mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-06 22:04:22 +08:00
fd04edc356
Convert vgic_irq to use vm_create_with_one_vcpu() and pass around a 'struct kvm_vcpu' object instead of passing around a vCPU ID (which is always the global VCPU_ID...). Opportunstically align the indentation for multiple functions' parameters. Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
866 lines
23 KiB
C
866 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* vgic_irq.c - Test userspace injection of IRQs
|
|
*
|
|
* This test validates the injection of IRQs from userspace using various
|
|
* methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the
|
|
* host to inject a specific intid via a GUEST_SYNC call, and then checks that
|
|
* it received it.
|
|
*/
|
|
|
|
#include <asm/kvm.h>
|
|
#include <asm/kvm_para.h>
|
|
#include <sys/eventfd.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include "processor.h"
|
|
#include "test_util.h"
|
|
#include "kvm_util.h"
|
|
#include "gic.h"
|
|
#include "gic_v3.h"
|
|
#include "vgic.h"
|
|
|
|
#define GICD_BASE_GPA 0x08000000ULL
|
|
#define GICR_BASE_GPA 0x080A0000ULL
|
|
|
|
/*
|
|
* Stores the user specified args; it's passed to the guest and to every test
|
|
* function.
|
|
*/
|
|
struct test_args {
|
|
uint32_t nr_irqs; /* number of KVM supported IRQs. */
|
|
bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */
|
|
bool level_sensitive; /* 1 is level, 0 is edge */
|
|
int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */
|
|
bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */
|
|
};
|
|
|
|
/*
|
|
* KVM implements 32 priority levels:
|
|
* 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8
|
|
*
|
|
* Note that these macros will still be correct in the case that KVM implements
|
|
* more priority levels. Also note that 32 is the minimum for GICv3 and GICv2.
|
|
*/
|
|
#define KVM_NUM_PRIOS 32
|
|
#define KVM_PRIO_SHIFT 3 /* steps of 8 = 1 << 3 */
|
|
#define KVM_PRIO_STEPS (1 << KVM_PRIO_SHIFT) /* 8 */
|
|
#define LOWEST_PRIO (KVM_NUM_PRIOS - 1)
|
|
#define CPU_PRIO_MASK (LOWEST_PRIO << KVM_PRIO_SHIFT) /* 0xf8 */
|
|
#define IRQ_DEFAULT_PRIO (LOWEST_PRIO - 1)
|
|
#define IRQ_DEFAULT_PRIO_REG (IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */
|
|
|
|
static void *dist = (void *)GICD_BASE_GPA;
|
|
static void *redist = (void *)GICR_BASE_GPA;
|
|
|
|
/*
|
|
* The kvm_inject_* utilities are used by the guest to ask the host to inject
|
|
* interrupts (e.g., using the KVM_IRQ_LINE ioctl).
|
|
*/
|
|
|
|
typedef enum {
|
|
KVM_INJECT_EDGE_IRQ_LINE = 1,
|
|
KVM_SET_IRQ_LINE,
|
|
KVM_SET_IRQ_LINE_HIGH,
|
|
KVM_SET_LEVEL_INFO_HIGH,
|
|
KVM_INJECT_IRQFD,
|
|
KVM_WRITE_ISPENDR,
|
|
KVM_WRITE_ISACTIVER,
|
|
} kvm_inject_cmd;
|
|
|
|
struct kvm_inject_args {
|
|
kvm_inject_cmd cmd;
|
|
uint32_t first_intid;
|
|
uint32_t num;
|
|
int level;
|
|
bool expect_failure;
|
|
};
|
|
|
|
/* Used on the guest side to perform the hypercall. */
|
|
static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
|
|
uint32_t num, int level, bool expect_failure);
|
|
|
|
/* Used on the host side to get the hypercall info. */
|
|
static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
