mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-16 19:04:41 +08:00
c3341d0ceb
There is a bug in nand prefetch read routine, which comes into effect only if nand device is a 16-bit device (as we have in zoom boards). This bug is effective only with below combination of conditions: 1. nand deivce, in use, is a 16 bit device 2. nand driver supports 'subpage' read 3. SW ECC is in use This was not seen old kernel (ex: .23), because when, in early days, we tested this (nand prefetch read in LDP boards) there was no 'subpage read' support. Later when we had subpage read in (.27) kernel, we had hw ecc enabled always in our internal tree. So, we missed this bug. This patch fixes the issue. Signed-off-by: Vimal Singh <vimalsingh@ti.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
1109 lines
30 KiB
C
1109 lines
30 KiB
C
/*
|
|
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
|
|
* Copyright © 2004 Micron Technology Inc.
|
|
* Copyright © 2004 David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <plat/dma.h>
|
|
#include <plat/gpmc.h>
|
|
#include <plat/nand.h>
|
|
|
|
#define GPMC_IRQ_STATUS 0x18
|
|
#define GPMC_ECC_CONFIG 0x1F4
|
|
#define GPMC_ECC_CONTROL 0x1F8
|
|
#define GPMC_ECC_SIZE_CONFIG 0x1FC
|
|
#define GPMC_ECC1_RESULT 0x200
|
|
|
|
#define DRIVER_NAME "omap2-nand"
|
|
|
|
/* size (4 KiB) for IO mapping */
|
|
#define NAND_IO_SIZE SZ_4K
|
|
|
|
#define NAND_WP_OFF 0
|
|
#define NAND_WP_BIT 0x00000010
|
|
#define WR_RD_PIN_MONITORING 0x00600000
|
|
|
|
#define GPMC_BUF_FULL 0x00000001
|
|
#define GPMC_BUF_EMPTY 0x00000000
|
|
|
|
#define NAND_Ecc_P1e (1 << 0)
|
|
#define NAND_Ecc_P2e (1 << 1)
|
|
#define NAND_Ecc_P4e (1 << 2)
|
|
#define NAND_Ecc_P8e (1 << 3)
|
|
#define NAND_Ecc_P16e (1 << 4)
|
|
#define NAND_Ecc_P32e (1 << 5)
|
|
#define NAND_Ecc_P64e (1 << 6)
|
|
#define NAND_Ecc_P128e (1 << 7)
|
|
#define NAND_Ecc_P256e (1 << 8)
|
|
#define NAND_Ecc_P512e (1 << 9)
|
|
#define NAND_Ecc_P1024e (1 << 10)
|
|
#define NAND_Ecc_P2048e (1 << 11)
|
|
|
|
#define NAND_Ecc_P1o (1 << 16)
|
|
#define NAND_Ecc_P2o (1 << 17)
|
|
#define NAND_Ecc_P4o (1 << 18)
|
|
#define NAND_Ecc_P8o (1 << 19)
|
|
#define NAND_Ecc_P16o (1 << 20)
|
|
#define NAND_Ecc_P32o (1 << 21)
|
|
#define NAND_Ecc_P64o (1 << 22)
|
|
#define NAND_Ecc_P128o (1 << 23)
|
|
#define NAND_Ecc_P256o (1 << 24)
|
|
#define NAND_Ecc_P512o (1 << 25)
|
|
#define NAND_Ecc_P1024o (1 << 26)
|
|
#define NAND_Ecc_P2048o (1 << 27)
|
|
|
|
#define TF(value) (value ? 1 : 0)
|
|
|
|
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
|
|
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
|
|
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
|
|
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
|
|
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
|
|
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
|
|
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
|
|
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
|
|
|
|
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
|
|
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
|
|
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
|
|
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
|
|
|
|
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
|
|
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
|
|
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
|
|
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
|
|
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
|
|
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
|
|
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
|
|
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
|
|
|
|
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
|
|
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
|
|
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
|
|
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
|
|
|
|
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
|
|
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
