* ice_find_seg_in_pkg
* @hw: pointer to the hardware structure
* @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
* @pkg_hdr: pointer to the package header to be searched
*
* This function searches a package file for a particular segment type. On
* success it returns a pointer to the segment header, otherwise it will
* return NULL.
*/
static struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
struct ice_pkg_hdr *pkg_hdr)
{
u32 i;
ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
pkg_hdr->pkg_format_ver.update,
pkg_hdr->pkg_format_ver.draft);
/* Search all package segments for the requested segment type */
for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
struct ice_generic_seg_hdr *seg;
seg = (struct ice_generic_seg_hdr *)
((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
if (le32_to_cpu(seg->seg_type) == seg_type)
return seg;
}
return NULL;
}
/**
* ice_update_pkg
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains change lock and updates package.
*/
static enum ice_status
ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
u32 offset, info, i;
status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
if (status)
return status;
for (i = 0; i < count; i++) {
struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
bool last = ((i + 1) == count);
status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
last, &offset, &info, NULL);
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
}
ice_release_change_lock(hw);
return status;
}
/**
* ice_dwnld_cfg_bufs
* @hw: pointer to the hardware structure
* @bufs: pointer to an array of buffers
* @count: the number of buffers in the array
*
* Obtains global config lock and downloads the package configuration buffers
* to the firmware. Metadata buffers are skipped, and the first metadata buffer
* found indicates that the rest of the buffers are all metadata buffers.
*/
static enum ice_status
ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
{
enum ice_status status;
struct ice_buf_hdr *bh;
u32 offset, info, i;
if (!bufs || !count)
return ICE_ERR_PARAM;
/* If the first buffer's first section has its metadata bit set
* then there are no buffers to be downloaded, and the operation is
* considered a success.
*/
bh = (struct ice_buf_hdr *)bufs;
if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
return 0;
/* reset pkg_dwnld_status in case this function is called in the
* reset/rebuild flow
*/
hw->pkg_dwnld_status = ICE_AQ_RC_OK;
status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
if (status) {
if (status == ICE_ERR_AQ_NO_WORK)
hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
else
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
return status;
}
for (i = 0; i < count; i++) {
bool last = ((i + 1) == count);
if (!last) {
/* check next buffer for metadata flag */
bh = (struct ice_buf_hdr *)(bufs + i + 1);
/* A set metadata flag in the next buffer will signal
* that the current buffer will be the last buffer
* downloaded
*/
if (le16_to_cpu(bh->section_count))
if (le32_to_cpu(bh->section_entry[0].type) &
ICE_METADATA_BUF)
last = true;
}
bh = (struct ice_buf_hdr *)(bufs + i);
status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
&offset, &info, NULL);
/* Save AQ status from download package */
hw->pkg_dwnld_status = hw->adminq.sq_last_status;
if (status) {
ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
status, offset, info);
break;
}
if (last)
break;
}
ice_release_global_cfg_lock(hw);
return status;
}
/**
* ice_aq_get_pkg_info_list
* @hw: pointer to the hardware structure
* @pkg_info: the buffer which will receive the information list
* @buf_size: the size of the pkg_info information buffer
* @cd: pointer to command details structure or NULL
*
* Get Package Info List (0x0C43)
*/
static enum ice_status
ice_aq_get_pkg_info_list(struct ice_hw *hw,
struct ice_aqc_get_pkg_info_resp *pkg_info,
u16 buf_size, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
}
/**
* ice_download_pkg
* @hw: pointer to the hardware structure
* @ice_seg: pointer to the segment of the package to be downloaded
*
* Handles the download of a complete package.
*/
static enum ice_status
ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
{
struct ice_buf_table *ice_buf_tbl;
ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
ice_seg->hdr.seg_format_ver.major,
ice_seg->hdr.seg_format_ver.minor,
ice_seg->hdr.seg_format_ver.update,
ice_seg->hdr.seg_format_ver.draft);
ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
le32_to_cpu(ice_seg->hdr.seg_type),
le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
ice_buf_tbl = ice_find_buf_table(ice_seg);
ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
le32_to_cpu(ice_buf_tbl->buf_count));
return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
le32_to_cpu(ice_buf_tbl->buf_count));
}
/**
* ice_init_pkg_info
* @hw: pointer to the hardware structure
* @pkg_hdr: pointer to the driver's package hdr
*
* Saves off the package details into the HW structure.
*/
static enum ice_status
ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
{
struct ice_generic_seg_hdr *seg_hdr;
if (!pkg_hdr)
return ICE_ERR_PARAM;
seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
if (seg_hdr) {
struct ice_meta_sect *meta;
struct ice_pkg_enum state;
memset(&state, 0, sizeof(state));
/* Get package information from the Metadata Section */
meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
ICE_SID_METADATA);
if (!meta) {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
return ICE_ERR_CFG;
}
hw->pkg_ver = meta->ver;
memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
meta->ver.major, meta->ver.minor, meta->ver.update,
meta->ver.draft, meta->name);
hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
memcpy(hw->ice_seg_id, seg_hdr->seg_id,
sizeof(hw->ice_seg_id));
ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
seg_hdr->seg_format_ver.major,
seg_hdr->seg_format_ver.minor,
seg_hdr->seg_format_ver.update,
seg_hdr->seg_format_ver.draft,
seg_hdr->seg_id);
} else {
ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
return ICE_ERR_CFG;
}
return 0;
}
/**
* ice_get_pkg_info
* @hw: pointer to the hardware structure
*
* Store details of the package currently loaded in HW into the HW structure.
*/
static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
{
struct ice_aqc_get_pkg_info_resp *pkg_info;
enum ice_status status;
u16 size;
u32 i;
size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
pkg_info = kzalloc(size, GFP_KERNEL);
if (!pkg_info)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
if (status)
goto init_pkg_free_alloc;
for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
#define ICE_PKG_FLAG_COUNT 4
char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
u8 place = 0;
if (pkg_info->pkg_info[i].is_active) {
flags[place++] = 'A';
hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
hw->active_track_id =
le32_to_cpu(pkg_info->pkg_info[i].track_id);
memcpy(hw->active_pkg_name,
pkg_info->pkg_info[i].name,
sizeof(pkg_info->pkg_info[i].name));
hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
}
if (pkg_info->pkg_info[i].is_active_at_boot)
flags[place++] = 'B';
if (pkg_info->pkg_info[i].is_modified)
flags[place++] = 'M';
if (pkg_info->pkg_info[i].is_in_nvm)
flags[place++] = 'N';
ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
i, pkg_info->pkg_info[i].ver.major,
pkg_info->pkg_info[i].ver.minor,
pkg_info->pkg_info[i].ver.update,
pkg_info->pkg_info[i].ver.draft,
pkg_info->pkg_info[i].name, flags);
}
init_pkg_free_alloc:
kfree(pkg_info);
return status;
}
/**
* ice_verify_pkg - verify package
* @pkg: pointer to the package buffer
* @len: size of the package buffer
*
* Verifies various attributes of the package file, including length, format
* version, and the requirement of at least one segment.
*/
static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
{
u32 seg_count;
u32 i;
if (len < struct_size(pkg, seg_offset, 1))
return ICE_ERR_BUF_TOO_SHORT;
if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
return ICE_ERR_CFG;
/* pkg must have at least one segment */
seg_count = le32_to_cpu(pkg->seg_count);
if (seg_count < 1)
return ICE_ERR_CFG;
/* make sure segment array fits in package length */
if (len < struct_size(pkg, seg_offset, seg_count))
return ICE_ERR_BUF_TOO_SHORT;
/* all segments must fit within length */
for (i = 0; i < seg_count; i++) {
u32 off = le32_to_cpu(pkg->seg_offset[i]);
struct ice_generic_seg_hdr *seg;
/* segment header must fit */
if (len < off + sizeof(*seg))
return ICE_ERR_BUF_TOO_SHORT;
seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
/* segment body must fit */
if (len < off + le32_to_cpu(seg->seg_size))
return ICE_ERR_BUF_TOO_SHORT;
}
return 0;
}
/**
* ice_free_seg - free package segment pointer
* @hw: pointer to the hardware structure
*
* Frees the package segment pointer in the proper manner, depending on if the
* segment was allocated or just the passed in pointer was stored.
*/
void ice_free_seg(struct ice_hw *hw)
{
if (hw->pkg_copy) {
devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
hw->pkg_copy = NULL;
hw->pkg_size = 0;
}
hw->seg = NULL;
}
/**
* ice_init_pkg_regs - initialize additional package registers
* @hw: pointer to the hardware structure
*/
static void ice_init_pkg_regs(struct ice_hw *hw)
{
#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
#define ICE_SW_BLK_IDX 0
/* setup Switch block input mask, which is 48-bits in two parts */
wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
}
/**
* ice_chk_pkg_version - check package version for compatibility with driver
* @pkg_ver: pointer to a version structure to check
*
* Check to make sure that the package about to be downloaded is compatible with
* the driver. To be compatible, the major and minor components of the package
* version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
* definitions.
*/
static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
{
if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
return ICE_ERR_NOT_SUPPORTED;
return 0;
}
/**
* ice_chk_pkg_compat
* @hw: pointer to the hardware structure
* @ospkg: pointer to the package hdr
* @seg: pointer to the package segment hdr
*
* This function checks the package version compatibility with driver and NVM
*/
static enum ice_status
ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
struct ice_seg **seg)
{
struct ice_aqc_get_pkg_info_resp *pkg;
enum ice_status status;
u16 size;
u32 i;
/* Check package version compatibility */
status = ice_chk_pkg_version(&hw->pkg_ver);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
return status;
}
/* find ICE segment in given package */
*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
ospkg);
if (!*seg) {
ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
return ICE_ERR_CFG;
}
/* Check if FW is compatible with the OS package */
size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
pkg = kzalloc(size, GFP_KERNEL);
if (!pkg)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
if (status)
goto fw_ddp_compat_free_alloc;
for (i = 0; i < le32_to_cpu(pkg->count); i++) {
/* loop till we find the NVM package */
if (!pkg->pkg_info[i].is_in_nvm)
continue;
if ((*seg)->hdr.seg_format_ver.major !=
pkg->pkg_info[i].ver.major ||
(*seg)->hdr.seg_format_ver.minor >
pkg->pkg_info[i].ver.minor) {
status = ICE_ERR_FW_DDP_MISMATCH;
ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
}
/* done processing NVM package so break */
break;
}
fw_ddp_compat_free_alloc:
kfree(pkg);
return status;
}
/**
* ice_init_pkg - initialize/download package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function initializes a package. The package contains HW tables
* required to do packet processing. First, the function extracts package
* information such as version. Then it finds the ice configuration segment
* within the package; this function then saves a copy of the segment pointer
* within the supplied package buffer. Next, the function will cache any hints
* from the package, followed by downloading the package itself. Note, that if
* a previous PF driver has already downloaded the package successfully, then
* the current driver will not have to download the package again.
*
* The local package contents will be used to query default behavior and to
* update specific sections of the HW's version of the package (e.g. to update
* the parse graph to understand new protocols).
*
* This function stores a pointer to the package buffer memory, and it is
* expected that the supplied buffer will not be freed immediately. If the
* package buffer needs to be freed, such as when read from a file, use
* ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
* case.
*/
enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
{
struct ice_pkg_hdr *pkg;
enum ice_status status;
struct ice_seg *seg;
if (!buf || !len)
return ICE_ERR_PARAM;
pkg = (struct ice_pkg_hdr *)buf;
status = ice_verify_pkg(pkg, len);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
status);
return status;
}
/* initialize package info */
status = ice_init_pkg_info(hw, pkg);
if (status)
return status;
/* before downloading the package, check package version for
* compatibility with driver
*/
status = ice_chk_pkg_compat(hw, pkg, &seg);
if (status)
return status;
/* initialize package hints and then download package */
ice_init_pkg_hints(hw, seg);
status = ice_download_pkg(hw, seg);
if (status == ICE_ERR_AQ_NO_WORK) {
ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
status = 0;
}
/* Get information on the package currently loaded in HW, then make sure
* the driver is compatible with this version.
*/
if (!status) {
status = ice_get_pkg_info(hw);
if (!status)
status = ice_chk_pkg_version(&hw->active_pkg_ver);
}
if (!status) {
hw->seg = seg;
/* on successful package download update other required
* registers to support the package and fill HW tables
* with package content.
*/
ice_init_pkg_regs(hw);
ice_fill_blk_tbls(hw);
} else {
ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
status);
}
return status;
}
/**
* ice_copy_and_init_pkg - initialize/download a copy of the package
* @hw: pointer to the hardware structure
* @buf: pointer to the package buffer
* @len: size of the package buffer
*
* This function copies the package buffer, and then calls ice_init_pkg() to
* initialize the copied package contents.
