linux/fs/reiserfs/inode.c
Linus Torvalds 101105b171 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
 ">rename2() work from Miklos + current_time() from Deepa"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
  fs: Replace current_fs_time() with current_time()
  fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
  fs: Replace CURRENT_TIME with current_time() for inode timestamps
  fs: proc: Delete inode time initializations in proc_alloc_inode()
  vfs: Add current_time() api
  vfs: add note about i_op->rename changes to porting
  fs: rename "rename2" i_op to "rename"
  vfs: remove unused i_op->rename
  fs: make remaining filesystems use .rename2
  libfs: support RENAME_NOREPLACE in simple_rename()
  fs: support RENAME_NOREPLACE for local filesystems
  ncpfs: fix unused variable warning
2016-10-10 20:16:43 -07:00

3465 lines
93 KiB
C

/*
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
*/
#include <linux/time.h>
#include <linux/fs.h>
#include "reiserfs.h"
#include "acl.h"
#include "xattr.h"
#include <linux/exportfs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include <linux/buffer_head.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/quotaops.h>
#include <linux/swap.h>
#include <linux/uio.h>
int reiserfs_commit_write(struct file *f, struct page *page,
unsigned from, unsigned to);
void reiserfs_evict_inode(struct inode *inode)
{
/*
* We need blocks for transaction + (user+group) quota
* update (possibly delete)
*/
int jbegin_count =
JOURNAL_PER_BALANCE_CNT * 2 +
2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
struct reiserfs_transaction_handle th;
int err;
if (!inode->i_nlink && !is_bad_inode(inode))
dquot_initialize(inode);
truncate_inode_pages_final(&inode->i_data);
if (inode->i_nlink)
goto no_delete;
/*
* The = 0 happens when we abort creating a new inode
* for some reason like lack of space..
* also handles bad_inode case
*/
if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
reiserfs_delete_xattrs(inode);
reiserfs_write_lock(inode->i_sb);
if (journal_begin(&th, inode->i_sb, jbegin_count))
goto out;
reiserfs_update_inode_transaction(inode);
reiserfs_discard_prealloc(&th, inode);
err = reiserfs_delete_object(&th, inode);
/*
* Do quota update inside a transaction for journaled quotas.
* We must do that after delete_object so that quota updates
* go into the same transaction as stat data deletion
*/
if (!err) {
int depth = reiserfs_write_unlock_nested(inode->i_sb);
dquot_free_inode(inode);
reiserfs_write_lock_nested(inode->i_sb, depth);
}
if (journal_end(&th))
goto out;
/*
* check return value from reiserfs_delete_object after
* ending the transaction
*/
if (err)
goto out;
/*
* all items of file are deleted, so we can remove
* "save" link
* we can't do anything about an error here
*/
remove_save_link(inode, 0 /* not truncate */);
out:
reiserfs_write_unlock(inode->i_sb);
} else {
/* no object items are in the tree */
;
}
/* note this must go after the journal_end to prevent deadlock */
clear_inode(inode);
dquot_drop(inode);
inode->i_blocks = 0;
return;
no_delete:
clear_inode(inode);
dquot_drop(inode);
}
static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
__u32 objectid, loff_t offset, int type, int length)
{
key->version = version;
key->on_disk_key.k_dir_id = dirid;
key->on_disk_key.k_objectid = objectid;
set_cpu_key_k_offset(key, offset);
set_cpu_key_k_type(key, type);
key->key_length = length;
}
/*
* take base of inode_key (it comes from inode always) (dirid, objectid)
* and version from an inode, set offset and type of key
*/
void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
int type, int length)
{
_make_cpu_key(key, get_inode_item_key_version(inode),
le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
length);
}
/* when key is 0, do not set version and short key */
inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
int version,
loff_t offset, int type, int length,
int entry_count /*or ih_free_space */ )
{
if (key) {
ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
ih->ih_key.k_objectid =
cpu_to_le32(key->on_disk_key.k_objectid);
}
put_ih_version(ih, version);
set_le_ih_k_offset(ih, offset);
set_le_ih_k_type(ih, type);
put_ih_item_len(ih, length);
/* set_ih_free_space (ih, 0); */
/*
* for directory items it is entry count, for directs and stat
* datas - 0xffff, for indirects - 0
*/
put_ih_entry_count(ih, entry_count);
}
/*
* FIXME: we might cache recently accessed indirect item
* Ugh. Not too eager for that....
* I cut the code until such time as I see a convincing argument (benchmark).
* I don't want a bloated inode struct..., and I don't like code complexity....
*/
/*
* cutting the code is fine, since it really isn't in use yet and is easy
* to add back in. But, Vladimir has a really good idea here. Think
* about what happens for reading a file. For each page,
* The VFS layer calls reiserfs_readpage, who searches the tree to find
* an indirect item. This indirect item has X number of pointers, where
* X is a big number if we've done the block allocation right. But,
* we only use one or two of these pointers during each call to readpage,
* needlessly researching again later on.
*
* The size of the cache could be dynamic based on the size of the file.
*
* I'd also like to see us cache the location the stat data item, since
* we are needlessly researching for that frequently.
*
* --chris
*/
/*
* If this page has a file tail in it, and
* it was read in by get_block_create_0, the page data is valid,
* but tail is still sitting in a direct item, and we can't write to
* it. So, look through this page, and check all the mapped buffers
* to make sure they have valid block numbers. Any that don't need
* to be unmapped, so that __block_write_begin will correctly call
* reiserfs_get_block to convert the tail into an unformatted node
*/
static inline void fix_tail_page_for_writing(struct page *page)
{
struct buffer_head *head, *next, *bh;
if (page && page_has_buffers(page)) {
head = page_buffers(page);
bh = head;
do {
next = bh->b_this_page;
if (buffer_mapped(bh) && bh->b_blocknr == 0) {
reiserfs_unmap_buffer(bh);
}
bh = next;
} while (bh != head);
}
}
/*
* reiserfs_get_block does not need to allocate a block only if it has been
* done already or non-hole position has been found in the indirect item
*/
static inline int allocation_needed(int retval, b_blocknr_t allocated,
struct item_head *ih,
__le32 * item, int pos_in_item)
{
if (allocated)
return 0;
if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
get_block_num(item, pos_in_item))
return 0;
return 1;
}
static inline int indirect_item_found(int retval, struct item_head *ih)
{
return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
}
static inline void set_block_dev_mapped(struct buffer_head *bh,
b_blocknr_t block, struct inode *inode)
{
map_bh(bh, inode->i_sb, block);
}
/*
* files which were created in the earlier version can not be longer,
* than 2 gb
*/
static int file_capable(struct inode *inode, sector_t block)
{
/* it is new file. */
if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
/* old file, but 'block' is inside of 2gb */
block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
return 1;
return 0;
}
static int restart_transaction(struct reiserfs_transaction_handle *th,
struct inode *inode, struct treepath *path)
{
struct super_block *s = th->t_super;
int err;
BUG_ON(!th->t_trans_id);
BUG_ON(!th->t_refcount);
pathrelse(path);
/* we cannot restart while nested */
if (th->t_refcount > 1) {
return 0;
}
reiserfs_update_sd(th, inode);
err = journal_end(th);
if (!err) {
err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
if (!err)
reiserfs_update_inode_transaction(inode);
}
return err;
}
/*
* it is called by get_block when create == 0. Returns block number
* for 'block'-th logical block of file. When it hits direct item it
* returns 0 (being called from bmap) or read direct item into piece
* of page (bh_result)
* Please improve the english/clarity in the comment above, as it is
* hard to understand.
*/
static int _get_block_create_0(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int args)
{
INITIALIZE_PATH(path);
struct cpu_key key;
struct buffer_head *bh;
struct item_head *ih, tmp_ih;
b_blocknr_t blocknr;
char *p = NULL;
int chars;
int ret;
int result;
int done = 0;
unsigned long offset;
/* prepare the key to look for the 'block'-th block of file */
make_cpu_key(&key, inode,
(loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
3);
result = search_for_position_by_key(inode->i_sb, &key, &path);
if (result != POSITION_FOUND) {
pathrelse(&path);
if (p)
kunmap(bh_result->b_page);
if (result == IO_ERROR)
return -EIO;
/*
* We do not return -ENOENT if there is a hole but page is
* uptodate, because it means that there is some MMAPED data
* associated with it that is yet to be written to disk.
*/
if ((args & GET_BLOCK_NO_HOLE)
&& !PageUptodate(bh_result->b_page)) {
return -ENOENT;
}
return 0;
}
bh = get_last_bh(&path);
ih = tp_item_head(&path);
if (is_indirect_le_ih(ih)) {
__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
/*
* FIXME: here we could cache indirect item or part of it in
* the inode to avoid search_by_key in case of subsequent
* access to file
*/
blocknr = get_block_num(ind_item, path.pos_in_item);
ret = 0;
if (blocknr) {
map_bh(bh_result, inode->i_sb, blocknr);
if (path.pos_in_item ==
((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
set_buffer_boundary(bh_result);
}
} else
/*
* We do not return -ENOENT if there is a hole but
* page is uptodate, because it means that there is
* some MMAPED data associated with it that is
* yet to be written to disk.
*/
if ((args & GET_BLOCK_NO_HOLE)
&& !PageUptodate(bh_result->b_page)) {
ret = -ENOENT;
}
pathrelse(&path);
if (p)
kunmap(bh_result->b_page);
return ret;
}
/* requested data are in direct item(s) */
if (!(args & GET_BLOCK_READ_DIRECT)) {
/*
* we are called by bmap. FIXME: we can not map block of file
* when it is stored in direct item(s)
*/
pathrelse(&path);
if (p)
kunmap(bh_result->b_page);
return -ENOENT;
}
/*
* if we've got a direct item, and the buffer or page was uptodate,
* we don't want to pull data off disk again. skip to the
* end, where we map the buffer and return
*/
if (buffer_uptodate(bh_result)) {
goto finished;
} else
/*
* grab_tail_page can trigger calls to reiserfs_get_block on
* up to date pages without any buffers. If the page is up
* to date, we don't want read old data off disk. Set the up
* to date bit on the buffer instead and jump to the end
*/
if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
set_buffer_uptodate(bh_result);
goto finished;
}
/* read file tail into part of page */
offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1);
copy_item_head(&tmp_ih, ih);
/*
* we only want to kmap if we are reading the tail into the page.