|
|
struct kvm_inject_args *args);
|
|
|
|
#define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure) \
|
|
kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure)
|
|
|
|
#define KVM_INJECT_MULTI(cmd, intid, num) \
|
|
_KVM_INJECT_MULTI(cmd, intid, num, false)
|
|
|
|
#define _KVM_INJECT(cmd, intid, expect_failure) \
|
|
_KVM_INJECT_MULTI(cmd, intid, 1, expect_failure)
|
|
|
|
#define KVM_INJECT(cmd, intid) \
|
|
_KVM_INJECT_MULTI(cmd, intid, 1, false)
|
|
|
|
#define KVM_ACTIVATE(cmd, intid) \
|
|
kvm_inject_call(cmd, intid, 1, 1, false);
|
|
|
|
struct kvm_inject_desc {
|
|
kvm_inject_cmd cmd;
|
|
/* can inject PPIs, PPIs, and/or SPIs. */
|
|
bool sgi, ppi, spi;
|
|
};
|
|
|
|
static struct kvm_inject_desc inject_edge_fns[] = {
|
|
/* sgi ppi spi */
|
|
{ KVM_INJECT_EDGE_IRQ_LINE, false, false, true },
|
|
{ KVM_INJECT_IRQFD, false, false, true },
|
|
{ KVM_WRITE_ISPENDR, true, false, true },
|
|
{ 0, },
|
|
};
|
|
|
|
static struct kvm_inject_desc inject_level_fns[] = {
|
|
/* sgi ppi spi */
|
|
{ KVM_SET_IRQ_LINE_HIGH, false, true, true },
|
|
{ KVM_SET_LEVEL_INFO_HIGH, false, true, true },
|
|
{ KVM_INJECT_IRQFD, false, false, true },
|
|
{ KVM_WRITE_ISPENDR, false, true, true },
|
|
{ 0, },
|
|
};
|
|
|
|
static struct kvm_inject_desc set_active_fns[] = {
|
|
/* sgi ppi spi */
|
|
{ KVM_WRITE_ISACTIVER, true, true, true },
|
|
{ 0, },
|
|
};
|
|
|
|
#define for_each_inject_fn(t, f) \
|
|
for ((f) = (t); (f)->cmd; (f)++)
|
|
|
|
#define for_each_supported_inject_fn(args, t, f) \
|
|
for_each_inject_fn(t, f) \
|
|
if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD)
|
|
|
|
#define for_each_supported_activate_fn(args, t, f) \
|
|
for_each_supported_inject_fn((args), (t), (f))
|
|
|
|
/* Shared between the guest main thread and the IRQ handlers. */
|
|
volatile uint64_t irq_handled;
|
|
volatile uint32_t irqnr_received[MAX_SPI + 1];
|
|
|
|
static void reset_stats(void)
|
|
{
|
|
int i;
|
|
|
|
irq_handled = 0;
|
|
for (i = 0; i <= MAX_SPI; i++)
|
|
irqnr_received[i] = 0;
|
|
}
|
|
|
|
static uint64_t gic_read_ap1r0(void)
|
|
{
|
|
uint64_t reg = read_sysreg_s(SYS_ICV_AP1R0_EL1);
|
|
|
|
dsb(sy);
|
|
return reg;
|
|
}
|
|
|
|
static void gic_write_ap1r0(uint64_t val)
|
|
{
|
|
write_sysreg_s(val, SYS_ICV_AP1R0_EL1);
|
|
isb();
|
|
}
|
|
|
|
static void guest_set_irq_line(uint32_t intid, uint32_t level);
|
|
|
|
static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive)
|
|
{
|
|
uint32_t intid = gic_get_and_ack_irq();
|
|
|
|
if (intid == IAR_SPURIOUS)
|
|
return;
|
|
|
|
GUEST_ASSERT(gic_irq_get_active(intid));
|
|
|
|
if (!level_sensitive)
|
|
GUEST_ASSERT(!gic_irq_get_pending(intid));
|
|
|
|
if (level_sensitive)
|
|
guest_set_irq_line(intid, 0);
|
|
|
|
GUEST_ASSERT(intid < MAX_SPI);
|
|
irqnr_received[intid] += 1;
|
|
irq_handled += 1;
|
|
|
|
gic_set_eoi(intid);
|
|
GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
|
|
if (eoi_split)
|
|
gic_set_dir(intid);
|
|
|
|
GUEST_ASSERT(!gic_irq_get_active(intid));
|
|
GUEST_ASSERT(!gic_irq_get_pending(intid));
|
|
}
|
|
|
|
static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid,
|
|
uint32_t num, int level, bool expect_failure)