*
* The copying is necessary if the package buffer supplied is constant, or if
* the memory may disappear shortly after calling this function.
*
* If the package buffer resides in the data segment and can be modified, the
* caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
*
* However, if the package buffer needs to be copied first, such as when being
* read from a file, the caller should use ice_copy_and_init_pkg().
*
* This function will first copy the package buffer, before calling
* ice_init_pkg(). The caller is free to immediately destroy the original
* package buffer, as the new copy will be managed by this function and
* related routines.
*/
enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
{
enum ice_status status;
u8 *buf_copy;
if (!buf || !len)
return ICE_ERR_PARAM;
buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
status = ice_init_pkg(hw, buf_copy, len);
if (status) {
/* Free the copy, since we failed to initialize the package */
devm_kfree(ice_hw_to_dev(hw), buf_copy);
} else {
/* Track the copied pkg so we can free it later */
hw->pkg_copy = buf_copy;
hw->pkg_size = len;
}
return status;
}
/**
* ice_pkg_buf_alloc
* @hw: pointer to the HW structure
*
* Allocates a package buffer and returns a pointer to the buffer header.
* Note: all package contents must be in Little Endian form.
*/
static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
{
struct ice_buf_build *bld;
struct ice_buf_hdr *buf;
bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
if (!bld)
return NULL;
buf = (struct ice_buf_hdr *)bld;
buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
section_entry));
return bld;
}
/**
* ice_pkg_buf_free
* @hw: pointer to the HW structure
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Frees a package buffer
*/
static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
{
devm_kfree(ice_hw_to_dev(hw), bld);
}
/**
* ice_pkg_buf_reserve_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @count: the number of sections to reserve
*
* Reserves one or more section table entries in a package buffer. This routine
* can be called multiple times as long as they are made before calling
* ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
* is called once, the number of sections that can be allocated will not be able
* to be increased; not using all reserved sections is fine, but this will
* result in some wasted space in the buffer.
* Note: all package contents must be in Little Endian form.
*/
static enum ice_status
ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
{
struct ice_buf_hdr *buf;
u16 section_count;
u16 data_end;
if (!bld)
return ICE_ERR_PARAM;
buf = (struct ice_buf_hdr *)&bld->buf;
/* already an active section, can't increase table size */
section_count = le16_to_cpu(buf->section_count);
if (section_count > 0)
return ICE_ERR_CFG;
if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
return ICE_ERR_CFG;
bld->reserved_section_table_entries += count;
data_end = le16_to_cpu(buf->data_end) +
flex_array_size(buf, section_entry, count);
buf->data_end = cpu_to_le16(data_end);
return 0;
}
/**
* ice_pkg_buf_alloc_section
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
* @type: the section type value
* @size: the size of the section to reserve (in bytes)
*
* Reserves memory in the buffer for a section's content and updates the
* buffers' status accordingly. This routine returns a pointer to the first
* byte of the section start within the buffer, which is used to fill in the
* section contents.
* Note: all package contents must be in Little Endian form.
*/
static void *
ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
{
struct ice_buf_hdr *buf;
u16 sect_count;
u16 data_end;
if (!bld || !type || !size)
return NULL;
buf = (struct ice_buf_hdr *)&bld->buf;
/* check for enough space left in buffer */
data_end = le16_to_cpu(buf->data_end);
/* section start must align on 4 byte boundary */
data_end = ALIGN(data_end, 4);
if ((data_end + size) > ICE_MAX_S_DATA_END)
return NULL;
/* check for more available section table entries */
sect_count = le16_to_cpu(buf->section_count);
if (sect_count < bld->reserved_section_table_entries) {
void *section_ptr = ((u8 *)buf) + data_end;
buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
buf->section_entry[sect_count].size = cpu_to_le16(size);
buf->section_entry[sect_count].type = cpu_to_le32(type);
data_end += size;
buf->data_end = cpu_to_le16(data_end);
buf->section_count = cpu_to_le16(sect_count + 1);
return section_ptr;
}
/* no free section table entries */
return NULL;
}
/**
* ice_pkg_buf_get_active_sections
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Returns the number of active sections. Before using the package buffer
* in an update package command, the caller should make sure that there is at
* least one active section - otherwise, the buffer is not legal and should
* not be used.
* Note: all package contents must be in Little Endian form.
*/
static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
{
struct ice_buf_hdr *buf;
if (!bld)
return 0;
buf = (struct ice_buf_hdr *)&bld->buf;
return le16_to_cpu(buf->section_count);
}
/**
* ice_pkg_buf
* @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
*
* Return a pointer to the buffer's header
*/
static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
{
if (!bld)
return NULL;
return &bld->buf;
}
/**
* ice_get_open_tunnel_port - retrieve an open tunnel port
* @hw: pointer to the HW structure
* @port: returns open port
*/
bool
ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port)
{
bool res = false;
u16 i;
mutex_lock(&hw->tnl_lock);
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) {
*port = hw->tnl.tbl[i].port;
res = true;
break;
}
mutex_unlock(&hw->tnl_lock);
return res;
}
/**
* ice_tunnel_idx_to_entry - convert linear index to the sparse one
* @hw: pointer to the HW structure
* @type: type of tunnel
* @idx: linear index
*
* Stack assumes we have 2 linear tables with indexes [0, count_valid),
* but really the port table may be sprase, and types are mixed, so convert
* the stack index into the device index.
*/
static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
u16 idx)
{
u16 i;
for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
if (hw->tnl.tbl[i].valid &&
hw->tnl.tbl[i].type == type &&
idx--)
return i;
WARN_ON_ONCE(1);
return 0;
}
/**
* ice_create_tunnel
* @hw: pointer to the HW structure
* @index: device table entry
* @type: type of tunnel
* @port: port of tunnel to create
*
* Create a tunnel by updating the parse graph in the parser. We do that by
* creating a package buffer with the tunnel info and issuing an update package
* command.
*/
static enum ice_status
ice_create_tunnel(struct ice_hw *hw, u16 index,
enum ice_tunnel_type type, u16 port)
{
struct ice_boost_tcam_section *sect_rx, *sect_tx;
enum ice_status status = ICE_ERR_MAX_LIMIT;
struct ice_buf_build *bld;
mutex_lock(&hw->tnl_lock);
bld = ice_pkg_buf_alloc(hw);
if (!bld) {
status = ICE_ERR_NO_MEMORY;
goto ice_create_tunnel_end;
}
/* allocate 2 sections, one for Rx parser, one for Tx parser */
if (ice_pkg_buf_reserve_section(bld, 2))
goto ice_create_tunnel_err;
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
struct_size(sect_rx, tcam, 1));
if (!sect_rx)
goto ice_create_tunnel_err;
sect_rx->count = cpu_to_le16(1);
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
struct_size(sect_tx, tcam, 1));
if (!sect_tx)
goto ice_create_tunnel_err;
sect_tx->count = cpu_to_le16(1);
/* copy original boost entry to update package buffer */
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_rx->tcam));
/* over-write the never-match dest port key bits with the encoded port
* bits
*/
ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
(u8 *)&port, NULL, NULL, NULL,
(u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
/* exact copy of entry to Tx section entry */
memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
if (!status)
hw->tnl.tbl[index].port = port;
ice_create_tunnel_err:
ice_pkg_buf_free(hw, bld);
ice_create_tunnel_end:
mutex_unlock(&hw->tnl_lock);
return status;
}
/**
* ice_destroy_tunnel
* @hw: pointer to the HW structure
* @index: device table entry
* @type: type of tunnel
* @port: port of tunnel to destroy (ignored if the all parameter is true)
*
* Destroys a tunnel or all tunnels by creating an update package buffer
* targeting the specific updates requested and then performing an update
* package.
*/
static enum ice_status
ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
u16 port)
{
struct ice_boost_tcam_section *sect_rx, *sect_tx;
enum ice_status status = ICE_ERR_MAX_LIMIT;
struct ice_buf_build *bld;
mutex_lock(&hw->tnl_lock);
if (WARN_ON(!hw->tnl.tbl[index].valid ||
hw->tnl.tbl[index].type != type ||
hw->tnl.tbl[index].port != port)) {
status = ICE_ERR_OUT_OF_RANGE;
goto ice_destroy_tunnel_end;
}
bld = ice_pkg_buf_alloc(hw);
if (!bld) {
status = ICE_ERR_NO_MEMORY;
goto ice_destroy_tunnel_end;
}
/* allocate 2 sections, one for Rx parser, one for Tx parser */
if (ice_pkg_buf_reserve_section(bld, 2))
goto ice_destroy_tunnel_err;
sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
struct_size(sect_rx, tcam, 1));
if (!sect_rx)
goto ice_destroy_tunnel_err;
sect_rx->count = cpu_to_le16(1);
sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
struct_size(sect_tx, tcam, 1));
if (!sect_tx)
goto ice_destroy_tunnel_err;
sect_tx->count = cpu_to_le16(1);
/* copy original boost entry to update package buffer, one copy to Rx
* section, another copy to the Tx section
*/
memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_rx->tcam));
memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
sizeof(*sect_tx->tcam));
status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
if (!status)
hw->tnl.tbl[index].port = 0;
ice_destroy_tunnel_err:
ice_pkg_buf_free(hw, bld);
ice_destroy_tunnel_end:
mutex_unlock(&hw->tnl_lock);
return status;
}
int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
unsigned int idx, struct udp_tunnel_info *ti)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
enum ice_tunnel_type tnl_type;
enum ice_status status;
u16 index;
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type);
status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
if (status) {
netdev_err(netdev, "Error adding UDP tunnel - %s\n",
ice_stat_str(status));
return -EIO;
}
udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
return 0;
}
int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
unsigned int idx, struct udp_tunnel_info *ti)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_vsi *vsi = np->vsi;
struct ice_pf *pf = vsi->back;
enum ice_tunnel_type tnl_type;
enum ice_status status;
tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
ntohs(ti->port));
if (status) {
netdev_err(netdev, "Error removing UDP tunnel - %s\n",
ice_stat_str(status));
return -EIO;
}
return 0;
}
/* PTG Management */
/**
* ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to search for
* @ptg: pointer to variable that receives the PTG
*
* This function will search the PTGs for a particular ptype, returning the
* PTG ID that contains it through the PTG parameter, with the value of
* ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
*/
static enum ice_status
ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
{
if (ptype >= ICE_XLT1_CNT || !ptg)
return ICE_ERR_PARAM;
*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
return 0;
}
/**
* ice_ptg_alloc_val - Allocates a new packet type group ID by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptg: the PTG to allocate
*
* This function allocates a given packet type group ID specified by the PTG
* parameter.
*/
static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
{
hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
}
/**
* ice_ptg_remove_ptype - Removes ptype from a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to remove
* @ptg: the PTG to remove the ptype from
*
* This function will remove the ptype from the specific PTG, and move it to
* the default PTG (ICE_DEFAULT_PTG).
*/
static enum ice_status
ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
struct ice_ptg_ptype **ch;
struct ice_ptg_ptype *p;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* Should not happen if .in_use is set, bad config */
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
return ICE_ERR_CFG;
/* find the ptype within this PTG, and bypass the link over it */
p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
while (p) {
if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
*ch = p->next_ptype;
break;
}
ch = &p->next_ptype;
p = p->next_ptype;
}
hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
return 0;
}
/**
* ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
* @hw: pointer to the hardware structure
* @blk: HW block
* @ptype: the ptype to add or move
* @ptg: the PTG to add or move the ptype to
*
* This function will either add or move a ptype to a particular PTG depending
* on if the ptype is already part of another group. Note that using a
* a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
* default PTG.
*/
static enum ice_status
ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
{
enum ice_status status;
u8 original_ptg;
if (ptype > ICE_XLT1_CNT - 1)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
if (status)
return status;
/* Is ptype already in the correct PTG? */
if (original_ptg == ptg)
return 0;
/* Remove from original PTG and move back to the default PTG */
if (original_ptg != ICE_DEFAULT_PTG)
ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
/* Moving to default PTG? Then we're done with this request */
if (ptg == ICE_DEFAULT_PTG)
return 0;
/* Add ptype to PTG at beginning of list */
hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
&hw->blk[blk].xlt1.ptypes[ptype];
hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
hw->blk[blk].xlt1.t[ptype] = ptg;
return 0;
}
/* Block / table size info */
struct ice_blk_size_details {
u16 xlt1; /* # XLT1 entries */
u16 xlt2; /* # XLT2 entries */
u16 prof_tcam; /* # profile ID TCAM entries */
u16 prof_id; /* # profile IDs */
u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
u16 prof_redir; /* # profile redirection entries */
u16 es; /* # extraction sequence entries */
u16 fvw; /* # field vector words */
u8 overwrite; /* overwrite existing entries allowed */
u8 reverse; /* reverse FV order */
};
static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
/**
* Table Definitions
* XLT1 - Number of entries in XLT1 table
* XLT2 - Number of entries in XLT2 table
* TCAM - Number of entries Profile ID TCAM table
* CDID - Control Domain ID of the hardware block
* PRED - Number of entries in the Profile Redirection Table
* FV - Number of entries in the Field Vector
* FVW - Width (in WORDs) of the Field Vector
* OVR - Overwrite existing table entries
* REV - Reverse FV
*/
/* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
/* Overwrite , Reverse FV */
/* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
false, false },
/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
false, false },
/* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
false, true },
/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
true, true },
/* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
false, false },
};
enum ice_sid_all {
ICE_SID_XLT1_OFF = 0,
ICE_SID_XLT2_OFF,
ICE_SID_PR_OFF,
ICE_SID_PR_REDIR_OFF,
ICE_SID_ES_OFF,
ICE_SID_OFF_COUNT,
};
/* Characteristic handling */
/**
* ice_match_prop_lst - determine if properties of two lists match
* @list1: first properties list
* @list2: second properties list
*
* Count, cookies and the order must match in order to be considered equivalent.