* this is not the common case, so we don't kmap until we are
* sure we need to. But, this means the item might move if
* kmap schedules
*/
if (!p)
p = (char *)kmap(bh_result->b_page);
p += offset;
memset(p, 0, inode->i_sb->s_blocksize);
do {
if (!is_direct_le_ih(ih)) {
BUG();
}
/*
* make sure we don't read more bytes than actually exist in
* the file. This can happen in odd cases where i_size isn't
* correct, and when direct item padding results in a few
* extra bytes at the end of the direct item
*/
if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
break;
if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
chars =
inode->i_size - (le_ih_k_offset(ih) - 1) -
path.pos_in_item;
done = 1;
} else {
chars = ih_item_len(ih) - path.pos_in_item;
}
memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
if (done)
break;
p += chars;
/*
* we done, if read direct item is not the last item of
* node FIXME: we could try to check right delimiting key
* to see whether direct item continues in the right
* neighbor or rely on i_size
*/
if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
break;
/* update key to look for the next piece */
set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
result = search_for_position_by_key(inode->i_sb, &key, &path);
if (result != POSITION_FOUND)
/* i/o error most likely */
break;
bh = get_last_bh(&path);
ih = tp_item_head(&path);
} while (1);
flush_dcache_page(bh_result->b_page);
kunmap(bh_result->b_page);
finished:
pathrelse(&path);
if (result == IO_ERROR)
return -EIO;
/*
* this buffer has valid data, but isn't valid for io. mapping it to
* block #0 tells the rest of reiserfs it just has a tail in it
*/
map_bh(bh_result, inode->i_sb, 0);
set_buffer_uptodate(bh_result);
return 0;
}
/*
* this is called to create file map. So, _get_block_create_0 will not
* read direct item
*/
static int reiserfs_bmap(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int create)
{
if (!file_capable(inode, block))
return -EFBIG;
reiserfs_write_lock(inode->i_sb);
/* do not read the direct item */
_get_block_create_0(inode, block, bh_result, 0);
reiserfs_write_unlock(inode->i_sb);
return 0;
}
/*
* special version of get_block that is only used by grab_tail_page right
* now. It is sent to __block_write_begin, and when you try to get a
* block past the end of the file (or a block from a hole) it returns
* -ENOENT instead of a valid buffer. __block_write_begin expects to
* be able to do i/o on the buffers returned, unless an error value
* is also returned.
*
* So, this allows __block_write_begin to be used for reading a single block
* in a page. Where it does not produce a valid page for holes, or past the
* end of the file. This turns out to be exactly what we need for reading
* tails for conversion.
*
* The point of the wrapper is forcing a certain value for create, even
* though the VFS layer is calling this function with create==1. If you
* don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
* don't use this function.
*/
static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
struct buffer_head *bh_result,
int create)
{
return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
}
/*
* This is special helper for reiserfs_get_block in case we are executing
* direct_IO request.
*/
static int reiserfs_get_blocks_direct_io(struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)
{
int ret;
bh_result->b_page = NULL;
/*
* We set the b_size before reiserfs_get_block call since it is
* referenced in convert_tail_for_hole() that may be called from
* reiserfs_get_block()
*/
bh_result->b_size = (1 << inode->i_blkbits);
ret = reiserfs_get_block(inode, iblock, bh_result,
create | GET_BLOCK_NO_DANGLE);
if (ret)
goto out;
/* don't allow direct io onto tail pages */
if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
/*
* make sure future calls to the direct io funcs for this
* offset in the file fail by unmapping the buffer
*/
clear_buffer_mapped(bh_result);
ret = -EINVAL;
}
/*
* Possible unpacked tail. Flush the data before pages have
* disappeared
*/
if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
int err;
reiserfs_write_lock(inode->i_sb);
err = reiserfs_commit_for_inode(inode);
REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
reiserfs_write_unlock(inode->i_sb);
if (err < 0)
ret = err;
}
out:
return ret;
}
/*
* helper function for when reiserfs_get_block is called for a hole
* but the file tail is still in a direct item
* bh_result is the buffer head for the hole
* tail_offset is the offset of the start of the tail in the file
*
* This calls prepare_write, which will start a new transaction
* you should not be in a transaction, or have any paths held when you
* call this.
*/
static int convert_tail_for_hole(struct inode *inode,
struct buffer_head *bh_result,
loff_t tail_offset)
{
unsigned long index;
unsigned long tail_end;
unsigned long tail_start;
struct page *tail_page;
struct page *hole_page = bh_result->b_page;
int retval = 0;
if ((tail_offset & (bh_result->b_size - 1)) != 1)
return -EIO;
/* always try to read until the end of the block */
tail_start = tail_offset & (PAGE_SIZE - 1);
tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
index = tail_offset >> PAGE_SHIFT;
/*
* hole_page can be zero in case of direct_io, we are sure
* that we cannot get here if we write with O_DIRECT into tail page
*/
if (!hole_page || index != hole_page->index) {
tail_page = grab_cache_page(inode->i_mapping, index);
retval = -ENOMEM;
if (!tail_page) {
goto out;
}
} else {
tail_page = hole_page;
}
/*
* we don't have to make sure the conversion did not happen while
* we were locking the page because anyone that could convert
* must first take i_mutex.
*
* We must fix the tail page for writing because it might have buffers
* that are mapped, but have a block number of 0. This indicates tail
* data that has been read directly into the page, and
* __block_write_begin won't trigger a get_block in this case.
*/
fix_tail_page_for_writing(tail_page);
retval = __reiserfs_write_begin(tail_page, tail_start,
tail_end - tail_start);
if (retval)
goto unlock;
/* tail conversion might change the data in the page */
flush_dcache_page(tail_page);
retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
unlock:
if (tail_page != hole_page) {
unlock_page(tail_page);
put_page(tail_page);
}
out:
return retval;
}
static inline int _allocate_block(struct reiserfs_transaction_handle *th,
sector_t block,
struct inode *inode,
b_blocknr_t * allocated_block_nr,
struct treepath *path, int flags)
{
BUG_ON(!th->t_trans_id);
#ifdef REISERFS_PREALLOCATE
if (!(flags & GET_BLOCK_NO_IMUX)) {
return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
path, block);
}
#endif
return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
block);
}
int reiserfs_get_block(struct inode *inode, sector_t block,
struct buffer_head *bh_result, int create)
{
int repeat, retval = 0;
/* b_blocknr_t is (unsigned) 32 bit int*/
b_blocknr_t allocated_block_nr = 0;
INITIALIZE_PATH(path);
int pos_in_item;
struct cpu_key key;
struct buffer_head *bh, *unbh = NULL;
struct item_head *ih, tmp_ih;
__le32 *item;
int done;
int fs_gen;
struct reiserfs_transaction_handle *th = NULL;
/*
* space reserved in transaction batch:
* . 3 balancings in direct->indirect conversion
* . 1 block involved into reiserfs_update_sd()
* XXX in practically impossible worst case direct2indirect()
* can incur (much) more than 3 balancings.
* quota update for user, group
*/
int jbegin_count =
JOURNAL_PER_BALANCE_CNT * 3 + 1 +
2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
int version;
int dangle = 1;
loff_t new_offset =
(((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
reiserfs_write_lock(inode->i_sb);
version = get_inode_item_key_version(inode);
if (!file_capable(inode, block)) {
reiserfs_write_unlock(inode->i_sb);
return -EFBIG;
}
/*
* if !create, we aren't changing the FS, so we don't need to
* log anything, so we don't need to start a transaction
*/
if (!(create & GET_BLOCK_CREATE)) {
int ret;
/* find number of block-th logical block of the file */
ret = _get_block_create_0(inode, block, bh_result,
create | GET_BLOCK_READ_DIRECT);
reiserfs_write_unlock(inode->i_sb);
return ret;
}
/*
* if we're already in a transaction, make sure to close
* any new transactions we start in this func
*/
if ((create & GET_BLOCK_NO_DANGLE) ||
reiserfs_transaction_running(inode->i_sb))
dangle = 0;
/*
* If file is of such a size, that it might have a tail and
* tails are enabled we should mark it as possibly needing
* tail packing on close
*/
if ((have_large_tails(inode->i_sb)
&& inode->i_size < i_block_size(inode) * 4)
|| (have_small_tails(inode->i_sb)
&& inode->i_size < i_block_size(inode)))
REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
/* set the key of the first byte in the 'block'-th block of file */
make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
start_trans:
th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
if (!th) {
retval = -ENOMEM;
goto failure;
}
reiserfs_update_inode_transaction(inode);
}
research:
retval = search_for_position_by_key(inode->i_sb, &key, &path);
if (retval == IO_ERROR) {
retval = -EIO;
goto failure;
}
bh = get_last_bh(&path);
ih = tp_item_head(&path);
item = tp_item_body(&path);
pos_in_item = path.pos_in_item;
fs_gen = get_generation(inode->i_sb);
copy_item_head(&tmp_ih, ih);
if (allocation_needed
(retval, allocated_block_nr, ih, item, pos_in_item)) {
/* we have to allocate block for the unformatted node */
if (!th) {
pathrelse(&path);
goto start_trans;
}
repeat =
_allocate_block(th, block, inode, &allocated_block_nr,
&path, create);
/*
* restart the transaction to give the journal a chance to free
* some blocks. releases the path, so we have to go back to
* research if we succeed on the second try
*/
if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
retval = restart_transaction(th, inode, &path);
if (retval)
goto failure;
repeat =
_allocate_block(th, block, inode,
&allocated_block_nr, NULL, create);
if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
goto research;
}
if (repeat == QUOTA_EXCEEDED)
retval = -EDQUOT;
else
retval = -ENOSPC;
goto failure;
}
if (fs_changed(fs_gen, inode->i_sb)
&& item_moved(&tmp_ih, &path)) {
goto research;
}
}
if (indirect_item_found(retval, ih)) {
b_blocknr_t unfm_ptr;
/*
* 'block'-th block is in the file already (there is
* corresponding cell in some indirect item). But it may be
* zero unformatted node pointer (hole)
*/
unfm_ptr = get_block_num(item, pos_in_item);
if (unfm_ptr == 0) {
/* use allocated block to plug the hole */
reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
if (fs_changed(fs_gen, inode->i_sb)
&& item_moved(&tmp_ih, &path)) {
reiserfs_restore_prepared_buffer(inode->i_sb,
bh);
goto research;
}
set_buffer_new(bh_result);
if (buffer_dirty(bh_result)
&& reiserfs_data_ordered(inode->i_sb))
reiserfs_add_ordered_list(inode, bh_result);
put_block_num(item, pos_in_item, allocated_block_nr);
unfm_ptr = allocated_block_nr;
journal_mark_dirty(th, bh);
reiserfs_update_sd(th, inode);
}
set_block_dev_mapped(bh_result, unfm_ptr, inode);
pathrelse(&path);
retval = 0;
if (!dangle && th)
retval = reiserfs_end_persistent_transaction(th);
reiserfs_write_unlock(inode->i_sb);
/*
* the item was found, so new blocks were not added to the file
* there is no need to make sure the inode is updated with this
* transaction
*/
return retval;
}
if (!th) {
pathrelse(&path);
goto start_trans;
}
/*
* desired position is not found or is in the direct item. We have
* to append file with holes up to 'block'-th block converting
* direct items to indirect one if necessary
*/
done = 0;
do {
if (is_statdata_le_ih(ih)) {
__le32 unp = 0;
struct cpu_key tmp_key;
/* indirect item has to be inserted */
make_le_item_head(&tmp_ih, &key, version, 1,
TYPE_INDIRECT, UNFM_P_SIZE,
0 /* free_space */ );
/*
* we are going to add 'block'-th block to the file.