|
|
{
|
|
struct kvm_inject_args args = {
|
|
.cmd = cmd,
|
|
.first_intid = first_intid,
|
|
.num = num,
|
|
.level = level,
|
|
.expect_failure = expect_failure,
|
|
};
|
|
GUEST_SYNC(&args);
|
|
}
|
|
|
|
#define GUEST_ASSERT_IAR_EMPTY() \
|
|
do { \
|
|
uint32_t _intid; \
|
|
_intid = gic_get_and_ack_irq(); \
|
|
GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS); \
|
|
} while (0)
|
|
|
|
#define CAT_HELPER(a, b) a ## b
|
|
#define CAT(a, b) CAT_HELPER(a, b)
|
|
#define PREFIX guest_irq_handler_
|
|
#define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev))
|
|
#define GENERATE_GUEST_IRQ_HANDLER(split, lev) \
|
|
static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs) \
|
|
{ \
|
|
guest_irq_generic_handler(split, lev); \
|
|
}
|
|
|
|
GENERATE_GUEST_IRQ_HANDLER(0, 0);
|
|
GENERATE_GUEST_IRQ_HANDLER(0, 1);
|
|
GENERATE_GUEST_IRQ_HANDLER(1, 0);
|
|
GENERATE_GUEST_IRQ_HANDLER(1, 1);
|
|
|
|
static void (*guest_irq_handlers[2][2])(struct ex_regs *) = {
|
|
{GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),},
|
|
{GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),},
|
|
};
|
|
|
|
static void reset_priorities(struct test_args *args)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < args->nr_irqs; i++)
|
|
gic_set_priority(i, IRQ_DEFAULT_PRIO_REG);
|
|
}
|
|
|
|
static void guest_set_irq_line(uint32_t intid, uint32_t level)
|
|
{
|
|
kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false);
|
|
}
|
|
|
|
static void test_inject_fail(struct test_args *args,
|
|
uint32_t intid, kvm_inject_cmd cmd)
|
|
{
|
|
reset_stats();
|
|
|
|
_KVM_INJECT(cmd, intid, true);
|
|
/* no IRQ to handle on entry */
|
|
|
|
GUEST_ASSERT_EQ(irq_handled, 0);
|
|
GUEST_ASSERT_IAR_EMPTY();
|
|
}
|
|
|
|
static void guest_inject(struct test_args *args,
|
|
uint32_t first_intid, uint32_t num,
|
|
kvm_inject_cmd cmd)
|
|
{
|
|
uint32_t i;
|
|
|
|
reset_stats();
|
|
|
|
/* Cycle over all priorities to make things more interesting. */
|
|
for (i = first_intid; i < num + first_intid; i++)
|
|
gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3);
|
|
|
|
asm volatile("msr daifset, #2" : : : "memory");
|
|
KVM_INJECT_MULTI(cmd, first_intid, num);
|
|
|
|
while (irq_handled < num) {
|
|
asm volatile("wfi\n"
|
|
"msr daifclr, #2\n"
|
|
/* handle IRQ */
|
|
"msr daifset, #2\n"
|
|
: : : "memory");
|
|
}
|
|
asm volatile("msr daifclr, #2" : : : "memory");
|
|
|
|
GUEST_ASSERT_EQ(irq_handled, num);
|
|
for (i = first_intid; i < num + first_intid; i++)
|
|
GUEST_ASSERT_EQ(irqnr_received[i], 1);
|
|
GUEST_ASSERT_IAR_EMPTY();
|
|
|
|
reset_priorities(args);
|
|
}
|
|
|
|
/*
|
|
* Restore the active state of multiple concurrent IRQs (given by
|
|
* concurrent_irqs). This does what a live-migration would do on the
|
|
* destination side assuming there are some active IRQs that were not
|
|
* deactivated yet.
|
|
*/
|
|
static void guest_restore_active(struct test_args *args,
|
|
uint32_t first_intid, uint32_t num,
|
|
kvm_inject_cmd cmd)
|
|
{
|
|
uint32_t prio, intid, ap1r;
|
|
int i;
|
|
|
|
/*
|
|
* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
|
|
* in descending order, so intid+1 can preempt intid.