*/
static bool
ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
{
struct ice_vsig_prof *tmp1;
struct ice_vsig_prof *tmp2;
u16 chk_count = 0;
u16 count = 0;
/* compare counts */
list_for_each_entry(tmp1, list1, list)
count++;
list_for_each_entry(tmp2, list2, list)
chk_count++;
/* cppcheck-suppress knownConditionTrueFalse */
if (!count || count != chk_count)
return false;
tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
/* profile cookies must compare, and in the exact same order to take
* into account priority
*/
while (count--) {
if (tmp2->profile_cookie != tmp1->profile_cookie)
return false;
tmp1 = list_next_entry(tmp1, list);
tmp2 = list_next_entry(tmp2, list);
}
return true;
}
/* VSIG Management */
/**
* ice_vsig_find_vsi - find a VSIG that contains a specified VSI
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI of interest
* @vsig: pointer to receive the VSI group
*
* This function will lookup the VSI entry in the XLT2 list and return
* the VSI group its associated with.
*/
static enum ice_status
ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
{
if (!vsig || vsi >= ICE_MAX_VSI)
return ICE_ERR_PARAM;
/* As long as there's a default or valid VSIG associated with the input
* VSI, the functions returns a success. Any handling of VSIG will be
* done by the following add, update or remove functions.
*/
*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
return 0;
}
/**
* ice_vsig_alloc_val - allocate a new VSIG by value
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: the VSIG to allocate
*
* This function will allocate a given VSIG specified by the VSIG parameter.
*/
static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
}
return ICE_VSIG_VALUE(idx, hw->pf_id);
}
/**
* ice_vsig_alloc - Finds a free entry and allocates a new VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
*
* This function will iterate through the VSIG list and mark the first
* unused entry for the new VSIG entry as used and return that value.
*/
static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
{
u16 i;
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
return ice_vsig_alloc_val(hw, blk, i);
return ICE_DEFAULT_VSIG;
}
/**
* ice_find_dup_props_vsig - find VSI group with a specified set of properties
* @hw: pointer to the hardware structure
* @blk: HW block
* @chs: characteristic list
* @vsig: returns the VSIG with the matching profiles, if found
*
* Each VSIG is associated with a characteristic set; i.e. all VSIs under
* a group have the same characteristic set. To check if there exists a VSIG
* which has the same characteristics as the input characteristics; this
* function will iterate through the XLT2 list and return the VSIG that has a
* matching configuration. In order to make sure that priorities are accounted
* for, the list must match exactly, including the order in which the
* characteristics are listed.
*/
static enum ice_status
ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
struct list_head *chs, u16 *vsig)
{
struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
u16 i;
for (i = 0; i < xlt2->count; i++)
if (xlt2->vsig_tbl[i].in_use &&
ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
return 0;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_vsig_free - free VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to remove
*
* The function will remove all VSIs associated with the input VSIG and move
* them to the DEFAULT_VSIG and mark the VSIG available.
*/
static enum ice_status
ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
struct ice_vsig_prof *dtmp, *del;
struct ice_vsig_vsi *vsi_cur;
u16 idx;
idx = vsig & ICE_VSIG_IDX_M;
if (idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
/* If the VSIG has at least 1 VSI then iterate through the
* list and remove the VSIs before deleting the group.
*/
if (vsi_cur) {
/* remove all vsis associated with this VSIG XLT2 entry */
do {
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
vsi_cur = tmp;
} while (vsi_cur);
/* NULL terminate head of VSI list */
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
}
/* free characteristic list */
list_for_each_entry_safe(del, dtmp,
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list) {
list_del(&del->list);
devm_kfree(ice_hw_to_dev(hw), del);
}
/* if VSIG characteristic list was cleared for reset
* re-initialize the list head
*/
INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
return 0;
}
/**
* ice_vsig_remove_vsi - remove VSI from VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to remove
* @vsig: VSI group to remove from
*
* The function will remove the input VSI from its VSI group and move it
* to the DEFAULT_VSIG.
*/
static enum ice_status
ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
u16 idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
/* entry already in default VSIG, don't have to remove */
if (idx == ICE_DEFAULT_VSIG)
return 0;
vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
if (!(*vsi_head))
return ICE_ERR_CFG;
vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
vsi_cur = (*vsi_head);
/* iterate the VSI list, skip over the entry to be removed */
while (vsi_cur) {
if (vsi_tgt == vsi_cur) {
(*vsi_head) = vsi_cur->next_vsi;
break;
}
vsi_head = &vsi_cur->next_vsi;
vsi_cur = vsi_cur->next_vsi;
}
/* verify if VSI was removed from group list */
if (!vsi_cur)
return ICE_ERR_DOES_NOT_EXIST;
vsi_cur->vsig = ICE_DEFAULT_VSIG;
vsi_cur->changed = 1;
vsi_cur->next_vsi = NULL;
return 0;
}
/**
* ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsi: VSI to move
* @vsig: destination VSI group
*
* This function will move or add the input VSI to the target VSIG.
* The function will find the original VSIG the VSI belongs to and
* move the entry to the DEFAULT_VSIG, update the original VSIG and
* then move entry to the new VSIG.
*/
static enum ice_status
ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
{
struct ice_vsig_vsi *tmp;
enum ice_status status;
u16 orig_vsig, idx;
idx = vsig & ICE_VSIG_IDX_M;
if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
return ICE_ERR_PARAM;
/* if VSIG not in use and VSIG is not default type this VSIG
* doesn't exist.
*/
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
vsig != ICE_DEFAULT_VSIG)
return ICE_ERR_DOES_NOT_EXIST;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (status)
return status;
/* no update required if vsigs match */
if (orig_vsig == vsig)
return 0;
if (orig_vsig != ICE_DEFAULT_VSIG) {
/* remove entry from orig_vsig and add to default VSIG */
status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
if (status)
return status;
}
if (idx == ICE_DEFAULT_VSIG)
return 0;
/* Create VSI entry and add VSIG and prop_mask values */
hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
hw->blk[blk].xlt2.vsis[vsi].changed = 1;
/* Add new entry to the head of the VSIG list */
tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
&hw->blk[blk].xlt2.vsis[vsi];
hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
hw->blk[blk].xlt2.t[vsi] = vsig;
return 0;
}
/**
* ice_prof_has_mask_idx - determine if profile index masking is identical
* @hw: pointer to the hardware structure
* @blk: HW block
* @prof: profile to check
* @idx: profile index to check
* @mask: mask to match
*/
static bool
ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
u16 mask)
{
bool expect_no_mask = false;
bool found = false;
bool match = false;
u16 i;
/* If mask is 0x0000 or 0xffff, then there is no masking */
if (mask == 0 || mask == 0xffff)
expect_no_mask = true;
/* Scan the enabled masks on this profile, for the specified idx */
for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
hw->blk[blk].masks.count; i++)
if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
if (hw->blk[blk].masks.masks[i].in_use &&
hw->blk[blk].masks.masks[i].idx == idx) {
found = true;
if (hw->blk[blk].masks.masks[i].mask == mask)
match = true;
break;
}
if (expect_no_mask) {
if (found)
return false;
} else {
if (!match)
return false;
}
return true;
}
/**
* ice_prof_has_mask - determine if profile masking is identical
* @hw: pointer to the hardware structure
* @blk: HW block
* @prof: profile to check
* @masks: masks to match
*/
static bool
ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
{
u16 i;
/* es->mask_ena[prof] will have the mask */
for (i = 0; i < hw->blk[blk].es.fvw; i++)
if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
return false;
return true;
}
/**
* ice_find_prof_id_with_mask - find profile ID for a given field vector
* @hw: pointer to the hardware structure
* @blk: HW block
* @fv: field vector to search for
* @masks: masks for FV
* @prof_id: receives the profile ID
*/
static enum ice_status
ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
{
struct ice_es *es = &hw->blk[blk].es;
u8 i;
/* For FD, we don't want to re-use a existed profile with the same
* field vector and mask. This will cause rule interference.
*/
if (blk == ICE_BLK_FD)
return ICE_ERR_DOES_NOT_EXIST;
for (i = 0; i < (u8)es->count; i++) {
u16 off = i * es->fvw;
if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
continue;
/* check if masks settings are the same for this profile */
if (masks && !ice_prof_has_mask(hw, blk, i, masks))
continue;
*prof_id = i;
return 0;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_prof_id_rsrc_type - get profile ID resource type for a block type
* @blk: the block type
* @rsrc_type: pointer to variable to receive the resource type
*/
static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
{
switch (blk) {
case ICE_BLK_FD:
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
break;
case ICE_BLK_RSS:
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
break;
default:
return false;
}
return true;
}
/**
* ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
* @blk: the block type
* @rsrc_type: pointer to variable to receive the resource type
*/
static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
{
switch (blk) {
case ICE_BLK_FD:
*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
break;
case ICE_BLK_RSS:
*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
break;
default:
return false;
}
return true;
}
/**
* ice_alloc_tcam_ent - allocate hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block to allocate the TCAM for
* @btm: true to allocate from bottom of table, false to allocate from top
* @tcam_idx: pointer to variable to receive the TCAM entry
*
* This function allocates a new entry in a Profile ID TCAM for a specific
* block.
*/
static enum ice_status
ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
u16 *tcam_idx)
{
u16 res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
}
/**
* ice_free_tcam_ent - free hardware TCAM entry
* @hw: pointer to the HW struct
* @blk: the block from which to free the TCAM entry
* @tcam_idx: the TCAM entry to free
*
* This function frees an entry in a Profile ID TCAM for a specific block.
*/
static enum ice_status
ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
{
u16 res_type;
if (!ice_tcam_ent_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
}
/**
* ice_alloc_prof_id - allocate profile ID
* @hw: pointer to the HW struct
* @blk: the block to allocate the profile ID for
* @prof_id: pointer to variable to receive the profile ID
*
* This function allocates a new profile ID, which also corresponds to a Field
* Vector (Extraction Sequence) entry.
*/
static enum ice_status
ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
{
enum ice_status status;
u16 res_type;
u16 get_prof;
if (!ice_prof_id_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
if (!status)
*prof_id = (u8)get_prof;
return status;
}
/**
* ice_free_prof_id - free profile ID
* @hw: pointer to the HW struct
* @blk: the block from which to free the profile ID
* @prof_id: the profile ID to free
*
* This function frees a profile ID, which also corresponds to a Field Vector.