* Use allocated block for that
*/
if (cpu_key_k_offset(&key) == 1) {
unp = cpu_to_le32(allocated_block_nr);
set_block_dev_mapped(bh_result,
allocated_block_nr, inode);
set_buffer_new(bh_result);
done = 1;
}
tmp_key = key; /* ;) */
set_cpu_key_k_offset(&tmp_key, 1);
PATH_LAST_POSITION(&path)++;
retval =
reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
inode, (char *)&unp);
if (retval) {
reiserfs_free_block(th, inode,
allocated_block_nr, 1);
/*
* retval == -ENOSPC, -EDQUOT or -EIO
* or -EEXIST
*/
goto failure;
}
} else if (is_direct_le_ih(ih)) {
/* direct item has to be converted */
loff_t tail_offset;
tail_offset =
((le_ih_k_offset(ih) -
1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
/*
* direct item we just found fits into block we have
* to map. Convert it into unformatted node: use
* bh_result for the conversion
*/
if (tail_offset == cpu_key_k_offset(&key)) {
set_block_dev_mapped(bh_result,
allocated_block_nr, inode);
unbh = bh_result;
done = 1;
} else {
/*
* we have to pad file tail stored in direct
* item(s) up to block size and convert it
* to unformatted node. FIXME: this should
* also get into page cache
*/
pathrelse(&path);
/*
* ugly, but we can only end the transaction if
* we aren't nested
*/
BUG_ON(!th->t_refcount);
if (th->t_refcount == 1) {
retval =
reiserfs_end_persistent_transaction
(th);
th = NULL;
if (retval)
goto failure;
}
retval =
convert_tail_for_hole(inode, bh_result,
tail_offset);
if (retval) {
if (retval != -ENOSPC)
reiserfs_error(inode->i_sb,
"clm-6004",
"convert tail failed "
"inode %lu, error %d",
inode->i_ino,
retval);
if (allocated_block_nr) {
/*
* the bitmap, the super,
* and the stat data == 3
*/
if (!th)
th = reiserfs_persistent_transaction(inode->i_sb, 3);
if (th)
reiserfs_free_block(th,
inode,
allocated_block_nr,
1);
}
goto failure;
}
goto research;
}
retval =
direct2indirect(th, inode, &path, unbh,
tail_offset);
if (retval) {
reiserfs_unmap_buffer(unbh);
reiserfs_free_block(th, inode,
allocated_block_nr, 1);
goto failure;
}
/*
* it is important the set_buffer_uptodate is done
* after the direct2indirect. The buffer might
* contain valid data newer than the data on disk
* (read by readpage, changed, and then sent here by
* writepage). direct2indirect needs to know if unbh
* was already up to date, so it can decide if the
* data in unbh needs to be replaced with data from
* the disk
*/
set_buffer_uptodate(unbh);
/*
* unbh->b_page == NULL in case of DIRECT_IO request,
* this means buffer will disappear shortly, so it
* should not be added to
*/
if (unbh->b_page) {
/*
* we've converted the tail, so we must
* flush unbh before the transaction commits
*/
reiserfs_add_tail_list(inode, unbh);
/*
* mark it dirty now to prevent commit_write
* from adding this buffer to the inode's
* dirty buffer list
*/
/*
* AKPM: changed __mark_buffer_dirty to
* mark_buffer_dirty(). It's still atomic,
* but it sets the page dirty too, which makes
* it eligible for writeback at any time by the
* VM (which was also the case with
* __mark_buffer_dirty())
*/
mark_buffer_dirty(unbh);
}
} else {
/*
* append indirect item with holes if needed, when
* appending pointer to 'block'-th block use block,
* which is already allocated
*/
struct cpu_key tmp_key;
/*
* We use this in case we need to allocate
* only one block which is a fastpath
*/
unp_t unf_single = 0;
unp_t *un;
__u64 max_to_insert =
MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
UNFM_P_SIZE;
__u64 blocks_needed;
RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
"vs-804: invalid position for append");
/*
* indirect item has to be appended,
* set up key of that position
* (key type is unimportant)
*/
make_cpu_key(&tmp_key, inode,
le_key_k_offset(version,
&ih->ih_key) +
op_bytes_number(ih,
inode->i_sb->s_blocksize),
TYPE_INDIRECT, 3);
RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
"green-805: invalid offset");
blocks_needed =
1 +
((cpu_key_k_offset(&key) -
cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
s_blocksize_bits);
if (blocks_needed == 1) {
un = &unf_single;
} else {
un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
if (!un) {
un = &unf_single;
blocks_needed = 1;
max_to_insert = 0;
}
}
if (blocks_needed <= max_to_insert) {
/*
* we are going to add target block to
* the file. Use allocated block for that
*/
un[blocks_needed - 1] =
cpu_to_le32(allocated_block_nr);
set_block_dev_mapped(bh_result,
allocated_block_nr, inode);
set_buffer_new(bh_result);
done = 1;
} else {
/* paste hole to the indirect item */
/*
* If kmalloc failed, max_to_insert becomes
* zero and it means we only have space for
* one block
*/
blocks_needed =
max_to_insert ? max_to_insert : 1;
}
retval =
reiserfs_paste_into_item(th, &path, &tmp_key, inode,
(char *)un,
UNFM_P_SIZE *
blocks_needed);
if (blocks_needed != 1)
kfree(un);
if (retval) {
reiserfs_free_block(th, inode,
allocated_block_nr, 1);
goto failure;
}
if (!done) {
/*
* We need to mark new file size in case
* this function will be interrupted/aborted
* later on. And we may do this only for
* holes.
*/
inode->i_size +=
inode->i_sb->s_blocksize * blocks_needed;
}
}
if (done == 1)
break;
/*
* this loop could log more blocks than we had originally
* asked for. So, we have to allow the transaction to end
* if it is too big or too full. Update the inode so things
* are consistent if we crash before the function returns
* release the path so that anybody waiting on the path before
* ending their transaction will be able to continue.
*/
if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
retval = restart_transaction(th, inode, &path);
if (retval)
goto failure;
}
/*
* inserting indirect pointers for a hole can take a
* long time. reschedule if needed and also release the write
* lock for others.
*/
reiserfs_cond_resched(inode->i_sb);
retval = search_for_position_by_key(inode->i_sb, &key, &path);
if (retval == IO_ERROR) {
retval = -EIO;
goto failure;
}
if (retval == POSITION_FOUND) {
reiserfs_warning(inode->i_sb, "vs-825",
"%K should not be found", &key);
retval = -EEXIST;
if (allocated_block_nr)
reiserfs_free_block(th, inode,
allocated_block_nr, 1);
pathrelse(&path);
goto failure;
}
bh = get_last_bh(&path);
ih = tp_item_head(&path);
item = tp_item_body(&path);
pos_in_item = path.pos_in_item;
} while (1);
retval = 0;
failure:
if (th && (!dangle || (retval && !th->t_trans_id))) {
int err;
if (th->t_trans_id)
reiserfs_update_sd(th, inode);
err = reiserfs_end_persistent_transaction(th);
if (err)
retval = err;
}
reiserfs_write_unlock(inode->i_sb);
reiserfs_check_path(&path);
return retval;
}
static int
reiserfs_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
}
/*
* Compute real number of used bytes by file
* Following three functions can go away when we'll have enough space in
* stat item
*/
static int real_space_diff(struct inode *inode, int sd_size)
{
int bytes;
loff_t blocksize = inode->i_sb->s_blocksize;
if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
return sd_size;
/*
* End of file is also in full block with indirect reference, so round
* up to the next block.
*
* there is just no way to know if the tail is actually packed
* on the file, so we have to assume it isn't. When we pack the
* tail, we add 4 bytes to pretend there really is an unformatted
* node pointer
*/
bytes =
((inode->i_size +
(blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
sd_size;
return bytes;
}
static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
int sd_size)
{
if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
return inode->i_size +
(loff_t) (real_space_diff(inode, sd_size));
}
return ((loff_t) real_space_diff(inode, sd_size)) +
(((loff_t) blocks) << 9);
}
/* Compute number of blocks used by file in ReiserFS counting */
static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
{
loff_t bytes = inode_get_bytes(inode);
loff_t real_space = real_space_diff(inode, sd_size);
/* keeps fsck and non-quota versions of reiserfs happy */
if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
bytes += (loff_t) 511;
}
/*
* files from before the quota patch might i_blocks such that
* bytes < real_space. Deal with that here to prevent it from
* going negative.
*/
if (bytes < real_space)
return 0;
return (bytes - real_space) >> 9;
}
/*
* BAD: new directories have stat data of new type and all other items
* of old type. Version stored in the inode says about body items, so
* in update_stat_data we can not rely on inode, but have to check
* item version directly
*/
/* called by read_locked_inode */
static void init_inode(struct inode *inode, struct treepath *path)
{
struct buffer_head *bh;
struct item_head *ih;
__u32 rdev;
bh = PATH_PLAST_BUFFER(path);
ih = tp_item_head(path);
copy_key(INODE_PKEY(inode), &ih->ih_key);
INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
REISERFS_I(inode)->i_flags = 0;
REISERFS_I(inode)->i_prealloc_block = 0;
REISERFS_I(inode)->i_prealloc_count = 0;
REISERFS_I(inode)->i_trans_id = 0;
REISERFS_I(inode)->i_jl = NULL;
reiserfs_init_xattr_rwsem(inode);
if (stat_data_v1(ih)) {
struct stat_data_v1 *sd =
(struct stat_data_v1 *)ih_item_body(bh, ih);
unsigned long blocks;
set_inode_item_key_version(inode, KEY_FORMAT_3_5);
set_inode_sd_version(inode, STAT_DATA_V1);
inode->i_mode = sd_v1_mode(sd);
set_nlink(inode, sd_v1_nlink(sd));
i_uid_write(inode, sd_v1_uid(sd));
i_gid_write(inode, sd_v1_gid(sd));
inode->i_size = sd_v1_size(sd);
inode->i_atime.tv_sec = sd_v1_atime(sd);
inode->i_mtime.tv_sec = sd_v1_mtime(sd);
inode->i_ctime.tv_sec = sd_v1_ctime(sd);
inode->i_atime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
inode->i_mtime.tv_nsec = 0;
inode->i_blocks = sd_v1_blocks(sd);
inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
blocks = (inode->i_size + 511) >> 9;
blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
/*
* there was a bug in <=3.5.23 when i_blocks could take
* negative values. Starting from 3.5.17 this value could
* even be stored in stat data. For such files we set
* i_blocks based on file size. Just 2 notes: this can be
* wrong for sparse files. On-disk value will be only
* updated if file's inode will ever change
*/
if (inode->i_blocks > blocks) {
inode->i_blocks = blocks;
}
rdev = sd_v1_rdev(sd);
REISERFS_I(inode)->i_first_direct_byte =
sd_v1_first_direct_byte(sd);
/*
* an early bug in the quota code can give us an odd
* number for the block count. This is incorrect, fix it here.