|
|
*/
|
|
for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) {
|
|
GUEST_ASSERT(prio >= 0);
|
|
intid = i + first_intid;
|
|
gic_set_priority(intid, prio);
|
|
}
|
|
|
|
/*
|
|
* In a real migration, KVM would restore all GIC state before running
|
|
* guest code.
|
|
*/
|
|
for (i = 0; i < num; i++) {
|
|
intid = i + first_intid;
|
|
KVM_ACTIVATE(cmd, intid);
|
|
ap1r = gic_read_ap1r0();
|
|
ap1r |= 1U << i;
|
|
gic_write_ap1r0(ap1r);
|
|
}
|
|
|
|
/* This is where the "migration" would occur. */
|
|
|
|
/* finish handling the IRQs starting with the highest priority one. */
|
|
for (i = 0; i < num; i++) {
|
|
intid = num - i - 1 + first_intid;
|
|
gic_set_eoi(intid);
|
|
if (args->eoi_split)
|
|
gic_set_dir(intid);
|
|
}
|
|
|
|
for (i = 0; i < num; i++)
|
|
GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
|
|
GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
|
|
GUEST_ASSERT_IAR_EMPTY();
|
|
}
|
|
|
|
/*
|
|
* Polls the IAR until it's not a spurious interrupt.
|
|
*
|
|
* This function should only be used in test_inject_preemption (with IRQs
|
|
* masked).
|
|
*/
|
|
static uint32_t wait_for_and_activate_irq(void)
|
|
{
|
|
uint32_t intid;
|
|
|
|
do {
|
|
asm volatile("wfi" : : : "memory");
|
|
intid = gic_get_and_ack_irq();
|
|
} while (intid == IAR_SPURIOUS);
|
|
|
|
return intid;
|
|
}
|
|
|
|
/*
|
|
* Inject multiple concurrent IRQs (num IRQs starting at first_intid) and
|
|
* handle them without handling the actual exceptions. This is done by masking
|
|
* interrupts for the whole test.
|
|
*/
|
|
static void test_inject_preemption(struct test_args *args,
|
|
uint32_t first_intid, int num,
|
|
kvm_inject_cmd cmd)
|
|
{
|
|
uint32_t intid, prio, step = KVM_PRIO_STEPS;
|
|
int i;
|
|
|
|
/* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs
|
|
* in descending order, so intid+1 can preempt intid.
|
|
*/
|
|
for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) {
|
|
GUEST_ASSERT(prio >= 0);
|
|
intid = i + first_intid;
|
|
gic_set_priority(intid, prio);
|
|
}
|
|
|
|
local_irq_disable();
|
|
|
|
for (i = 0; i < num; i++) {
|
|
uint32_t tmp;
|
|
intid = i + first_intid;
|
|
KVM_INJECT(cmd, intid);
|
|
/* Each successive IRQ will preempt the previous one. */
|
|
tmp = wait_for_and_activate_irq();
|
|
GUEST_ASSERT_EQ(tmp, intid);
|
|
if (args->level_sensitive)
|
|
guest_set_irq_line(intid, 0);
|
|
}
|
|
|
|
/* finish handling the IRQs starting with the highest priority one. */
|
|
for (i = 0; i < num; i++) {
|
|
intid = num - i - 1 + first_intid;
|
|
gic_set_eoi(intid);
|
|
if (args->eoi_split)
|
|
gic_set_dir(intid);
|
|
}
|
|
|
|
local_irq_enable();
|
|
|
|
for (i = 0; i < num; i++)
|
|
GUEST_ASSERT(!gic_irq_get_active(i + first_intid));
|
|
GUEST_ASSERT_EQ(gic_read_ap1r0(), 0);
|
|
GUEST_ASSERT_IAR_EMPTY();
|
|
|
|
reset_priorities(args);
|
|
}
|
|
|
|
static void test_injection(struct test_args *args, struct kvm_inject_desc *f)
|
|
{
|
|
uint32_t nr_irqs = args->nr_irqs;
|
|
|
|
if (f->sgi) {
|
|
guest_inject(args, MIN_SGI, 1, f->cmd);
|
|
guest_inject(args, 0, 16, f->cmd);
|
|
}
|
|
|
|
if (f->ppi)
|
|
guest_inject(args, MIN_PPI, 1, f->cmd);
|
|
|
|
if (f->spi) {
|
|
guest_inject(args, MIN_SPI, 1, f->cmd);
|
|
guest_inject(args, nr_irqs - 1, 1, f->cmd);
|
|
guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd);
|
|
}
|
|
}
|
|
|
|
static void test_injection_failure(struct test_args *args,
|
|
struct kvm_inject_desc *f)
|
|
{
|
|
uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, };
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bad_intid); i++)
|
|
test_inject_fail(args, bad_intid[i], f->cmd);
|
|
}
|
|
|
|
static void test_preemption(struct test_args *args, struct kvm_inject_desc *f)
|
|
{
|
|
/*
|
|
* Test up to 4 levels of preemption. The reason is that KVM doesn't
|
|
* currently implement the ability to have more than the number-of-LRs
|
|
* number of concurrently active IRQs. The number of LRs implemented is
|
|
* IMPLEMENTATION DEFINED, however, it seems that most implement 4.
