mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-05 05:15:02 +08:00
5d5e8f1954
As suggested by Matthew Wilcox, it is better to use "int entry_size" instead of "bool cluster" as parameter to specify whether to operate for huge or normal swap entries. Because this improve the flexibility to support other swap entry size. And Dave Hansen thinks that this improves code readability too. So in this patch, the "bool cluster" parameter of get_swap_pages() is replaced by "int entry_size". And nr_swap_entries() trick is used to reduce the binary size when !CONFIG_TRANSPARENT_HUGE_PAGE. text data bss dec hex filename base 24215 2028 340 26583 67d7 mm/swapfile.o head 24123 2004 340 26467 6763 mm/swapfile.o Link: http://lkml.kernel.org/r/20180720071845.17920-7-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Shaohua Li <shli@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
361 lines
9.4 KiB
C
361 lines
9.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Manage cache of swap slots to be used for and returned from
|
|
* swap.
|
|
*
|
|
* Copyright(c) 2016 Intel Corporation.
|
|
*
|
|
* Author: Tim Chen <tim.c.chen@linux.intel.com>
|
|
*
|
|
* We allocate the swap slots from the global pool and put
|
|
* it into local per cpu caches. This has the advantage
|
|
* of no needing to acquire the swap_info lock every time
|
|
* we need a new slot.
|
|
*
|
|
* There is also opportunity to simply return the slot
|
|
* to local caches without needing to acquire swap_info
|
|
* lock. We do not reuse the returned slots directly but
|
|
* move them back to the global pool in a batch. This
|
|
* allows the slots to coaellesce and reduce fragmentation.
|
|
*
|
|
* The swap entry allocated is marked with SWAP_HAS_CACHE
|
|
* flag in map_count that prevents it from being allocated
|
|
* again from the global pool.
|
|
*
|
|
* The swap slots cache is protected by a mutex instead of
|
|
* a spin lock as when we search for slots with scan_swap_map,
|
|
* we can possibly sleep.
|
|
*/
|
|
|
|
#include <linux/swap_slots.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/mm.h>
|
|
|
|
static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
|
|
static bool swap_slot_cache_active;
|
|
bool swap_slot_cache_enabled;
|
|
static bool swap_slot_cache_initialized;
|
|
static DEFINE_MUTEX(swap_slots_cache_mutex);
|
|
/* Serialize swap slots cache enable/disable operations */
|
|
static DEFINE_MUTEX(swap_slots_cache_enable_mutex);
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type);
|
|
static void deactivate_swap_slots_cache(void);
|
|
static void reactivate_swap_slots_cache(void);
|
|
|
|
#define use_swap_slot_cache (swap_slot_cache_active && \
|
|
swap_slot_cache_enabled && swap_slot_cache_initialized)
|
|
#define SLOTS_CACHE 0x1
|
|
#define SLOTS_CACHE_RET 0x2
|
|
|
|
static void deactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = false;
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
static void reactivate_swap_slots_cache(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
swap_slot_cache_active = true;
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
}
|
|
|
|
/* Must not be called with cpu hot plug lock */
|
|
void disable_swap_slots_cache_lock(void)
|
|
{
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
swap_slot_cache_enabled = false;
|
|
if (swap_slot_cache_initialized) {
|
|
/* serialize with cpu hotplug operations */
|
|
get_online_cpus();
|
|
__drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
|
|
put_online_cpus();
|
|
}
|
|
}
|
|
|
|
static void __reenable_swap_slots_cache(void)
|
|
{
|
|
swap_slot_cache_enabled = has_usable_swap();
|
|
}
|
|
|
|
void reenable_swap_slots_cache_unlock(void)
|
|
{
|
|
__reenable_swap_slots_cache();
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
}
|
|
|
|
static bool check_cache_active(void)
|
|
{
|
|
long pages;
|
|
|
|
if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
|
|
return false;
|
|
|
|
pages = get_nr_swap_pages();
|
|
if (!swap_slot_cache_active) {
|
|
if (pages > num_online_cpus() *
|
|
THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
|
|
reactivate_swap_slots_cache();
|
|
goto out;
|
|
}
|
|
|
|
/* if global pool of slot caches too low, deactivate cache */
|
|
if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
|
|
deactivate_swap_slots_cache();
|
|
out:
|
|
return swap_slot_cache_active;
|
|
}
|
|
|
|
static int alloc_swap_slot_cache(unsigned int cpu)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots, *slots_ret;
|
|
|
|
/*
|
|
* Do allocation outside swap_slots_cache_mutex
|
|
* as kvzalloc could trigger reclaim and get_swap_page,
|
|
* which can lock swap_slots_cache_mutex.