*/
if (inode->i_blocks & 1) {
inode->i_blocks++;
}
inode_set_bytes(inode,
to_real_used_space(inode, inode->i_blocks,
SD_V1_SIZE));
/*
* nopack is initially zero for v1 objects. For v2 objects,
* nopack is initialised from sd_attrs
*/
REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
} else {
/*
* new stat data found, but object may have old items
* (directories and symlinks)
*/
struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
inode->i_mode = sd_v2_mode(sd);
set_nlink(inode, sd_v2_nlink(sd));
i_uid_write(inode, sd_v2_uid(sd));
inode->i_size = sd_v2_size(sd);
i_gid_write(inode, sd_v2_gid(sd));
inode->i_mtime.tv_sec = sd_v2_mtime(sd);
inode->i_atime.tv_sec = sd_v2_atime(sd);
inode->i_ctime.tv_sec = sd_v2_ctime(sd);
inode->i_ctime.tv_nsec = 0;
inode->i_mtime.tv_nsec = 0;
inode->i_atime.tv_nsec = 0;
inode->i_blocks = sd_v2_blocks(sd);
rdev = sd_v2_rdev(sd);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
inode->i_generation =
le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
else
inode->i_generation = sd_v2_generation(sd);
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
set_inode_item_key_version(inode, KEY_FORMAT_3_5);
else
set_inode_item_key_version(inode, KEY_FORMAT_3_6);
REISERFS_I(inode)->i_first_direct_byte = 0;
set_inode_sd_version(inode, STAT_DATA_V2);
inode_set_bytes(inode,
to_real_used_space(inode, inode->i_blocks,
SD_V2_SIZE));
/*
* read persistent inode attributes from sd and initialise
* generic inode flags from them
*/
REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
}
pathrelse(path);
if (S_ISREG(inode->i_mode)) {
inode->i_op = &reiserfs_file_inode_operations;
inode->i_fop = &reiserfs_file_operations;
inode->i_mapping->a_ops = &reiserfs_address_space_operations;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &reiserfs_dir_inode_operations;
inode->i_fop = &reiserfs_dir_operations;
} else if (S_ISLNK(inode->i_mode)) {
inode->i_op = &reiserfs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &reiserfs_address_space_operations;
} else {
inode->i_blocks = 0;
inode->i_op = &reiserfs_special_inode_operations;
init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
}
}
/* update new stat data with inode fields */
static void inode2sd(void *sd, struct inode *inode, loff_t size)
{
struct stat_data *sd_v2 = (struct stat_data *)sd;
__u16 flags;
set_sd_v2_mode(sd_v2, inode->i_mode);
set_sd_v2_nlink(sd_v2, inode->i_nlink);
set_sd_v2_uid(sd_v2, i_uid_read(inode));
set_sd_v2_size(sd_v2, size);
set_sd_v2_gid(sd_v2, i_gid_read(inode));
set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
else
set_sd_v2_generation(sd_v2, inode->i_generation);
flags = REISERFS_I(inode)->i_attrs;
i_attrs_to_sd_attrs(inode, &flags);
set_sd_v2_attrs(sd_v2, flags);
}
/* used to copy inode's fields to old stat data */
static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
{
struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
set_sd_v1_mode(sd_v1, inode->i_mode);
set_sd_v1_uid(sd_v1, i_uid_read(inode));
set_sd_v1_gid(sd_v1, i_gid_read(inode));
set_sd_v1_nlink(sd_v1, inode->i_nlink);
set_sd_v1_size(sd_v1, size);
set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
else
set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
/* Sigh. i_first_direct_byte is back */
set_sd_v1_first_direct_byte(sd_v1,
REISERFS_I(inode)->i_first_direct_byte);
}
/*
* NOTE, you must prepare the buffer head before sending it here,
* and then log it after the call
*/
static void update_stat_data(struct treepath *path, struct inode *inode,
loff_t size)
{
struct buffer_head *bh;
struct item_head *ih;
bh = PATH_PLAST_BUFFER(path);
ih = tp_item_head(path);
if (!is_statdata_le_ih(ih))
reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
INODE_PKEY(inode), ih);
/* path points to old stat data */
if (stat_data_v1(ih)) {
inode2sd_v1(ih_item_body(bh, ih), inode, size);
} else {
inode2sd(ih_item_body(bh, ih), inode, size);
}
return;
}
void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
struct inode *inode, loff_t size)
{
struct cpu_key key;
INITIALIZE_PATH(path);
struct buffer_head *bh;
int fs_gen;
struct item_head *ih, tmp_ih;
int retval;
BUG_ON(!th->t_trans_id);
/* key type is unimportant */
make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
for (;;) {
int pos;
/* look for the object's stat data */
retval = search_item(inode->i_sb, &key, &path);
if (retval == IO_ERROR) {
reiserfs_error(inode->i_sb, "vs-13050",
"i/o failure occurred trying to "
"update %K stat data", &key);
return;
}
if (retval == ITEM_NOT_FOUND) {
pos = PATH_LAST_POSITION(&path);
pathrelse(&path);
if (inode->i_nlink == 0) {
/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
return;
}
reiserfs_warning(inode->i_sb, "vs-13060",
"stat data of object %k (nlink == %d) "
"not found (pos %d)",
INODE_PKEY(inode), inode->i_nlink,
pos);
reiserfs_check_path(&path);
return;
}
/*
* sigh, prepare_for_journal might schedule. When it
* schedules the FS might change. We have to detect that,
* and loop back to the search if the stat data item has moved
*/
bh = get_last_bh(&path);
ih = tp_item_head(&path);
copy_item_head(&tmp_ih, ih);
fs_gen = get_generation(inode->i_sb);
reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
/* Stat_data item has been moved after scheduling. */
if (fs_changed(fs_gen, inode->i_sb)
&& item_moved(&tmp_ih, &path)) {
reiserfs_restore_prepared_buffer(inode->i_sb, bh);
continue;
}
break;
}
update_stat_data(&path, inode, size);
journal_mark_dirty(th, bh);
pathrelse(&path);
return;
}
/*
* reiserfs_read_locked_inode is called to read the inode off disk, and it
* does a make_bad_inode when things go wrong. But, we need to make sure
* and clear the key in the private portion of the inode, otherwise a
* corresponding iput might try to delete whatever object the inode last
* represented.
*/
static void reiserfs_make_bad_inode(struct inode *inode)
{
memset(INODE_PKEY(inode), 0, KEY_SIZE);
make_bad_inode(inode);
}
/*
* initially this function was derived from minix or ext2's analog and
* evolved as the prototype did
*/
int reiserfs_init_locked_inode(struct inode *inode, void *p)
{
struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
inode->i_ino = args->objectid;
INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
return 0;
}
/*
* looks for stat data in the tree, and fills up the fields of in-core
* inode stat data fields
*/
void reiserfs_read_locked_inode(struct inode *inode,
struct reiserfs_iget_args *args)
{
INITIALIZE_PATH(path_to_sd);
struct cpu_key key;
unsigned long dirino;
int retval;
dirino = args->dirid;
/*
* set version 1, version 2 could be used too, because stat data
* key is the same in both versions
*/
key.version = KEY_FORMAT_3_5;
key.on_disk_key.k_dir_id = dirino;
key.on_disk_key.k_objectid = inode->i_ino;
key.on_disk_key.k_offset = 0;
key.on_disk_key.k_type = 0;
/* look for the object's stat data */
retval = search_item(inode->i_sb, &key, &path_to_sd);
if (retval == IO_ERROR) {
reiserfs_error(inode->i_sb, "vs-13070",
"i/o failure occurred trying to find "
"stat data of %K", &key);
reiserfs_make_bad_inode(inode);
return;
}
/* a stale NFS handle can trigger this without it being an error */
if (retval != ITEM_FOUND) {
pathrelse(&path_to_sd);
reiserfs_make_bad_inode(inode);
clear_nlink(inode);
return;
}
init_inode(inode, &path_to_sd);
/*
* It is possible that knfsd is trying to access inode of a file
* that is being removed from the disk by some other thread. As we
* update sd on unlink all that is required is to check for nlink
* here. This bug was first found by Sizif when debugging
* SquidNG/Butterfly, forgotten, and found again after Philippe
* Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
* More logical fix would require changes in fs/inode.c:iput() to
* remove inode from hash-table _after_ fs cleaned disk stuff up and
* in iget() to return NULL if I_FREEING inode is found in
* hash-table.
*/
/*
* Currently there is one place where it's ok to meet inode with
* nlink==0: processing of open-unlinked and half-truncated files
* during mount (fs/reiserfs/super.c:finish_unfinished()).
*/
if ((inode->i_nlink == 0) &&
!REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
reiserfs_warning(inode->i_sb, "vs-13075",
"dead inode read from disk %K. "
"This is likely to be race with knfsd. Ignore",
&key);
reiserfs_make_bad_inode(inode);
}
/* init inode should be relsing */
reiserfs_check_path(&path_to_sd);
/*
* Stat data v1 doesn't support ACLs.
*/
if (get_inode_sd_version(inode) == STAT_DATA_V1)
cache_no_acl(inode);
}
/*
* reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
*
* @inode: inode from hash table to check
* @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
*
* This function is called by iget5_locked() to distinguish reiserfs inodes
* having the same inode numbers. Such inodes can only exist due to some
* error condition. One of them should be bad. Inodes with identical
* inode numbers (objectids) are distinguished by parent directory ids.
*
*/
int reiserfs_find_actor(struct inode *inode, void *opaque)
{
struct reiserfs_iget_args *args;
args = opaque;
/* args is already in CPU order */
return (inode->i_ino == args->objectid) &&
(le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
}
struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
{
struct inode *inode;
struct reiserfs_iget_args args;
int depth;
args.objectid = key->on_disk_key.k_objectid;
args.dirid = key->on_disk_key.k_dir_id;
depth = reiserfs_write_unlock_nested(s);
inode = iget5_locked(s, key->on_disk_key.k_objectid,
reiserfs_find_actor, reiserfs_init_locked_inode,
(void *)(&args));
reiserfs_write_lock_nested(s, depth);
if (!inode)
return ERR_PTR(-ENOMEM);
if (inode->i_state & I_NEW) {
reiserfs_read_locked_inode(inode, &args);
unlock_new_inode(inode);
}
if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
/* either due to i/o error or a stale NFS handle */
iput(inode);
inode = NULL;
}
return inode;
}
static struct dentry *reiserfs_get_dentry(struct super_block *sb,
u32 objectid, u32 dir_id, u32 generation)
{
struct cpu_key key;
struct inode *inode;
key.on_disk_key.k_objectid = objectid;
key.on_disk_key.k_dir_id = dir_id;
reiserfs_write_lock(sb);
inode = reiserfs_iget(sb, &key);
if (inode && !IS_ERR(inode) && generation != 0 &&
generation != inode->i_generation) {
iput(inode);
inode = NULL;
}
reiserfs_write_unlock(sb);
return d_obtain_alias(inode);
}
struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
/*
* fhtype happens to reflect the number of u32s encoded.
* due to a bug in earlier code, fhtype might indicate there
* are more u32s then actually fitted.
* so if fhtype seems to be more than len, reduce fhtype.