*/
static enum ice_status
ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
{
u16 tmp_prof_id = (u16)prof_id;
u16 res_type;
if (!ice_prof_id_rsrc_type(blk, &res_type))
return ICE_ERR_PARAM;
return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
}
/**
* ice_prof_inc_ref - increment reference count for profile
* @hw: pointer to the HW struct
* @blk: the block from which to free the profile ID
* @prof_id: the profile ID for which to increment the reference count
*/
static enum ice_status
ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
{
if (prof_id > hw->blk[blk].es.count)
return ICE_ERR_PARAM;
hw->blk[blk].es.ref_count[prof_id]++;
return 0;
}
/**
* ice_write_prof_mask_reg - write profile mask register
* @hw: pointer to the HW struct
* @blk: hardware block
* @mask_idx: mask index
* @idx: index of the FV which will use the mask
* @mask: the 16-bit mask
*/
static void
ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
u16 idx, u16 mask)
{
u32 offset;
u32 val;
switch (blk) {
case ICE_BLK_RSS:
offset = GLQF_HMASK(mask_idx);
val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
break;
case ICE_BLK_FD:
offset = GLQF_FDMASK(mask_idx);
val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
break;
default:
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
blk);
return;
}
wr32(hw, offset, val);
ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
blk, idx, offset, val);
}
/**
* ice_write_prof_mask_enable_res - write profile mask enable register
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
* @enable_mask: enable mask
*/
static void
ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
u16 prof_id, u32 enable_mask)
{
u32 offset;
switch (blk) {
case ICE_BLK_RSS:
offset = GLQF_HMASK_SEL(prof_id);
break;
case ICE_BLK_FD:
offset = GLQF_FDMASK_SEL(prof_id);
break;
default:
ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
blk);
return;
}
wr32(hw, offset, enable_mask);
ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
blk, prof_id, offset, enable_mask);
}
/**
* ice_init_prof_masks - initial prof masks
* @hw: pointer to the HW struct
* @blk: hardware block
*/
static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
{
u16 per_pf;
u16 i;
mutex_init(&hw->blk[blk].masks.lock);
per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
hw->blk[blk].masks.count = per_pf;
hw->blk[blk].masks.first = hw->pf_id * per_pf;
memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
}
/**
* ice_init_all_prof_masks - initialize all prof masks
* @hw: pointer to the HW struct
*/
static void ice_init_all_prof_masks(struct ice_hw *hw)
{
ice_init_prof_masks(hw, ICE_BLK_RSS);
ice_init_prof_masks(hw, ICE_BLK_FD);
}
/**
* ice_alloc_prof_mask - allocate profile mask
* @hw: pointer to the HW struct
* @blk: hardware block
* @idx: index of FV which will use the mask
* @mask: the 16-bit mask
* @mask_idx: variable to receive the mask index
*/
static enum ice_status
ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
u16 *mask_idx)
{
bool found_unused = false, found_copy = false;
enum ice_status status = ICE_ERR_MAX_LIMIT;
u16 unused_idx = 0, copy_idx = 0;
u16 i;
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
mutex_lock(&hw->blk[blk].masks.lock);
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
if (hw->blk[blk].masks.masks[i].in_use) {
/* if mask is in use and it exactly duplicates the
* desired mask and index, then in can be reused
*/
if (hw->blk[blk].masks.masks[i].mask == mask &&
hw->blk[blk].masks.masks[i].idx == idx) {
found_copy = true;
copy_idx = i;
break;
}
} else {
/* save off unused index, but keep searching in case
* there is an exact match later on
*/
if (!found_unused) {
found_unused = true;
unused_idx = i;
}
}
if (found_copy)
i = copy_idx;
else if (found_unused)
i = unused_idx;
else
goto err_ice_alloc_prof_mask;
/* update mask for a new entry */
if (found_unused) {
hw->blk[blk].masks.masks[i].in_use = true;
hw->blk[blk].masks.masks[i].mask = mask;
hw->blk[blk].masks.masks[i].idx = idx;
hw->blk[blk].masks.masks[i].ref = 0;
ice_write_prof_mask_reg(hw, blk, i, idx, mask);
}
hw->blk[blk].masks.masks[i].ref++;
*mask_idx = i;
status = 0;
err_ice_alloc_prof_mask:
mutex_unlock(&hw->blk[blk].masks.lock);
return status;
}
/**
* ice_free_prof_mask - free profile mask
* @hw: pointer to the HW struct
* @blk: hardware block
* @mask_idx: index of mask
*/
static enum ice_status
ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
{
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
if (!(mask_idx >= hw->blk[blk].masks.first &&
mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
return ICE_ERR_DOES_NOT_EXIST;
mutex_lock(&hw->blk[blk].masks.lock);
if (!hw->blk[blk].masks.masks[mask_idx].in_use)
goto exit_ice_free_prof_mask;
if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
hw->blk[blk].masks.masks[mask_idx].ref--;
goto exit_ice_free_prof_mask;
}
/* remove mask */
hw->blk[blk].masks.masks[mask_idx].in_use = false;
hw->blk[blk].masks.masks[mask_idx].mask = 0;
hw->blk[blk].masks.masks[mask_idx].idx = 0;
/* update mask as unused entry */
ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
mask_idx);
ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
exit_ice_free_prof_mask:
mutex_unlock(&hw->blk[blk].masks.lock);
return 0;
}
/**
* ice_free_prof_masks - free all profile masks for a profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
*/
static enum ice_status
ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
{
u32 mask_bm;
u16 i;
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return ICE_ERR_PARAM;
mask_bm = hw->blk[blk].es.mask_ena[prof_id];
for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
if (mask_bm & BIT(i))
ice_free_prof_mask(hw, blk, i);
return 0;
}
/**
* ice_shutdown_prof_masks - releases lock for masking
* @hw: pointer to the HW struct
* @blk: hardware block
*
* This should be called before unloading the driver
*/
static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
{
u16 i;
mutex_lock(&hw->blk[blk].masks.lock);
for (i = hw->blk[blk].masks.first;
i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
ice_write_prof_mask_reg(hw, blk, i, 0, 0);
hw->blk[blk].masks.masks[i].in_use = false;
hw->blk[blk].masks.masks[i].idx = 0;
hw->blk[blk].masks.masks[i].mask = 0;
}
mutex_unlock(&hw->blk[blk].masks.lock);
mutex_destroy(&hw->blk[blk].masks.lock);
}
/**
* ice_shutdown_all_prof_masks - releases all locks for masking
* @hw: pointer to the HW struct
*
* This should be called before unloading the driver
*/
static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
{
ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
ice_shutdown_prof_masks(hw, ICE_BLK_FD);
}
/**
* ice_update_prof_masking - set registers according to masking
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof_id: profile ID
* @masks: masks
*/
static enum ice_status
ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
u16 *masks)
{
bool err = false;
u32 ena_mask = 0;
u16 idx;
u16 i;
/* Only support FD and RSS masking, otherwise nothing to be done */
if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
return 0;
for (i = 0; i < hw->blk[blk].es.fvw; i++)
if (masks[i] && masks[i] != 0xFFFF) {
if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
ena_mask |= BIT(idx);
} else {
/* not enough bitmaps */
err = true;
break;
}
}
if (err) {
/* free any bitmaps we have allocated */
for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
if (ena_mask & BIT(i))
ice_free_prof_mask(hw, blk, i);
return ICE_ERR_OUT_OF_RANGE;
}
/* enable the masks for this profile */
ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
/* store enabled masks with profile so that they can be freed later */
hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
return 0;
}
/**
* ice_write_es - write an extraction sequence to hardware
* @hw: pointer to the HW struct
* @blk: the block in which to write the extraction sequence
* @prof_id: the profile ID to write
* @fv: pointer to the extraction sequence to write - NULL to clear extraction
*/
static void
ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
struct ice_fv_word *fv)
{
u16 off;
off = prof_id * hw->blk[blk].es.fvw;
if (!fv) {
memset(&hw->blk[blk].es.t[off], 0,
hw->blk[blk].es.fvw * sizeof(*fv));
hw->blk[blk].es.written[prof_id] = false;
} else {
memcpy(&hw->blk[blk].es.t[off], fv,
hw->blk[blk].es.fvw * sizeof(*fv));
}
}
/**
* ice_prof_dec_ref - decrement reference count for profile
* @hw: pointer to the HW struct
* @blk: the block from which to free the profile ID
* @prof_id: the profile ID for which to decrement the reference count
*/
static enum ice_status
ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
{
if (prof_id > hw->blk[blk].es.count)
return ICE_ERR_PARAM;
if (hw->blk[blk].es.ref_count[prof_id] > 0) {
if (!--hw->blk[blk].es.ref_count[prof_id]) {
ice_write_es(hw, blk, prof_id, NULL);
ice_free_prof_masks(hw, blk, prof_id);
return ice_free_prof_id(hw, blk, prof_id);
}
}
return 0;
}
/* Block / table section IDs */
static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
/* SWITCH */
{ ICE_SID_XLT1_SW,
ICE_SID_XLT2_SW,
ICE_SID_PROFID_TCAM_SW,
ICE_SID_PROFID_REDIR_SW,
ICE_SID_FLD_VEC_SW
},
/* ACL */
{ ICE_SID_XLT1_ACL,
ICE_SID_XLT2_ACL,
ICE_SID_PROFID_TCAM_ACL,
ICE_SID_PROFID_REDIR_ACL,
ICE_SID_FLD_VEC_ACL
},
/* FD */
{ ICE_SID_XLT1_FD,
ICE_SID_XLT2_FD,
ICE_SID_PROFID_TCAM_FD,
ICE_SID_PROFID_REDIR_FD,
ICE_SID_FLD_VEC_FD
},
/* RSS */
{ ICE_SID_XLT1_RSS,
ICE_SID_XLT2_RSS,
ICE_SID_PROFID_TCAM_RSS,
ICE_SID_PROFID_REDIR_RSS,
ICE_SID_FLD_VEC_RSS
},
/* PE */
{ ICE_SID_XLT1_PE,
ICE_SID_XLT2_PE,
ICE_SID_PROFID_TCAM_PE,
ICE_SID_PROFID_REDIR_PE,
ICE_SID_FLD_VEC_PE
}
};
/**
* ice_init_sw_xlt1_db - init software XLT1 database from HW tables
* @hw: pointer to the hardware structure
* @blk: the HW block to initialize
*/
static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
{
u16 pt;
for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
u8 ptg;
ptg = hw->blk[blk].xlt1.t[pt];
if (ptg != ICE_DEFAULT_PTG) {
ice_ptg_alloc_val(hw, blk, ptg);
ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
}
}
}
/**
* ice_init_sw_xlt2_db - init software XLT2 database from HW tables
* @hw: pointer to the hardware structure
* @blk: the HW block to initialize
*/
static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
{
u16 vsi;
for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
u16 vsig;
vsig = hw->blk[blk].xlt2.t[vsi];
if (vsig) {
ice_vsig_alloc_val(hw, blk, vsig);
ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
/* no changes at this time, since this has been
* initialized from the original package
*/
hw->blk[blk].xlt2.vsis[vsi].changed = 0;
}
}
}
/**
* ice_init_sw_db - init software database from HW tables
* @hw: pointer to the hardware structure
*/
static void ice_init_sw_db(struct ice_hw *hw)
{
u16 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
ice_init_sw_xlt1_db(hw, (enum ice_block)i);
ice_init_sw_xlt2_db(hw, (enum ice_block)i);
}
}
/**
* ice_fill_tbl - Reads content of a single table type into database
* @hw: pointer to the hardware structure
* @block_id: Block ID of the table to copy
* @sid: Section ID of the table to copy
*
* Will attempt to read the entire content of a given table of a single block
* into the driver database. We assume that the buffer will always
* be as large or larger than the data contained in the package. If
* this condition is not met, there is most likely an error in the package
* contents.
*/
static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
{
u32 dst_len, sect_len, offset = 0;
struct ice_prof_redir_section *pr;
struct ice_prof_id_section *pid;
struct ice_xlt1_section *xlt1;
struct ice_xlt2_section *xlt2;
struct ice_sw_fv_section *es;
struct ice_pkg_enum state;
u8 *src, *dst;
void *sect;
/* if the HW segment pointer is null then the first iteration of
* ice_pkg_enum_section() will fail. In this case the HW tables will
* not be filled and return success.
*/
if (!hw->seg) {
ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
return;
}
memset(&state, 0, sizeof(state));
sect = ice_pkg_enum_section(hw->seg, &state, sid);
while (sect) {
switch (sid) {
case ICE_SID_XLT1_SW:
case ICE_SID_XLT1_FD:
case ICE_SID_XLT1_RSS:
case ICE_SID_XLT1_ACL:
case ICE_SID_XLT1_PE:
xlt1 = sect;
src = xlt1->value;
sect_len = le16_to_cpu(xlt1->count) *
sizeof(*hw->blk[block_id].xlt1.t);
dst = hw->blk[block_id].xlt1.t;
dst_len = hw->blk[block_id].xlt1.count *
sizeof(*hw->blk[block_id].xlt1.t);
break;
case ICE_SID_XLT2_SW:
case ICE_SID_XLT2_FD:
case ICE_SID_XLT2_RSS:
case ICE_SID_XLT2_ACL:
case ICE_SID_XLT2_PE:
xlt2 = sect;
src = (__force u8 *)xlt2->value;
sect_len = le16_to_cpu(xlt2->count) *
sizeof(*hw->blk[block_id].xlt2.t);
dst = (u8 *)hw->blk[block_id].xlt2.t;
dst_len = hw->blk[block_id].xlt2.count *
sizeof(*hw->blk[block_id].xlt2.t);
break;
case ICE_SID_PROFID_TCAM_SW:
case ICE_SID_PROFID_TCAM_FD:
case ICE_SID_PROFID_TCAM_RSS:
case ICE_SID_PROFID_TCAM_ACL:
case ICE_SID_PROFID_TCAM_PE:
pid = sect;
src = (u8 *)pid->entry;
sect_len = le16_to_cpu(pid->count) *
sizeof(*hw->blk[block_id].prof.t);
dst = (u8 *)hw->blk[block_id].prof.t;
dst_len = hw->blk[block_id].prof.count *
sizeof(*hw->blk[block_id].prof.t);
break;
case ICE_SID_PROFID_REDIR_SW:
case ICE_SID_PROFID_REDIR_FD:
case ICE_SID_PROFID_REDIR_RSS:
case ICE_SID_PROFID_REDIR_ACL:
case ICE_SID_PROFID_REDIR_PE:
pr = sect;
src = pr->redir_value;
sect_len = le16_to_cpu(pr->count) *
sizeof(*hw->blk[block_id].prof_redir.t);
dst = hw->blk[block_id].prof_redir.t;
dst_len = hw->blk[block_id].prof_redir.count *
sizeof(*hw->blk[block_id].prof_redir.t);
break;
case ICE_SID_FLD_VEC_SW:
case ICE_SID_FLD_VEC_FD:
case ICE_SID_FLD_VEC_RSS:
case ICE_SID_FLD_VEC_ACL:
case ICE_SID_FLD_VEC_PE:
es = sect;
src = (u8 *)es->fv;
sect_len = (u32)(le16_to_cpu(es->count) *
hw->blk[block_id].es.fvw) *
sizeof(*hw->blk[block_id].es.t);
dst = (u8 *)hw->blk[block_id].es.t;
dst_len = (u32)(hw->blk[block_id].es.count *
hw->blk[block_id].es.fvw) *
sizeof(*hw->blk[block_id].es.t);
break;
default:
return;
}
/* if the section offset exceeds destination length, terminate
* table fill.
