mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-26 21:54:11 +08:00
f9a705ad1c
- New page table code for both hypervisor and guest stage-2 - Introduction of a new EL2-private host context - Allow EL2 to have its own private per-CPU variables - Support of PMU event filtering - Complete rework of the Spectre mitigation PPC: - Fix for running nested guests with in-kernel IRQ chip - Fix race condition causing occasional host hard lockup - Minor cleanups and bugfixes x86: - allow trapping unknown MSRs to userspace - allow userspace to force #GP on specific MSRs - INVPCID support on AMD - nested AMD cleanup, on demand allocation of nested SVM state - hide PV MSRs and hypercalls for features not enabled in CPUID - new test for MSR_IA32_TSC writes from host and guest - cleanups: MMU, CPUID, shared MSRs - LAPIC latency optimizations ad bugfixes For x86, also included in this pull request is a new alternative and (in the future) more scalable implementation of extended page tables that does not need a reverse map from guest physical addresses to host physical addresses. For now it is disabled by default because it is still lacking a few of the existing MMU's bells and whistles. However it is a very solid piece of work and it is already available for people to hammer on it. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg== =AD6a -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "For x86, there is a new alternative and (in the future) more scalable implementation of extended page tables that does not need a reverse map from guest physical addresses to host physical addresses. For now it is disabled by default because it is still lacking a few of the existing MMU's bells and whistles. However it is a very solid piece of work and it is already available for people to hammer on it. Other updates: ARM: - New page table code for both hypervisor and guest stage-2 - Introduction of a new EL2-private host context - Allow EL2 to have its own private per-CPU variables - Support of PMU event filtering - Complete rework of the Spectre mitigation PPC: - Fix for running nested guests with in-kernel IRQ chip - Fix race condition causing occasional host hard lockup - Minor cleanups and bugfixes x86: - allow trapping unknown MSRs to userspace - allow userspace to force #GP on specific MSRs - INVPCID support on AMD - nested AMD cleanup, on demand allocation of nested SVM state - hide PV MSRs and hypercalls for features not enabled in CPUID - new test for MSR_IA32_TSC writes from host and guest - cleanups: MMU, CPUID, shared MSRs - LAPIC latency optimizations ad bugfixes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits) kvm: x86/mmu: NX largepage recovery for TDP MMU kvm: x86/mmu: Don't clear write flooding count for direct roots kvm: x86/mmu: Support MMIO in the TDP MMU kvm: x86/mmu: Support write protection for nesting in tdp MMU kvm: x86/mmu: Support disabling dirty logging for the tdp MMU kvm: x86/mmu: Support dirty logging for the TDP MMU kvm: x86/mmu: Support changed pte notifier in tdp MMU kvm: x86/mmu: Add access tracking for tdp_mmu kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU kvm: x86/mmu: Add TDP MMU PF handler kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg kvm: x86/mmu: Support zapping SPTEs in the TDP MMU KVM: Cache as_id in kvm_memory_slot kvm: x86/mmu: Add functions to handle changed TDP SPTEs kvm: x86/mmu: Allocate and free TDP MMU roots kvm: x86/mmu: Init / Uninit the TDP MMU kvm: x86/mmu: Introduce tdp_iter KVM: mmu: extract spte.h and spte.c KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp ...