static const char *part_probes[] = { "cmdlinepart", NULL };
|
|
#endif
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH
|
|
static int use_prefetch = 1;
|
|
|
|
/* "modprobe ... use_prefetch=0" etc */
|
|
module_param(use_prefetch, bool, 0);
|
|
MODULE_PARM_DESC(use_prefetch, "enable/disable use of PREFETCH");
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
|
|
static int use_dma = 1;
|
|
|
|
/* "modprobe ... use_dma=0" etc */
|
|
module_param(use_dma, bool, 0);
|
|
MODULE_PARM_DESC(use_dma, "enable/disable use of DMA");
|
|
#else
|
|
const int use_dma;
|
|
#endif
|
|
#else
|
|
const int use_prefetch;
|
|
const int use_dma;
|
|
#endif
|
|
|
|
struct omap_nand_info {
|
|
struct nand_hw_control controller;
|
|
struct omap_nand_platform_data *pdata;
|
|
struct mtd_info mtd;
|
|
struct mtd_partition *parts;
|
|
struct nand_chip nand;
|
|
struct platform_device *pdev;
|
|
|
|
int gpmc_cs;
|
|
unsigned long phys_base;
|
|
void __iomem *gpmc_cs_baseaddr;
|
|
void __iomem *gpmc_baseaddr;
|
|
void __iomem *nand_pref_fifo_add;
|
|
struct completion comp;
|
|
int dma_ch;
|
|
};
|
|
|
|
/**
|
|
* omap_nand_wp - This function enable or disable the Write Protect feature
|
|
* @mtd: MTD device structure
|
|
* @mode: WP ON/OFF
|
|
*/
|
|
static void omap_nand_wp(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
|
|
unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG);
|
|
|
|
if (mode)
|
|
config &= ~(NAND_WP_BIT); /* WP is ON */
|
|
else
|
|
config |= (NAND_WP_BIT); /* WP is OFF */
|
|
|
|
__raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG));
|
|
}
|
|
|
|
/**
|
|
* omap_hwcontrol - hardware specific access to control-lines
|
|
* @mtd: MTD device structure
|
|
* @cmd: command to device
|
|
* @ctrl:
|
|
* NAND_NCE: bit 0 -> don't care
|
|
* NAND_CLE: bit 1 -> Command Latch
|
|
* NAND_ALE: bit 2 -> Address Latch
|
|
*
|
|
* NOTE: boards may use different bits for these!!
|
|
*/
|
|
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
switch (ctrl) {
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
|
|
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_COMMAND;
|
|
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_DATA;
|
|
break;
|
|
|
|
case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
|
|
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_ADDRESS;
|
|
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_DATA;
|
|
break;
|
|
|
|
case NAND_CTRL_CHANGE | NAND_NCE:
|
|
info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_DATA;
|
|
info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_DATA;
|
|
break;
|
|
}
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
__raw_writeb(cmd, info->nand.IO_ADDR_W);
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf8 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
ioread8_rep(nand->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf8 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
u_char *p = (u_char *)buf;
|
|
|
|
while (len--) {
|
|
iowrite8(*p++, info->nand.IO_ADDR_W);
|
|
while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
|
|
GPMC_STATUS) & GPMC_BUF_FULL));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf16 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd->priv;
|
|
|
|
ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf16 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
u16 *p = (u16 *) buf;
|
|
|
|
/* FIXME try bursts of writesw() or DMA ... */
|
|
len >>= 1;
|
|
|
|
while (len--) {
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
|
|
|
while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr +
|
|
GPMC_STATUS) & GPMC_BUF_FULL))
|
|
;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t pfpw_status = 0, r_count = 0;
|
|
int ret = 0;
|
|
u32 *p = (u32 *)buf;
|
|
|
|
/* take care of subpage reads */
|
|
if (len % 4) {
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len % 4);
|
|
else
|
|
omap_read_buf8(mtd, buf, len % 4);
|
|
p = (u32 *) (buf + len % 4);
|
|