* Valid types are:
* 2 - objectid + dir_id - legacy support
* 3 - objectid + dir_id + generation
* 4 - objectid + dir_id + objectid and dirid of parent - legacy
* 5 - objectid + dir_id + generation + objectid and dirid of parent
* 6 - as above plus generation of directory
* 6 does not fit in NFSv2 handles
*/
if (fh_type > fh_len) {
if (fh_type != 6 || fh_len != 5)
reiserfs_warning(sb, "reiserfs-13077",
"nfsd/reiserfs, fhtype=%d, len=%d - odd",
fh_type, fh_len);
fh_type = fh_len;
}
if (fh_len < 2)
return NULL;
return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
}
struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
if (fh_type > fh_len)
fh_type = fh_len;
if (fh_type < 4)
return NULL;
return reiserfs_get_dentry(sb,
(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
(fh_type == 6) ? fid->raw[5] : 0);
}
int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
struct inode *parent)
{
int maxlen = *lenp;
if (parent && (maxlen < 5)) {
*lenp = 5;
return FILEID_INVALID;
} else if (maxlen < 3) {
*lenp = 3;
return FILEID_INVALID;
}
data[0] = inode->i_ino;
data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
data[2] = inode->i_generation;
*lenp = 3;
if (parent) {
data[3] = parent->i_ino;
data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
*lenp = 5;
if (maxlen >= 6) {
data[5] = parent->i_generation;
*lenp = 6;
}
}
return *lenp;
}
/*
* looks for stat data, then copies fields to it, marks the buffer
* containing stat data as dirty
*/
/*
* reiserfs inodes are never really dirty, since the dirty inode call
* always logs them. This call allows the VFS inode marking routines
* to properly mark inodes for datasync and such, but only actually
* does something when called for a synchronous update.
*/
int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct reiserfs_transaction_handle th;
int jbegin_count = 1;
if (inode->i_sb->s_flags & MS_RDONLY)
return -EROFS;
/*
* memory pressure can sometimes initiate write_inode calls with
* sync == 1,
* these cases are just when the system needs ram, not when the
* inode needs to reach disk for safety, and they can safely be
* ignored because the altered inode has already been logged.
*/
if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
reiserfs_write_lock(inode->i_sb);
if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
reiserfs_update_sd(&th, inode);
journal_end_sync(&th);
}
reiserfs_write_unlock(inode->i_sb);
}
return 0;
}
/*
* stat data of new object is inserted already, this inserts the item
* containing "." and ".." entries
*/
static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
struct inode *inode,
struct item_head *ih, struct treepath *path,
struct inode *dir)
{
struct super_block *sb = th->t_super;
char empty_dir[EMPTY_DIR_SIZE];
char *body = empty_dir;
struct cpu_key key;
int retval;
BUG_ON(!th->t_trans_id);
_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
TYPE_DIRENTRY, 3 /*key length */ );
/*
* compose item head for new item. Directories consist of items of
* old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
* is done by reiserfs_new_inode
*/
if (old_format_only(sb)) {
make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
ih->ih_key.k_objectid,
INODE_PKEY(dir)->k_dir_id,
INODE_PKEY(dir)->k_objectid);
} else {
make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
make_empty_dir_item(body, ih->ih_key.k_dir_id,
ih->ih_key.k_objectid,
INODE_PKEY(dir)->k_dir_id,
INODE_PKEY(dir)->k_objectid);
}
/* look for place in the tree for new item */
retval = search_item(sb, &key, path);
if (retval == IO_ERROR) {
reiserfs_error(sb, "vs-13080",
"i/o failure occurred creating new directory");
return -EIO;
}
if (retval == ITEM_FOUND) {
pathrelse(path);
reiserfs_warning(sb, "vs-13070",
"object with this key exists (%k)",
&(ih->ih_key));
return -EEXIST;
}
/* insert item, that is empty directory item */
return reiserfs_insert_item(th, path, &key, ih, inode, body);
}
/*
* stat data of object has been inserted, this inserts the item
* containing the body of symlink
*/
static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
struct inode *inode,
struct item_head *ih,
struct treepath *path, const char *symname,
int item_len)
{
struct super_block *sb = th->t_super;
struct cpu_key key;
int retval;
BUG_ON(!th->t_trans_id);
_make_cpu_key(&key, KEY_FORMAT_3_5,
le32_to_cpu(ih->ih_key.k_dir_id),
le32_to_cpu(ih->ih_key.k_objectid),
1, TYPE_DIRECT, 3 /*key length */ );
make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
0 /*free_space */ );
/* look for place in the tree for new item */
retval = search_item(sb, &key, path);
if (retval == IO_ERROR) {
reiserfs_error(sb, "vs-13080",
"i/o failure occurred creating new symlink");
return -EIO;
}
if (retval == ITEM_FOUND) {
pathrelse(path);
reiserfs_warning(sb, "vs-13080",
"object with this key exists (%k)",
&(ih->ih_key));
return -EEXIST;
}
/* insert item, that is body of symlink */
return reiserfs_insert_item(th, path, &key, ih, inode, symname);
}
/*
* inserts the stat data into the tree, and then calls
* reiserfs_new_directory (to insert ".", ".." item if new object is
* directory) or reiserfs_new_symlink (to insert symlink body if new
* object is symlink) or nothing (if new object is regular file)
* NOTE! uid and gid must already be set in the inode. If we return
* non-zero due to an error, we have to drop the quota previously allocated
* for the fresh inode. This can only be done outside a transaction, so
* if we return non-zero, we also end the transaction.
*
* @th: active transaction handle
* @dir: parent directory for new inode
* @mode: mode of new inode
* @symname: symlink contents if inode is symlink
* @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
* symlinks
* @inode: inode to be filled
* @security: optional security context to associate with this inode
*/
int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
struct inode *dir, umode_t mode, const char *symname,
/* 0 for regular, EMTRY_DIR_SIZE for dirs,
strlen (symname) for symlinks) */
loff_t i_size, struct dentry *dentry,
struct inode *inode,
struct reiserfs_security_handle *security)
{
struct super_block *sb = dir->i_sb;
struct reiserfs_iget_args args;
INITIALIZE_PATH(path_to_key);
struct cpu_key key;
struct item_head ih;
struct stat_data sd;
int retval;
int err;
int depth;
BUG_ON(!th->t_trans_id);
depth = reiserfs_write_unlock_nested(sb);
err = dquot_alloc_inode(inode);
reiserfs_write_lock_nested(sb, depth);
if (err)
goto out_end_trans;
if (!dir->i_nlink) {
err = -EPERM;
goto out_bad_inode;
}
/* item head of new item */
ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
if (!ih.ih_key.k_objectid) {
err = -ENOMEM;
goto out_bad_inode;
}
args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
if (old_format_only(sb))
make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
else
make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
depth = reiserfs_write_unlock_nested(inode->i_sb);
err = insert_inode_locked4(inode, args.objectid,
reiserfs_find_actor, &args);
reiserfs_write_lock_nested(inode->i_sb, depth);
if (err) {
err = -EINVAL;
goto out_bad_inode;
}
if (old_format_only(sb))
/*
* not a perfect generation count, as object ids can be reused,
* but this is as good as reiserfs can do right now.
* note that the private part of inode isn't filled in yet,
* we have to use the directory.
*/
inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
else
#if defined( USE_INODE_GENERATION_COUNTER )
inode->i_generation =
le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
#else
inode->i_generation = ++event;
#endif
/* fill stat data */
set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
/* uid and gid must already be set by the caller for quota init */
/* symlink cannot be immutable or append only, right? */
if (S_ISLNK(inode->i_mode))
inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
inode->i_size = i_size;
inode->i_blocks = 0;
inode->i_bytes = 0;
REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
REISERFS_I(inode)->i_flags = 0;
REISERFS_I(inode)->i_prealloc_block = 0;
REISERFS_I(inode)->i_prealloc_count = 0;
REISERFS_I(inode)->i_trans_id = 0;
REISERFS_I(inode)->i_jl = NULL;
REISERFS_I(inode)->i_attrs =
REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
reiserfs_init_xattr_rwsem(inode);
/* key to search for correct place for new stat data */
_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
TYPE_STAT_DATA, 3 /*key length */ );
/* find proper place for inserting of stat data */
retval = search_item(sb, &key, &path_to_key);
if (retval == IO_ERROR) {
err = -EIO;
goto out_bad_inode;
}
if (retval == ITEM_FOUND) {
pathrelse(&path_to_key);
err = -EEXIST;
goto out_bad_inode;
}
if (old_format_only(sb)) {
/* i_uid or i_gid is too big to be stored in stat data v3.5 */
if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
pathrelse(&path_to_key);
err = -EINVAL;
goto out_bad_inode;
}
inode2sd_v1(&sd, inode, inode->i_size);
} else {
inode2sd(&sd, inode, inode->i_size);
}
/*
* store in in-core inode the key of stat data and version all
* object items will have (directory items will have old offset
* format, other new objects will consist of new items)
*/
if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
set_inode_item_key_version(inode, KEY_FORMAT_3_5);
else
set_inode_item_key_version(inode, KEY_FORMAT_3_6);
if (old_format_only(sb))
set_inode_sd_version(inode, STAT_DATA_V1);
else
set_inode_sd_version(inode, STAT_DATA_V2);
/* insert the stat data into the tree */
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
if (REISERFS_I(dir)->new_packing_locality)
th->displace_new_blocks = 1;
#endif
retval =
reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
(char *)(&sd));
if (retval) {
err = retval;
reiserfs_check_path(&path_to_key);
goto out_bad_inode;
}
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
if (!th->displace_new_blocks)
REISERFS_I(dir)->new_packing_locality = 0;
#endif
if (S_ISDIR(mode)) {
/* insert item with "." and ".." */
retval =
reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
}
if (S_ISLNK(mode)) {
/* insert body of symlink */
if (!old_format_only(sb))
i_size = ROUND_UP(i_size);
retval =
reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
i_size);
}
if (retval) {
err = retval;
reiserfs_check_path(&path_to_key);
journal_end(th);
goto out_inserted_sd;
}
if (reiserfs_posixacl(inode->i_sb)) {
reiserfs_write_unlock(inode->i_sb);
retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
reiserfs_write_lock(inode->i_sb);
if (retval) {
err = retval;
reiserfs_check_path(&path_to_key);
journal_end(th);
goto out_inserted_sd;
}
} else if (inode->i_sb->s_flags & MS_POSIXACL) {
reiserfs_warning(inode->i_sb, "jdm-13090",
"ACLs aren't enabled in the fs, "
"but vfs thinks they are!");
} else if (IS_PRIVATE(dir))
inode->i_flags |= S_PRIVATE;
if (security->name) {
reiserfs_write_unlock(inode->i_sb);
retval = reiserfs_security_write(th, inode, security);
reiserfs_write_lock(inode->i_sb);
if (retval) {
err = retval;
reiserfs_check_path(&path_to_key);
retval = journal_end(th);
if (retval)
err = retval;
goto out_inserted_sd;
}
}
reiserfs_update_sd(th, inode);
reiserfs_check_path(&path_to_key);
return 0;
out_bad_inode:
/* Invalidate the object, nothing was inserted yet */
INODE_PKEY(inode)->k_objectid = 0;
/* Quota change must be inside a transaction for journaling */
depth = reiserfs_write_unlock_nested(inode->i_sb);
dquot_free_inode(inode);
reiserfs_write_lock_nested(inode->i_sb, depth);
out_end_trans:
journal_end(th);
/*
* Drop can be outside and it needs more credits so it's better
* to have it outside
*/
depth = reiserfs_write_unlock_nested(inode->i_sb);
dquot_drop(inode);
reiserfs_write_lock_nested(inode->i_sb, depth);
inode->i_flags |= S_NOQUOTA;
make_bad_inode(inode);
out_inserted_sd:
clear_nlink(inode);
th->t_trans_id = 0; /* so the caller can't use this handle later */
unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
iput(inode);
return err;
}
/*
* finds the tail page in the page cache,
* reads the last block in.
