linux/drivers/net/ethernet/freescale/ucc_geth.c
Leon Romanovsky ed0a72e0de net/freescale: Clean drivers from static versions
There is no need to set static versions because linux kernel is
released all together with same version applicable to the whole
code base.

Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-03 17:54:55 -08:00

3994 lines
118 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
*
* Author: Shlomi Gridish <gridish@freescale.com>
* Li Yang <leoli@freescale.com>
*
* Description:
* QE UCC Gigabit Ethernet Driver
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/workqueue.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <soc/fsl/qe/immap_qe.h>
#include <soc/fsl/qe/qe.h>
#include <soc/fsl/qe/ucc.h>
#include <soc/fsl/qe/ucc_fast.h>
#include <asm/machdep.h>
#include "ucc_geth.h"
#undef DEBUG
#define ugeth_printk(level, format, arg...) \
printk(level format "\n", ## arg)
#define ugeth_dbg(format, arg...) \
ugeth_printk(KERN_DEBUG , format , ## arg)
#ifdef UGETH_VERBOSE_DEBUG
#define ugeth_vdbg ugeth_dbg
#else
#define ugeth_vdbg(fmt, args...) do { } while (0)
#endif /* UGETH_VERBOSE_DEBUG */
#define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
static DEFINE_SPINLOCK(ugeth_lock);
static struct {
u32 msg_enable;
} debug = { -1 };
module_param_named(debug, debug.msg_enable, int, 0);
MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
static struct ucc_geth_info ugeth_primary_info = {
.uf_info = {
.bd_mem_part = MEM_PART_SYSTEM,
.rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
.max_rx_buf_length = 1536,
/* adjusted at startup if max-speed 1000 */
.urfs = UCC_GETH_URFS_INIT,
.urfet = UCC_GETH_URFET_INIT,
.urfset = UCC_GETH_URFSET_INIT,
.utfs = UCC_GETH_UTFS_INIT,
.utfet = UCC_GETH_UTFET_INIT,
.utftt = UCC_GETH_UTFTT_INIT,
.ufpt = 256,
.mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
.tenc = UCC_FAST_TX_ENCODING_NRZ,
.renc = UCC_FAST_RX_ENCODING_NRZ,
.tcrc = UCC_FAST_16_BIT_CRC,
.synl = UCC_FAST_SYNC_LEN_NOT_USED,
},
.numQueuesTx = 1,
.numQueuesRx = 1,
.extendedFilteringChainPointer = ((uint32_t) NULL),
.typeorlen = 3072 /*1536 */ ,
.nonBackToBackIfgPart1 = 0x40,
.nonBackToBackIfgPart2 = 0x60,
.miminumInterFrameGapEnforcement = 0x50,
.backToBackInterFrameGap = 0x60,
.mblinterval = 128,
.nortsrbytetime = 5,
.fracsiz = 1,
.strictpriorityq = 0xff,
.altBebTruncation = 0xa,
.excessDefer = 1,
.maxRetransmission = 0xf,
.collisionWindow = 0x37,
.receiveFlowControl = 1,
.transmitFlowControl = 1,
.maxGroupAddrInHash = 4,
.maxIndAddrInHash = 4,
.prel = 7,
.maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
.minFrameLength = 64,
.maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
.maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
.vlantype = 0x8100,
.ecamptr = ((uint32_t) NULL),
.eventRegMask = UCCE_OTHER,
.pausePeriod = 0xf000,
.interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
.bdRingLenTx = {
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN,
TX_BD_RING_LEN},
.bdRingLenRx = {
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN,
RX_BD_RING_LEN},
.numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
.largestexternallookupkeysize =
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
.statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
.vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
.vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
.rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
.aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
.padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
.numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
.numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
};
static struct ucc_geth_info ugeth_info[8];
#ifdef DEBUG
static void mem_disp(u8 *addr, int size)
{
u8 *i;
int size16Aling = (size >> 4) << 4;
int size4Aling = (size >> 2) << 2;
int notAlign = 0;
if (size % 16)
notAlign = 1;
for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
printk("0x%08x: %08x %08x %08x %08x\r\n",
(u32) i,
*((u32 *) (i)),
*((u32 *) (i + 4)),
*((u32 *) (i + 8)), *((u32 *) (i + 12)));
if (notAlign == 1)
printk("0x%08x: ", (u32) i);
for (; (u32) i < (u32) addr + size4Aling; i += 4)
printk("%08x ", *((u32 *) (i)));
for (; (u32) i < (u32) addr + size; i++)
printk("%02x", *((i)));
if (notAlign == 1)
printk("\r\n");
}
#endif /* DEBUG */
static struct list_head *dequeue(struct list_head *lh)
{
unsigned long flags;
spin_lock_irqsave(&ugeth_lock, flags);
if (!list_empty(lh)) {
struct list_head *node = lh->next;
list_del(node);
spin_unlock_irqrestore(&ugeth_lock, flags);
return node;
} else {
spin_unlock_irqrestore(&ugeth_lock, flags);
return NULL;
}
}
static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
u8 __iomem *bd)
{
struct sk_buff *skb;
skb = netdev_alloc_skb(ugeth->ndev,
ugeth->ug_info->uf_info.max_rx_buf_length +
UCC_GETH_RX_DATA_BUF_ALIGNMENT);
if (!skb)
return NULL;
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb,
UCC_GETH_RX_DATA_BUF_ALIGNMENT -
(((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
1)));
out_be32(&((struct qe_bd __iomem *)bd)->buf,
dma_map_single(ugeth->dev,
skb->data,
ugeth->ug_info->uf_info.max_rx_buf_length +
UCC_GETH_RX_DATA_BUF_ALIGNMENT,
DMA_FROM_DEVICE));
out_be32((u32 __iomem *)bd,
(R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
return skb;
}
static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
{
u8 __iomem *bd;
u32 bd_status;
struct sk_buff *skb;
int i;
bd = ugeth->p_rx_bd_ring[rxQ];
i = 0;
do {
bd_status = in_be32((u32 __iomem *)bd);
skb = get_new_skb(ugeth, bd);
if (!skb) /* If can not allocate data buffer,
abort. Cleanup will be elsewhere */
return -ENOMEM;
ugeth->rx_skbuff[rxQ][i] = skb;
/* advance the BD pointer */
bd += sizeof(struct qe_bd);
i++;
} while (!(bd_status & R_W));
return 0;
}
static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
u32 *p_start,
u8 num_entries,
u32 thread_size,
u32 thread_alignment,
unsigned int risc,
int skip_page_for_first_entry)
{
u32 init_enet_offset;
u8 i;
int snum;
for (i = 0; i < num_entries; i++) {
if ((snum = qe_get_snum()) < 0) {
if (netif_msg_ifup(ugeth))
pr_err("Can not get SNUM\n");
return snum;
}
if ((i == 0) && skip_page_for_first_entry)
/* First entry of Rx does not have page */
init_enet_offset = 0;
else {
init_enet_offset =
qe_muram_alloc(thread_size, thread_alignment);
if (IS_ERR_VALUE(init_enet_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory\n");
qe_put_snum((u8) snum);
return -ENOMEM;
}
}
*(p_start++) =
((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
| risc;
}
return 0;
}
static int return_init_enet_entries(struct ucc_geth_private *ugeth,
u32 *p_start,
u8 num_entries,
unsigned int risc,
int skip_page_for_first_entry)
{
u32 init_enet_offset;
u8 i;
int snum;
for (i = 0; i < num_entries; i++) {
u32 val = *p_start;
/* Check that this entry was actually valid --
needed in case failed in allocations */
if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
snum =
(u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
ENET_INIT_PARAM_SNUM_SHIFT;
qe_put_snum((u8) snum);
if (!((i == 0) && skip_page_for_first_entry)) {
/* First entry of Rx does not have page */
init_enet_offset =
(val & ENET_INIT_PARAM_PTR_MASK);
qe_muram_free(init_enet_offset);
}
*p_start++ = 0;
}
}
return 0;
}
#ifdef DEBUG
static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
u32 __iomem *p_start,
u8 num_entries,
u32 thread_size,
unsigned int risc,
int skip_page_for_first_entry)
{
u32 init_enet_offset;
u8 i;
int snum;
for (i = 0; i < num_entries; i++) {
u32 val = in_be32(p_start);
/* Check that this entry was actually valid --
needed in case failed in allocations */
if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
snum =
(u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
ENET_INIT_PARAM_SNUM_SHIFT;
qe_put_snum((u8) snum);
if (!((i == 0) && skip_page_for_first_entry)) {
/* First entry of Rx does not have page */
init_enet_offset =
(in_be32(p_start) &
ENET_INIT_PARAM_PTR_MASK);
pr_info("Init enet entry %d:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)qe_muram_addr(init_enet_offset));
mem_disp(qe_muram_addr(init_enet_offset),
thread_size);
}
p_start++;
}
}
return 0;
}
#endif
static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
{
kfree(enet_addr_cont);
}
static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
{
out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
}
static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
{
struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
if (paddr_num >= NUM_OF_PADDRS) {
pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
return -EINVAL;
}
p_82xx_addr_filt =
(struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
addressfiltering;
/* Writing address ff.ff.ff.ff.ff.ff disables address
recognition for this register */
out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
return 0;
}
static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
u8 *p_enet_addr)
{
struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
u32 cecr_subblock;
p_82xx_addr_filt =
(struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
addressfiltering;
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
/* Ethernet frames are defined in Little Endian mode,
therefore to insert */
/* the address to the hash (Big Endian mode), we reverse the bytes.*/
set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
QE_CR_PROTOCOL_ETHERNET, 0);
}
#ifdef DEBUG
static void get_statistics(struct ucc_geth_private *ugeth,
struct ucc_geth_tx_firmware_statistics *
tx_firmware_statistics,
struct ucc_geth_rx_firmware_statistics *
rx_firmware_statistics,
struct ucc_geth_hardware_statistics *hardware_statistics)
{
struct ucc_fast __iomem *uf_regs;
struct ucc_geth __iomem *ug_regs;
struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
ug_regs = ugeth->ug_regs;
uf_regs = (struct ucc_fast __iomem *) ug_regs;
p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
/* Tx firmware only if user handed pointer and driver actually
gathers Tx firmware statistics */
if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
tx_firmware_statistics->sicoltx =
in_be32(&p_tx_fw_statistics_pram->sicoltx);
tx_firmware_statistics->mulcoltx =
in_be32(&p_tx_fw_statistics_pram->mulcoltx);
tx_firmware_statistics->latecoltxfr =
in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
tx_firmware_statistics->frabortduecol =
in_be32(&p_tx_fw_statistics_pram->frabortduecol);
tx_firmware_statistics->frlostinmactxer =
in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
tx_firmware_statistics->carriersenseertx =
in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
tx_firmware_statistics->frtxok =
in_be32(&p_tx_fw_statistics_pram->frtxok);
tx_firmware_statistics->txfrexcessivedefer =
in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
tx_firmware_statistics->txpkts256 =
in_be32(&p_tx_fw_statistics_pram->txpkts256);
tx_firmware_statistics->txpkts512 =
in_be32(&p_tx_fw_statistics_pram->txpkts512);
tx_firmware_statistics->txpkts1024 =
in_be32(&p_tx_fw_statistics_pram->txpkts1024);
tx_firmware_statistics->txpktsjumbo =
in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
}
/* Rx firmware only if user handed pointer and driver actually
* gathers Rx firmware statistics */
if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
int i;
rx_firmware_statistics->frrxfcser =
in_be32(&p_rx_fw_statistics_pram->frrxfcser);
rx_firmware_statistics->fraligner =
in_be32(&p_rx_fw_statistics_pram->fraligner);
rx_firmware_statistics->inrangelenrxer =
in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
rx_firmware_statistics->outrangelenrxer =
in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
rx_firmware_statistics->frtoolong =
in_be32(&p_rx_fw_statistics_pram->frtoolong);
rx_firmware_statistics->runt =
in_be32(&p_rx_fw_statistics_pram->runt);
rx_firmware_statistics->verylongevent =
in_be32(&p_rx_fw_statistics_pram->verylongevent);
rx_firmware_statistics->symbolerror =
in_be32(&p_rx_fw_statistics_pram->symbolerror);
rx_firmware_statistics->dropbsy =
in_be32(&p_rx_fw_statistics_pram->dropbsy);
for (i = 0; i < 0x8; i++)
rx_firmware_statistics->res0[i] =
p_rx_fw_statistics_pram->res0[i];
rx_firmware_statistics->mismatchdrop =
in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
rx_firmware_statistics->underpkts =
in_be32(&p_rx_fw_statistics_pram->underpkts);