len -= len % 4;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x0);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len);
|
|
else
|
|
omap_read_buf8(mtd, buf, len);
|
|
} else {
|
|
do {
|
|
pfpw_status = gpmc_prefetch_status();
|
|
r_count = ((pfpw_status >> 24) & 0x7F) >> 2;
|
|
ioread32_rep(info->nand_pref_fifo_add, p, r_count);
|
|
p += r_count;
|
|
len -= r_count << 2;
|
|
} while (len);
|
|
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t pfpw_status = 0, w_count = 0;
|
|
int i = 0, ret = 0;
|
|
u16 *p = (u16 *) buf;
|
|
|
|
/* take care of subpage writes */
|
|
if (len % 2 != 0) {
|
|
writeb(*buf, info->nand.IO_ADDR_R);
|
|
p = (u16 *)(buf + 1);
|
|
len--;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x0, len, 0x1);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_write_buf16(mtd, buf, len);
|
|
else
|
|
omap_write_buf8(mtd, buf, len);
|
|
} else {
|
|
pfpw_status = gpmc_prefetch_status();
|
|
while (pfpw_status & 0x3FFF) {
|
|
w_count = ((pfpw_status >> 24) & 0x7F) >> 1;
|
|
for (i = 0; (i < w_count) && len; i++, len -= 2)
|
|
iowrite16(*p++, info->nand_pref_fifo_add);
|
|
pfpw_status = gpmc_prefetch_status();
|
|
}
|
|
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_PREFETCH_DMA
|
|
/*
|
|
* omap_nand_dma_cb: callback on the completion of dma transfer
|
|
* @lch: logical channel
|
|
* @ch_satuts: channel status
|
|
* @data: pointer to completion data structure
|
|
*/
|
|
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
|
|
{
|
|
complete((struct completion *) data);
|
|
}
|
|
|
|
/*
|
|
* omap_nand_dma_transfer: configer and start dma transfer
|
|
* @mtd: MTD device structure
|
|
* @addr: virtual address in RAM of source/destination
|
|
* @len: number of data bytes to be transferred
|
|
* @is_write: flag for read/write operation
|
|
*/
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
unsigned int len, int is_write)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd,
|
|
struct omap_nand_info, mtd);
|
|
uint32_t prefetch_status = 0;
|
|
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
|
|
DMA_FROM_DEVICE;
|
|
dma_addr_t dma_addr;
|
|
int ret;
|
|
|
|
/* The fifo depth is 64 bytes. We have a sync at each frame and frame
|
|
* length is 64 bytes.
|
|
*/
|
|
int buf_len = len >> 6;
|
|
|
|
if (addr >= high_memory) {
|
|
struct page *p1;
|
|
|
|
if (((size_t)addr & PAGE_MASK) !=
|
|
((size_t)(addr + len - 1) & PAGE_MASK))
|
|
goto out_copy;
|
|
p1 = vmalloc_to_page(addr);
|
|
if (!p1)
|
|
goto out_copy;
|
|
addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
|
|
}
|
|
|
|
dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
|
|
if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
|
|
dev_err(&info->pdev->dev,
|
|
"Couldn't DMA map a %d byte buffer\n", len);
|
|
goto out_copy;
|
|
}
|
|
|
|
if (is_write) {
|
|
omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
|
|
info->phys_base, 0, 0);
|
|
omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
|
|
dma_addr, 0, 0);
|
|
omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
|
|
0x10, buf_len, OMAP_DMA_SYNC_FRAME,
|
|
OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
|
|
} else {
|
|
omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
|
|
info->phys_base, 0, 0);
|
|
omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
|
|
dma_addr, 0, 0);
|
|
omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
|
|
0x10, buf_len, OMAP_DMA_SYNC_FRAME,
|
|
OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
|
|
}
|
|
/* configure and start prefetch transfer */
|
|
ret = gpmc_prefetch_enable(info->gpmc_cs, 0x1, len, is_write);
|
|
if (ret)
|
|
/* PFPW engine is busy, use cpu copy methode */
|
|
goto out_copy;
|
|
|
|
init_completion(&info->comp);
|
|
|
|
omap_start_dma(info->dma_ch);
|
|
|
|
/* setup and start DMA using dma_addr */
|
|
wait_for_completion(&info->comp);
|
|
|
|
while (0x3fff & (prefetch_status = gpmc_prefetch_status()))
|
|
;
|
|
/* disable and stop the PFPW engine */
|
|
gpmc_prefetch_reset();
|
|
|
|
dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
|
|
return 0;
|
|
|
|
out_copy:
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
|
|
: omap_write_buf16(mtd, (u_char *) addr, len);
|
|
else
|
|
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
|
|
: omap_write_buf8(mtd, (u_char *) addr, len);
|
|
return 0;
|
|
}
|
|
#else
|
|
static void omap_nand_dma_cb(int lch, u16 ch_status, void *data) {}
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
unsigned int len, int is_write)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* omap_read_buf_dma_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, buf, len, 0x0);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_dma_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
|
|
}
|
|
|
|
/**
|
|
* omap_verify_buf - Verify chip data against buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to compare
|
|
* @len: number of bytes to compare
|
|
*/
|
|
static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
u16 *p = (u16 *) buf;
|
|
|
|
len >>= 1;
|
|
while (len--) {
|
|
if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
|
|
/**
|
|
* omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void omap_hwecc_init(struct mtd_info *mtd)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
struct nand_chip *chip = mtd->priv;
|
|
unsigned long val = 0x0;
|
|
|
|
/* Read from ECC Control Register */
|
|
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL);
|
|
/* Clear all ECC | Enable Reg1 */
|
|
val = ((0x00000001<<8) | 0x00000001);
|
|
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
|
|
|
|
/* Read from ECC Size Config Register */
|
|
val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
|
|
/* ECCSIZE1=512 | Select eccResultsize[0-3] */
|
|
val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F));
|
|
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG);
|
|
}
|
|
|
|
/**
|
|
* gen_true_ecc - This function will generate true ECC value
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* This generated true ECC value can be used when correcting
|
|
* data read from NAND flash memory core
|
|
*/
|
|
static void gen_true_ecc(u8 *ecc_buf)
|
|
{
|
|
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
|
|
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
|
|
|
|
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
|
|
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
|
|
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
|
|
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
|
|
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
|
|
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
|
|
}
|
|
|
|
/**
|
|
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
|
|
* @ecc_data1: ecc code from nand spare area
|
|
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
|
|
* @page_data: page data
|
|
*
|
|
* This function compares two ECC's and indicates if there is an error.
|
|
* If the error can be corrected it will be corrected to the buffer.
|
|
*/
|
|
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
|
|
u8 *ecc_data2, /* read from register */
|
|
u8 *page_data)
|
|
{
|
|
uint i;
|
|
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
|
|
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
|
|
u8 ecc_bit[24];
|
|
u8 ecc_sum = 0;
|
|
u8 find_bit = 0;
|
|
uint find_byte = 0;
|
|
int isEccFF;
|
|
|
|
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
|
|
|
|
gen_true_ecc(ecc_data1);
|
|
gen_true_ecc(ecc_data2);
|
|
|
|
for (i = 0; i <= 2; i++) {
|
|
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
|
|
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp0_bit[i] = *ecc_data1 % 2;
|
|
*ecc_data1 = *ecc_data1 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
|
|
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
|
|
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp0_bit[i] = *ecc_data2 % 2;
|
|
*ecc_data2 = *ecc_data2 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp1_bit[i] = *(ecc_data2 + 1) % 2;
|
|