|
|
*/
|
|
if (f->sgi)
|
|
test_inject_preemption(args, MIN_SGI, 4, f->cmd);
|
|
|
|
if (f->ppi)
|
|
test_inject_preemption(args, MIN_PPI, 4, f->cmd);
|
|
|
|
if (f->spi)
|
|
test_inject_preemption(args, MIN_SPI, 4, f->cmd);
|
|
}
|
|
|
|
static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f)
|
|
{
|
|
/* Test up to 4 active IRQs. Same reason as in test_preemption. */
|
|
if (f->sgi)
|
|
guest_restore_active(args, MIN_SGI, 4, f->cmd);
|
|
|
|
if (f->ppi)
|
|
guest_restore_active(args, MIN_PPI, 4, f->cmd);
|
|
|
|
if (f->spi)
|
|
guest_restore_active(args, MIN_SPI, 4, f->cmd);
|
|
}
|
|
|
|
static void guest_code(struct test_args *args)
|
|
{
|
|
uint32_t i, nr_irqs = args->nr_irqs;
|
|
bool level_sensitive = args->level_sensitive;
|
|
struct kvm_inject_desc *f, *inject_fns;
|
|
|
|
gic_init(GIC_V3, 1, dist, redist);
|
|
|
|
for (i = 0; i < nr_irqs; i++)
|
|
gic_irq_enable(i);
|
|
|
|
for (i = MIN_SPI; i < nr_irqs; i++)
|
|
gic_irq_set_config(i, !level_sensitive);
|
|
|
|
gic_set_eoi_split(args->eoi_split);
|
|
|
|
reset_priorities(args);
|
|
gic_set_priority_mask(CPU_PRIO_MASK);
|
|
|
|
inject_fns = level_sensitive ? inject_level_fns
|
|
: inject_edge_fns;
|
|
|
|
local_irq_enable();
|
|
|
|
/* Start the tests. */
|
|
for_each_supported_inject_fn(args, inject_fns, f) {
|
|
test_injection(args, f);
|
|
test_preemption(args, f);
|
|
test_injection_failure(args, f);
|
|
}
|
|
|
|
/*
|
|
* Restore the active state of IRQs. This would happen when live
|
|
* migrating IRQs in the middle of being handled.