rx_firmware_statistics->pkts256 =
in_be32(&p_rx_fw_statistics_pram->pkts256);
rx_firmware_statistics->pkts512 =
in_be32(&p_rx_fw_statistics_pram->pkts512);
rx_firmware_statistics->pkts1024 =
in_be32(&p_rx_fw_statistics_pram->pkts1024);
rx_firmware_statistics->pktsjumbo =
in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
rx_firmware_statistics->frlossinmacer =
in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
rx_firmware_statistics->pausefr =
in_be32(&p_rx_fw_statistics_pram->pausefr);
for (i = 0; i < 0x4; i++)
rx_firmware_statistics->res1[i] =
p_rx_fw_statistics_pram->res1[i];
rx_firmware_statistics->removevlan =
in_be32(&p_rx_fw_statistics_pram->removevlan);
rx_firmware_statistics->replacevlan =
in_be32(&p_rx_fw_statistics_pram->replacevlan);
rx_firmware_statistics->insertvlan =
in_be32(&p_rx_fw_statistics_pram->insertvlan);
}
/* Hardware only if user handed pointer and driver actually
gathers hardware statistics */
if (hardware_statistics &&
(in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
hardware_statistics->txok = in_be32(&ug_regs->txok);
hardware_statistics->txcf = in_be16(&ug_regs->txcf);
hardware_statistics->tmca = in_be32(&ug_regs->tmca);
hardware_statistics->tbca = in_be32(&ug_regs->tbca);
hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
hardware_statistics->rmca = in_be32(&ug_regs->rmca);
hardware_statistics->rbca = in_be32(&ug_regs->rbca);
}
}
static void dump_bds(struct ucc_geth_private *ugeth)
{
int i;
int length;
for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
if (ugeth->p_tx_bd_ring[i]) {
length =
(ugeth->ug_info->bdRingLenTx[i] *
sizeof(struct qe_bd));
pr_info("TX BDs[%d]\n", i);
mem_disp(ugeth->p_tx_bd_ring[i], length);
}
}
for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
if (ugeth->p_rx_bd_ring[i]) {
length =
(ugeth->ug_info->bdRingLenRx[i] *
sizeof(struct qe_bd));
pr_info("RX BDs[%d]\n", i);
mem_disp(ugeth->p_rx_bd_ring[i], length);
}
}
}
static void dump_regs(struct ucc_geth_private *ugeth)
{
int i;
pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->maccfg1,
in_be32(&ugeth->ug_regs->maccfg1));
pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->maccfg2,
in_be32(&ugeth->ug_regs->maccfg2));
pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->ipgifg,
in_be32(&ugeth->ug_regs->ipgifg));
pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->hafdup,
in_be32(&ugeth->ug_regs->hafdup));
pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->ifctl,
in_be32(&ugeth->ug_regs->ifctl));
pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->ifstat,
in_be32(&ugeth->ug_regs->ifstat));
pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->macstnaddr1,
in_be32(&ugeth->ug_regs->macstnaddr1));
pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->macstnaddr2,
in_be32(&ugeth->ug_regs->macstnaddr2));
pr_info("uempr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->uempr,
in_be32(&ugeth->ug_regs->uempr));
pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->utbipar,
in_be32(&ugeth->ug_regs->utbipar));
pr_info("uescr : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->ug_regs->uescr,
in_be16(&ugeth->ug_regs->uescr));
pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->tx64,
in_be32(&ugeth->ug_regs->tx64));
pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->tx127,
in_be32(&ugeth->ug_regs->tx127));
pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->tx255,
in_be32(&ugeth->ug_regs->tx255));
pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rx64,
in_be32(&ugeth->ug_regs->rx64));
pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rx127,
in_be32(&ugeth->ug_regs->rx127));
pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rx255,
in_be32(&ugeth->ug_regs->rx255));
pr_info("txok : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->txok,
in_be32(&ugeth->ug_regs->txok));
pr_info("txcf : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->ug_regs->txcf,
in_be16(&ugeth->ug_regs->txcf));
pr_info("tmca : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->tmca,
in_be32(&ugeth->ug_regs->tmca));
pr_info("tbca : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->tbca,
in_be32(&ugeth->ug_regs->tbca));
pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rxfok,
in_be32(&ugeth->ug_regs->rxfok));
pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rxbok,
in_be32(&ugeth->ug_regs->rxbok));
pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rbyt,
in_be32(&ugeth->ug_regs->rbyt));
pr_info("rmca : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rmca,
in_be32(&ugeth->ug_regs->rmca));
pr_info("rbca : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->rbca,
in_be32(&ugeth->ug_regs->rbca));
pr_info("scar : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->scar,
in_be32(&ugeth->ug_regs->scar));
pr_info("scam : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->ug_regs->scam,
in_be32(&ugeth->ug_regs->scam));
if (ugeth->p_thread_data_tx) {
int numThreadsTxNumerical;
switch (ugeth->ug_info->numThreadsTx) {
case UCC_GETH_NUM_OF_THREADS_1:
numThreadsTxNumerical = 1;
break;
case UCC_GETH_NUM_OF_THREADS_2:
numThreadsTxNumerical = 2;
break;
case UCC_GETH_NUM_OF_THREADS_4:
numThreadsTxNumerical = 4;
break;
case UCC_GETH_NUM_OF_THREADS_6:
numThreadsTxNumerical = 6;
break;
case UCC_GETH_NUM_OF_THREADS_8:
numThreadsTxNumerical = 8;
break;
default:
numThreadsTxNumerical = 0;
break;
}
pr_info("Thread data TXs:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_thread_data_tx);
for (i = 0; i < numThreadsTxNumerical; i++) {
pr_info("Thread data TX[%d]:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)&ugeth->p_thread_data_tx[i]);
mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
sizeof(struct ucc_geth_thread_data_tx));
}
}
if (ugeth->p_thread_data_rx) {
int numThreadsRxNumerical;
switch (ugeth->ug_info->numThreadsRx) {
case UCC_GETH_NUM_OF_THREADS_1:
numThreadsRxNumerical = 1;
break;
case UCC_GETH_NUM_OF_THREADS_2:
numThreadsRxNumerical = 2;
break;
case UCC_GETH_NUM_OF_THREADS_4:
numThreadsRxNumerical = 4;
break;
case UCC_GETH_NUM_OF_THREADS_6:
numThreadsRxNumerical = 6;
break;
case UCC_GETH_NUM_OF_THREADS_8:
numThreadsRxNumerical = 8;
break;
default:
numThreadsRxNumerical = 0;
break;
}
pr_info("Thread data RX:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_thread_data_rx);
for (i = 0; i < numThreadsRxNumerical; i++) {
pr_info("Thread data RX[%d]:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)&ugeth->p_thread_data_rx[i]);
mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
sizeof(struct ucc_geth_thread_data_rx));
}
}
if (ugeth->p_exf_glbl_param) {
pr_info("EXF global param:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_exf_glbl_param);
mem_disp((u8 *) ugeth->p_exf_glbl_param,
sizeof(*ugeth->p_exf_glbl_param));
}
if (ugeth->p_tx_glbl_pram) {
pr_info("TX global param:\n");
pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
pr_info("temoder : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_tx_glbl_pram->temoder,
in_be16(&ugeth->p_tx_glbl_pram->temoder));
pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->sqptr,
in_be32(&ugeth->p_tx_glbl_pram->sqptr));
pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
pr_info("tstate : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->tstate,
in_be32(&ugeth->p_tx_glbl_pram->tstate));
pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
ugeth->p_tx_glbl_pram->iphoffset[0]);
pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
ugeth->p_tx_glbl_pram->iphoffset[1]);
pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
ugeth->p_tx_glbl_pram->iphoffset[2]);
pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
ugeth->p_tx_glbl_pram->iphoffset[3]);
pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
ugeth->p_tx_glbl_pram->iphoffset[4]);
pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
ugeth->p_tx_glbl_pram->iphoffset[5]);
pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
ugeth->p_tx_glbl_pram->iphoffset[6]);
pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
ugeth->p_tx_glbl_pram->iphoffset[7]);
pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_tx_glbl_pram->tqptr,
in_be32(&ugeth->p_tx_glbl_pram->tqptr));
}
if (ugeth->p_rx_glbl_pram) {
pr_info("RX global param:\n");
pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
pr_info("remoder : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->remoder,
in_be32(&ugeth->p_rx_glbl_pram->remoder));
pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->rqptr,
in_be32(&ugeth->p_rx_glbl_pram->rqptr));
pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->typeorlen,
in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_rx_glbl_pram->rxgstpack,
ugeth->p_rx_glbl_pram->rxgstpack);
pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
pr_info("rstate : addr - 0x%08x, val - 0x%02x\n",
(u32)&ugeth->p_rx_glbl_pram->rstate,
ugeth->p_rx_glbl_pram->rstate);
pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->mrblr,
in_be16(&ugeth->p_rx_glbl_pram->mrblr));
pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->rbdqptr,
in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
pr_info("mflr : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->mflr,
in_be16(&ugeth->p_rx_glbl_pram->mflr));
pr_info("minflr : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->minflr,
in_be16(&ugeth->p_rx_glbl_pram->minflr));
pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->maxd1,
in_be16(&ugeth->p_rx_glbl_pram->maxd1));
pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->maxd2,
in_be16(&ugeth->p_rx_glbl_pram->maxd2));
pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->ecamptr,
in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l2qt,
in_be32(&ugeth->p_rx_glbl_pram->l2qt));
pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[0],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[1],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[2],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[3],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[4],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[5],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[6],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->l3qt[7],
in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->vlantype,
in_be16(&ugeth->p_rx_glbl_pram->vlantype));
pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n",
(u32)&ugeth->p_rx_glbl_pram->vlantci,
in_be16(&ugeth->p_rx_glbl_pram->vlantci));
for (i = 0; i < 64; i++)
pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
i,
(u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
ugeth->p_rx_glbl_pram->addressfiltering[i]);
pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
}
if (ugeth->p_send_q_mem_reg) {
pr_info("Send Q memory registers:\n");
pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
pr_info("SQQD[%d]:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
sizeof(struct ucc_geth_send_queue_qd));
}
}
if (ugeth->p_scheduler) {
pr_info("Scheduler:\n");
pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
mem_disp((u8 *) ugeth->p_scheduler,
sizeof(*ugeth->p_scheduler));
}
if (ugeth->p_tx_fw_statistics_pram) {
pr_info("TX FW statistics pram:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_tx_fw_statistics_pram);
mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
sizeof(*ugeth->p_tx_fw_statistics_pram));
}
if (ugeth->p_rx_fw_statistics_pram) {
pr_info("RX FW statistics pram:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_rx_fw_statistics_pram);
mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
sizeof(*ugeth->p_rx_fw_statistics_pram));
}
if (ugeth->p_rx_irq_coalescing_tbl) {
pr_info("RX IRQ coalescing tables:\n");
pr_info("Base address: 0x%08x\n",
(u32)ugeth->p_rx_irq_coalescing_tbl);
for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
pr_info("RX IRQ coalescing table entry[%d]:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)&ugeth->p_rx_irq_coalescing_tbl->
coalescingentry[i]);
pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_irq_coalescing_tbl->
coalescingentry[i].interruptcoalescingmaxvalue,
in_be32(&ugeth->p_rx_irq_coalescing_tbl->
coalescingentry[i].
interruptcoalescingmaxvalue));
pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_irq_coalescing_tbl->
coalescingentry[i].interruptcoalescingcounter,
in_be32(&ugeth->p_rx_irq_coalescing_tbl->
coalescingentry[i].