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp2_bit[i] = *(ecc_data2 + 2) % 2;
|
|
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
|
|
|
|
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
|
|
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
|
|
|
|
for (i = 0; i < 24; i++)
|
|
ecc_sum += ecc_bit[i];
|
|
|
|
switch (ecc_sum) {
|
|
case 0:
|
|
/* Not reached because this function is not called if
|
|
* ECC values are equal
|
|
*/
|
|
return 0;
|
|
|
|
case 1:
|
|
/* Uncorrectable error */
|
|
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
|
|
return -1;
|
|
|
|
case 11:
|
|
/* UN-Correctable error */
|
|
DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
|
|
return -1;
|
|
|
|
case 12:
|
|
/* Correctable error */
|
|
find_byte = (ecc_bit[23] << 8) +
|
|
(ecc_bit[21] << 7) +
|
|
(ecc_bit[19] << 6) +
|
|
(ecc_bit[17] << 5) +
|
|
(ecc_bit[15] << 4) +
|
|
(ecc_bit[13] << 3) +
|
|
(ecc_bit[11] << 2) +
|
|
(ecc_bit[9] << 1) +
|
|
ecc_bit[7];
|
|
|
|
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
|
|
|
|
DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
|
|
"offset: %d, bit: %d\n", find_byte, find_bit);
|
|
|
|
page_data[find_byte] ^= (1 << find_bit);
|
|
|
|
return 0;
|
|
default:
|
|
if (isEccFF) {
|
|
if (ecc_data2[0] == 0 &&
|
|
ecc_data2[1] == 0 &&
|
|
ecc_data2[2] == 0)
|
|
return 0;
|
|
}
|
|
DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_correct_data - Compares the ECC read with HW generated ECC
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*
|
|
* Compares the ecc read from nand spare area with ECC registers values
|
|
* and if ECC's mismached, it will call 'omap_compare_ecc' for error detection
|
|
* and correction.
|
|
*/
|
|
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
int blockCnt = 0, i = 0, ret = 0;
|
|
|
|
/* Ex NAND_ECC_HW12_2048 */
|
|
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
|
|
(info->nand.ecc.size == 2048))
|
|
blockCnt = 4;
|
|
else
|
|
blockCnt = 1;
|
|
|
|
for (i = 0; i < blockCnt; i++) {
|
|
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
|
|
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
read_ecc += 3;
|
|
calc_ecc += 3;
|
|
dat += 512;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as long
|
|
* nobody is trying to write data on the seemingly unused page. Reading
|
|
* an erased page will produce an ECC mismatch between generated and read
|
|
* ECC bytes that has to be dealt with separately.
|
|
*/
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
unsigned long val = 0x0;
|
|
unsigned long reg;
|
|
|
|
/* Start Reading from HW ECC1_Result = 0x200 */
|
|
reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT);
|
|
val = __raw_readl(reg);
|
|
*ecc_code++ = val; /* P128e, ..., P1e */
|
|
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
|
|
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
|
|
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
|
|
reg += 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_enable_hwecc - This function enables the hardware ecc functionality
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
struct nand_chip *chip = mtd->priv;
|
|
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG);
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
|
|
break;
|
|
case NAND_ECC_READSYN:
|
|
__raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
|
|
break;
|
|
case NAND_ECC_WRITE:
|
|
__raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL);
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
|
|
break;
|
|
default:
|
|
DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n",
|
|
mode);
|
|
break;
|
|
}
|
|
|
|
__raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* omap_wait - wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND Chip structure
|
|
*
|
|
* Wait function is called during Program and erase operations and
|
|
* the way it is called from MTD layer, we should wait till the NAND
|
|
* chip is ready after the programming/erase operation has completed.