*/
if (offset > dst_len)
return;
/* if the sum of section size and offset exceed destination size
* then we are out of bounds of the HW table size for that PF.
* Changing section length to fill the remaining table space
* of that PF.
*/
if ((offset + sect_len) > dst_len)
sect_len = dst_len - offset;
memcpy(dst + offset, src, sect_len);
offset += sect_len;
sect = ice_pkg_enum_section(NULL, &state, sid);
}
}
/**
* ice_fill_blk_tbls - Read package context for tables
* @hw: pointer to the hardware structure
*
* Reads the current package contents and populates the driver
* database with the data iteratively for all advanced feature
* blocks. Assume that the HW tables have been allocated.
*/
void ice_fill_blk_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
enum ice_block blk_id = (enum ice_block)i;
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
}
ice_init_sw_db(hw);
}
/**
* ice_free_prof_map - free profile map
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
{
struct ice_es *es = &hw->blk[blk_idx].es;
struct ice_prof_map *del, *tmp;
mutex_lock(&es->prof_map_lock);
list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
list_del(&del->list);
devm_kfree(ice_hw_to_dev(hw), del);
}
INIT_LIST_HEAD(&es->prof_map);
mutex_unlock(&es->prof_map_lock);
}
/**
* ice_free_flow_profs - free flow profile entries
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
{
struct ice_flow_prof *p, *tmp;
mutex_lock(&hw->fl_profs_locks[blk_idx]);
list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
struct ice_flow_entry *e, *t;
list_for_each_entry_safe(e, t, &p->entries, l_entry)
ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
ICE_FLOW_ENTRY_HNDL(e));
list_del(&p->l_entry);
mutex_destroy(&p->entries_lock);
devm_kfree(ice_hw_to_dev(hw), p);
}
mutex_unlock(&hw->fl_profs_locks[blk_idx]);
/* if driver is in reset and tables are being cleared
* re-initialize the flow profile list heads
*/
INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
}
/**
* ice_free_vsig_tbl - free complete VSIG table entries
* @hw: pointer to the hardware structure
* @blk: the HW block on which to free the VSIG table entries
*/
static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
{
u16 i;
if (!hw->blk[blk].xlt2.vsig_tbl)
return;
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
ice_vsig_free(hw, blk, i);
}
/**
* ice_free_hw_tbls - free hardware table memory
* @hw: pointer to the hardware structure
*/
void ice_free_hw_tbls(struct ice_hw *hw)
{
struct ice_rss_cfg *r, *rt;
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
if (hw->blk[i].is_list_init) {
struct ice_es *es = &hw->blk[i].es;
ice_free_prof_map(hw, i);
mutex_destroy(&es->prof_map_lock);
ice_free_flow_profs(hw, i);
mutex_destroy(&hw->fl_profs_locks[i]);
hw->blk[i].is_list_init = false;
}
ice_free_vsig_tbl(hw, (enum ice_block)i);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
}
list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
list_del(&r->l_entry);
devm_kfree(ice_hw_to_dev(hw), r);
}
mutex_destroy(&hw->rss_locks);
ice_shutdown_all_prof_masks(hw);
memset(hw->blk, 0, sizeof(hw->blk));
}
/**
* ice_init_flow_profs - init flow profile locks and list heads
* @hw: pointer to the hardware structure
* @blk_idx: HW block index
*/
static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
{
mutex_init(&hw->fl_profs_locks[blk_idx]);
INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
}
/**
* ice_clear_hw_tbls - clear HW tables and flow profiles
* @hw: pointer to the hardware structure
*/
void ice_clear_hw_tbls(struct ice_hw *hw)
{
u8 i;
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
if (hw->blk[i].is_list_init) {
ice_free_prof_map(hw, i);
ice_free_flow_profs(hw, i);
}
ice_free_vsig_tbl(hw, (enum ice_block)i);
memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
memset(xlt1->ptg_tbl, 0,
ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
memset(xlt2->vsig_tbl, 0,
xlt2->count * sizeof(*xlt2->vsig_tbl));
memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
memset(prof->t, 0, prof->count * sizeof(*prof->t));
memset(prof_redir->t, 0,
prof_redir->count * sizeof(*prof_redir->t));
memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
memset(es->written, 0, es->count * sizeof(*es->written));
memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
}
}
/**
* ice_init_hw_tbls - init hardware table memory
* @hw: pointer to the hardware structure
*/
enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
{
u8 i;
mutex_init(&hw->rss_locks);
INIT_LIST_HEAD(&hw->rss_list_head);
ice_init_all_prof_masks(hw);
for (i = 0; i < ICE_BLK_COUNT; i++) {
struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
struct ice_prof_tcam *prof = &hw->blk[i].prof;
struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
struct ice_es *es = &hw->blk[i].es;
u16 j;
if (hw->blk[i].is_list_init)
continue;
ice_init_flow_profs(hw, i);
mutex_init(&es->prof_map_lock);
INIT_LIST_HEAD(&es->prof_map);
hw->blk[i].is_list_init = true;
hw->blk[i].overwrite = blk_sizes[i].overwrite;
es->reverse = blk_sizes[i].reverse;
xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
xlt1->count = blk_sizes[i].xlt1;
xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
sizeof(*xlt1->ptypes), GFP_KERNEL);
if (!xlt1->ptypes)
goto err;
xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
sizeof(*xlt1->ptg_tbl),
GFP_KERNEL);
if (!xlt1->ptg_tbl)
goto err;
xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
sizeof(*xlt1->t), GFP_KERNEL);
if (!xlt1->t)
goto err;
xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
xlt2->count = blk_sizes[i].xlt2;
xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->vsis), GFP_KERNEL);
if (!xlt2->vsis)
goto err;
xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->vsig_tbl),
GFP_KERNEL);
if (!xlt2->vsig_tbl)
goto err;
for (j = 0; j < xlt2->count; j++)
INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
sizeof(*xlt2->t), GFP_KERNEL);
if (!xlt2->t)
goto err;
prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
prof->count = blk_sizes[i].prof_tcam;
prof->max_prof_id = blk_sizes[i].prof_id;
prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
sizeof(*prof->t), GFP_KERNEL);
if (!prof->t)
goto err;
prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
prof_redir->count = blk_sizes[i].prof_redir;
prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
prof_redir->count,
sizeof(*prof_redir->t),
GFP_KERNEL);
if (!prof_redir->t)
goto err;
es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
es->count = blk_sizes[i].es;
es->fvw = blk_sizes[i].fvw;
es->t = devm_kcalloc(ice_hw_to_dev(hw),
(u32)(es->count * es->fvw),
sizeof(*es->t), GFP_KERNEL);
if (!es->t)
goto err;
es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
sizeof(*es->ref_count),
GFP_KERNEL);
if (!es->ref_count)
goto err;
es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
sizeof(*es->written), GFP_KERNEL);
if (!es->written)
goto err;
es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
sizeof(*es->mask_ena), GFP_KERNEL);
if (!es->mask_ena)
goto err;
}
return 0;
err:
ice_free_hw_tbls(hw);
return ICE_ERR_NO_MEMORY;
}
/**
* ice_prof_gen_key - generate profile ID key
* @hw: pointer to the HW struct
* @blk: the block in which to write profile ID to
* @ptg: packet type group (PTG) portion of key
* @vsig: VSIG portion of key
* @cdid: CDID portion of key
* @flags: flag portion of key
* @vl_msk: valid mask
* @dc_msk: don't care mask
* @nm_msk: never match mask
* @key: output of profile ID key
*/
static enum ice_status
ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
u8 key[ICE_TCAM_KEY_SZ])
{
struct ice_prof_id_key inkey;
inkey.xlt1 = ptg;
inkey.xlt2_cdid = cpu_to_le16(vsig);
inkey.flags = cpu_to_le16(flags);
switch (hw->blk[blk].prof.cdid_bits) {
case 0:
break;
case 2:
#define ICE_CD_2_M 0xC000U
#define ICE_CD_2_S 14
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
break;
case 4:
#define ICE_CD_4_M 0xF000U
#define ICE_CD_4_S 12
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
break;
case 8:
#define ICE_CD_8_M 0xFF00U
#define ICE_CD_8_S 16
inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
break;
default:
ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
break;
}
return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
}
/**
* ice_tcam_write_entry - write TCAM entry
* @hw: pointer to the HW struct
* @blk: the block in which to write profile ID to
* @idx: the entry index to write to
* @prof_id: profile ID
* @ptg: packet type group (PTG) portion of key
* @vsig: VSIG portion of key
* @cdid: CDID portion of key
* @flags: flag portion of key
* @vl_msk: valid mask
* @dc_msk: don't care mask
* @nm_msk: never match mask
*/
static enum ice_status
ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
{
struct ice_prof_tcam_entry;
enum ice_status status;
status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
if (!status) {
hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
hw->blk[blk].prof.t[idx].prof_id = prof_id;
}
return status;
}
/**
* ice_vsig_get_ref - returns number of VSIs belong to a VSIG
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to query
* @refs: pointer to variable to receive the reference count
*/
static enum ice_status
ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_vsi *ptr;
*refs = 0;
if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
return ICE_ERR_DOES_NOT_EXIST;
ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
while (ptr) {
(*refs)++;
ptr = ptr->next_vsi;
}
return 0;
}
/**
* ice_has_prof_vsig - check to see if VSIG has a specific profile
* @hw: pointer to the hardware structure
* @blk: HW block
* @vsig: VSIG to check against
* @hdl: profile handle
*/
static bool
ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_prof *ent;
list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list)
if (ent->profile_cookie == hdl)
return true;
ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
vsig);
return false;
}
/**
* ice_prof_bld_es - build profile ID extraction sequence changes
* @hw: pointer to the HW struct
* @blk: hardware block
* @bld: the update package buffer build to add to
* @chgs: the list of changes to make in hardware
*/
static enum ice_status
ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
struct ice_buf_build *bld, struct list_head *chgs)
{
u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
struct ice_chs_chg *tmp;
list_for_each_entry(tmp, chgs, list_entry)
if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
struct ice_pkg_es *p;
u32 id;
id = ice_sect_id(blk, ICE_VEC_TBL);
p = ice_pkg_buf_alloc_section(bld, id,
struct_size(p, es, 1) +
vec_size -
sizeof(p->es[0]));
if (!p)
return ICE_ERR_MAX_LIMIT;
p->count = cpu_to_le16(1);
p->offset = cpu_to_le16(tmp->prof_id);
memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
}
return 0;
}
/**
* ice_prof_bld_tcam - build profile ID TCAM changes
* @hw: pointer to the HW struct
* @blk: hardware block
* @bld: the update package buffer build to add to
* @chgs: the list of changes to make in hardware
*/
static enum ice_status
ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
struct ice_buf_build *bld, struct list_head *chgs)
{
struct ice_chs_chg *tmp;
list_for_each_entry(tmp, chgs, list_entry)
if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
struct ice_prof_id_section *p;
u32 id;
id = ice_sect_id(blk, ICE_PROF_TCAM);
p = ice_pkg_buf_alloc_section(bld, id,
struct_size(p, entry, 1));
if (!p)
return ICE_ERR_MAX_LIMIT;
p->count = cpu_to_le16(1);
p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
p->entry[0].prof_id = tmp->prof_id;
memcpy(p->entry[0].key,
&hw->blk[blk].prof.t[tmp->tcam_idx].key,
sizeof(hw->blk[blk].prof.t->key));
}
return 0;
}
/**
* ice_prof_bld_xlt1 - build XLT1 changes
* @blk: hardware block
* @bld: the update package buffer build to add to
* @chgs: the list of changes to make in hardware
*/
static enum ice_status
ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
struct list_head *chgs)
{
struct ice_chs_chg *tmp;
list_for_each_entry(tmp, chgs, list_entry)
if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
struct ice_xlt1_section *p;
u32 id;
id = ice_sect_id(blk, ICE_XLT1);
p = ice_pkg_buf_alloc_section(bld, id,
struct_size(p, value, 1));
if (!p)
return ICE_ERR_MAX_LIMIT;
p->count = cpu_to_le16(1);
p->offset = cpu_to_le16(tmp->ptype);
p->value[0] = tmp->ptg;
}
return 0;
}
/**
* ice_prof_bld_xlt2 - build XLT2 changes
* @blk: hardware block
* @bld: the update package buffer build to add to
* @chgs: the list of changes to make in hardware
*/
static enum ice_status
ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
struct list_head *chgs)
{
struct ice_chs_chg *tmp;
list_for_each_entry(tmp, chgs, list_entry) {
struct ice_xlt2_section *p;
u32 id;
switch (tmp->type) {
case ICE_VSIG_ADD:
case ICE_VSI_MOVE:
case ICE_VSIG_REM:
id = ice_sect_id(blk, ICE_XLT2);
p = ice_pkg_buf_alloc_section(bld, id,
struct_size(p, value, 1));
if (!p)
return ICE_ERR_MAX_LIMIT;
p->count = cpu_to_le16(1);
p->offset = cpu_to_le16(tmp->vsi);
p->value[0] = cpu_to_le16(tmp->vsig);
break;
default:
break;
}
}
return 0;
}
/**
* ice_upd_prof_hw - update hardware using the change list
* @hw: pointer to the HW struct
* @blk: hardware block
* @chgs: the list of changes to make in hardware
*/
static enum ice_status
ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
struct list_head *chgs)
{
struct ice_buf_build *b;
struct ice_chs_chg *tmp;
enum ice_status status;
u16 pkg_sects;
u16 xlt1 = 0;
u16 xlt2 = 0;
u16 tcam = 0;
u16 es = 0;
u16 sects;
/* count number of sections we need */
list_for_each_entry(tmp, chgs, list_entry) {
switch (tmp->type) {
case ICE_PTG_ES_ADD:
if (tmp->add_ptg)
xlt1++;
if (tmp->add_prof)
es++;
break;
case ICE_TCAM_ADD:
tcam++;
break;
case ICE_VSIG_ADD:
case ICE_VSI_MOVE:
case ICE_VSIG_REM:
xlt2++;
break;
default:
break;
}
}
sects = xlt1 + xlt2 + tcam + es;
if (!sects)
return 0;
/* Build update package buffer */
b = ice_pkg_buf_alloc(hw);
if (!b)
return ICE_ERR_NO_MEMORY;
status = ice_pkg_buf_reserve_section(b, sects);
if (status)
goto error_tmp;
/* Preserve order of table update: ES, TCAM, PTG, VSIG */
if (es) {
status = ice_prof_bld_es(hw, blk, b, chgs);
if (status)
goto error_tmp;
}
if (tcam) {
status = ice_prof_bld_tcam(hw, blk, b, chgs);
if (status)
goto error_tmp;
}
if (xlt1) {
status = ice_prof_bld_xlt1(blk, b, chgs);
if (status)
goto error_tmp;
}
if (xlt2) {
status = ice_prof_bld_xlt2(blk, b, chgs);
if (status)
goto error_tmp;
}
/* After package buffer build check if the section count in buffer is
* non-zero and matches the number of sections detected for package
* update.