interruptcoalescingcounter));
}
}
if (ugeth->p_rx_bd_qs_tbl) {
pr_info("RX BD QS tables:\n");
pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
pr_info("RX BD QS table[%d]:\n", i);
pr_info("Base address: 0x%08x\n",
(u32)&ugeth->p_rx_bd_qs_tbl[i]);
pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
in_be32(&ugeth->p_rx_bd_qs_tbl[i].
externalbdbaseptr));
pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n",
(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
pr_info("ucode RX Prefetched BDs:\n");
pr_info("Base address: 0x%08x\n",
(u32)qe_muram_addr(in_be32
(&ugeth->p_rx_bd_qs_tbl[i].
bdbaseptr)));
mem_disp((u8 *)
qe_muram_addr(in_be32
(&ugeth->p_rx_bd_qs_tbl[i].
bdbaseptr)),
sizeof(struct ucc_geth_rx_prefetched_bds));
}
}
if (ugeth->p_init_enet_param_shadow) {
int size;
pr_info("Init enet param shadow:\n");
pr_info("Base address: 0x%08x\n",
(u32) ugeth->p_init_enet_param_shadow);
mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
sizeof(*ugeth->p_init_enet_param_shadow));
size = sizeof(struct ucc_geth_thread_rx_pram);
if (ugeth->ug_info->rxExtendedFiltering) {
size +=
THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
if (ugeth->ug_info->largestexternallookupkeysize ==
QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
size +=
THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
if (ugeth->ug_info->largestexternallookupkeysize ==
QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
size +=
THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
}
dump_init_enet_entries(ugeth,
&(ugeth->p_init_enet_param_shadow->
txthread[0]),
ENET_INIT_PARAM_MAX_ENTRIES_TX,
sizeof(struct ucc_geth_thread_tx_pram),
ugeth->ug_info->riscTx, 0);
dump_init_enet_entries(ugeth,
&(ugeth->p_init_enet_param_shadow->
rxthread[0]),
ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
ugeth->ug_info->riscRx, 1);
}
}
#endif /* DEBUG */
static void init_default_reg_vals(u32 __iomem *upsmr_register,
u32 __iomem *maccfg1_register,
u32 __iomem *maccfg2_register)
{
out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
}
static int init_half_duplex_params(int alt_beb,
int back_pressure_no_backoff,
int no_backoff,
int excess_defer,
u8 alt_beb_truncation,
u8 max_retransmissions,
u8 collision_window,
u32 __iomem *hafdup_register)
{
u32 value = 0;
if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
(max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
(collision_window > HALFDUP_COLLISION_WINDOW_MAX))
return -EINVAL;
value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
if (alt_beb)
value |= HALFDUP_ALT_BEB;
if (back_pressure_no_backoff)
value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
if (no_backoff)
value |= HALFDUP_NO_BACKOFF;
if (excess_defer)
value |= HALFDUP_EXCESSIVE_DEFER;
value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
value |= collision_window;
out_be32(hafdup_register, value);
return 0;
}
static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
u8 non_btb_ipg,
u8 min_ifg,
u8 btb_ipg,
u32 __iomem *ipgifg_register)
{
u32 value = 0;
/* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
IPG part 2 */
if (non_btb_cs_ipg > non_btb_ipg)
return -EINVAL;
if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
(non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
/*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
(btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
return -EINVAL;
value |=
((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
IPGIFG_NBTB_CS_IPG_MASK);
value |=
((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
IPGIFG_NBTB_IPG_MASK);
value |=
((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
IPGIFG_MIN_IFG_MASK);
value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
out_be32(ipgifg_register, value);
return 0;
}
int init_flow_control_params(u32 automatic_flow_control_mode,
int rx_flow_control_enable,
int tx_flow_control_enable,
u16 pause_period,
u16 extension_field,
u32 __iomem *upsmr_register,
u32 __iomem *uempr_register,
u32 __iomem *maccfg1_register)
{
u32 value = 0;
/* Set UEMPR register */
value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
out_be32(uempr_register, value);
/* Set UPSMR register */
setbits32(upsmr_register, automatic_flow_control_mode);
value = in_be32(maccfg1_register);
if (rx_flow_control_enable)
value |= MACCFG1_FLOW_RX;
if (tx_flow_control_enable)
value |= MACCFG1_FLOW_TX;
out_be32(maccfg1_register, value);
return 0;
}
static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
int auto_zero_hardware_statistics,
u32 __iomem *upsmr_register,
u16 __iomem *uescr_register)
{
u16 uescr_value = 0;
/* Enable hardware statistics gathering if requested */
if (enable_hardware_statistics)
setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
/* Clear hardware statistics counters */
uescr_value = in_be16(uescr_register);
uescr_value |= UESCR_CLRCNT;
/* Automatically zero hardware statistics counters on read,
if requested */
if (auto_zero_hardware_statistics)
uescr_value |= UESCR_AUTOZ;
out_be16(uescr_register, uescr_value);
return 0;
}
static int init_firmware_statistics_gathering_mode(int
enable_tx_firmware_statistics,
int enable_rx_firmware_statistics,
u32 __iomem *tx_rmon_base_ptr,
u32 tx_firmware_statistics_structure_address,
u32 __iomem *rx_rmon_base_ptr,
u32 rx_firmware_statistics_structure_address,
u16 __iomem *temoder_register,
u32 __iomem *remoder_register)
{
/* Note: this function does not check if */
/* the parameters it receives are NULL */
if (enable_tx_firmware_statistics) {
out_be32(tx_rmon_base_ptr,
tx_firmware_statistics_structure_address);
setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
}
if (enable_rx_firmware_statistics) {
out_be32(rx_rmon_base_ptr,
rx_firmware_statistics_structure_address);
setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
}
return 0;
}
static int init_mac_station_addr_regs(u8 address_byte_0,
u8 address_byte_1,
u8 address_byte_2,
u8 address_byte_3,
u8 address_byte_4,
u8 address_byte_5,
u32 __iomem *macstnaddr1_register,
u32 __iomem *macstnaddr2_register)
{
u32 value = 0;
/* Example: for a station address of 0x12345678ABCD, */
/* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
/* MACSTNADDR1 Register: */
/* 0 7 8 15 */
/* station address byte 5 station address byte 4 */
/* 16 23 24 31 */
/* station address byte 3 station address byte 2 */
value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
out_be32(macstnaddr1_register, value);
/* MACSTNADDR2 Register: */
/* 0 7 8 15 */
/* station address byte 1 station address byte 0 */
/* 16 23 24 31 */
/* reserved reserved */
value = 0;
value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
out_be32(macstnaddr2_register, value);
return 0;
}
static int init_check_frame_length_mode(int length_check,
u32 __iomem *maccfg2_register)
{
u32 value = 0;
value = in_be32(maccfg2_register);
if (length_check)
value |= MACCFG2_LC;
else
value &= ~MACCFG2_LC;
out_be32(maccfg2_register, value);
return 0;
}
static int init_preamble_length(u8 preamble_length,
u32 __iomem *maccfg2_register)
{
if ((preamble_length < 3) || (preamble_length > 7))
return -EINVAL;
clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
preamble_length << MACCFG2_PREL_SHIFT);
return 0;
}
static int init_rx_parameters(int reject_broadcast,
int receive_short_frames,
int promiscuous, u32 __iomem *upsmr_register)
{
u32 value = 0;
value = in_be32(upsmr_register);
if (reject_broadcast)
value |= UCC_GETH_UPSMR_BRO;
else
value &= ~UCC_GETH_UPSMR_BRO;
if (receive_short_frames)
value |= UCC_GETH_UPSMR_RSH;
else
value &= ~UCC_GETH_UPSMR_RSH;
if (promiscuous)
value |= UCC_GETH_UPSMR_PRO;
else
value &= ~UCC_GETH_UPSMR_PRO;
out_be32(upsmr_register, value);
return 0;
}
static int init_max_rx_buff_len(u16 max_rx_buf_len,
u16 __iomem *mrblr_register)
{
/* max_rx_buf_len value must be a multiple of 128 */
if ((max_rx_buf_len == 0) ||
(max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
return -EINVAL;
out_be16(mrblr_register, max_rx_buf_len);
return 0;
}
static int init_min_frame_len(u16 min_frame_length,
u16 __iomem *minflr_register,
u16 __iomem *mrblr_register)
{
u16 mrblr_value = 0;
mrblr_value = in_be16(mrblr_register);
if (min_frame_length >= (mrblr_value - 4))
return -EINVAL;
out_be16(minflr_register, min_frame_length);
return 0;
}
static int adjust_enet_interface(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_geth __iomem *ug_regs;
struct ucc_fast __iomem *uf_regs;
int ret_val;
u32 upsmr, maccfg2;
u16 value;
ugeth_vdbg("%s: IN", __func__);
ug_info = ugeth->ug_info;
ug_regs = ugeth->ug_regs;
uf_regs = ugeth->uccf->uf_regs;
/* Set MACCFG2 */
maccfg2 = in_be32(&ug_regs->maccfg2);
maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
if ((ugeth->max_speed == SPEED_10) ||
(ugeth->max_speed == SPEED_100))
maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
else if (ugeth->max_speed == SPEED_1000)
maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
maccfg2 |= ug_info->padAndCrc;
out_be32(&ug_regs->maccfg2, maccfg2);
/* Set UPSMR */
upsmr = in_be32(&uf_regs->upsmr);
upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
upsmr |= UCC_GETH_UPSMR_RPM;
switch (ugeth->max_speed) {
case SPEED_10:
upsmr |= UCC_GETH_UPSMR_R10M;
/* FALLTHROUGH */
case SPEED_100:
if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
upsmr |= UCC_GETH_UPSMR_RMM;
}
}
if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
upsmr |= UCC_GETH_UPSMR_TBIM;
}
if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
upsmr |= UCC_GETH_UPSMR_SGMM;
out_be32(&uf_regs->upsmr, upsmr);
/* Disable autonegotiation in tbi mode, because by default it
comes up in autonegotiation mode. */
/* Note that this depends on proper setting in utbipar register. */
if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
struct ucc_geth_info *ug_info = ugeth->ug_info;
struct phy_device *tbiphy;
if (!ug_info->tbi_node)
pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
tbiphy = of_phy_find_device(ug_info->tbi_node);
if (!tbiphy)
pr_warn("Could not get TBI device\n");
value = phy_read(tbiphy, ENET_TBI_MII_CR);
value &= ~0x1000; /* Turn off autonegotiation */
phy_write(tbiphy, ENET_TBI_MII_CR, value);
put_device(&tbiphy->mdio.dev);
}
init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
if (ret_val != 0) {
if (netif_msg_probe(ugeth))
pr_err("Preamble length must be between 3 and 7 inclusive\n");
return ret_val;
}
return 0;
}
static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
{
struct ucc_fast_private *uccf;
u32 cecr_subblock;
u32 temp;
int i = 10;
uccf = ugeth->uccf;
/* Mask GRACEFUL STOP TX interrupt bit and clear it */
clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
QE_CR_PROTOCOL_ETHERNET, 0);
/* Wait for command to complete */
do {
msleep(10);
temp = in_be32(uccf->p_ucce);
} while (!(temp & UCC_GETH_UCCE_GRA) && --i);
uccf->stopped_tx = 1;
return 0;
}
static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
{
struct ucc_fast_private *uccf;
u32 cecr_subblock;
u8 temp;
int i = 10;
uccf = ugeth->uccf;
/* Clear acknowledge bit */
temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
/* Keep issuing command and checking acknowledge bit until
it is asserted, according to spec */
do {
/* Issue host command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
QE_CR_PROTOCOL_ETHERNET, 0);
msleep(10);
temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
} while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
uccf->stopped_rx = 1;
return 0;
}
static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
{
struct ucc_fast_private *uccf;
u32 cecr_subblock;
uccf = ugeth->uccf;
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
uccf->stopped_tx = 0;
return 0;
}
static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
{
struct ucc_fast_private *uccf;
u32 cecr_subblock;
uccf = ugeth->uccf;
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
0);
uccf->stopped_rx = 0;
return 0;
}
static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
{
struct ucc_fast_private *uccf;
int enabled_tx, enabled_rx;
uccf = ugeth->uccf;
/* check if the UCC number is in range. */
if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
if (netif_msg_probe(ugeth))
pr_err("ucc_num out of range\n");
return -EINVAL;
}
enabled_tx = uccf->enabled_tx;
enabled_rx = uccf->enabled_rx;
/* Get Tx and Rx going again, in case this channel was actively
disabled. */
if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
ugeth_restart_tx(ugeth);
if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
ugeth_restart_rx(ugeth);
ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
return 0;
}
static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
{
struct ucc_fast_private *uccf;
uccf = ugeth->uccf;
/* check if the UCC number is in range. */
if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
if (netif_msg_probe(ugeth))
pr_err("ucc_num out of range\n");
return -EINVAL;
}
/* Stop any transmissions */
if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
ugeth_graceful_stop_tx(ugeth);
/* Stop any receptions */
if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
ugeth_graceful_stop_rx(ugeth);
ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
return 0;
}
static void ugeth_quiesce(struct ucc_geth_private *ugeth)
{
/* Prevent any further xmits, plus detach the device. */
netif_device_detach(ugeth->ndev);
/* Wait for any current xmits to finish. */
netif_tx_disable(ugeth->ndev);
/* Disable the interrupt to avoid NAPI rescheduling. */
disable_irq(ugeth->ug_info->uf_info.irq);
/* Stop NAPI, and possibly wait for its completion. */
napi_disable(&ugeth->napi);
}
static void ugeth_activate(struct ucc_geth_private *ugeth)
{
napi_enable(&ugeth->napi);
enable_irq(ugeth->ug_info->uf_info.irq);
netif_device_attach(ugeth->ndev);
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the ugeth structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
struct ucc_geth __iomem *ug_regs;
struct ucc_fast __iomem *uf_regs;
struct phy_device *phydev = ugeth->phydev;
int new_state = 0;
ug_regs = ugeth->ug_regs;
uf_regs = ugeth->uccf->uf_regs;
if (phydev->link) {
u32 tempval = in_be32(&ug_regs->maccfg2);
u32 upsmr = in_be32(&uf_regs->upsmr);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != ugeth->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FDX);
else
tempval |= MACCFG2_FDX;
ugeth->oldduplex = phydev->duplex;
}
if (phydev->speed != ugeth->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case SPEED_1000:
tempval = ((tempval &
~(MACCFG2_INTERFACE_MODE_MASK)) |
MACCFG2_INTERFACE_MODE_BYTE);
break;
case SPEED_100:
case SPEED_10:
tempval = ((tempval &
~(MACCFG2_INTERFACE_MODE_MASK)) |
MACCFG2_INTERFACE_MODE_NIBBLE);
/* if reduced mode, re-set UPSMR.R10M */
if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
(ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
if (phydev->speed == SPEED_10)
upsmr |= UCC_GETH_UPSMR_R10M;
else
upsmr &= ~UCC_GETH_UPSMR_R10M;
}
break;
default:
if (netif_msg_link(ugeth))
pr_warn(
"%s: Ack! Speed (%d) is not 10/100/1000!",
dev->name, phydev->speed);
break;
}
ugeth->oldspeed = phydev->speed;
}
if (!ugeth->oldlink) {
new_state = 1;
ugeth->oldlink = 1;
}
if (new_state) {
/*
* To change the MAC configuration we need to disable
* the controller. To do so, we have to either grab
* ugeth->lock, which is a bad idea since 'graceful
* stop' commands might take quite a while, or we can
* quiesce driver's activity.