*
* On success, page_result is set to a locked, pinned page, and bh_result
* is set to an up to date buffer for the last block in the file. returns 0.
*
* tail conversion is not done, so bh_result might not be valid for writing
* check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
* trying to write the block.
*
* on failure, nonzero is returned, page_result and bh_result are untouched.
*/
static int grab_tail_page(struct inode *inode,
struct page **page_result,
struct buffer_head **bh_result)
{
/*
* we want the page with the last byte in the file,
* not the page that will hold the next byte for appending
*/
unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT;
unsigned long pos = 0;
unsigned long start = 0;
unsigned long blocksize = inode->i_sb->s_blocksize;
unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1);
struct buffer_head *bh;
struct buffer_head *head;
struct page *page;
int error;
/*
* we know that we are only called with inode->i_size > 0.
* we also know that a file tail can never be as big as a block
* If i_size % blocksize == 0, our file is currently block aligned
* and it won't need converting or zeroing after a truncate.
*/
if ((offset & (blocksize - 1)) == 0) {
return -ENOENT;
}
page = grab_cache_page(inode->i_mapping, index);
error = -ENOMEM;
if (!page) {
goto out;
}
/* start within the page of the last block in the file */
start = (offset / blocksize) * blocksize;
error = __block_write_begin(page, start, offset - start,
reiserfs_get_block_create_0);
if (error)
goto unlock;
head = page_buffers(page);
bh = head;
do {
if (pos >= start) {
break;
}
bh = bh->b_this_page;
pos += blocksize;
} while (bh != head);
if (!buffer_uptodate(bh)) {
/*
* note, this should never happen, prepare_write should be
* taking care of this for us. If the buffer isn't up to
* date, I've screwed up the code to find the buffer, or the
* code to call prepare_write
*/
reiserfs_error(inode->i_sb, "clm-6000",
"error reading block %lu", bh->b_blocknr);
error = -EIO;
goto unlock;
}
*bh_result = bh;
*page_result = page;
out:
return error;
unlock:
unlock_page(page);
put_page(page);
return error;
}
/*
* vfs version of truncate file. Must NOT be called with
* a transaction already started.
*
* some code taken from block_truncate_page
*/
int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
{
struct reiserfs_transaction_handle th;
/* we want the offset for the first byte after the end of the file */
unsigned long offset = inode->i_size & (PAGE_SIZE - 1);
unsigned blocksize = inode->i_sb->s_blocksize;
unsigned length;
struct page *page = NULL;
int error;
struct buffer_head *bh = NULL;
int err2;
reiserfs_write_lock(inode->i_sb);
if (inode->i_size > 0) {
error = grab_tail_page(inode, &page, &bh);
if (error) {
/*
* -ENOENT means we truncated past the end of the
* file, and get_block_create_0 could not find a
* block to read in, which is ok.
*/
if (error != -ENOENT)
reiserfs_error(inode->i_sb, "clm-6001",
"grab_tail_page failed %d",
error);
page = NULL;
bh = NULL;
}
}
/*
* so, if page != NULL, we have a buffer head for the offset at
* the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
* then we have an unformatted node. Otherwise, we have a direct item,
* and no zeroing is required on disk. We zero after the truncate,
* because the truncate might pack the item anyway
* (it will unmap bh if it packs).
*
* it is enough to reserve space in transaction for 2 balancings:
* one for "save" link adding and another for the first
* cut_from_item. 1 is for update_sd
*/
error = journal_begin(&th, inode->i_sb,
JOURNAL_PER_BALANCE_CNT * 2 + 1);
if (error)
goto out;
reiserfs_update_inode_transaction(inode);
if (update_timestamps)
/*
* we are doing real truncate: if the system crashes
* before the last transaction of truncating gets committed
* - on reboot the file either appears truncated properly
* or not truncated at all
*/
add_save_link(&th, inode, 1);
err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
error = journal_end(&th);
if (error)
goto out;
/* check reiserfs_do_truncate after ending the transaction */
if (err2) {
error = err2;
goto out;
}
if (update_timestamps) {
error = remove_save_link(inode, 1 /* truncate */);
if (error)
goto out;
}
if (page) {
length = offset & (blocksize - 1);
/* if we are not on a block boundary */
if (length) {
length = blocksize - length;
zero_user(page, offset, length);
if (buffer_mapped(bh) && bh->b_blocknr != 0) {
mark_buffer_dirty(bh);
}
}
unlock_page(page);
put_page(page);
}
reiserfs_write_unlock(inode->i_sb);
return 0;
out:
if (page) {
unlock_page(page);
put_page(page);
}
reiserfs_write_unlock(inode->i_sb);
return error;
}
static int map_block_for_writepage(struct inode *inode,
struct buffer_head *bh_result,
unsigned long block)
{
struct reiserfs_transaction_handle th;
int fs_gen;
struct item_head tmp_ih;
struct item_head *ih;
struct buffer_head *bh;
__le32 *item;
struct cpu_key key;
INITIALIZE_PATH(path);
int pos_in_item;
int jbegin_count = JOURNAL_PER_BALANCE_CNT;
loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
int retval;
int use_get_block = 0;
int bytes_copied = 0;
int copy_size;
int trans_running = 0;
/*
* catch places below that try to log something without
* starting a trans
*/
th.t_trans_id = 0;
if (!buffer_uptodate(bh_result)) {
return -EIO;
}
kmap(bh_result->b_page);
start_over:
reiserfs_write_lock(inode->i_sb);
make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
research:
retval = search_for_position_by_key(inode->i_sb, &key, &path);
if (retval != POSITION_FOUND) {
use_get_block = 1;
goto out;
}
bh = get_last_bh(&path);
ih = tp_item_head(&path);
item = tp_item_body(&path);
pos_in_item = path.pos_in_item;
/* we've found an unformatted node */
if (indirect_item_found(retval, ih)) {
if (bytes_copied > 0) {
reiserfs_warning(inode->i_sb, "clm-6002",
"bytes_copied %d", bytes_copied);
}
if (!get_block_num(item, pos_in_item)) {
/* crap, we are writing to a hole */
use_get_block = 1;
goto out;
}
set_block_dev_mapped(bh_result,
get_block_num(item, pos_in_item), inode);
} else if (is_direct_le_ih(ih)) {
char *p;
p = page_address(bh_result->b_page);
p += (byte_offset - 1) & (PAGE_SIZE - 1);
copy_size = ih_item_len(ih) - pos_in_item;
fs_gen = get_generation(inode->i_sb);
copy_item_head(&tmp_ih, ih);
if (!trans_running) {
/* vs-3050 is gone, no need to drop the path */
retval = journal_begin(&th, inode->i_sb, jbegin_count);
if (retval)
goto out;
reiserfs_update_inode_transaction(inode);
trans_running = 1;
if (fs_changed(fs_gen, inode->i_sb)
&& item_moved(&tmp_ih, &path)) {
reiserfs_restore_prepared_buffer(inode->i_sb,
bh);
goto research;
}
}
reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
if (fs_changed(fs_gen, inode->i_sb)
&& item_moved(&tmp_ih, &path)) {
reiserfs_restore_prepared_buffer(inode->i_sb, bh);
goto research;
}
memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
copy_size);
journal_mark_dirty(&th, bh);
bytes_copied += copy_size;
set_block_dev_mapped(bh_result, 0, inode);
/* are there still bytes left? */
if (bytes_copied < bh_result->b_size &&
(byte_offset + bytes_copied) < inode->i_size) {
set_cpu_key_k_offset(&key,
cpu_key_k_offset(&key) +
copy_size);
goto research;
}
} else {
reiserfs_warning(inode->i_sb, "clm-6003",
"bad item inode %lu", inode->i_ino);
retval = -EIO;
goto out;
}
retval = 0;
out:
pathrelse(&path);
if (trans_running) {
int err = journal_end(&th);
if (err)
retval = err;
trans_running = 0;
}
reiserfs_write_unlock(inode->i_sb);
/* this is where we fill in holes in the file. */
if (use_get_block) {
retval = reiserfs_get_block(inode, block, bh_result,
GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
| GET_BLOCK_NO_DANGLE);
if (!retval) {
if (!buffer_mapped(bh_result)
|| bh_result->b_blocknr == 0) {
/* get_block failed to find a mapped unformatted node. */
use_get_block = 0;
goto start_over;
}
}
}
kunmap(bh_result->b_page);
if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
/*
* we've copied data from the page into the direct item, so the
* buffer in the page is now clean, mark it to reflect that.
*/
lock_buffer(bh_result);
clear_buffer_dirty(bh_result);
unlock_buffer(bh_result);
}
return retval;
}
/*
* mason@suse.com: updated in 2.5.54 to follow the same general io
* start/recovery path as __block_write_full_page, along with special
* code to handle reiserfs tails.
*/
static int reiserfs_write_full_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
unsigned long end_index = inode->i_size >> PAGE_SHIFT;
int error = 0;
unsigned long block;
sector_t last_block;
struct buffer_head *head, *bh;
int partial = 0;
int nr = 0;
int checked = PageChecked(page);
struct reiserfs_transaction_handle th;
struct super_block *s = inode->i_sb;
int bh_per_page = PAGE_SIZE / s->s_blocksize;
th.t_trans_id = 0;
/* no logging allowed when nonblocking or from PF_MEMALLOC */
if (checked && (current->flags & PF_MEMALLOC)) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
/*
* The page dirty bit is cleared before writepage is called, which
* means we have to tell create_empty_buffers to make dirty buffers
* The page really should be up to date at this point, so tossing
* in the BH_Uptodate is just a sanity check.