|
|
*/
|
|
for_each_supported_activate_fn(args, set_active_fns, f)
|
|
test_restore_active(args, f);
|
|
|
|
GUEST_DONE();
|
|
}
|
|
|
|
static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level,
|
|
struct test_args *test_args, bool expect_failure)
|
|
{
|
|
int ret;
|
|
|
|
if (!expect_failure) {
|
|
kvm_arm_irq_line(vm, intid, level);
|
|
} else {
|
|
/* The interface doesn't allow larger intid's. */
|
|
if (intid > KVM_ARM_IRQ_NUM_MASK)
|
|
return;
|
|
|
|
ret = _kvm_arm_irq_line(vm, intid, level);
|
|
TEST_ASSERT(ret != 0 && errno == EINVAL,
|
|
"Bad intid %i did not cause KVM_IRQ_LINE "
|
|
"error: rc: %i errno: %i", intid, ret, errno);
|
|
}
|
|
}
|
|
|
|
void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level,
|
|
bool expect_failure)
|
|
{
|
|
if (!expect_failure) {
|
|
kvm_irq_set_level_info(gic_fd, intid, level);
|
|
} else {
|
|
int ret = _kvm_irq_set_level_info(gic_fd, intid, level);
|
|
/*
|
|
* The kernel silently fails for invalid SPIs and SGIs (which
|
|
* are not level-sensitive). It only checks for intid to not
|
|
* spill over 1U << 10 (the max reserved SPI). Also, callers
|
|
* are supposed to mask the intid with 0x3ff (1023).
|
|
*/
|
|
if (intid > VGIC_MAX_RESERVED)
|
|
TEST_ASSERT(ret != 0 && errno == EINVAL,
|
|
"Bad intid %i did not cause VGIC_GRP_LEVEL_INFO "
|
|
"error: rc: %i errno: %i", intid, ret, errno);
|
|
else
|
|
TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO "
|
|
"for intid %i failed, rc: %i errno: %i",
|
|
intid, ret, errno);
|
|
}
|
|
}
|
|
|
|
static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm,
|
|
uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
|
|
bool expect_failure)
|
|
{
|
|
struct kvm_irq_routing *routing;
|
|
int ret;
|
|
uint64_t i;
|
|
|
|
assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES);
|
|
|
|
routing = kvm_gsi_routing_create();
|
|
for (i = intid; i < (uint64_t)intid + num; i++)
|
|
kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI);
|
|
|
|
if (!expect_failure) {
|
|
kvm_gsi_routing_write(vm, routing);
|
|
} else {
|
|
ret = _kvm_gsi_routing_write(vm, routing);
|
|
/* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */
|
|
if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS)
|
|
TEST_ASSERT(ret != 0 && errno == EINVAL,
|
|
"Bad intid %u did not cause KVM_SET_GSI_ROUTING "
|
|
"error: rc: %i errno: %i", intid, ret, errno);
|
|
else
|
|
TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING "
|
|
"for intid %i failed, rc: %i errno: %i",
|
|
intid, ret, errno);
|
|
}
|
|
}
|
|
|
|
static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid,
|
|
struct kvm_vcpu *vcpu,
|
|
bool expect_failure)
|
|
{
|
|
/*
|
|
* Ignore this when expecting failure as invalid intids will lead to
|
|
* either trying to inject SGIs when we configured the test to be
|
|
* level_sensitive (or the reverse), or inject large intids which
|
|
* will lead to writing above the ISPENDR register space (and we
|
|
* don't want to do that either).
|
|
*/
|
|
if (!expect_failure)
|
|
kvm_irq_write_ispendr(gic_fd, intid, vcpu);
|
|
}
|
|
|
|
static void kvm_routing_and_irqfd_check(struct kvm_vm *vm,
|
|
uint32_t intid, uint32_t num, uint32_t kvm_max_routes,
|
|
bool expect_failure)
|
|
{
|
|
int fd[MAX_SPI];
|
|
uint64_t val;
|
|
int ret, f;
|
|
uint64_t i;
|
|
|
|
/*
|
|
* There is no way to try injecting an SGI or PPI as the interface
|
|
* starts counting from the first SPI (above the private ones), so just
|
|
* exit.
|
|
*/
|
|
if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid))
|
|
return;
|
|
|
|
kvm_set_gsi_routing_irqchip_check(vm, intid, num,
|
|
kvm_max_routes, expect_failure);
|
|
|
|
/*
|
|
* If expect_failure, then just to inject anyway. These
|
|
* will silently fail. And in any case, the guest will check
|
|
* that no actual interrupt was injected for those cases.