*/
ugeth_quiesce(ugeth);
ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
out_be32(&ug_regs->maccfg2, tempval);
out_be32(&uf_regs->upsmr, upsmr);
ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
ugeth_activate(ugeth);
}
} else if (ugeth->oldlink) {
new_state = 1;
ugeth->oldlink = 0;
ugeth->oldspeed = 0;
ugeth->oldduplex = -1;
}
if (new_state && netif_msg_link(ugeth))
phy_print_status(phydev);
}
/* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the UTBIPA register. We assume
* that the UTBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void uec_configure_serdes(struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
struct ucc_geth_info *ug_info = ugeth->ug_info;
struct phy_device *tbiphy;
if (!ug_info->tbi_node) {
dev_warn(&dev->dev, "SGMII mode requires that the device "
"tree specify a tbi-handle\n");
return;
}
tbiphy = of_phy_find_device(ug_info->tbi_node);
if (!tbiphy) {
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/*
* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) {
put_device(&tbiphy->mdio.dev);
return;
}
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
put_device(&tbiphy->mdio.dev);
}
/* Configure the PHY for dev.
* returns 0 if success. -1 if failure
*/
static int init_phy(struct net_device *dev)
{
struct ucc_geth_private *priv = netdev_priv(dev);
struct ucc_geth_info *ug_info = priv->ug_info;
struct phy_device *phydev;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
priv->phy_interface);
if (!phydev) {
dev_err(&dev->dev, "Could not attach to PHY\n");
return -ENODEV;
}
if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
uec_configure_serdes(dev);
phy_set_max_speed(phydev, priv->max_speed);
priv->phydev = phydev;
return 0;
}
static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
{
#ifdef DEBUG
ucc_fast_dump_regs(ugeth->uccf);
dump_regs(ugeth);
dump_bds(ugeth);
#endif
}
static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
ugeth,
enum enet_addr_type
enet_addr_type)
{
struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
struct ucc_fast_private *uccf;
enum comm_dir comm_dir;
struct list_head *p_lh;
u16 i, num;
u32 __iomem *addr_h;
u32 __iomem *addr_l;
u8 *p_counter;
uccf = ugeth->uccf;
p_82xx_addr_filt =
(struct ucc_geth_82xx_address_filtering_pram __iomem *)
ugeth->p_rx_glbl_pram->addressfiltering;
if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
addr_h = &(p_82xx_addr_filt->gaddr_h);
addr_l = &(p_82xx_addr_filt->gaddr_l);
p_lh = &ugeth->group_hash_q;
p_counter = &(ugeth->numGroupAddrInHash);
} else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
addr_h = &(p_82xx_addr_filt->iaddr_h);
addr_l = &(p_82xx_addr_filt->iaddr_l);
p_lh = &ugeth->ind_hash_q;
p_counter = &(ugeth->numIndAddrInHash);
} else
return -EINVAL;
comm_dir = 0;
if (uccf->enabled_tx)
comm_dir |= COMM_DIR_TX;
if (uccf->enabled_rx)
comm_dir |= COMM_DIR_RX;
if (comm_dir)
ugeth_disable(ugeth, comm_dir);
/* Clear the hash table. */
out_be32(addr_h, 0x00000000);
out_be32(addr_l, 0x00000000);
if (!p_lh)
return 0;
num = *p_counter;
/* Delete all remaining CQ elements */
for (i = 0; i < num; i++)
put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
*p_counter = 0;
if (comm_dir)
ugeth_enable(ugeth, comm_dir);
return 0;
}
static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
u8 paddr_num)
{
ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
}
static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
u16 i, j;
u8 __iomem *bd;
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
if (ugeth->p_rx_bd_ring[i]) {
/* Return existing data buffers in ring */
bd = ugeth->p_rx_bd_ring[i];
for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
if (ugeth->rx_skbuff[i][j]) {
dma_unmap_single(ugeth->dev,
in_be32(&((struct qe_bd __iomem *)bd)->buf),
ugeth->ug_info->
uf_info.max_rx_buf_length +
UCC_GETH_RX_DATA_BUF_ALIGNMENT,
DMA_FROM_DEVICE);
dev_kfree_skb_any(
ugeth->rx_skbuff[i][j]);
ugeth->rx_skbuff[i][j] = NULL;
}
bd += sizeof(struct qe_bd);
}
kfree(ugeth->rx_skbuff[i]);
if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_SYSTEM)
kfree((void *)ugeth->rx_bd_ring_offset[i]);
else if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_MURAM)
qe_muram_free(ugeth->rx_bd_ring_offset[i]);
ugeth->p_rx_bd_ring[i] = NULL;
}
}
}
static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
u16 i, j;
u8 __iomem *bd;
netdev_reset_queue(ugeth->ndev);
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
bd = ugeth->p_tx_bd_ring[i];
if (!bd)
continue;
for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
if (ugeth->tx_skbuff[i][j]) {
dma_unmap_single(ugeth->dev,
in_be32(&((struct qe_bd __iomem *)bd)->buf),
(in_be32((u32 __iomem *)bd) &
BD_LENGTH_MASK),
DMA_TO_DEVICE);
dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
ugeth->tx_skbuff[i][j] = NULL;
}
}
kfree(ugeth->tx_skbuff[i]);
if (ugeth->p_tx_bd_ring[i]) {
if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_SYSTEM)
kfree((void *)ugeth->tx_bd_ring_offset[i]);
else if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_MURAM)
qe_muram_free(ugeth->tx_bd_ring_offset[i]);
ugeth->p_tx_bd_ring[i] = NULL;
}
}
}
static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
{
if (!ugeth)
return;
if (ugeth->uccf) {
ucc_fast_free(ugeth->uccf);
ugeth->uccf = NULL;
}
if (ugeth->p_thread_data_tx) {
qe_muram_free(ugeth->thread_dat_tx_offset);
ugeth->p_thread_data_tx = NULL;
}
if (ugeth->p_thread_data_rx) {
qe_muram_free(ugeth->thread_dat_rx_offset);
ugeth->p_thread_data_rx = NULL;
}
if (ugeth->p_exf_glbl_param) {
qe_muram_free(ugeth->exf_glbl_param_offset);
ugeth->p_exf_glbl_param = NULL;
}
if (ugeth->p_rx_glbl_pram) {
qe_muram_free(ugeth->rx_glbl_pram_offset);
ugeth->p_rx_glbl_pram = NULL;
}
if (ugeth->p_tx_glbl_pram) {
qe_muram_free(ugeth->tx_glbl_pram_offset);
ugeth->p_tx_glbl_pram = NULL;
}
if (ugeth->p_send_q_mem_reg) {
qe_muram_free(ugeth->send_q_mem_reg_offset);
ugeth->p_send_q_mem_reg = NULL;
}
if (ugeth->p_scheduler) {
qe_muram_free(ugeth->scheduler_offset);
ugeth->p_scheduler = NULL;
}
if (ugeth->p_tx_fw_statistics_pram) {
qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
ugeth->p_tx_fw_statistics_pram = NULL;
}
if (ugeth->p_rx_fw_statistics_pram) {
qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
ugeth->p_rx_fw_statistics_pram = NULL;
}
if (ugeth->p_rx_irq_coalescing_tbl) {
qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
ugeth->p_rx_irq_coalescing_tbl = NULL;
}
if (ugeth->p_rx_bd_qs_tbl) {
qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
ugeth->p_rx_bd_qs_tbl = NULL;
}
if (ugeth->p_init_enet_param_shadow) {
return_init_enet_entries(ugeth,
&(ugeth->p_init_enet_param_shadow->
rxthread[0]),
ENET_INIT_PARAM_MAX_ENTRIES_RX,
ugeth->ug_info->riscRx, 1);
return_init_enet_entries(ugeth,
&(ugeth->p_init_enet_param_shadow->
txthread[0]),
ENET_INIT_PARAM_MAX_ENTRIES_TX,
ugeth->ug_info->riscTx, 0);
kfree(ugeth->p_init_enet_param_shadow);
ugeth->p_init_enet_param_shadow = NULL;
}
ucc_geth_free_tx(ugeth);
ucc_geth_free_rx(ugeth);
while (!list_empty(&ugeth->group_hash_q))
put_enet_addr_container(ENET_ADDR_CONT_ENTRY
(dequeue(&ugeth->group_hash_q)));
while (!list_empty(&ugeth->ind_hash_q))
put_enet_addr_container(ENET_ADDR_CONT_ENTRY
(dequeue(&ugeth->ind_hash_q)));
if (ugeth->ug_regs) {
iounmap(ugeth->ug_regs);
ugeth->ug_regs = NULL;
}
}
static void ucc_geth_set_multi(struct net_device *dev)
{
struct ucc_geth_private *ugeth;
struct netdev_hw_addr *ha;
struct ucc_fast __iomem *uf_regs;
struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
ugeth = netdev_priv(dev);
uf_regs = ugeth->uccf->uf_regs;
if (dev->flags & IFF_PROMISC) {
setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
} else {
clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
p_82xx_addr_filt =
(struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
p_rx_glbl_pram->addressfiltering;
if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the
* filter to all 1's.