|
|
*/
|
|
slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
return -ENOMEM;
|
|
|
|
slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t),
|
|
GFP_KERNEL);
|
|
if (!slots_ret) {
|
|
kvfree(slots);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if (cache->slots || cache->slots_ret)
|
|
/* cache already allocated */
|
|
goto out;
|
|
if (!cache->lock_initialized) {
|
|
mutex_init(&cache->alloc_lock);
|
|
spin_lock_init(&cache->free_lock);
|
|
cache->lock_initialized = true;
|
|
}
|
|
cache->nr = 0;
|
|
cache->cur = 0;
|
|
cache->n_ret = 0;
|
|
/*
|
|
* We initialized alloc_lock and free_lock earlier. We use
|
|
* !cache->slots or !cache->slots_ret to know if it is safe to acquire
|
|
* the corresponding lock and use the cache. Memory barrier below
|
|
* ensures the assumption.
|
|
*/
|
|
mb();
|
|
cache->slots = slots;
|
|
slots = NULL;
|
|
cache->slots_ret = slots_ret;
|
|
slots_ret = NULL;
|
|
out:
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
if (slots)
|
|
kvfree(slots);
|
|
if (slots_ret)
|
|
kvfree(slots_ret);
|
|
return 0;
|
|
}
|
|
|
|
static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
|
|
bool free_slots)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
swp_entry_t *slots = NULL;
|
|
|
|
cache = &per_cpu(swp_slots, cpu);
|
|
if ((type & SLOTS_CACHE) && cache->slots) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
swapcache_free_entries(cache->slots + cache->cur, cache->nr);
|
|
cache->cur = 0;
|
|
cache->nr = 0;
|
|
if (free_slots && cache->slots) {
|
|
kvfree(cache->slots);
|
|
cache->slots = NULL;
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
}
|
|
if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
if (free_slots && cache->slots_ret) {
|
|
slots = cache->slots_ret;
|
|
cache->slots_ret = NULL;
|
|
}
|
|
spin_unlock_irq(&cache->free_lock);
|
|
if (slots)
|
|
kvfree(slots);
|
|
}
|
|
}
|
|
|
|
static void __drain_swap_slots_cache(unsigned int type)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
/*
|
|
* This function is called during
|
|
* 1) swapoff, when we have to make sure no
|
|
* left over slots are in cache when we remove
|
|
* a swap device;
|
|
* 2) disabling of swap slot cache, when we run low
|
|
* on swap slots when allocating memory and need
|
|
* to return swap slots to global pool.
|
|
*
|
|
* We cannot acquire cpu hot plug lock here as
|
|
* this function can be invoked in the cpu
|
|
* hot plug path:
|
|
* cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
|
|
* -> memory allocation -> direct reclaim -> get_swap_page
|
|
* -> drain_swap_slots_cache
|
|
*
|
|
* Hence the loop over current online cpu below could miss cpu that
|
|
* is being brought online but not yet marked as online.
|
|
* That is okay as we do not schedule and run anything on a
|
|
* cpu before it has been marked online. Hence, we will not
|
|
* fill any swap slots in slots cache of such cpu.