|
|
*/
|
|
|
|
for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
|
|
fd[f] = eventfd(0, 0);
|
|
TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f]));
|
|
}
|
|
|
|
for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
|
|
struct kvm_irqfd irqfd = {
|
|
.fd = fd[f],
|
|
.gsi = i - MIN_SPI,
|
|
};
|
|
assert(i <= (uint64_t)UINT_MAX);
|
|
vm_ioctl(vm, KVM_IRQFD, &irqfd);
|
|
}
|
|
|
|
for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) {
|
|
val = 1;
|
|
ret = write(fd[f], &val, sizeof(uint64_t));
|
|
TEST_ASSERT(ret == sizeof(uint64_t),
|
|
__KVM_SYSCALL_ERROR("write()", ret));
|
|
}
|
|
|
|
for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++)
|
|
close(fd[f]);
|
|
}
|
|
|
|
/* handles the valid case: intid=0xffffffff num=1 */
|
|
#define for_each_intid(first, num, tmp, i) \
|
|
for ((tmp) = (i) = (first); \
|
|
(tmp) < (uint64_t)(first) + (uint64_t)(num); \
|
|
(tmp)++, (i)++)
|
|
|
|
static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd,
|
|
struct kvm_inject_args *inject_args,
|
|
struct test_args *test_args)
|
|
{
|
|
kvm_inject_cmd cmd = inject_args->cmd;
|
|
uint32_t intid = inject_args->first_intid;
|
|
uint32_t num = inject_args->num;
|
|
int level = inject_args->level;
|
|
bool expect_failure = inject_args->expect_failure;
|
|
struct kvm_vm *vm = vcpu->vm;
|
|
uint64_t tmp;
|
|
uint32_t i;
|
|
|
|
/* handles the valid case: intid=0xffffffff num=1 */
|
|
assert(intid < UINT_MAX - num || num == 1);
|
|
|
|
switch (cmd) {
|
|
case KVM_INJECT_EDGE_IRQ_LINE:
|
|
for_each_intid(intid, num, tmp, i)
|
|
kvm_irq_line_check(vm, i, 1, test_args,
|
|
expect_failure);
|
|
for_each_intid(intid, num, tmp, i)
|
|
kvm_irq_line_check(vm, i, 0, test_args,
|
|
expect_failure);
|
|
break;
|
|
case KVM_SET_IRQ_LINE:
|
|
for_each_intid(intid, num, tmp, i)
|
|
kvm_irq_line_check(vm, i, level, test_args,
|
|
expect_failure);
|
|
break;
|
|
case KVM_SET_IRQ_LINE_HIGH:
|
|
for_each_intid(intid, num, tmp, i)
|
|
kvm_irq_line_check(vm, i, 1, test_args,
|
|
expect_failure);
|
|
break;
|
|
case KVM_SET_LEVEL_INFO_HIGH:
|
|
for_each_intid(intid, num, tmp, i)
|
|
kvm_irq_set_level_info_check(gic_fd, i, 1,
|
|
expect_failure);
|
|
break;
|
|
case KVM_INJECT_IRQFD:
|
|
kvm_routing_and_irqfd_check(vm, intid, num,
|
|
test_args->kvm_max_routes,
|
|
expect_failure);
|
|
break;
|
|
case KVM_WRITE_ISPENDR:
|
|
for (i = intid; i < intid + num; i++)
|
|
kvm_irq_write_ispendr_check(gic_fd, i, vcpu,
|
|
expect_failure);
|
|
break;
|
|
case KVM_WRITE_ISACTIVER:
|
|
for (i = intid; i < intid + num; i++)
|
|
kvm_irq_write_isactiver(gic_fd, i, vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc,
|
|
struct kvm_inject_args *args)
|
|
{
|
|
struct kvm_inject_args *kvm_args_hva;
|
|
vm_vaddr_t kvm_args_gva;
|
|
|
|
kvm_args_gva = uc->args[1];
|
|
kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva);
|
|
memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args));
|
|
}
|
|
|
|
static void print_args(struct test_args *args)
|
|
{
|
|
printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n",
|
|
args->nr_irqs, args->level_sensitive,
|
|
args->eoi_split);
|
|
}
|
|
|
|
static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split)
|
|
{
|
|
struct ucall uc;
|
|
int gic_fd;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_vm *vm;