*/
pkg_sects = ice_pkg_buf_get_active_sections(b);
if (!pkg_sects || pkg_sects != sects) {
status = ICE_ERR_INVAL_SIZE;
goto error_tmp;
}
/* update package */
status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
if (status == ICE_ERR_AQ_ERROR)
ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
error_tmp:
ice_pkg_buf_free(hw, b);
return status;
}
/**
* ice_update_fd_mask - set Flow Director Field Vector mask for a profile
* @hw: pointer to the HW struct
* @prof_id: profile ID
* @mask_sel: mask select
*
* This function enable any of the masks selected by the mask select parameter
* for the profile specified.
*/
static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
{
wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
GLQF_FDMASK_SEL(prof_id), mask_sel);
}
struct ice_fd_src_dst_pair {
u8 prot_id;
u8 count;
u16 off;
};
static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
/* These are defined in pairs */
{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
{ ICE_PROT_IPV4_IL, 2, 12 },
{ ICE_PROT_IPV4_IL, 2, 16 },
{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
{ ICE_PROT_IPV6_IL, 8, 8 },
{ ICE_PROT_IPV6_IL, 8, 24 },
{ ICE_PROT_TCP_IL, 1, 0 },
{ ICE_PROT_TCP_IL, 1, 2 },
{ ICE_PROT_UDP_OF, 1, 0 },
{ ICE_PROT_UDP_OF, 1, 2 },
{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
{ ICE_PROT_SCTP_IL, 1, 0 },
{ ICE_PROT_SCTP_IL, 1, 2 }
};
#define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
/**
* ice_update_fd_swap - set register appropriately for a FD FV extraction
* @hw: pointer to the HW struct
* @prof_id: profile ID
* @es: extraction sequence (length of array is determined by the block)
*/
static enum ice_status
ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
{
DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
#define ICE_FD_FV_NOT_FOUND (-2)
s8 first_free = ICE_FD_FV_NOT_FOUND;
u8 used[ICE_MAX_FV_WORDS] = { 0 };
s8 orig_free, si;
u32 mask_sel = 0;
u8 i, j, k;
bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
/* This code assumes that the Flow Director field vectors are assigned
* from the end of the FV indexes working towards the zero index, that
* only complete fields will be included and will be consecutive, and
* that there are no gaps between valid indexes.
*/
/* Determine swap fields present */
for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
/* Find the first free entry, assuming right to left population.
* This is where we can start adding additional pairs if needed.
*/
if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
ICE_PROT_INVALID)
first_free = i - 1;
for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
es[i].off == ice_fd_pairs[j].off) {
set_bit(j, pair_list);
pair_start[j] = i;
}
}
orig_free = first_free;
/* determine missing swap fields that need to be added */
for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
u8 bit1 = test_bit(i + 1, pair_list);
u8 bit0 = test_bit(i, pair_list);
if (bit0 ^ bit1) {
u8 index;
/* add the appropriate 'paired' entry */
if (!bit0)
index = i;
else
index = i + 1;
/* check for room */
if (first_free + 1 < (s8)ice_fd_pairs[index].count)
return ICE_ERR_MAX_LIMIT;
/* place in extraction sequence */
for (k = 0; k < ice_fd_pairs[index].count; k++) {
es[first_free - k].prot_id =
ice_fd_pairs[index].prot_id;
es[first_free - k].off =
ice_fd_pairs[index].off + (k * 2);
if (k > first_free)
return ICE_ERR_OUT_OF_RANGE;
/* keep track of non-relevant fields */
mask_sel |= BIT(first_free - k);
}
pair_start[index] = first_free;
first_free -= ice_fd_pairs[index].count;
}
}
/* fill in the swap array */
si = hw->blk[ICE_BLK_FD].es.fvw - 1;
while (si >= 0) {
u8 indexes_used = 1;
/* assume flat at this index */
#define ICE_SWAP_VALID 0x80
used[si] = si | ICE_SWAP_VALID;
if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
si -= indexes_used;
continue;
}
/* check for a swap location */
for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
es[si].off == ice_fd_pairs[j].off) {
u8 idx;
/* determine the appropriate matching field */
idx = j + ((j % 2) ? -1 : 1);
indexes_used = ice_fd_pairs[idx].count;
for (k = 0; k < indexes_used; k++) {
used[si - k] = (pair_start[idx] - k) |
ICE_SWAP_VALID;
}
break;
}
si -= indexes_used;
}
/* for each set of 4 swap and 4 inset indexes, write the appropriate
* register
*/
for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
u32 raw_swap = 0;
u32 raw_in = 0;
for (k = 0; k < 4; k++) {
u8 idx;
idx = (j * 4) + k;
if (used[idx] && !(mask_sel & BIT(idx))) {
raw_swap |= used[idx] << (k * BITS_PER_BYTE);
#define ICE_INSET_DFLT 0x9f
raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
}
}
/* write the appropriate swap register set */
wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
/* write the appropriate inset register set */
wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
}
/* initially clear the mask select for this profile */
ice_update_fd_mask(hw, prof_id, 0);
return 0;
}
/* The entries here needs to match the order of enum ice_ptype_attrib */
static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
{ ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
{ ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
{ ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
{ ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
};
/**
* ice_get_ptype_attrib_info - get PTYPE attribute information
* @type: attribute type
* @info: pointer to variable to the attribute information
*/
static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
struct ice_ptype_attrib_info *info)
{
*info = ice_ptype_attributes[type];
}
/**
* ice_add_prof_attrib - add any PTG with attributes to profile
* @prof: pointer to the profile to which PTG entries will be added
* @ptg: PTG to be added
* @ptype: PTYPE that needs to be looked up
* @attr: array of attributes that will be considered
* @attr_cnt: number of elements in the attribute array
*/
static enum ice_status
ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
const struct ice_ptype_attributes *attr, u16 attr_cnt)
{
bool found = false;
u16 i;
for (i = 0; i < attr_cnt; i++)
if (attr[i].ptype == ptype) {
found = true;
prof->ptg[prof->ptg_cnt] = ptg;
ice_get_ptype_attrib_info(attr[i].attrib,
&prof->attr[prof->ptg_cnt]);
if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
return ICE_ERR_MAX_LIMIT;
}
if (!found)
return ICE_ERR_DOES_NOT_EXIST;
return 0;
}
/**
* ice_add_prof - add profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @id: profile tracking ID
* @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
* @attr: array of attributes
* @attr_cnt: number of elements in attr array
* @es: extraction sequence (length of array is determined by the block)
* @masks: mask for extraction sequence
*
* This function registers a profile, which matches a set of PTYPES with a
* particular extraction sequence. While the hardware profile is allocated
* it will not be written until the first call to ice_add_flow that specifies
* the ID value used here.
*/
enum ice_status
ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
const struct ice_ptype_attributes *attr, u16 attr_cnt,
struct ice_fv_word *es, u16 *masks)
{
u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
struct ice_prof_map *prof;
enum ice_status status;
u8 byte = 0;
u8 prof_id;
bitmap_zero(ptgs_used, ICE_XLT1_CNT);
mutex_lock(&hw->blk[blk].es.prof_map_lock);
/* search for existing profile */
status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
if (status) {
/* allocate profile ID */
status = ice_alloc_prof_id(hw, blk, &prof_id);
if (status)
goto err_ice_add_prof;
if (blk == ICE_BLK_FD) {
/* For Flow Director block, the extraction sequence may
* need to be altered in the case where there are paired
* fields that have no match. This is necessary because
* for Flow Director, src and dest fields need to paired
* for filter programming and these values are swapped
* during Tx.
*/
status = ice_update_fd_swap(hw, prof_id, es);
if (status)
goto err_ice_add_prof;
}
status = ice_update_prof_masking(hw, blk, prof_id, masks);
if (status)
goto err_ice_add_prof;
/* and write new es */
ice_write_es(hw, blk, prof_id, es);
}
ice_prof_inc_ref(hw, blk, prof_id);
/* add profile info */
prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
if (!prof) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_prof;
}
prof->profile_cookie = id;
prof->prof_id = prof_id;
prof->ptg_cnt = 0;
prof->context = 0;
/* build list of ptgs */
while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
u8 bit;
if (!ptypes[byte]) {
bytes--;
byte++;
continue;
}
/* Examine 8 bits per byte */
for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
BITS_PER_BYTE) {
u16 ptype;
u8 ptg;
ptype = byte * BITS_PER_BYTE + bit;
/* The package should place all ptypes in a non-zero
* PTG, so the following call should never fail.
*/
if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
continue;
/* If PTG is already added, skip and continue */
if (test_bit(ptg, ptgs_used))
continue;
set_bit(ptg, ptgs_used);
/* Check to see there are any attributes for
* this PTYPE, and add them if found.