*/
if (!page_has_buffers(page)) {
create_empty_buffers(page, s->s_blocksize,
(1 << BH_Dirty) | (1 << BH_Uptodate));
}
head = page_buffers(page);
/*
* last page in the file, zero out any contents past the
* last byte in the file
*/
if (page->index >= end_index) {
unsigned last_offset;
last_offset = inode->i_size & (PAGE_SIZE - 1);
/* no file contents in this page */
if (page->index >= end_index + 1 || !last_offset) {
unlock_page(page);
return 0;
}
zero_user_segment(page, last_offset, PAGE_SIZE);
}
bh = head;
block = page->index << (PAGE_SHIFT - s->s_blocksize_bits);
last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
/* first map all the buffers, logging any direct items we find */
do {
if (block > last_block) {
/*
* This can happen when the block size is less than
* the page size. The corresponding bytes in the page
* were zero filled above
*/
clear_buffer_dirty(bh);
set_buffer_uptodate(bh);
} else if ((checked || buffer_dirty(bh)) &&
(!buffer_mapped(bh) || (buffer_mapped(bh)
&& bh->b_blocknr ==
0))) {
/*
* not mapped yet, or it points to a direct item, search
* the btree for the mapping info, and log any direct
* items found
*/
if ((error = map_block_for_writepage(inode, bh, block))) {
goto fail;
}
}
bh = bh->b_this_page;
block++;
} while (bh != head);
/*
* we start the transaction after map_block_for_writepage,
* because it can create holes in the file (an unbounded operation).
* starting it here, we can make a reliable estimate for how many
* blocks we're going to log
*/
if (checked) {
ClearPageChecked(page);
reiserfs_write_lock(s);
error = journal_begin(&th, s, bh_per_page + 1);
if (error) {
reiserfs_write_unlock(s);
goto fail;
}
reiserfs_update_inode_transaction(inode);
}
/* now go through and lock any dirty buffers on the page */
do {
get_bh(bh);
if (!buffer_mapped(bh))
continue;
if (buffer_mapped(bh) && bh->b_blocknr == 0)
continue;
if (checked) {
reiserfs_prepare_for_journal(s, bh, 1);
journal_mark_dirty(&th, bh);
continue;
}
/*
* from this point on, we know the buffer is mapped to a
* real block and not a direct item
*/
if (wbc->sync_mode != WB_SYNC_NONE) {
lock_buffer(bh);
} else {
if (!trylock_buffer(bh)) {
redirty_page_for_writepage(wbc, page);
continue;
}
}
if (test_clear_buffer_dirty(bh)) {
mark_buffer_async_write(bh);
} else {
unlock_buffer(bh);
}
} while ((bh = bh->b_this_page) != head);
if (checked) {
error = journal_end(&th);
reiserfs_write_unlock(s);
if (error)
goto fail;
}
BUG_ON(PageWriteback(page));
set_page_writeback(page);
unlock_page(page);
/*
* since any buffer might be the only dirty buffer on the page,
* the first submit_bh can bring the page out of writeback.
* be careful with the buffers.
*/
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
submit_bh(REQ_OP_WRITE, 0, bh);
nr++;
}
put_bh(bh);
bh = next;
} while (bh != head);
error = 0;
done:
if (nr == 0) {
/*
* if this page only had a direct item, it is very possible for
* no io to be required without there being an error. Or,
* someone else could have locked them and sent them down the
* pipe without locking the page
*/
bh = head;
do {
if (!buffer_uptodate(bh)) {
partial = 1;
break;
}
bh = bh->b_this_page;
} while (bh != head);
if (!partial)
SetPageUptodate(page);
end_page_writeback(page);
}
return error;
fail:
/*
* catches various errors, we need to make sure any valid dirty blocks
* get to the media. The page is currently locked and not marked for
* writeback
*/
ClearPageUptodate(page);
bh = head;
do {
get_bh(bh);
if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
lock_buffer(bh);
mark_buffer_async_write(bh);
} else {
/*
* clear any dirty bits that might have come from
* getting attached to a dirty page
*/
clear_buffer_dirty(bh);
}
bh = bh->b_this_page;
} while (bh != head);
SetPageError(page);
BUG_ON(PageWriteback(page));
set_page_writeback(page);
unlock_page(page);
do {
struct buffer_head *next = bh->b_this_page;
if (buffer_async_write(bh)) {
clear_buffer_dirty(bh);
submit_bh(REQ_OP_WRITE, 0, bh);
nr++;
}
put_bh(bh);
bh = next;
} while (bh != head);
goto done;
}
static int reiserfs_readpage(struct file *f, struct page *page)
{
return block_read_full_page(page, reiserfs_get_block);
}
static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
reiserfs_wait_on_write_block(inode->i_sb);
return reiserfs_write_full_page(page, wbc);
}
static void reiserfs_truncate_failed_write(struct inode *inode)
{
truncate_inode_pages(inode->i_mapping, inode->i_size);
reiserfs_truncate_file(inode, 0);
}
static int reiserfs_write_begin(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode;
struct page *page;
pgoff_t index;
int ret;
int old_ref = 0;
inode = mapping->host;
*fsdata = NULL;
if (flags & AOP_FLAG_CONT_EXPAND &&
(pos & (inode->i_sb->s_blocksize - 1)) == 0) {
pos ++;
*fsdata = (void *)(unsigned long)flags;
}
index = pos >> PAGE_SHIFT;
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
*pagep = page;
reiserfs_wait_on_write_block(inode->i_sb);
fix_tail_page_for_writing(page);
if (reiserfs_transaction_running(inode->i_sb)) {
struct reiserfs_transaction_handle *th;
th = (struct reiserfs_transaction_handle *)current->
journal_info;
BUG_ON(!th->t_refcount);
BUG_ON(!th->t_trans_id);
old_ref = th->t_refcount;
th->t_refcount++;
}
ret = __block_write_begin(page, pos, len, reiserfs_get_block);
if (ret && reiserfs_transaction_running(inode->i_sb)) {
struct reiserfs_transaction_handle *th = current->journal_info;
/*
* this gets a little ugly. If reiserfs_get_block returned an
* error and left a transacstion running, we've got to close
* it, and we've got to free handle if it was a persistent
* transaction.
*
* But, if we had nested into an existing transaction, we need
* to just drop the ref count on the handle.
*
* If old_ref == 0, the transaction is from reiserfs_get_block,
* and it was a persistent trans. Otherwise, it was nested
* above.
*/
if (th->t_refcount > old_ref) {
if (old_ref)
th->t_refcount--;
else {
int err;
reiserfs_write_lock(inode->i_sb);
err = reiserfs_end_persistent_transaction(th);
reiserfs_write_unlock(inode->i_sb);
if (err)
ret = err;
}
}
}
if (ret) {
unlock_page(page);
put_page(page);
/* Truncate allocated blocks */
reiserfs_truncate_failed_write(inode);
}
return ret;
}
int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
{
struct inode *inode = page->mapping->host;
int ret;
int old_ref = 0;
int depth;
depth = reiserfs_write_unlock_nested(inode->i_sb);
reiserfs_wait_on_write_block(inode->i_sb);
reiserfs_write_lock_nested(inode->i_sb, depth);
fix_tail_page_for_writing(page);
if (reiserfs_transaction_running(inode->i_sb)) {
struct reiserfs_transaction_handle *th;
th = (struct reiserfs_transaction_handle *)current->
journal_info;
BUG_ON(!th->t_refcount);
BUG_ON(!th->t_trans_id);
old_ref = th->t_refcount;
th->t_refcount++;
}
ret = __block_write_begin(page, from, len, reiserfs_get_block);
if (ret && reiserfs_transaction_running(inode->i_sb)) {
struct reiserfs_transaction_handle *th = current->journal_info;
/*
* this gets a little ugly. If reiserfs_get_block returned an
* error and left a transacstion running, we've got to close
* it, and we've got to free handle if it was a persistent
* transaction.
*
* But, if we had nested into an existing transaction, we need
* to just drop the ref count on the handle.
*
* If old_ref == 0, the transaction is from reiserfs_get_block,
* and it was a persistent trans. Otherwise, it was nested
* above.
*/
if (th->t_refcount > old_ref) {
if (old_ref)
th->t_refcount--;
else {
int err;
reiserfs_write_lock(inode->i_sb);
err = reiserfs_end_persistent_transaction(th);
reiserfs_write_unlock(inode->i_sb);
if (err)
ret = err;
}
}
}
return ret;
}
static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
{
return generic_block_bmap(as, block, reiserfs_bmap);
}
static int reiserfs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = page->mapping->host;
int ret = 0;
int update_sd = 0;
struct reiserfs_transaction_handle *th;
unsigned start;
bool locked = false;
if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
pos ++;
reiserfs_wait_on_write_block(inode->i_sb);
if (reiserfs_transaction_running(inode->i_sb))
th = current->journal_info;
else
th = NULL;
start = pos & (PAGE_SIZE - 1);
if (unlikely(copied < len)) {
if (!PageUptodate(page))
copied = 0;
page_zero_new_buffers(page, start + copied, start + len);
}
flush_dcache_page(page);
reiserfs_commit_page(inode, page, start, start + copied);
/*
* generic_commit_write does this for us, but does not update the
* transaction tracking stuff when the size changes. So, we have
* to do the i_size updates here.
*/
if (pos + copied > inode->i_size) {
struct reiserfs_transaction_handle myth;
reiserfs_write_lock(inode->i_sb);
locked = true;
/*
* If the file have grown beyond the border where it
* can have a tail, unmark it as needing a tail
* packing
*/
if ((have_large_tails(inode->i_sb)
&& inode->i_size > i_block_size(inode) * 4)
|| (have_small_tails(inode->i_sb)
&& inode->i_size > i_block_size(inode)))
REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
ret = journal_begin(&myth, inode->i_sb, 1);
if (ret)
goto journal_error;
reiserfs_update_inode_transaction(inode);
inode->i_size = pos + copied;
/*
* this will just nest into our transaction. It's important
* to use mark_inode_dirty so the inode gets pushed around on
* the dirty lists, and so that O_SYNC works as expected
*/
mark_inode_dirty(inode);
reiserfs_update_sd(&myth, inode);
update_sd = 1;
ret = journal_end(&myth);
if (ret)
goto journal_error;
}
if (th) {
if (!locked) {
reiserfs_write_lock(inode->i_sb);
locked = true;
}
if (!update_sd)
mark_inode_dirty(inode);
ret = reiserfs_end_persistent_transaction(th);
if (ret)
goto out;
}
out:
if (locked)
reiserfs_write_unlock(inode->i_sb);
unlock_page(page);
put_page(page);
if (pos + len > inode->i_size)
reiserfs_truncate_failed_write(inode);
return ret == 0 ? copied : ret;
journal_error:
reiserfs_write_unlock(inode->i_sb);
locked = false;
if (th) {
if (!update_sd)
reiserfs_update_sd(th, inode);
ret = reiserfs_end_persistent_transaction(th);
}
goto out;
}
int reiserfs_commit_write(struct file *f, struct page *page,
unsigned from, unsigned to)
{
struct inode *inode = page->mapping->host;
loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to;
int ret = 0;
int update_sd = 0;
struct reiserfs_transaction_handle *th = NULL;
int depth;
depth = reiserfs_write_unlock_nested(inode->i_sb);
reiserfs_wait_on_write_block(inode->i_sb);
reiserfs_write_lock_nested(inode->i_sb, depth);
if (reiserfs_transaction_running(inode->i_sb)) {
th = current->journal_info;
}
reiserfs_commit_page(inode, page, from, to);
/*
* generic_commit_write does this for us, but does not update the
* transaction tracking stuff when the size changes. So, we have
* to do the i_size updates here.