|
|
*
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
* general NAND and SmartMedia specs
|
|
*/
|
|
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
unsigned long timeo = jiffies;
|
|
int status = NAND_STATUS_FAIL, state = this->state;
|
|
|
|
if (state == FL_ERASING)
|
|
timeo += (HZ * 400) / 1000;
|
|
else
|
|
timeo += (HZ * 20) / 1000;
|
|
|
|
this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr +
|
|
GPMC_CS_NAND_COMMAND;
|
|
this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA;
|
|
|
|
__raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W);
|
|
|
|
while (time_before(jiffies, timeo)) {
|
|
status = __raw_readb(this->IO_ADDR_R);
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
cond_resched();
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* omap_dev_ready - calls the platform specific dev_ready function
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS);
|
|
|
|
if ((val & 0x100) == 0x100) {
|
|
/* Clear IRQ Interrupt */
|
|
val |= 0x100;
|
|
val &= ~(0x0);
|
|
__raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS);
|
|
} else {
|
|
unsigned int cnt = 0;
|
|
while (cnt++ < 0x1FF) {
|
|
if ((val & 0x100) == 0x100)
|
|
return 0;
|
|
val = __raw_readl(info->gpmc_baseaddr +
|
|
GPMC_IRQ_STATUS);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __devinit omap_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct omap_nand_info *info;
|
|
struct omap_nand_platform_data *pdata;
|
|
int err;
|
|
unsigned long val;
|
|
|
|
|
|
pdata = pdev->dev.platform_data;
|
|
if (pdata == NULL) {
|
|
dev_err(&pdev->dev, "platform data missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
platform_set_drvdata(pdev, info);
|
|
|
|
spin_lock_init(&info->controller.lock);
|
|
init_waitqueue_head(&info->controller.wq);
|
|
|
|
info->pdev = pdev;
|
|
|
|
info->gpmc_cs = pdata->cs;
|
|
info->gpmc_baseaddr = pdata->gpmc_baseaddr;
|
|
info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr;
|
|
|
|
info->mtd.priv = &info->nand;
|
|
info->mtd.name = dev_name(&pdev->dev);
|
|
info->mtd.owner = THIS_MODULE;
|
|
|
|
err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base);
|
|
if (err < 0) {
|
|
dev_err(&pdev->dev, "Cannot request GPMC CS\n");
|
|
goto out_free_info;
|
|
}
|
|
|
|
/* Enable RD PIN Monitoring Reg */
|
|
if (pdata->dev_ready) {
|
|
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1);
|
|
val |= WR_RD_PIN_MONITORING;
|
|
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val);
|
|
}
|
|
|
|
val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7);
|
|
val &= ~(0xf << 8);
|
|
val |= (0xc & 0xf) << 8;
|
|
gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val);
|
|
|
|
/* NAND write protect off */
|
|
omap_nand_wp(&info->mtd, NAND_WP_OFF);
|
|
|
|
if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
|
|
pdev->dev.driver->name)) {
|
|
err = -EBUSY;
|
|
goto out_free_cs;
|
|
}
|
|
|
|
info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
|
|
if (!info->nand.IO_ADDR_R) {
|
|
err = -ENOMEM;
|
|
goto out_release_mem_region;
|
|
}
|
|
|
|
info->nand.controller = &info->controller;
|
|
|
|
info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
|
|
info->nand.cmd_ctrl = omap_hwcontrol;
|
|
|
|
/*
|
|
* If RDY/BSY line is connected to OMAP then use the omap ready
|
|
* funcrtion and the generic nand_wait function which reads the status
|
|
* register after monitoring the RDY/BSY line.Otherwise use a standard
|
|
* chip delay which is slightly more than tR (AC Timing) of the NAND
|
|
* device and read status register until you get a failure or success
|
|
*/
|
|
if (pdata->dev_ready) {
|
|
info->nand.dev_ready = omap_dev_ready;
|
|
info->nand.chip_delay = 0;
|
|
} else {
|
|
info->nand.waitfunc = omap_wait;
|
|
info->nand.chip_delay = 50;
|
|
}
|
|
|
|
info->nand.options |= NAND_SKIP_BBTSCAN;
|
|
if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000)
|
|
== 0x1000)
|
|
info->nand.options |= NAND_BUSWIDTH_16;
|
|
|
|
if (use_prefetch) {
|
|
/* copy the virtual address of nand base for fifo access */
|
|
info->nand_pref_fifo_add = info->nand.IO_ADDR_R;
|
|
|
|
info->nand.read_buf = omap_read_buf_pref;
|
|
info->nand.write_buf = omap_write_buf_pref;
|
|
if (use_dma) {
|
|
err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
|
|
omap_nand_dma_cb, &info->comp, &info->dma_ch);
|
|
if (err < 0) {
|
|
info->dma_ch = -1;
|
|
printk(KERN_WARNING "DMA request failed."