*/
status = ice_add_prof_attrib(prof, ptg, ptype,
attr, attr_cnt);
if (status == ICE_ERR_MAX_LIMIT)
break;
if (status) {
/* This is simple a PTYPE/PTG with no
* attribute
*/
prof->ptg[prof->ptg_cnt] = ptg;
prof->attr[prof->ptg_cnt].flags = 0;
prof->attr[prof->ptg_cnt].mask = 0;
if (++prof->ptg_cnt >=
ICE_MAX_PTG_PER_PROFILE)
break;
}
}
bytes--;
byte++;
}
list_add(&prof->list, &hw->blk[blk].es.prof_map);
status = 0;
err_ice_add_prof:
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
return status;
}
/**
* ice_search_prof_id - Search for a profile tracking ID
* @hw: pointer to the HW struct
* @blk: hardware block
* @id: profile tracking ID
*
* This will search for a profile tracking ID which was previously added.
* The profile map lock should be held before calling this function.
*/
static struct ice_prof_map *
ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
{
struct ice_prof_map *entry = NULL;
struct ice_prof_map *map;
list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
if (map->profile_cookie == id) {
entry = map;
break;
}
return entry;
}
/**
* ice_vsig_prof_id_count - count profiles in a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG to remove the profile from
*/
static u16
ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
{
u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
struct ice_vsig_prof *p;
list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list)
count++;
return count;
}
/**
* ice_rel_tcam_idx - release a TCAM index
* @hw: pointer to the HW struct
* @blk: hardware block
* @idx: the index to release
*/
static enum ice_status
ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
{
/* Masks to invoke a never match entry */
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
enum ice_status status;
/* write the TCAM entry */
status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
dc_msk, nm_msk);
if (status)
return status;
/* release the TCAM entry */
status = ice_free_tcam_ent(hw, blk, idx);
return status;
}
/**
* ice_rem_prof_id - remove one profile from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @prof: pointer to profile structure to remove
*/
static enum ice_status
ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
struct ice_vsig_prof *prof)
{
enum ice_status status;
u16 i;
for (i = 0; i < prof->tcam_count; i++)
if (prof->tcam[i].in_use) {
prof->tcam[i].in_use = false;
status = ice_rel_tcam_idx(hw, blk,
prof->tcam[i].tcam_idx);
if (status)
return ICE_ERR_HW_TABLE;
}
return 0;
}
/**
* ice_rem_vsig - remove VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG to remove
* @chg: the change list
*/
static enum ice_status
ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
struct list_head *chg)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_vsi *vsi_cur;
struct ice_vsig_prof *d, *t;
enum ice_status status;
/* remove TCAM entries */
list_for_each_entry_safe(d, t,
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list) {
status = ice_rem_prof_id(hw, blk, d);
if (status)
return status;
list_del(&d->list);
devm_kfree(ice_hw_to_dev(hw), d);
}
/* Move all VSIS associated with this VSIG to the default VSIG */
vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
/* If the VSIG has at least 1 VSI then iterate through the list
* and remove the VSIs before deleting the group.
*/
if (vsi_cur)
do {
struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
struct ice_chs_chg *p;
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
GFP_KERNEL);
if (!p)
return ICE_ERR_NO_MEMORY;
p->type = ICE_VSIG_REM;
p->orig_vsig = vsig;
p->vsig = ICE_DEFAULT_VSIG;
p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
list_add(&p->list_entry, chg);
vsi_cur = tmp;
} while (vsi_cur);
return ice_vsig_free(hw, blk, vsig);
}
/**
* ice_rem_prof_id_vsig - remove a specific profile from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG to remove the profile from
* @hdl: profile handle indicating which profile to remove
* @chg: list to receive a record of changes
*/
static enum ice_status
ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
struct list_head *chg)
{
u16 idx = vsig & ICE_VSIG_IDX_M;
struct ice_vsig_prof *p, *t;
enum ice_status status;
list_for_each_entry_safe(p, t,
&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list)
if (p->profile_cookie == hdl) {
if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
/* this is the last profile, remove the VSIG */
return ice_rem_vsig(hw, blk, vsig, chg);
status = ice_rem_prof_id(hw, blk, p);
if (!status) {
list_del(&p->list);
devm_kfree(ice_hw_to_dev(hw), p);
}
return status;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_rem_flow_all - remove all flows with a particular profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @id: profile tracking ID
*/
static enum ice_status
ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
{
struct ice_chs_chg *del, *tmp;
enum ice_status status;
struct list_head chg;
u16 i;
INIT_LIST_HEAD(&chg);
for (i = 1; i < ICE_MAX_VSIGS; i++)
if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
if (ice_has_prof_vsig(hw, blk, i, id)) {
status = ice_rem_prof_id_vsig(hw, blk, i, id,
&chg);
if (status)
goto err_ice_rem_flow_all;
}
}
status = ice_upd_prof_hw(hw, blk, &chg);
err_ice_rem_flow_all:
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
list_del(&del->list_entry);
devm_kfree(ice_hw_to_dev(hw), del);
}
return status;
}
/**
* ice_rem_prof - remove profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @id: profile tracking ID
*
* This will remove the profile specified by the ID parameter, which was
* previously created through ice_add_prof. If any existing entries
* are associated with this profile, they will be removed as well.
*/
enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
{
struct ice_prof_map *pmap;
enum ice_status status;
mutex_lock(&hw->blk[blk].es.prof_map_lock);
pmap = ice_search_prof_id(hw, blk, id);
if (!pmap) {
status = ICE_ERR_DOES_NOT_EXIST;
goto err_ice_rem_prof;
}
/* remove all flows with this profile */
status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
if (status)
goto err_ice_rem_prof;
/* dereference profile, and possibly remove */
ice_prof_dec_ref(hw, blk, pmap->prof_id);
list_del(&pmap->list);
devm_kfree(ice_hw_to_dev(hw), pmap);
err_ice_rem_prof:
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
return status;
}
/**
* ice_get_prof - get profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @hdl: profile handle
* @chg: change list
*/
static enum ice_status
ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
struct list_head *chg)
{
enum ice_status status = 0;
struct ice_prof_map *map;
struct ice_chs_chg *p;
u16 i;
mutex_lock(&hw->blk[blk].es.prof_map_lock);
/* Get the details on the profile specified by the handle ID */
map = ice_search_prof_id(hw, blk, hdl);
if (!map) {
status = ICE_ERR_DOES_NOT_EXIST;
goto err_ice_get_prof;
}
for (i = 0; i < map->ptg_cnt; i++)
if (!hw->blk[blk].es.written[map->prof_id]) {
/* add ES to change list */
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
GFP_KERNEL);
if (!p) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_get_prof;
}
p->type = ICE_PTG_ES_ADD;
p->ptype = 0;
p->ptg = map->ptg[i];
p->add_ptg = 0;
p->add_prof = 1;
p->prof_id = map->prof_id;
hw->blk[blk].es.written[map->prof_id] = true;
list_add(&p->list_entry, chg);
}
err_ice_get_prof:
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
/* let caller clean up the change list */
return status;
}
/**
* ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: VSIG from which to copy the list
* @lst: output list
*
* This routine makes a copy of the list of profiles in the specified VSIG.
*/
static enum ice_status
ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
struct list_head *lst)
{
struct ice_vsig_prof *ent1, *ent2;
u16 idx = vsig & ICE_VSIG_IDX_M;
list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list) {
struct ice_vsig_prof *p;
/* copy to the input list */
p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
GFP_KERNEL);
if (!p)
goto err_ice_get_profs_vsig;
list_add_tail(&p->list, lst);
}
return 0;
err_ice_get_profs_vsig:
list_for_each_entry_safe(ent1, ent2, lst, list) {
list_del(&ent1->list);
devm_kfree(ice_hw_to_dev(hw), ent1);
}
return ICE_ERR_NO_MEMORY;
}
/**
* ice_add_prof_to_lst - add profile entry to a list
* @hw: pointer to the HW struct
* @blk: hardware block
* @lst: the list to be added to
* @hdl: profile handle of entry to add
*/
static enum ice_status
ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
struct list_head *lst, u64 hdl)
{
enum ice_status status = 0;
struct ice_prof_map *map;
struct ice_vsig_prof *p;
u16 i;
mutex_lock(&hw->blk[blk].es.prof_map_lock);
map = ice_search_prof_id(hw, blk, hdl);
if (!map) {
status = ICE_ERR_DOES_NOT_EXIST;
goto err_ice_add_prof_to_lst;
}
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
if (!p) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_prof_to_lst;
}
p->profile_cookie = map->profile_cookie;
p->prof_id = map->prof_id;
p->tcam_count = map->ptg_cnt;
for (i = 0; i < map->ptg_cnt; i++) {
p->tcam[i].prof_id = map->prof_id;
p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
p->tcam[i].ptg = map->ptg[i];
}
list_add(&p->list, lst);
err_ice_add_prof_to_lst:
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
return status;
}
/**
* ice_move_vsi - move VSI to another VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the VSI to move
* @vsig: the VSIG to move the VSI to
* @chg: the change list
*/
static enum ice_status
ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
struct list_head *chg)
{
enum ice_status status;
struct ice_chs_chg *p;
u16 orig_vsig;
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
if (!p)
return ICE_ERR_NO_MEMORY;
status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
if (!status)
status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
if (status) {
devm_kfree(ice_hw_to_dev(hw), p);
return status;
}
p->type = ICE_VSI_MOVE;
p->vsi = vsi;
p->orig_vsig = orig_vsig;
p->vsig = vsig;
list_add(&p->list_entry, chg);
return 0;
}
/**
* ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
* @hw: pointer to the HW struct
* @idx: the index of the TCAM entry to remove
* @chg: the list of change structures to search
*/
static void
ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
{
struct ice_chs_chg *pos, *tmp;
list_for_each_entry_safe(tmp, pos, chg, list_entry)
if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
list_del(&tmp->list_entry);
devm_kfree(ice_hw_to_dev(hw), tmp);
}
}
/**
* ice_prof_tcam_ena_dis - add enable or disable TCAM change
* @hw: pointer to the HW struct
* @blk: hardware block
* @enable: true to enable, false to disable
* @vsig: the VSIG of the TCAM entry
* @tcam: pointer the TCAM info structure of the TCAM to disable
* @chg: the change list
*
* This function appends an enable or disable TCAM entry in the change log
*/
static enum ice_status
ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
u16 vsig, struct ice_tcam_inf *tcam,
struct list_head *chg)
{
enum ice_status status;
struct ice_chs_chg *p;
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
/* if disabling, free the TCAM */
if (!enable) {
status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
/* if we have already created a change for this TCAM entry, then
* we need to remove that entry, in order to prevent writing to
* a TCAM entry we no longer will have ownership of.
*/
ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
tcam->tcam_idx = 0;
tcam->in_use = 0;
return status;
}
/* for re-enabling, reallocate a TCAM */
/* for entries with empty attribute masks, allocate entry from
* the bottom of the TCAM table; otherwise, allocate from the
* top of the table in order to give it higher priority
*/
status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
&tcam->tcam_idx);
if (status)
return status;
/* add TCAM to change list */
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
if (!p)
return ICE_ERR_NO_MEMORY;
status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
tcam->ptg, vsig, 0, tcam->attr.flags,
vl_msk, dc_msk, nm_msk);
if (status)
goto err_ice_prof_tcam_ena_dis;
tcam->in_use = 1;
p->type = ICE_TCAM_ADD;
p->add_tcam_idx = true;
p->prof_id = tcam->prof_id;
p->ptg = tcam->ptg;
p->vsig = 0;
p->tcam_idx = tcam->tcam_idx;
/* log change */
list_add(&p->list_entry, chg);
return 0;
err_ice_prof_tcam_ena_dis:
devm_kfree(ice_hw_to_dev(hw), p);
return status;
}
/**
* ice_adj_prof_priorities - adjust profile based on priorities
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG for which to adjust profile priorities
* @chg: the change list
*/
static enum ice_status
ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
struct list_head *chg)
{
DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
struct ice_vsig_prof *t;
enum ice_status status;
u16 idx;
bitmap_zero(ptgs_used, ICE_XLT1_CNT);
idx = vsig & ICE_VSIG_IDX_M;
/* Priority is based on the order in which the profiles are added. The
* newest added profile has highest priority and the oldest added
* profile has the lowest priority. Since the profile property list for
* a VSIG is sorted from newest to oldest, this code traverses the list
* in order and enables the first of each PTG that it finds (that is not
* already enabled); it also disables any duplicate PTGs that it finds
* in the older profiles (that are currently enabled).
*/
list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
list) {
u16 i;
for (i = 0; i < t->tcam_count; i++) {
/* Scan the priorities from newest to oldest.
* Make sure that the newest profiles take priority.