*/
out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
} else {
/* Clear filter and add the addresses in the list.
*/
out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
netdev_for_each_mc_addr(ha, dev) {
/* Ask CPM to run CRC and set bit in
* filter mask.
*/
hw_add_addr_in_hash(ugeth, ha->addr);
}
}
}
}
static void ucc_geth_stop(struct ucc_geth_private *ugeth)
{
struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
struct phy_device *phydev = ugeth->phydev;
ugeth_vdbg("%s: IN", __func__);
/*
* Tell the kernel the link is down.
* Must be done before disabling the controller
* or deadlock may happen.
*/
phy_stop(phydev);
/* Disable the controller */
ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
/* Mask all interrupts */
out_be32(ugeth->uccf->p_uccm, 0x00000000);
/* Clear all interrupts */
out_be32(ugeth->uccf->p_ucce, 0xffffffff);
/* Disable Rx and Tx */
clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
ucc_geth_memclean(ugeth);
}
static int ucc_struct_init(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
int i;
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
(uf_info->bd_mem_part == MEM_PART_MURAM))) {
if (netif_msg_probe(ugeth))
pr_err("Bad memory partition value\n");
return -EINVAL;
}
/* Rx BD lengths */
for (i = 0; i < ug_info->numQueuesRx; i++) {
if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
(ug_info->bdRingLenRx[i] %
UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
if (netif_msg_probe(ugeth))
pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
return -EINVAL;
}
}
/* Tx BD lengths */
for (i = 0; i < ug_info->numQueuesTx; i++) {
if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
if (netif_msg_probe(ugeth))
pr_err("Tx BD ring length must be no smaller than 2\n");
return -EINVAL;
}
}
/* mrblr */
if ((uf_info->max_rx_buf_length == 0) ||
(uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
if (netif_msg_probe(ugeth))
pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
return -EINVAL;
}
/* num Tx queues */
if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
if (netif_msg_probe(ugeth))
pr_err("number of tx queues too large\n");
return -EINVAL;
}
/* num Rx queues */
if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
if (netif_msg_probe(ugeth))
pr_err("number of rx queues too large\n");
return -EINVAL;
}
/* l2qt */
for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
if (netif_msg_probe(ugeth))
pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
return -EINVAL;
}
}
/* l3qt */
for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
if (netif_msg_probe(ugeth))
pr_err("IP priority table entry must not be larger than number of Rx queues\n");
return -EINVAL;
}
}
if (ug_info->cam && !ug_info->ecamptr) {
if (netif_msg_probe(ugeth))
pr_err("If cam mode is chosen, must supply cam ptr\n");
return -EINVAL;
}
if ((ug_info->numStationAddresses !=
UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
ug_info->rxExtendedFiltering) {
if (netif_msg_probe(ugeth))
pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
return -EINVAL;
}
/* Generate uccm_mask for receive */
uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
for (i = 0; i < ug_info->numQueuesRx; i++)
uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
for (i = 0; i < ug_info->numQueuesTx; i++)
uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
/* Initialize the general fast UCC block. */
if (ucc_fast_init(uf_info, &ugeth->uccf)) {
if (netif_msg_probe(ugeth))
pr_err("Failed to init uccf\n");
return -ENOMEM;
}
/* read the number of risc engines, update the riscTx and riscRx
* if there are 4 riscs in QE
*/
if (qe_get_num_of_risc() == 4) {
ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
}
ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
if (!ugeth->ug_regs) {
if (netif_msg_probe(ugeth))
pr_err("Failed to ioremap regs\n");
return -ENOMEM;
}
return 0;
}
static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
int length;
u16 i, j;
u8 __iomem *bd;
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
/* Allocate Tx bds */
for (j = 0; j < ug_info->numQueuesTx; j++) {
/* Allocate in multiple of
UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
according to spec */
length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
/ UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
* UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
u32 align = 4;
if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
align = UCC_GETH_TX_BD_RING_ALIGNMENT;
ugeth->tx_bd_ring_offset[j] =
(u32) kmalloc((u32) (length + align), GFP_KERNEL);
if (ugeth->tx_bd_ring_offset[j] != 0)
ugeth->p_tx_bd_ring[j] =
(u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
align) & ~(align - 1));
} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
ugeth->tx_bd_ring_offset[j] =
qe_muram_alloc(length,
UCC_GETH_TX_BD_RING_ALIGNMENT);
if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
ugeth->p_tx_bd_ring[j] =
(u8 __iomem *) qe_muram_addr(ugeth->
tx_bd_ring_offset[j]);
}
if (!ugeth->p_tx_bd_ring[j]) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate memory for Tx bd rings\n");
return -ENOMEM;
}
/* Zero unused end of bd ring, according to spec */
memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
}
/* Init Tx bds */
for (j = 0; j < ug_info->numQueuesTx; j++) {
/* Setup the skbuff rings */
ugeth->tx_skbuff[j] =
kmalloc_array(ugeth->ug_info->bdRingLenTx[j],
sizeof(struct sk_buff *), GFP_KERNEL);
if (ugeth->tx_skbuff[j] == NULL) {
if (netif_msg_ifup(ugeth))
pr_err("Could not allocate tx_skbuff\n");
return -ENOMEM;
}
for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
ugeth->tx_skbuff[j][i] = NULL;
ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
/* clear bd buffer */
out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
/* set bd status and length */
out_be32((u32 __iomem *)bd, 0);
bd += sizeof(struct qe_bd);
}
bd -= sizeof(struct qe_bd);
/* set bd status and length */
out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
}
return 0;
}
static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
{
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
int length;
u16 i, j;
u8 __iomem *bd;
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
/* Allocate Rx bds */
for (j = 0; j < ug_info->numQueuesRx; j++) {
length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
u32 align = 4;
if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
align = UCC_GETH_RX_BD_RING_ALIGNMENT;
ugeth->rx_bd_ring_offset[j] =
(u32) kmalloc((u32) (length + align), GFP_KERNEL);
if (ugeth->rx_bd_ring_offset[j] != 0)
ugeth->p_rx_bd_ring[j] =
(u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
align) & ~(align - 1));
} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
ugeth->rx_bd_ring_offset[j] =
qe_muram_alloc(length,
UCC_GETH_RX_BD_RING_ALIGNMENT);
if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
ugeth->p_rx_bd_ring[j] =
(u8 __iomem *) qe_muram_addr(ugeth->
rx_bd_ring_offset[j]);
}
if (!ugeth->p_rx_bd_ring[j]) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate memory for Rx bd rings\n");
return -ENOMEM;
}
}
/* Init Rx bds */
for (j = 0; j < ug_info->numQueuesRx; j++) {
/* Setup the skbuff rings */
ugeth->rx_skbuff[j] =
kmalloc_array(ugeth->ug_info->bdRingLenRx[j],
sizeof(struct sk_buff *), GFP_KERNEL);
if (ugeth->rx_skbuff[j] == NULL) {
if (netif_msg_ifup(ugeth))
pr_err("Could not allocate rx_skbuff\n");
return -ENOMEM;
}
for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
ugeth->rx_skbuff[j][i] = NULL;
ugeth->skb_currx[j] = 0;
bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
/* set bd status and length */
out_be32((u32 __iomem *)bd, R_I);
/* clear bd buffer */
out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
bd += sizeof(struct qe_bd);
}
bd -= sizeof(struct qe_bd);
/* set bd status and length */
out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
}
return 0;
}
static int ucc_geth_startup(struct ucc_geth_private *ugeth)
{
struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
struct ucc_geth_init_pram __iomem *p_init_enet_pram;
struct ucc_fast_private *uccf;
struct ucc_geth_info *ug_info;
struct ucc_fast_info *uf_info;
struct ucc_fast __iomem *uf_regs;
struct ucc_geth __iomem *ug_regs;
int ret_val = -EINVAL;
u32 remoder = UCC_GETH_REMODER_INIT;
u32 init_enet_pram_offset, cecr_subblock, command;
u32 ifstat, i, j, size, l2qt, l3qt;
u16 temoder = UCC_GETH_TEMODER_INIT;
u16 test;
u8 function_code = 0;
u8 __iomem *endOfRing;
u8 numThreadsRxNumerical, numThreadsTxNumerical;
ugeth_vdbg("%s: IN", __func__);
uccf = ugeth->uccf;
ug_info = ugeth->ug_info;
uf_info = &ug_info->uf_info;
uf_regs = uccf->uf_regs;
ug_regs = ugeth->ug_regs;
switch (ug_info->numThreadsRx) {
case UCC_GETH_NUM_OF_THREADS_1:
numThreadsRxNumerical = 1;
break;
case UCC_GETH_NUM_OF_THREADS_2:
numThreadsRxNumerical = 2;
break;
case UCC_GETH_NUM_OF_THREADS_4:
numThreadsRxNumerical = 4;
break;
case UCC_GETH_NUM_OF_THREADS_6:
numThreadsRxNumerical = 6;
break;
case UCC_GETH_NUM_OF_THREADS_8:
numThreadsRxNumerical = 8;
break;
default:
if (netif_msg_ifup(ugeth))
pr_err("Bad number of Rx threads value\n");
return -EINVAL;
}
switch (ug_info->numThreadsTx) {
case UCC_GETH_NUM_OF_THREADS_1:
numThreadsTxNumerical = 1;
break;
case UCC_GETH_NUM_OF_THREADS_2:
numThreadsTxNumerical = 2;
break;
case UCC_GETH_NUM_OF_THREADS_4:
numThreadsTxNumerical = 4;
break;
case UCC_GETH_NUM_OF_THREADS_6:
numThreadsTxNumerical = 6;
break;
case UCC_GETH_NUM_OF_THREADS_8:
numThreadsTxNumerical = 8;
break;
default:
if (netif_msg_ifup(ugeth))
pr_err("Bad number of Tx threads value\n");
return -EINVAL;
}
/* Calculate rx_extended_features */
ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
ug_info->ipAddressAlignment ||
(ug_info->numStationAddresses !=
UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
(ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
(ug_info->vlanOperationNonTagged !=
UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
init_default_reg_vals(&uf_regs->upsmr,
&ug_regs->maccfg1, &ug_regs->maccfg2);
/* Set UPSMR */
/* For more details see the hardware spec. */
init_rx_parameters(ug_info->bro,
ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
/* We're going to ignore other registers for now, */
/* except as needed to get up and running */
/* Set MACCFG1 */
/* For more details see the hardware spec. */
init_flow_control_params(ug_info->aufc,
ug_info->receiveFlowControl,
ug_info->transmitFlowControl,
ug_info->pausePeriod,
ug_info->extensionField,
&uf_regs->upsmr,
&ug_regs->uempr, &ug_regs->maccfg1);
setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
/* Set IPGIFG */
/* For more details see the hardware spec. */
ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
ug_info->nonBackToBackIfgPart2,
ug_info->
miminumInterFrameGapEnforcement,
ug_info->backToBackInterFrameGap,
&ug_regs->ipgifg);
if (ret_val != 0) {
if (netif_msg_ifup(ugeth))
pr_err("IPGIFG initialization parameter too large\n");
return ret_val;
}
/* Set HAFDUP */
/* For more details see the hardware spec. */
ret_val = init_half_duplex_params(ug_info->altBeb,
ug_info->backPressureNoBackoff,
ug_info->noBackoff,
ug_info->excessDefer,
ug_info->altBebTruncation,
ug_info->maxRetransmission,
ug_info->collisionWindow,
&ug_regs->hafdup);
if (ret_val != 0) {
if (netif_msg_ifup(ugeth))
pr_err("Half Duplex initialization parameter too large\n");
return ret_val;
}
/* Set IFSTAT */
/* For more details see the hardware spec. */
/* Read only - resets upon read */
ifstat = in_be32(&ug_regs->ifstat);
/* Clear UEMPR */
/* For more details see the hardware spec. */
out_be32(&ug_regs->uempr, 0);
/* Set UESCR */
/* For more details see the hardware spec. */