|
|
" Non-dma data transfer mode\n");
|
|
} else {
|
|
omap_set_dma_dest_burst_mode(info->dma_ch,
|
|
OMAP_DMA_DATA_BURST_16);
|
|
omap_set_dma_src_burst_mode(info->dma_ch,
|
|
OMAP_DMA_DATA_BURST_16);
|
|
|
|
info->nand.read_buf = omap_read_buf_dma_pref;
|
|
info->nand.write_buf = omap_write_buf_dma_pref;
|
|
}
|
|
}
|
|
} else {
|
|
if (info->nand.options & NAND_BUSWIDTH_16) {
|
|
info->nand.read_buf = omap_read_buf16;
|
|
info->nand.write_buf = omap_write_buf16;
|
|
} else {
|
|
info->nand.read_buf = omap_read_buf8;
|
|
info->nand.write_buf = omap_write_buf8;
|
|
}
|
|
}
|
|
info->nand.verify_buf = omap_verify_buf;
|
|
|
|
#ifdef CONFIG_MTD_NAND_OMAP_HWECC
|
|
info->nand.ecc.bytes = 3;
|
|
info->nand.ecc.size = 512;
|
|
info->nand.ecc.calculate = omap_calculate_ecc;
|
|
info->nand.ecc.hwctl = omap_enable_hwecc;
|
|
info->nand.ecc.correct = omap_correct_data;
|
|
info->nand.ecc.mode = NAND_ECC_HW;
|
|
|
|
/* init HW ECC */
|
|
omap_hwecc_init(&info->mtd);
|
|
#else
|
|
info->nand.ecc.mode = NAND_ECC_SOFT;
|
|
#endif
|
|
|
|
/* DIP switches on some boards change between 8 and 16 bit
|
|
* bus widths for flash. Try the other width if the first try fails.
|
|
*/
|
|
if (nand_scan(&info->mtd, 1)) {
|
|
info->nand.options ^= NAND_BUSWIDTH_16;
|
|
if (nand_scan(&info->mtd, 1)) {
|
|
err = -ENXIO;
|
|
goto out_release_mem_region;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_PARTITIONS
|
|
err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
|
|
if (err > 0)
|
|
add_mtd_partitions(&info->mtd, info->parts, err);
|
|
else if (pdata->parts)
|
|
add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
|
|
else
|
|
#endif
|
|
add_mtd_device(&info->mtd);
|
|
|
|
platform_set_drvdata(pdev, &info->mtd);
|
|
|
|
return 0;
|
|
|
|
out_release_mem_region:
|
|
release_mem_region(info->phys_base, NAND_IO_SIZE);
|
|
out_free_cs:
|
|
gpmc_cs_free(info->gpmc_cs);
|
|
out_free_info:
|
|
kfree(info);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int omap_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
|
|
mtd);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
if (use_dma)
|
|
omap_free_dma(info->dma_ch);
|
|
|
|
/* Release NAND device, its internal structures and partitions */
|
|
nand_release(&info->mtd);
|
|
iounmap(info->nand_pref_fifo_add);
|
|
kfree(&info->mtd);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver omap_nand_driver = {
|
|
.probe = omap_nand_probe,
|
|
.remove = omap_nand_remove,
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
|
|
static int __init omap_nand_init(void)
|
|
{
|
|
printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME);
|
|
|
|
/* This check is required if driver is being
|
|
* loaded run time as a module
|
|
*/
|
|
if ((1 == use_dma) && (0 == use_prefetch)) {
|
|
printk(KERN_INFO"Wrong parameters: 'use_dma' can not be 1 "
|
|
"without use_prefetch'. Prefetch will not be"
|
|
" used in either mode (mpu or dma)\n");
|
|
}
|
|
return platform_driver_register(&omap_nand_driver);
|
|
}
|
|
|
|
static void __exit omap_nand_exit(void)
|
|
{
|
|
platform_driver_unregister(&omap_nand_driver);
|
|
}
|
|
|
|
module_init(omap_nand_init);
|
|
module_exit(omap_nand_exit);
|
|
|
|
MODULE_ALIAS(DRIVER_NAME);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|