*/
if (test_bit(t->tcam[i].ptg, ptgs_used) &&
t->tcam[i].in_use) {
/* need to mark this PTG as never match, as it
* was already in use and therefore duplicate
* (and lower priority)
*/
status = ice_prof_tcam_ena_dis(hw, blk, false,
vsig,
&t->tcam[i],
chg);
if (status)
return status;
} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
!t->tcam[i].in_use) {
/* need to enable this PTG, as it in not in use
* and not enabled (highest priority)
*/
status = ice_prof_tcam_ena_dis(hw, blk, true,
vsig,
&t->tcam[i],
chg);
if (status)
return status;
}
/* keep track of used ptgs */
set_bit(t->tcam[i].ptg, ptgs_used);
}
}
return 0;
}
/**
* ice_add_prof_id_vsig - add profile to VSIG
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsig: the VSIG to which this profile is to be added
* @hdl: the profile handle indicating the profile to add
* @rev: true to add entries to the end of the list
* @chg: the change list
*/
static enum ice_status
ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
bool rev, struct list_head *chg)
{
/* Masks that ignore flags */
u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
enum ice_status status = 0;
struct ice_prof_map *map;
struct ice_vsig_prof *t;
struct ice_chs_chg *p;
u16 vsig_idx, i;
/* Error, if this VSIG already has this profile */
if (ice_has_prof_vsig(hw, blk, vsig, hdl))
return ICE_ERR_ALREADY_EXISTS;
/* new VSIG profile structure */
t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
if (!t)
return ICE_ERR_NO_MEMORY;
mutex_lock(&hw->blk[blk].es.prof_map_lock);
/* Get the details on the profile specified by the handle ID */
map = ice_search_prof_id(hw, blk, hdl);
if (!map) {
status = ICE_ERR_DOES_NOT_EXIST;
goto err_ice_add_prof_id_vsig;
}
t->profile_cookie = map->profile_cookie;
t->prof_id = map->prof_id;
t->tcam_count = map->ptg_cnt;
/* create TCAM entries */
for (i = 0; i < map->ptg_cnt; i++) {
u16 tcam_idx;
/* add TCAM to change list */
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
if (!p) {
status = ICE_ERR_NO_MEMORY;
goto err_ice_add_prof_id_vsig;
}
/* allocate the TCAM entry index */
/* for entries with empty attribute masks, allocate entry from
* the bottom of the TCAM table; otherwise, allocate from the
* top of the table in order to give it higher priority
*/
status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
&tcam_idx);
if (status) {
devm_kfree(ice_hw_to_dev(hw), p);
goto err_ice_add_prof_id_vsig;
}
t->tcam[i].ptg = map->ptg[i];
t->tcam[i].prof_id = map->prof_id;
t->tcam[i].tcam_idx = tcam_idx;
t->tcam[i].attr = map->attr[i];
t->tcam[i].in_use = true;
p->type = ICE_TCAM_ADD;
p->add_tcam_idx = true;
p->prof_id = t->tcam[i].prof_id;
p->ptg = t->tcam[i].ptg;
p->vsig = vsig;
p->tcam_idx = t->tcam[i].tcam_idx;
/* write the TCAM entry */
status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
t->tcam[i].prof_id,
t->tcam[i].ptg, vsig, 0, 0,
vl_msk, dc_msk, nm_msk);
if (status) {
devm_kfree(ice_hw_to_dev(hw), p);
goto err_ice_add_prof_id_vsig;
}
/* log change */
list_add(&p->list_entry, chg);
}
/* add profile to VSIG */
vsig_idx = vsig & ICE_VSIG_IDX_M;
if (rev)
list_add_tail(&t->list,
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
else
list_add(&t->list,
&hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
return status;
err_ice_add_prof_id_vsig:
mutex_unlock(&hw->blk[blk].es.prof_map_lock);
/* let caller clean up the change list */
devm_kfree(ice_hw_to_dev(hw), t);
return status;
}
/**
* ice_create_prof_id_vsig - add a new VSIG with a single profile
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the initial VSI that will be in VSIG
* @hdl: the profile handle of the profile that will be added to the VSIG
* @chg: the change list
*/
static enum ice_status
ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
struct list_head *chg)
{
enum ice_status status;
struct ice_chs_chg *p;
u16 new_vsig;
p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
if (!p)
return ICE_ERR_NO_MEMORY;
new_vsig = ice_vsig_alloc(hw, blk);
if (!new_vsig) {
status = ICE_ERR_HW_TABLE;
goto err_ice_create_prof_id_vsig;
}
status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
if (status)
goto err_ice_create_prof_id_vsig;
status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
if (status)
goto err_ice_create_prof_id_vsig;
p->type = ICE_VSIG_ADD;
p->vsi = vsi;
p->orig_vsig = ICE_DEFAULT_VSIG;
p->vsig = new_vsig;
list_add(&p->list_entry, chg);
return 0;
err_ice_create_prof_id_vsig:
/* let caller clean up the change list */
devm_kfree(ice_hw_to_dev(hw), p);
return status;
}
/**
* ice_create_vsig_from_lst - create a new VSIG with a list of profiles
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the initial VSI that will be in VSIG
* @lst: the list of profile that will be added to the VSIG
* @new_vsig: return of new VSIG
* @chg: the change list
*/
static enum ice_status
ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
struct list_head *lst, u16 *new_vsig,
struct list_head *chg)
{
struct ice_vsig_prof *t;
enum ice_status status;
u16 vsig;
vsig = ice_vsig_alloc(hw, blk);
if (!vsig)
return ICE_ERR_HW_TABLE;
status = ice_move_vsi(hw, blk, vsi, vsig, chg);
if (status)
return status;
list_for_each_entry(t, lst, list) {
/* Reverse the order here since we are copying the list */
status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
true, chg);
if (status)
return status;
}
*new_vsig = vsig;
return 0;
}
/**
* ice_find_prof_vsig - find a VSIG with a specific profile handle
* @hw: pointer to the HW struct
* @blk: hardware block
* @hdl: the profile handle of the profile to search for
* @vsig: returns the VSIG with the matching profile
*/
static bool
ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
{
struct ice_vsig_prof *t;
enum ice_status status;
struct list_head lst;
INIT_LIST_HEAD(&lst);
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
return false;
t->profile_cookie = hdl;
list_add(&t->list, &lst);
status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
list_del(&t->list);
kfree(t);
return !status;
}
/**
* ice_add_prof_id_flow - add profile flow
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the VSI to enable with the profile specified by ID
* @hdl: profile handle
*
* Calling this function will update the hardware tables to enable the
* profile indicated by the ID parameter for the VSIs specified in the VSI
* array. Once successfully called, the flow will be enabled.
*/
enum ice_status
ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
{
struct ice_vsig_prof *tmp1, *del1;
struct ice_chs_chg *tmp, *del;
struct list_head union_lst;
enum ice_status status;
struct list_head chg;
u16 vsig;
INIT_LIST_HEAD(&union_lst);
INIT_LIST_HEAD(&chg);
/* Get profile */
status = ice_get_prof(hw, blk, hdl, &chg);
if (status)
return status;
/* determine if VSI is already part of a VSIG */
status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
if (!status && vsig) {
bool only_vsi;
u16 or_vsig;
u16 ref;
/* found in VSIG */
or_vsig = vsig;
/* make sure that there is no overlap/conflict between the new
* characteristics and the existing ones; we don't support that
* scenario
*/
if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
status = ICE_ERR_ALREADY_EXISTS;
goto err_ice_add_prof_id_flow;
}
/* last VSI in the VSIG? */
status = ice_vsig_get_ref(hw, blk, vsig, &ref);
if (status)
goto err_ice_add_prof_id_flow;
only_vsi = (ref == 1);
/* create a union of the current profiles and the one being
* added
*/
status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
if (status)
goto err_ice_add_prof_id_flow;
status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
if (status)
goto err_ice_add_prof_id_flow;
/* search for an existing VSIG with an exact charc match */
status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
if (!status) {
/* move VSI to the VSIG that matches */
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
if (status)
goto err_ice_add_prof_id_flow;
/* VSI has been moved out of or_vsig. If the or_vsig had
* only that VSI it is now empty and can be removed.
*/
if (only_vsi) {
status = ice_rem_vsig(hw, blk, or_vsig, &chg);
if (status)
goto err_ice_add_prof_id_flow;
}
} else if (only_vsi) {
/* If the original VSIG only contains one VSI, then it
* will be the requesting VSI. In this case the VSI is
* not sharing entries and we can simply add the new
* profile to the VSIG.
*/
status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
&chg);
if (status)
goto err_ice_add_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
if (status)
goto err_ice_add_prof_id_flow;
} else {
/* No match, so we need a new VSIG */
status = ice_create_vsig_from_lst(hw, blk, vsi,
&union_lst, &vsig,
&chg);
if (status)
goto err_ice_add_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
if (status)
goto err_ice_add_prof_id_flow;
}
} else {
/* need to find or add a VSIG */
/* search for an existing VSIG with an exact charc match */
if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
/* found an exact match */
/* add or move VSI to the VSIG that matches */
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
if (status)
goto err_ice_add_prof_id_flow;
} else {
/* we did not find an exact match */
/* we need to add a VSIG */
status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
&chg);
if (status)
goto err_ice_add_prof_id_flow;
}
}
/* update hardware */
if (!status)
status = ice_upd_prof_hw(hw, blk, &chg);
err_ice_add_prof_id_flow:
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
list_del(&del->list_entry);
devm_kfree(ice_hw_to_dev(hw), del);
}
list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
list_del(&del1->list);
devm_kfree(ice_hw_to_dev(hw), del1);
}
return status;
}
/**
* ice_rem_prof_from_list - remove a profile from list
* @hw: pointer to the HW struct
* @lst: list to remove the profile from
* @hdl: the profile handle indicating the profile to remove
*/
static enum ice_status
ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
{
struct ice_vsig_prof *ent, *tmp;
list_for_each_entry_safe(ent, tmp, lst, list)
if (ent->profile_cookie == hdl) {
list_del(&ent->list);
devm_kfree(ice_hw_to_dev(hw), ent);
return 0;
}
return ICE_ERR_DOES_NOT_EXIST;
}
/**
* ice_rem_prof_id_flow - remove flow
* @hw: pointer to the HW struct
* @blk: hardware block
* @vsi: the VSI from which to remove the profile specified by ID
* @hdl: profile tracking handle
*
* Calling this function will update the hardware tables to remove the
* profile indicated by the ID parameter for the VSIs specified in the VSI
* array. Once successfully called, the flow will be disabled.
*/
enum ice_status
ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
{
struct ice_vsig_prof *tmp1, *del1;
struct ice_chs_chg *tmp, *del;
struct list_head chg, copy;
enum ice_status status;
u16 vsig;
INIT_LIST_HEAD(&copy);
INIT_LIST_HEAD(&chg);
/* determine if VSI is already part of a VSIG */
status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
if (!status && vsig) {
bool last_profile;
bool only_vsi;
u16 ref;
/* found in VSIG */
last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
status = ice_vsig_get_ref(hw, blk, vsig, &ref);
if (status)
goto err_ice_rem_prof_id_flow;
only_vsi = (ref == 1);
if (only_vsi) {
/* If the original VSIG only contains one reference,
* which will be the requesting VSI, then the VSI is not
* sharing entries and we can simply remove the specific
* characteristics from the VSIG.
*/
if (last_profile) {
/* If there are no profiles left for this VSIG,
* then simply remove the VSIG.
*/
status = ice_rem_vsig(hw, blk, vsig, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else {
status = ice_rem_prof_id_vsig(hw, blk, vsig,
hdl, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
}
} else {
/* Make a copy of the VSIG's list of Profiles */
status = ice_get_profs_vsig(hw, blk, vsig, &copy);
if (status)
goto err_ice_rem_prof_id_flow;
/* Remove specified profile entry from the list */
status = ice_rem_prof_from_list(hw, &copy, hdl);
if (status)
goto err_ice_rem_prof_id_flow;
if (list_empty(&copy)) {
status = ice_move_vsi(hw, blk, vsi,
ICE_DEFAULT_VSIG, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
&vsig)) {
/* found an exact match */
/* add or move VSI to the VSIG that matches */
/* Search for a VSIG with a matching profile
* list
*/
/* Found match, move VSI to the matching VSIG */
status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
if (status)
goto err_ice_rem_prof_id_flow;
} else {
/* since no existing VSIG supports this
* characteristic pattern, we need to create a
* new VSIG and TCAM entries
*/
status = ice_create_vsig_from_lst(hw, blk, vsi,
&copy, &vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
/* Adjust priorities */
status = ice_adj_prof_priorities(hw, blk, vsig,
&chg);
if (status)
goto err_ice_rem_prof_id_flow;
}
}
} else {
status = ICE_ERR_DOES_NOT_EXIST;
}
/* update hardware tables */
if (!status)
status = ice_upd_prof_hw(hw, blk, &chg);
err_ice_rem_prof_id_flow:
list_for_each_entry_safe(del, tmp, &chg, list_entry) {
list_del(&del->list_entry);
devm_kfree(ice_hw_to_dev(hw), del);
}
list_for_each_entry_safe(del1, tmp1, &copy, list) {
list_del(&del1->list);
devm_kfree(ice_hw_to_dev(hw), del1);
}
return status;
}