init_hw_statistics_gathering_mode((ug_info->statisticsMode &
UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
0, &uf_regs->upsmr, &ug_regs->uescr);
ret_val = ucc_geth_alloc_tx(ugeth);
if (ret_val != 0)
return ret_val;
ret_val = ucc_geth_alloc_rx(ugeth);
if (ret_val != 0)
return ret_val;
/*
* Global PRAM
*/
/* Tx global PRAM */
/* Allocate global tx parameter RAM page */
ugeth->tx_glbl_pram_offset =
qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
return -ENOMEM;
}
ugeth->p_tx_glbl_pram =
(struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
tx_glbl_pram_offset);
/* Zero out p_tx_glbl_pram */
memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
/* Fill global PRAM */
/* TQPTR */
/* Size varies with number of Tx threads */
ugeth->thread_dat_tx_offset =
qe_muram_alloc(numThreadsTxNumerical *
sizeof(struct ucc_geth_thread_data_tx) +
32 * (numThreadsTxNumerical == 1),
UCC_GETH_THREAD_DATA_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
return -ENOMEM;
}
ugeth->p_thread_data_tx =
(struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
thread_dat_tx_offset);
out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
/* vtagtable */
for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
ug_info->vtagtable[i]);
/* iphoffset */
for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
ug_info->iphoffset[i]);
/* SQPTR */
/* Size varies with number of Tx queues */
ugeth->send_q_mem_reg_offset =
qe_muram_alloc(ug_info->numQueuesTx *
sizeof(struct ucc_geth_send_queue_qd),
UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
return -ENOMEM;
}
ugeth->p_send_q_mem_reg =
(struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
send_q_mem_reg_offset);
out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
/* Setup the table */
/* Assume BD rings are already established */
for (i = 0; i < ug_info->numQueuesTx; i++) {
endOfRing =
ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
1) * sizeof(struct qe_bd);
if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
(u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
last_bd_completed_address,
(u32) virt_to_phys(endOfRing));
} else if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_MURAM) {
out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
(u32)qe_muram_dma(ugeth->p_tx_bd_ring[i]));
out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
last_bd_completed_address,
(u32)qe_muram_dma(endOfRing));
}
}
/* schedulerbasepointer */
if (ug_info->numQueuesTx > 1) {
/* scheduler exists only if more than 1 tx queue */
ugeth->scheduler_offset =
qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
UCC_GETH_SCHEDULER_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_scheduler\n");
return -ENOMEM;
}
ugeth->p_scheduler =
(struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
scheduler_offset);
out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
ugeth->scheduler_offset);
/* Zero out p_scheduler */
memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
/* Set values in scheduler */
out_be32(&ugeth->p_scheduler->mblinterval,
ug_info->mblinterval);
out_be16(&ugeth->p_scheduler->nortsrbytetime,
ug_info->nortsrbytetime);
out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
out_8(&ugeth->p_scheduler->strictpriorityq,
ug_info->strictpriorityq);
out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
for (i = 0; i < NUM_TX_QUEUES; i++)
out_8(&ugeth->p_scheduler->weightfactor[i],
ug_info->weightfactor[i]);
/* Set pointers to cpucount registers in scheduler */
ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
}
/* schedulerbasepointer */
/* TxRMON_PTR (statistics) */
if (ug_info->
statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
ugeth->tx_fw_statistics_pram_offset =
qe_muram_alloc(sizeof
(struct ucc_geth_tx_firmware_statistics_pram),
UCC_GETH_TX_STATISTICS_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
return -ENOMEM;
}
ugeth->p_tx_fw_statistics_pram =
(struct ucc_geth_tx_firmware_statistics_pram __iomem *)
qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
/* Zero out p_tx_fw_statistics_pram */
memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
}
/* temoder */
/* Already has speed set */
if (ug_info->numQueuesTx > 1)
temoder |= TEMODER_SCHEDULER_ENABLE;
if (ug_info->ipCheckSumGenerate)
temoder |= TEMODER_IP_CHECKSUM_GENERATE;
temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
/* Function code register value to be used later */
function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
/* Required for QE */
/* function code register */
out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
/* Rx global PRAM */
/* Allocate global rx parameter RAM page */
ugeth->rx_glbl_pram_offset =
qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
return -ENOMEM;
}
ugeth->p_rx_glbl_pram =
(struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
rx_glbl_pram_offset);
/* Zero out p_rx_glbl_pram */
memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
/* Fill global PRAM */
/* RQPTR */
/* Size varies with number of Rx threads */
ugeth->thread_dat_rx_offset =
qe_muram_alloc(numThreadsRxNumerical *
sizeof(struct ucc_geth_thread_data_rx),
UCC_GETH_THREAD_DATA_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
return -ENOMEM;
}
ugeth->p_thread_data_rx =
(struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
thread_dat_rx_offset);
out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
/* typeorlen */
out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
/* rxrmonbaseptr (statistics) */
if (ug_info->
statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
ugeth->rx_fw_statistics_pram_offset =
qe_muram_alloc(sizeof
(struct ucc_geth_rx_firmware_statistics_pram),
UCC_GETH_RX_STATISTICS_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
return -ENOMEM;
}
ugeth->p_rx_fw_statistics_pram =
(struct ucc_geth_rx_firmware_statistics_pram __iomem *)
qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
/* Zero out p_rx_fw_statistics_pram */
memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
sizeof(struct ucc_geth_rx_firmware_statistics_pram));
}
/* intCoalescingPtr */
/* Size varies with number of Rx queues */
ugeth->rx_irq_coalescing_tbl_offset =
qe_muram_alloc(ug_info->numQueuesRx *
sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
+ 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
return -ENOMEM;
}
ugeth->p_rx_irq_coalescing_tbl =
(struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
ugeth->rx_irq_coalescing_tbl_offset);
/* Fill interrupt coalescing table */
for (i = 0; i < ug_info->numQueuesRx; i++) {
out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
interruptcoalescingmaxvalue,
ug_info->interruptcoalescingmaxvalue[i]);
out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
interruptcoalescingcounter,
ug_info->interruptcoalescingmaxvalue[i]);
}
/* MRBLR */
init_max_rx_buff_len(uf_info->max_rx_buf_length,
&ugeth->p_rx_glbl_pram->mrblr);
/* MFLR */
out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
/* MINFLR */
init_min_frame_len(ug_info->minFrameLength,
&ugeth->p_rx_glbl_pram->minflr,
&ugeth->p_rx_glbl_pram->mrblr);
/* MAXD1 */
out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
/* MAXD2 */
out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
/* l2qt */
l2qt = 0;
for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
/* l3qt */
for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
l3qt = 0;
for (i = 0; i < 8; i++)
l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
}
/* vlantype */
out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
/* vlantci */
out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
/* ecamptr */
out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
/* RBDQPTR */
/* Size varies with number of Rx queues */
ugeth->rx_bd_qs_tbl_offset =
qe_muram_alloc(ug_info->numQueuesRx *
(sizeof(struct ucc_geth_rx_bd_queues_entry) +
sizeof(struct ucc_geth_rx_prefetched_bds)),
UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
return -ENOMEM;
}
ugeth->p_rx_bd_qs_tbl =
(struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
rx_bd_qs_tbl_offset);
out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
/* Zero out p_rx_bd_qs_tbl */
memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
0,
ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
sizeof(struct ucc_geth_rx_prefetched_bds)));
/* Setup the table */
/* Assume BD rings are already established */
for (i = 0; i < ug_info->numQueuesRx; i++) {
if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
(u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
} else if (ugeth->ug_info->uf_info.bd_mem_part ==
MEM_PART_MURAM) {
out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
(u32)qe_muram_dma(ugeth->p_rx_bd_ring[i]));
}
/* rest of fields handled by QE */
}
/* remoder */
/* Already has speed set */
if (ugeth->rx_extended_features)
remoder |= REMODER_RX_EXTENDED_FEATURES;
if (ug_info->rxExtendedFiltering)
remoder |= REMODER_RX_EXTENDED_FILTERING;
if (ug_info->dynamicMaxFrameLength)
remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
if (ug_info->dynamicMinFrameLength)
remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
remoder |=
ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
remoder |=
ug_info->
vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
if (ug_info->ipCheckSumCheck)
remoder |= REMODER_IP_CHECKSUM_CHECK;
if (ug_info->ipAddressAlignment)
remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
/* Note that this function must be called */
/* ONLY AFTER p_tx_fw_statistics_pram */
/* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
init_firmware_statistics_gathering_mode((ug_info->
statisticsMode &
UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
(ug_info->statisticsMode &
UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
&ugeth->p_tx_glbl_pram->txrmonbaseptr,
ugeth->tx_fw_statistics_pram_offset,
&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
ugeth->rx_fw_statistics_pram_offset,
&ugeth->p_tx_glbl_pram->temoder,
&ugeth->p_rx_glbl_pram->remoder);
/* function code register */
out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
/* initialize extended filtering */
if (ug_info->rxExtendedFiltering) {
if (!ug_info->extendedFilteringChainPointer) {
if (netif_msg_ifup(ugeth))
pr_err("Null Extended Filtering Chain Pointer\n");
return -EINVAL;
}
/* Allocate memory for extended filtering Mode Global
Parameters */
ugeth->exf_glbl_param_offset =
qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
return -ENOMEM;
}
ugeth->p_exf_glbl_param =
(struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
exf_glbl_param_offset);
out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
ugeth->exf_glbl_param_offset);
out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
(u32) ug_info->extendedFilteringChainPointer);
} else { /* initialize 82xx style address filtering */
/* Init individual address recognition registers to disabled */
for (j = 0; j < NUM_OF_PADDRS; j++)
ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
p_82xx_addr_filt =
(struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
p_rx_glbl_pram->addressfiltering;
ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
ENET_ADDR_TYPE_GROUP);
ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
ENET_ADDR_TYPE_INDIVIDUAL);
}
/*
* Initialize UCC at QE level
*/
command = QE_INIT_TX_RX;
/* Allocate shadow InitEnet command parameter structure.
* This is needed because after the InitEnet command is executed,
* the structure in DPRAM is released, because DPRAM is a premium
* resource.
* This shadow structure keeps a copy of what was done so that the
* allocated resources can be released when the channel is freed.