|
|
* There are no slots on such cpu that need to be drained.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
drain_slots_cache_cpu(cpu, type, false);
|
|
}
|
|
|
|
static int free_slot_cache(unsigned int cpu)
|
|
{
|
|
mutex_lock(&swap_slots_cache_mutex);
|
|
drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
|
|
mutex_unlock(&swap_slots_cache_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int enable_swap_slots_cache(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&swap_slots_cache_enable_mutex);
|
|
if (swap_slot_cache_initialized) {
|
|
__reenable_swap_slots_cache();
|
|
goto out_unlock;
|
|
}
|
|
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
|
|
alloc_swap_slot_cache, free_slot_cache);
|
|
if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
|
|
"without swap slots cache.\n", __func__))
|
|
goto out_unlock;
|
|
|
|
swap_slot_cache_initialized = true;
|
|
__reenable_swap_slots_cache();
|
|
out_unlock:
|
|
mutex_unlock(&swap_slots_cache_enable_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* called with swap slot cache's alloc lock held */
|
|
static int refill_swap_slots_cache(struct swap_slots_cache *cache)
|
|
{
|
|
if (!use_swap_slot_cache || cache->nr)
|
|
return 0;
|
|
|
|
cache->cur = 0;
|
|
if (swap_slot_cache_active)
|
|
cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE,
|
|
cache->slots, 1);
|
|
|
|
return cache->nr;
|
|
}
|
|
|
|
int free_swap_slot(swp_entry_t entry)
|
|
{
|
|
struct swap_slots_cache *cache;
|
|
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
if (likely(use_swap_slot_cache && cache->slots_ret)) {
|
|
spin_lock_irq(&cache->free_lock);
|
|
/* Swap slots cache may be deactivated before acquiring lock */
|
|
if (!use_swap_slot_cache || !cache->slots_ret) {
|
|
spin_unlock_irq(&cache->free_lock);
|
|
goto direct_free;
|
|
}
|
|
if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
|
|
/*
|
|
* Return slots to global pool.
|
|
* The current swap_map value is SWAP_HAS_CACHE.
|
|
* Set it to 0 to indicate it is available for
|
|
* allocation in global pool
|
|
*/
|
|
swapcache_free_entries(cache->slots_ret, cache->n_ret);
|
|
cache->n_ret = 0;
|
|
}
|
|
cache->slots_ret[cache->n_ret++] = entry;
|
|
spin_unlock_irq(&cache->free_lock);
|
|
} else {
|
|
direct_free:
|
|
swapcache_free_entries(&entry, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
swp_entry_t get_swap_page(struct page *page)
|
|
{
|
|
swp_entry_t entry, *pentry;
|
|
struct swap_slots_cache *cache;
|
|
|
|
entry.val = 0;
|
|
|
|
if (PageTransHuge(page)) {
|
|
if (IS_ENABLED(CONFIG_THP_SWAP))
|
|
get_swap_pages(1, &entry, HPAGE_PMD_NR);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Preemption is allowed here, because we may sleep
|
|
* in refill_swap_slots_cache(). But it is safe, because
|
|
* accesses to the per-CPU data structure are protected by the
|
|
* mutex cache->alloc_lock.
|
|
*
|
|
* The alloc path here does not touch cache->slots_ret
|
|
* so cache->free_lock is not taken.
|
|
*/
|
|
cache = raw_cpu_ptr(&swp_slots);
|
|
|
|
if (likely(check_cache_active() && cache->slots)) {
|
|
mutex_lock(&cache->alloc_lock);
|
|
if (cache->slots) {
|
|
repeat:
|
|
if (cache->nr) {
|
|
pentry = &cache->slots[cache->cur++];
|
|
entry = *pentry;
|
|
pentry->val = 0;
|
|
cache->nr--;
|
|
} else {
|
|
if (refill_swap_slots_cache(cache))
|
|
goto repeat;
|
|
}
|
|
}
|
|
mutex_unlock(&cache->alloc_lock);
|
|
if (entry.val)
|
|
goto out;
|
|
}
|
|
|
|
get_swap_pages(1, &entry, 1);
|
|
out:
|
|
if (mem_cgroup_try_charge_swap(page, entry)) {
|
|
put_swap_page(page, entry);
|
|
entry.val = 0;
|
|
}
|
|
return entry;
|
|
}
|