|
|
struct kvm_inject_args inject_args;
|
|
vm_vaddr_t args_gva;
|
|
|
|
struct test_args args = {
|
|
.nr_irqs = nr_irqs,
|
|
.level_sensitive = level_sensitive,
|
|
.eoi_split = eoi_split,
|
|
.kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING),
|
|
.kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD),
|
|
};
|
|
|
|
print_args(&args);
|
|
|
|
vm = vm_create_with_one_vcpu(&vcpu, guest_code);
|
|
ucall_init(vm, NULL);
|
|
|
|
vm_init_descriptor_tables(vm);
|
|
vcpu_init_descriptor_tables(vm, vcpu->id);
|
|
|
|
/* Setup the guest args page (so it gets the args). */
|
|
args_gva = vm_vaddr_alloc_page(vm);
|
|
memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args));
|
|
vcpu_args_set(vm, vcpu->id, 1, args_gva);
|
|
|
|
gic_fd = vgic_v3_setup(vm, 1, nr_irqs,
|
|
GICD_BASE_GPA, GICR_BASE_GPA);
|
|
if (gic_fd < 0) {
|
|
print_skip("Failed to create vgic-v3, skipping");
|
|
exit(KSFT_SKIP);
|
|
}
|
|
|
|
vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT,
|
|
guest_irq_handlers[args.eoi_split][args.level_sensitive]);
|
|
|
|
while (1) {
|
|
vcpu_run(vm, vcpu->id);
|
|
|
|
switch (get_ucall(vm, vcpu->id, &uc)) {
|
|
case UCALL_SYNC:
|
|
kvm_inject_get_call(vm, &uc, &inject_args);
|
|
run_guest_cmd(vcpu, gic_fd, &inject_args, &args);
|
|
break;
|
|
case UCALL_ABORT:
|
|
TEST_FAIL("%s at %s:%ld\n\tvalues: %#lx, %#lx",
|
|
(const char *)uc.args[0],
|
|
__FILE__, uc.args[1], uc.args[2], uc.args[3]);
|
|
break;
|
|
case UCALL_DONE:
|
|
goto done;
|
|
default:
|
|
TEST_FAIL("Unknown ucall %lu", uc.cmd);
|
|
}
|
|
}
|
|
|
|
done:
|
|
close(gic_fd);
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void help(const char *name)
|
|
{
|
|
printf(
|
|
"\n"
|
|
"usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name);
|
|
printf(" -n: specify number of IRQs to setup the vgic with. "
|
|
"It has to be a multiple of 32 and between 64 and 1024.\n");
|
|
printf(" -e: if 1 then EOI is split into a write to DIR on top "
|
|
"of writing EOI.\n");
|
|
printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0).");
|
|
puts("");
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
uint32_t nr_irqs = 64;
|
|
bool default_args = true;
|
|
bool level_sensitive = false;
|
|
int opt;
|
|
bool eoi_split = false;
|
|
|
|
/* Tell stdout not to buffer its content */
|
|
setbuf(stdout, NULL);
|
|
|
|
while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) {
|
|
switch (opt) {
|
|
case 'n':
|
|
nr_irqs = atoi(optarg);
|
|
if (nr_irqs > 1024 || nr_irqs % 32)
|
|
help(argv[0]);
|
|
break;
|
|
case 'e':
|
|
eoi_split = (bool)atoi(optarg);
|
|
default_args = false;
|
|
break;
|
|
case 'l':
|
|
level_sensitive = (bool)atoi(optarg);
|
|
default_args = false;
|
|
break;
|
|
case 'h':
|
|
default:
|
|
help(argv[0]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the user just specified nr_irqs and/or gic_version, then run all
|
|
* combinations.
|
|
*/
|
|
if (default_args) {
|
|
test_vgic(nr_irqs, false /* level */, false /* eoi_split */);
|
|
test_vgic(nr_irqs, false /* level */, true /* eoi_split */);
|
|
test_vgic(nr_irqs, true /* level */, false /* eoi_split */);
|
|
test_vgic(nr_irqs, true /* level */, true /* eoi_split */);
|
|
} else {
|
|
test_vgic(nr_irqs, level_sensitive, eoi_split);
|
|
}
|
|
|
|
return 0;
|
|
}
|