*/
if (!(ugeth->p_init_enet_param_shadow =
kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
return -ENOMEM;
}
/* Zero out *p_init_enet_param_shadow */
memset((char *)ugeth->p_init_enet_param_shadow,
0, sizeof(struct ucc_geth_init_pram));
/* Fill shadow InitEnet command parameter structure */
ugeth->p_init_enet_param_shadow->resinit1 =
ENET_INIT_PARAM_MAGIC_RES_INIT1;
ugeth->p_init_enet_param_shadow->resinit2 =
ENET_INIT_PARAM_MAGIC_RES_INIT2;
ugeth->p_init_enet_param_shadow->resinit3 =
ENET_INIT_PARAM_MAGIC_RES_INIT3;
ugeth->p_init_enet_param_shadow->resinit4 =
ENET_INIT_PARAM_MAGIC_RES_INIT4;
ugeth->p_init_enet_param_shadow->resinit5 =
ENET_INIT_PARAM_MAGIC_RES_INIT5;
ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
ugeth->rx_glbl_pram_offset | ug_info->riscRx;
if ((ug_info->largestexternallookupkeysize !=
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
(ug_info->largestexternallookupkeysize !=
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
(ug_info->largestexternallookupkeysize !=
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
if (netif_msg_ifup(ugeth))
pr_err("Invalid largest External Lookup Key Size\n");
return -EINVAL;
}
ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
ug_info->largestexternallookupkeysize;
size = sizeof(struct ucc_geth_thread_rx_pram);
if (ug_info->rxExtendedFiltering) {
size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
if (ug_info->largestexternallookupkeysize ==
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
size +=
THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
if (ug_info->largestexternallookupkeysize ==
QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
size +=
THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
}
if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
p_init_enet_param_shadow->rxthread[0]),
(u8) (numThreadsRxNumerical + 1)
/* Rx needs one extra for terminator */
, size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
ug_info->riscRx, 1)) != 0) {
if (netif_msg_ifup(ugeth))
pr_err("Can not fill p_init_enet_param_shadow\n");
return ret_val;
}
ugeth->p_init_enet_param_shadow->txglobal =
ugeth->tx_glbl_pram_offset | ug_info->riscTx;
if ((ret_val =
fill_init_enet_entries(ugeth,
&(ugeth->p_init_enet_param_shadow->
txthread[0]), numThreadsTxNumerical,
sizeof(struct ucc_geth_thread_tx_pram),
UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
ug_info->riscTx, 0)) != 0) {
if (netif_msg_ifup(ugeth))
pr_err("Can not fill p_init_enet_param_shadow\n");
return ret_val;
}
/* Load Rx bds with buffers */
for (i = 0; i < ug_info->numQueuesRx; i++) {
if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
if (netif_msg_ifup(ugeth))
pr_err("Can not fill Rx bds with buffers\n");
return ret_val;
}
}
/* Allocate InitEnet command parameter structure */
init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
if (IS_ERR_VALUE(init_enet_pram_offset)) {
if (netif_msg_ifup(ugeth))
pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
return -ENOMEM;
}
p_init_enet_pram =
(struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
/* Copy shadow InitEnet command parameter structure into PRAM */
out_8(&p_init_enet_pram->resinit1,
ugeth->p_init_enet_param_shadow->resinit1);
out_8(&p_init_enet_pram->resinit2,
ugeth->p_init_enet_param_shadow->resinit2);
out_8(&p_init_enet_pram->resinit3,
ugeth->p_init_enet_param_shadow->resinit3);
out_8(&p_init_enet_pram->resinit4,
ugeth->p_init_enet_param_shadow->resinit4);
out_be16(&p_init_enet_pram->resinit5,
ugeth->p_init_enet_param_shadow->resinit5);
out_8(&p_init_enet_pram->largestexternallookupkeysize,
ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
out_be32(&p_init_enet_pram->rgftgfrxglobal,
ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
out_be32(&p_init_enet_pram->rxthread[i],
ugeth->p_init_enet_param_shadow->rxthread[i]);
out_be32(&p_init_enet_pram->txglobal,
ugeth->p_init_enet_param_shadow->txglobal);
for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
out_be32(&p_init_enet_pram->txthread[i],
ugeth->p_init_enet_param_shadow->txthread[i]);
/* Issue QE command */
cecr_subblock =
ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
init_enet_pram_offset);
/* Free InitEnet command parameter */
qe_muram_free(init_enet_pram_offset);
return 0;
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static netdev_tx_t
ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
#ifdef CONFIG_UGETH_TX_ON_DEMAND
struct ucc_fast_private *uccf;
#endif
u8 __iomem *bd; /* BD pointer */
u32 bd_status;
u8 txQ = 0;
unsigned long flags;
ugeth_vdbg("%s: IN", __func__);
netdev_sent_queue(dev, skb->len);
spin_lock_irqsave(&ugeth->lock, flags);
dev->stats.tx_bytes += skb->len;
/* Start from the next BD that should be filled */
bd = ugeth->txBd[txQ];
bd_status = in_be32((u32 __iomem *)bd);
/* Save the skb pointer so we can free it later */
ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
/* Update the current skb pointer (wrapping if this was the last) */
ugeth->skb_curtx[txQ] =
(ugeth->skb_curtx[txQ] +
1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
/* set up the buffer descriptor */
out_be32(&((struct qe_bd __iomem *)bd)->buf,
dma_map_single(ugeth->dev, skb->data,
skb->len, DMA_TO_DEVICE));
/* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
/* set bd status and length */
out_be32((u32 __iomem *)bd, bd_status);
/* Move to next BD in the ring */
if (!(bd_status & T_W))
bd += sizeof(struct qe_bd);
else
bd = ugeth->p_tx_bd_ring[txQ];
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (bd == ugeth->confBd[txQ]) {
if (!netif_queue_stopped(dev))
netif_stop_queue(dev);
}
ugeth->txBd[txQ] = bd;
skb_tx_timestamp(skb);
if (ugeth->p_scheduler) {
ugeth->cpucount[txQ]++;
/* Indicate to QE that there are more Tx bds ready for
transmission */
/* This is done by writing a running counter of the bd
count to the scheduler PRAM. */
out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
}
#ifdef CONFIG_UGETH_TX_ON_DEMAND
uccf = ugeth->uccf;
out_be16(uccf->p_utodr, UCC_FAST_TOD);
#endif
spin_unlock_irqrestore(&ugeth->lock, flags);
return NETDEV_TX_OK;
}
static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
{
struct sk_buff *skb;
u8 __iomem *bd;
u16 length, howmany = 0;
u32 bd_status;
u8 *bdBuffer;
struct net_device *dev;
ugeth_vdbg("%s: IN", __func__);
dev = ugeth->ndev;
/* collect received buffers */
bd = ugeth->rxBd[rxQ];
bd_status = in_be32((u32 __iomem *)bd);
/* while there are received buffers and BD is full (~R_E) */
while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
/* determine whether buffer is first, last, first and last
(single buffer frame) or middle (not first and not last) */
if (!skb ||
(!(bd_status & (R_F | R_L))) ||
(bd_status & R_ERRORS_FATAL)) {
if (netif_msg_rx_err(ugeth))
pr_err("%d: ERROR!!! skb - 0x%08x\n",
__LINE__, (u32)skb);
dev_kfree_skb(skb);
ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
dev->stats.rx_dropped++;
} else {
dev->stats.rx_packets++;
howmany++;
/* Prep the skb for the packet */
skb_put(skb, length);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, ugeth->ndev);
dev->stats.rx_bytes += length;
/* Send the packet up the stack */
netif_receive_skb(skb);
}
skb = get_new_skb(ugeth, bd);
if (!skb) {
if (netif_msg_rx_err(ugeth))
pr_warn("No Rx Data Buffer\n");
dev->stats.rx_dropped++;
break;
}
ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
/* update to point at the next skb */
ugeth->skb_currx[rxQ] =
(ugeth->skb_currx[rxQ] +
1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
if (bd_status & R_W)
bd = ugeth->p_rx_bd_ring[rxQ];
else
bd += sizeof(struct qe_bd);
bd_status = in_be32((u32 __iomem *)bd);
}
ugeth->rxBd[rxQ] = bd;
return howmany;
}
static int ucc_geth_tx(struct net_device *dev, u8 txQ)
{
/* Start from the next BD that should be filled */
struct ucc_geth_private *ugeth = netdev_priv(dev);
unsigned int bytes_sent = 0;
int howmany = 0;
u8 __iomem *bd; /* BD pointer */
u32 bd_status;
bd = ugeth->confBd[txQ];
bd_status = in_be32((u32 __iomem *)bd);
/* Normal processing. */
while ((bd_status & T_R) == 0) {
struct sk_buff *skb;
/* BD contains already transmitted buffer. */
/* Handle the transmitted buffer and release */
/* the BD to be used with the current frame */
skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
if (!skb)
break;
howmany++;
bytes_sent += skb->len;
dev->stats.tx_packets++;
dev_consume_skb_any(skb);
ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
ugeth->skb_dirtytx[txQ] =
(ugeth->skb_dirtytx[txQ] +
1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
/* We freed a buffer, so now we can restart transmission */
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
/* Advance the confirmation BD pointer */
if (!(bd_status & T_W))
bd += sizeof(struct qe_bd);
else
bd = ugeth->p_tx_bd_ring[txQ];
bd_status = in_be32((u32 __iomem *)bd);
}
ugeth->confBd[txQ] = bd;
netdev_completed_queue(dev, howmany, bytes_sent);
return 0;
}
static int ucc_geth_poll(struct napi_struct *napi, int budget)
{
struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
struct ucc_geth_info *ug_info;
int howmany, i;
ug_info = ugeth->ug_info;
/* Tx event processing */
spin_lock(&ugeth->lock);
for (i = 0; i < ug_info->numQueuesTx; i++)
ucc_geth_tx(ugeth->ndev, i);
spin_unlock(&ugeth->lock);
howmany = 0;
for (i = 0; i < ug_info->numQueuesRx; i++)
howmany += ucc_geth_rx(ugeth, i, budget - howmany);
if (howmany < budget) {
napi_complete_done(napi, howmany);
setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
}
return howmany;
}
static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
{
struct net_device *dev = info;
struct ucc_geth_private *ugeth = netdev_priv(dev);
struct ucc_fast_private *uccf;
struct ucc_geth_info *ug_info;
register u32 ucce;
register u32 uccm;
ugeth_vdbg("%s: IN", __func__);
uccf = ugeth->uccf;
ug_info = ugeth->ug_info;
/* read and clear events */
ucce = (u32) in_be32(uccf->p_ucce);
uccm = (u32) in_be32(uccf->p_uccm);
ucce &= uccm;
out_be32(uccf->p_ucce, ucce);
/* check for receive events that require processing */
if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
if (napi_schedule_prep(&ugeth->napi)) {
uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
out_be32(uccf->p_uccm, uccm);
__napi_schedule(&ugeth->napi);
}
}
/* Errors and other events */
if (ucce & UCCE_OTHER) {
if (ucce & UCC_GETH_UCCE_BSY)
dev->stats.rx_errors++;
if (ucce & UCC_GETH_UCCE_TXE)
dev->stats.tx_errors++;
}
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void ucc_netpoll(struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
int irq = ugeth->ug_info->uf_info.irq;
disable_irq(irq);
ucc_geth_irq_handler(irq, dev);
enable_irq(irq);
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/*
* If device is not running, we will set mac addr register
* when opening the device.
*/
if (!netif_running(dev))
return 0;
spin_lock_irq(&ugeth->lock);
init_mac_station_addr_regs(dev->dev_addr[0],
dev->dev_addr[1],
dev->dev_addr[2],
dev->dev_addr[3],
dev->dev_addr[4],
dev->dev_addr[5],
&ugeth->ug_regs->macstnaddr1,
&ugeth->ug_regs->macstnaddr2);
spin_unlock_irq(&ugeth->lock);
return 0;
}
static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
{
struct net_device *dev = ugeth->ndev;
int err;
err = ucc_struct_init(ugeth);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
goto err;
}
err = ucc_geth_startup(ugeth);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
goto err;
}
err = adjust_enet_interface(ugeth);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
goto err;
}
/* Set MACSTNADDR1, MACSTNADDR2 */
/* For more details see the hardware spec. */
init_mac_station_addr_regs(dev->dev_addr[0],
dev->dev_addr[1],
dev->dev_addr[2],
dev->dev_addr[3],
dev->dev_addr[4],
dev->dev_addr[5],
&ugeth->ug_regs->macstnaddr1,
&ugeth->ug_regs->macstnaddr2);
err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
goto err;
}
return 0;
err:
ucc_geth_stop(ugeth);
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int ucc_geth_open(struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
int err;
ugeth_vdbg("%s: IN", __func__);
/* Test station address */
if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
netif_err(ugeth, ifup, dev,
"Multicast address used for station address - is this what you wanted?\n");
return -EINVAL;
}
err = init_phy(dev);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
return err;
}
err = ucc_geth_init_mac(ugeth);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
goto err;
}
err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
0, "UCC Geth", dev);
if (err) {
netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
goto err;
}
phy_start(ugeth->phydev);
napi_enable(&ugeth->napi);
netdev_reset_queue(dev);
netif_start_queue(dev);
device_set_wakeup_capable(&dev->dev,
qe_alive_during_sleep() || ugeth->phydev->irq);
device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
return err;
err:
ucc_geth_stop(ugeth);
return err;
}
/* Stops the kernel queue, and halts the controller */
static int ucc_geth_close(struct net_device *dev)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
ugeth_vdbg("%s: IN", __func__);
napi_disable(&ugeth->napi);
cancel_work_sync(&ugeth->timeout_work);
ucc_geth_stop(ugeth);
phy_disconnect(ugeth->phydev);
ugeth->phydev = NULL;
free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
netif_stop_queue(dev);
netdev_reset_queue(dev);
return 0;
}
/* Reopen device. This will reset the MAC and PHY. */
static void ucc_geth_timeout_work(struct work_struct *work)
{
struct ucc_geth_private *ugeth;
struct net_device *dev;
ugeth = container_of(work, struct ucc_geth_private, timeout_work);
dev = ugeth->ndev;
ugeth_vdbg("%s: IN", __func__);
dev->stats.tx_errors++;
ugeth_dump_regs(ugeth);
if (dev->flags & IFF_UP) {
/*
* Must reset MAC *and* PHY. This is done by reopening
* the device.