*/
if (pos > inode->i_size) {
struct reiserfs_transaction_handle myth;
/*
* If the file have grown beyond the border where it
* can have a tail, unmark it as needing a tail
* packing
*/
if ((have_large_tails(inode->i_sb)
&& inode->i_size > i_block_size(inode) * 4)
|| (have_small_tails(inode->i_sb)
&& inode->i_size > i_block_size(inode)))
REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
ret = journal_begin(&myth, inode->i_sb, 1);
if (ret)
goto journal_error;
reiserfs_update_inode_transaction(inode);
inode->i_size = pos;
/*
* this will just nest into our transaction. It's important
* to use mark_inode_dirty so the inode gets pushed around
* on the dirty lists, and so that O_SYNC works as expected
*/
mark_inode_dirty(inode);
reiserfs_update_sd(&myth, inode);
update_sd = 1;
ret = journal_end(&myth);
if (ret)
goto journal_error;
}
if (th) {
if (!update_sd)
mark_inode_dirty(inode);
ret = reiserfs_end_persistent_transaction(th);
if (ret)
goto out;
}
out:
return ret;
journal_error:
if (th) {
if (!update_sd)
reiserfs_update_sd(th, inode);
ret = reiserfs_end_persistent_transaction(th);
}
return ret;
}
void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
{
if (reiserfs_attrs(inode->i_sb)) {
if (sd_attrs & REISERFS_SYNC_FL)
inode->i_flags |= S_SYNC;
else
inode->i_flags &= ~S_SYNC;
if (sd_attrs & REISERFS_IMMUTABLE_FL)
inode->i_flags |= S_IMMUTABLE;
else
inode->i_flags &= ~S_IMMUTABLE;
if (sd_attrs & REISERFS_APPEND_FL)
inode->i_flags |= S_APPEND;
else
inode->i_flags &= ~S_APPEND;
if (sd_attrs & REISERFS_NOATIME_FL)
inode->i_flags |= S_NOATIME;
else
inode->i_flags &= ~S_NOATIME;
if (sd_attrs & REISERFS_NOTAIL_FL)
REISERFS_I(inode)->i_flags |= i_nopack_mask;
else
REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
}
}
void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
{
if (reiserfs_attrs(inode->i_sb)) {
if (inode->i_flags & S_IMMUTABLE)
*sd_attrs |= REISERFS_IMMUTABLE_FL;
else
*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
if (inode->i_flags & S_SYNC)
*sd_attrs |= REISERFS_SYNC_FL;
else
*sd_attrs &= ~REISERFS_SYNC_FL;
if (inode->i_flags & S_NOATIME)
*sd_attrs |= REISERFS_NOATIME_FL;
else
*sd_attrs &= ~REISERFS_NOATIME_FL;
if (REISERFS_I(inode)->i_flags & i_nopack_mask)
*sd_attrs |= REISERFS_NOTAIL_FL;
else
*sd_attrs &= ~REISERFS_NOTAIL_FL;
}
}
/*
* decide if this buffer needs to stay around for data logging or ordered
* write purposes
*/
static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
{
int ret = 1;
struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
lock_buffer(bh);
spin_lock(&j->j_dirty_buffers_lock);
if (!buffer_mapped(bh)) {
goto free_jh;
}
/*
* the page is locked, and the only places that log a data buffer
* also lock the page.
*/
if (reiserfs_file_data_log(inode)) {
/*
* very conservative, leave the buffer pinned if
* anyone might need it.
*/
if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
ret = 0;
}
} else if (buffer_dirty(bh)) {
struct reiserfs_journal_list *jl;
struct reiserfs_jh *jh = bh->b_private;
/*
* why is this safe?
* reiserfs_setattr updates i_size in the on disk
* stat data before allowing vmtruncate to be called.
*
* If buffer was put onto the ordered list for this
* transaction, we know for sure either this transaction
* or an older one already has updated i_size on disk,
* and this ordered data won't be referenced in the file
* if we crash.
*
* if the buffer was put onto the ordered list for an older
* transaction, we need to leave it around
*/
if (jh && (jl = jh->jl)
&& jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
ret = 0;
}
free_jh:
if (ret && bh->b_private) {
reiserfs_free_jh(bh);
}
spin_unlock(&j->j_dirty_buffers_lock);
unlock_buffer(bh);
return ret;
}
/* clm -- taken from fs/buffer.c:block_invalidate_page */
static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct buffer_head *head, *bh, *next;
struct inode *inode = page->mapping->host;
unsigned int curr_off = 0;
unsigned int stop = offset + length;
int partial_page = (offset || length < PAGE_SIZE);
int ret = 1;
BUG_ON(!PageLocked(page));
if (!partial_page)
ClearPageChecked(page);
if (!page_has_buffers(page))
goto out;
head = page_buffers(page);
bh = head;
do {
unsigned int next_off = curr_off + bh->b_size;
next = bh->b_this_page;
if (next_off > stop)
goto out;
/*
* is this block fully invalidated?
*/
if (offset <= curr_off) {
if (invalidatepage_can_drop(inode, bh))
reiserfs_unmap_buffer(bh);
else
ret = 0;
}
curr_off = next_off;
bh = next;
} while (bh != head);
/*
* We release buffers only if the entire page is being invalidated.
* The get_block cached value has been unconditionally invalidated,
* so real IO is not possible anymore.
*/
if (!partial_page && ret) {
ret = try_to_release_page(page, 0);
/* maybe should BUG_ON(!ret); - neilb */
}
out:
return;
}
static int reiserfs_set_page_dirty(struct page *page)
{
struct inode *inode = page->mapping->host;
if (reiserfs_file_data_log(inode)) {
SetPageChecked(page);
return __set_page_dirty_nobuffers(page);
}
return __set_page_dirty_buffers(page);
}
/*
* Returns 1 if the page's buffers were dropped. The page is locked.
*
* Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
* in the buffers at page_buffers(page).
*
* even in -o notail mode, we can't be sure an old mount without -o notail
* didn't create files with tails.
*/
static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
{
struct inode *inode = page->mapping->host;
struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
struct buffer_head *head;
struct buffer_head *bh;
int ret = 1;
WARN_ON(PageChecked(page));
spin_lock(&j->j_dirty_buffers_lock);
head = page_buffers(page);
bh = head;
do {
if (bh->b_private) {
if (!buffer_dirty(bh) && !buffer_locked(bh)) {
reiserfs_free_jh(bh);
} else {
ret = 0;
break;
}
}
bh = bh->b_this_page;
} while (bh != head);
if (ret)
ret = try_to_free_buffers(page);
spin_unlock(&j->j_dirty_buffers_lock);
return ret;
}
/*
* We thank Mingming Cao for helping us understand in great detail what
* to do in this section of the code.
*/
static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
size_t count = iov_iter_count(iter);
ssize_t ret;
ret = blockdev_direct_IO(iocb, inode, iter,
reiserfs_get_blocks_direct_io);
/*
* In case of error extending write may have instantiated a few
* blocks outside i_size. Trim these off again.
*/
if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
loff_t isize = i_size_read(inode);
loff_t end = iocb->ki_pos + count;
if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
truncate_setsize(inode, isize);
reiserfs_vfs_truncate_file(inode);
}
}
return ret;
}
int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
unsigned int ia_valid;
int error;
error = setattr_prepare(dentry, attr);
if (error)
return error;
/* must be turned off for recursive notify_change calls */
ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
if (is_quota_modification(inode, attr)) {
error = dquot_initialize(inode);
if (error)
return error;
}
reiserfs_write_lock(inode->i_sb);
if (attr->ia_valid & ATTR_SIZE) {
/*
* version 2 items will be caught by the s_maxbytes check
* done for us in vmtruncate
*/
if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
attr->ia_size > MAX_NON_LFS) {
reiserfs_write_unlock(inode->i_sb);
error = -EFBIG;
goto out;
}
inode_dio_wait(inode);
/* fill in hole pointers in the expanding truncate case. */
if (attr->ia_size > inode->i_size) {
error = generic_cont_expand_simple(inode, attr->ia_size);
if (REISERFS_I(inode)->i_prealloc_count > 0) {
int err;
struct reiserfs_transaction_handle th;
/* we're changing at most 2 bitmaps, inode + super */
err = journal_begin(&th, inode->i_sb, 4);
if (!err) {
reiserfs_discard_prealloc(&th, inode);
err = journal_end(&th);
}
if (err)
error = err;
}
if (error) {
reiserfs_write_unlock(inode->i_sb);
goto out;
}
/*
* file size is changed, ctime and mtime are
* to be updated
*/
attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
}
}
reiserfs_write_unlock(inode->i_sb);
if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
(get_inode_sd_version(inode) == STAT_DATA_V1)) {
/* stat data of format v3.5 has 16 bit uid and gid */
error = -EINVAL;
goto out;
}
if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
(ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
struct reiserfs_transaction_handle th;
int jbegin_count =
2 *
(REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2;
error = reiserfs_chown_xattrs(inode, attr);
if (error)
return error;
/*
* (user+group)*(old+new) structure - we count quota
* info and , inode write (sb, inode)
*/
reiserfs_write_lock(inode->i_sb);
error = journal_begin(&th, inode->i_sb, jbegin_count);
reiserfs_write_unlock(inode->i_sb);
if (error)
goto out;
error = dquot_transfer(inode, attr);
reiserfs_write_lock(inode->i_sb);
if (error) {
journal_end(&th);
reiserfs_write_unlock(inode->i_sb);
goto out;
}
/*
* Update corresponding info in inode so that everything
* is in one transaction
*/
if (attr->ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (attr->ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
mark_inode_dirty(inode);
error = journal_end(&th);
reiserfs_write_unlock(inode->i_sb);
if (error)
goto out;
}
if ((attr->ia_valid & ATTR_SIZE) &&
attr->ia_size != i_size_read(inode)) {
error = inode_newsize_ok(inode, attr->ia_size);
if (!error) {
/*
* Could race against reiserfs_file_release
* if called from NFS, so take tailpack mutex.
*/
mutex_lock(&REISERFS_I(inode)->tailpack);
truncate_setsize(inode, attr->ia_size);
reiserfs_truncate_file(inode, 1);
mutex_unlock(&REISERFS_I(inode)->tailpack);
}
}
if (!error) {
setattr_copy(inode, attr);
mark_inode_dirty(inode);
}
if (!error && reiserfs_posixacl(inode->i_sb)) {
if (attr->ia_valid & ATTR_MODE)
error = reiserfs_acl_chmod(inode);
}
out:
return error;
}
const struct address_space_operations reiserfs_address_space_operations = {
.writepage = reiserfs_writepage,
.readpage = reiserfs_readpage,
.readpages = reiserfs_readpages,
.releasepage = reiserfs_releasepage,
.invalidatepage = reiserfs_invalidatepage,
.write_begin = reiserfs_write_begin,
.write_end = reiserfs_write_end,
.bmap = reiserfs_aop_bmap,
.direct_IO = reiserfs_direct_IO,
.set_page_dirty = reiserfs_set_page_dirty,
};