*/
netif_tx_stop_all_queues(dev);
ucc_geth_stop(ugeth);
ucc_geth_init_mac(ugeth);
/* Must start PHY here */
phy_start(ugeth->phydev);
netif_tx_start_all_queues(dev);
}
netif_tx_schedule_all(dev);
}
/*
* ucc_geth_timeout gets called when a packet has not been
* transmitted after a set amount of time.
*/
static void ucc_geth_timeout(struct net_device *dev, unsigned int txqueue)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
schedule_work(&ugeth->timeout_work);
}
#ifdef CONFIG_PM
static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(ofdev);
struct ucc_geth_private *ugeth = netdev_priv(ndev);
if (!netif_running(ndev))
return 0;
netif_device_detach(ndev);
napi_disable(&ugeth->napi);
/*
* Disable the controller, otherwise we'll wakeup on any network
* activity.
*/
ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
if (ugeth->wol_en & WAKE_MAGIC) {
setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
} else if (!(ugeth->wol_en & WAKE_PHY)) {
phy_stop(ugeth->phydev);
}
return 0;
}
static int ucc_geth_resume(struct platform_device *ofdev)
{
struct net_device *ndev = platform_get_drvdata(ofdev);
struct ucc_geth_private *ugeth = netdev_priv(ndev);
int err;
if (!netif_running(ndev))
return 0;
if (qe_alive_during_sleep()) {
if (ugeth->wol_en & WAKE_MAGIC) {
ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
}
ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
} else {
/*
* Full reinitialization is required if QE shuts down
* during sleep.
*/
ucc_geth_memclean(ugeth);
err = ucc_geth_init_mac(ugeth);
if (err) {
netdev_err(ndev, "Cannot initialize MAC, aborting\n");
return err;
}
}
ugeth->oldlink = 0;
ugeth->oldspeed = 0;
ugeth->oldduplex = -1;
phy_stop(ugeth->phydev);
phy_start(ugeth->phydev);
napi_enable(&ugeth->napi);
netif_device_attach(ndev);
return 0;
}
#else
#define ucc_geth_suspend NULL
#define ucc_geth_resume NULL
#endif
static phy_interface_t to_phy_interface(const char *phy_connection_type)
{
if (strcasecmp(phy_connection_type, "mii") == 0)
return PHY_INTERFACE_MODE_MII;
if (strcasecmp(phy_connection_type, "gmii") == 0)
return PHY_INTERFACE_MODE_GMII;
if (strcasecmp(phy_connection_type, "tbi") == 0)
return PHY_INTERFACE_MODE_TBI;
if (strcasecmp(phy_connection_type, "rmii") == 0)
return PHY_INTERFACE_MODE_RMII;
if (strcasecmp(phy_connection_type, "rgmii") == 0)
return PHY_INTERFACE_MODE_RGMII;
if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
return PHY_INTERFACE_MODE_RGMII_ID;
if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
return PHY_INTERFACE_MODE_RGMII_TXID;
if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
return PHY_INTERFACE_MODE_RGMII_RXID;
if (strcasecmp(phy_connection_type, "rtbi") == 0)
return PHY_INTERFACE_MODE_RTBI;
if (strcasecmp(phy_connection_type, "sgmii") == 0)
return PHY_INTERFACE_MODE_SGMII;
return PHY_INTERFACE_MODE_MII;
}
static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct ucc_geth_private *ugeth = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!ugeth->phydev)
return -ENODEV;
return phy_mii_ioctl(ugeth->phydev, rq, cmd);
}
static const struct net_device_ops ucc_geth_netdev_ops = {
.ndo_open = ucc_geth_open,
.ndo_stop = ucc_geth_close,
.ndo_start_xmit = ucc_geth_start_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_carrier = fixed_phy_change_carrier,
.ndo_set_mac_address = ucc_geth_set_mac_addr,
.ndo_set_rx_mode = ucc_geth_set_multi,
.ndo_tx_timeout = ucc_geth_timeout,
.ndo_do_ioctl = ucc_geth_ioctl,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ucc_netpoll,
#endif
};
static int ucc_geth_probe(struct platform_device* ofdev)
{
struct device *device = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct net_device *dev = NULL;
struct ucc_geth_private *ugeth = NULL;
struct ucc_geth_info *ug_info;
struct resource res;
int err, ucc_num, max_speed = 0;
const unsigned int *prop;
const char *sprop;
const void *mac_addr;
phy_interface_t phy_interface;
static const int enet_to_speed[] = {
SPEED_10, SPEED_10, SPEED_10,
SPEED_100, SPEED_100, SPEED_100,
SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
};
static const phy_interface_t enet_to_phy_interface[] = {
PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
PHY_INTERFACE_MODE_SGMII,
};
ugeth_vdbg("%s: IN", __func__);
prop = of_get_property(np, "cell-index", NULL);
if (!prop) {
prop = of_get_property(np, "device-id", NULL);
if (!prop)
return -ENODEV;
}
ucc_num = *prop - 1;
if ((ucc_num < 0) || (ucc_num > 7))
return -ENODEV;
ug_info = &ugeth_info[ucc_num];
if (ug_info == NULL) {
if (netif_msg_probe(&debug))
pr_err("[%d] Missing additional data!\n", ucc_num);
return -ENODEV;
}
ug_info->uf_info.ucc_num = ucc_num;
sprop = of_get_property(np, "rx-clock-name", NULL);
if (sprop) {
ug_info->uf_info.rx_clock = qe_clock_source(sprop);
if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
(ug_info->uf_info.rx_clock > QE_CLK24)) {
pr_err("invalid rx-clock-name property\n");
return -EINVAL;
}
} else {
prop = of_get_property(np, "rx-clock", NULL);
if (!prop) {
/* If both rx-clock-name and rx-clock are missing,
we want to tell people to use rx-clock-name. */
pr_err("missing rx-clock-name property\n");
return -EINVAL;
}
if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
pr_err("invalid rx-clock property\n");
return -EINVAL;
}
ug_info->uf_info.rx_clock = *prop;
}
sprop = of_get_property(np, "tx-clock-name", NULL);
if (sprop) {
ug_info->uf_info.tx_clock = qe_clock_source(sprop);
if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
(ug_info->uf_info.tx_clock > QE_CLK24)) {
pr_err("invalid tx-clock-name property\n");
return -EINVAL;
}
} else {
prop = of_get_property(np, "tx-clock", NULL);
if (!prop) {
pr_err("missing tx-clock-name property\n");
return -EINVAL;
}
if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
pr_err("invalid tx-clock property\n");
return -EINVAL;
}
ug_info->uf_info.tx_clock = *prop;
}
err = of_address_to_resource(np, 0, &res);
if (err)
return -EINVAL;
ug_info->uf_info.regs = res.start;
ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
if (!ug_info->phy_node && of_phy_is_fixed_link(np)) {
/*
* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
err = of_phy_register_fixed_link(np);
if (err)
return err;
ug_info->phy_node = of_node_get(np);
}
/* Find the TBI PHY node. If it's not there, we don't support SGMII */
ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
/* get the phy interface type, or default to MII */
prop = of_get_property(np, "phy-connection-type", NULL);
if (!prop) {
/* handle interface property present in old trees */
prop = of_get_property(ug_info->phy_node, "interface", NULL);
if (prop != NULL) {
phy_interface = enet_to_phy_interface[*prop];
max_speed = enet_to_speed[*prop];
} else
phy_interface = PHY_INTERFACE_MODE_MII;
} else {
phy_interface = to_phy_interface((const char *)prop);
}
/* get speed, or derive from PHY interface */
if (max_speed == 0)
switch (phy_interface) {
case PHY_INTERFACE_MODE_GMII:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
case PHY_INTERFACE_MODE_TBI:
case PHY_INTERFACE_MODE_RTBI:
case PHY_INTERFACE_MODE_SGMII:
max_speed = SPEED_1000;
break;
default:
max_speed = SPEED_100;
break;
}
if (max_speed == SPEED_1000) {
unsigned int snums = qe_get_num_of_snums();
/* configure muram FIFOs for gigabit operation */
ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
/* If QE's snum number is 46/76 which means we need to support
* 4 UECs at 1000Base-T simultaneously, we need to allocate
* more Threads to Rx.
*/
if ((snums == 76) || (snums == 46))
ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
else
ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
}
if (netif_msg_probe(&debug))
pr_info("UCC%1d at 0x%8llx (irq = %d)\n",
ug_info->uf_info.ucc_num + 1,
(u64)ug_info->uf_info.regs,
ug_info->uf_info.irq);
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof(*ugeth));
if (dev == NULL) {
err = -ENOMEM;
goto err_deregister_fixed_link;
}
ugeth = netdev_priv(dev);
spin_lock_init(&ugeth->lock);
/* Create CQs for hash tables */
INIT_LIST_HEAD(&ugeth->group_hash_q);
INIT_LIST_HEAD(&ugeth->ind_hash_q);
dev_set_drvdata(device, dev);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
SET_NETDEV_DEV(dev, device);
/* Fill in the dev structure */
uec_set_ethtool_ops(dev);
dev->netdev_ops = &ucc_geth_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
dev->mtu = 1500;
ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
ugeth->phy_interface = phy_interface;
ugeth->max_speed = max_speed;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
if (netif_msg_probe(ugeth))
pr_err("%s: Cannot register net device, aborting\n",
dev->name);
goto err_free_netdev;
}
mac_addr = of_get_mac_address(np);
if (!IS_ERR(mac_addr))
ether_addr_copy(dev->dev_addr, mac_addr);
ugeth->ug_info = ug_info;
ugeth->dev = device;
ugeth->ndev = dev;
ugeth->node = np;
return 0;
err_free_netdev:
free_netdev(dev);
err_deregister_fixed_link:
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
of_node_put(ug_info->tbi_node);
of_node_put(ug_info->phy_node);
return err;
}
static int ucc_geth_remove(struct platform_device* ofdev)
{
struct net_device *dev = platform_get_drvdata(ofdev);
struct ucc_geth_private *ugeth = netdev_priv(dev);
struct device_node *np = ofdev->dev.of_node;
unregister_netdev(dev);
free_netdev(dev);
ucc_geth_memclean(ugeth);
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
of_node_put(ugeth->ug_info->tbi_node);
of_node_put(ugeth->ug_info->phy_node);
return 0;
}
static const struct of_device_id ucc_geth_match[] = {
{
.type = "network",
.compatible = "ucc_geth",
},
{},
};
MODULE_DEVICE_TABLE(of, ucc_geth_match);
static struct platform_driver ucc_geth_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = ucc_geth_match,
},
.probe = ucc_geth_probe,
.remove = ucc_geth_remove,
.suspend = ucc_geth_suspend,
.resume = ucc_geth_resume,
};
static int __init ucc_geth_init(void)
{
int i, ret;
if (netif_msg_drv(&debug))
pr_info(DRV_DESC "\n");
for (i = 0; i < 8; i++)
memcpy(&(ugeth_info[i]), &ugeth_primary_info,
sizeof(ugeth_primary_info));
ret = platform_driver_register(&ucc_geth_driver);
return ret;
}
static void __exit ucc_geth_exit(void)
{
platform_driver_unregister(&ucc_geth_driver);
}
module_init(ucc_geth_init);
module_exit(ucc_geth_exit);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION(DRV_DESC);
MODULE_LICENSE("GPL");