4324 lines
114 KiB
C
4324 lines
114 KiB
C
#define pr_fmt(fmt) "SVM: " fmt
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
#include "pmu.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/trace_events.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/objtool.h>
|
|
#include <linux/psp-sev.h>
|
|
#include <linux/file.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/rwsem.h>
|
|
|
|
#include <asm/apic.h>
|
|
#include <asm/perf_event.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kvm_para.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/spec-ctrl.h>
|
|
#include <asm/cpu_device_id.h>
|
|
|
|
#include <asm/virtext.h>
|
|
#include "trace.h"
|
|
|
|
#include "svm.h"
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef MODULE
|
|
static const struct x86_cpu_id svm_cpu_id[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
|
|
#endif
|
|
|
|
#define IOPM_ALLOC_ORDER 2
|
|
#define MSRPM_ALLOC_ORDER 1
|
|
|
|
#define SEG_TYPE_LDT 2
|
|
#define SEG_TYPE_BUSY_TSS16 3
|
|
|
|
#define SVM_FEATURE_LBRV (1 << 1)
|
|
#define SVM_FEATURE_SVML (1 << 2)
|
|
#define SVM_FEATURE_TSC_RATE (1 << 4)
|
|
#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
|
|
#define SVM_FEATURE_FLUSH_ASID (1 << 6)
|
|
#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
|
|
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
|
|
|
|
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
|
|
|
|
#define TSC_RATIO_RSVD 0xffffff0000000000ULL
|
|
#define TSC_RATIO_MIN 0x0000000000000001ULL
|
|
#define TSC_RATIO_MAX 0x000000ffffffffffULL
|
|
|
|
static bool erratum_383_found __read_mostly;
|
|
|
|
u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
|
|
|
|
/*
|
|
* Set osvw_len to higher value when updated Revision Guides
|
|
* are published and we know what the new status bits are
|
|
*/
|
|
static uint64_t osvw_len = 4, osvw_status;
|
|
|
|
static DEFINE_PER_CPU(u64, current_tsc_ratio);
|
|
#define TSC_RATIO_DEFAULT 0x0100000000ULL
|
|
|
|
static const struct svm_direct_access_msrs {
|
|
u32 index; /* Index of the MSR */
|
|
bool always; /* True if intercept is always on */
|
|
} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
|
|
{ .index = MSR_STAR, .always = true },
|
|
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
|
|
#ifdef CONFIG_X86_64
|
|
{ .index = MSR_GS_BASE, .always = true },
|
|
{ .index = MSR_FS_BASE, .always = true },
|
|
{ .index = MSR_KERNEL_GS_BASE, .always = true },
|
|
{ .index = MSR_LSTAR, .always = true },
|
|
{ .index = MSR_CSTAR, .always = true },
|
|
{ .index = MSR_SYSCALL_MASK, .always = true },
|
|
#endif
|
|
{ .index = MSR_IA32_SPEC_CTRL, .always = false },
|
|
{ .index = MSR_IA32_PRED_CMD, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
|
|
{ .index = MSR_INVALID, .always = false },
|
|
};
|
|
|
|
/* enable NPT for AMD64 and X86 with PAE */
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
|
|
bool npt_enabled = true;
|
|
#else
|
|
bool npt_enabled;
|
|
#endif
|
|
|
|
/*
|
|
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
|
|
* pause_filter_count: On processors that support Pause filtering(indicated
|
|
* by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
|
|
* count value. On VMRUN this value is loaded into an internal counter.
|
|
* Each time a pause instruction is executed, this counter is decremented
|
|
* until it reaches zero at which time a #VMEXIT is generated if pause
|
|
* intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
|
|
* Intercept Filtering for more details.
|
|
* This also indicate if ple logic enabled.
|
|
*
|
|
* pause_filter_thresh: In addition, some processor families support advanced
|
|
* pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
|
|
* the amount of time a guest is allowed to execute in a pause loop.
|
|
* In this mode, a 16-bit pause filter threshold field is added in the
|
|
* VMCB. The threshold value is a cycle count that is used to reset the
|
|
* pause counter. As with simple pause filtering, VMRUN loads the pause
|
|
* count value from VMCB into an internal counter. Then, on each pause
|
|
* instruction the hardware checks the elapsed number of cycles since
|
|
* the most recent pause instruction against the pause filter threshold.
|
|
* If the elapsed cycle count is greater than the pause filter threshold,
|
|
* then the internal pause count is reloaded from the VMCB and execution
|
|
* continues. If the elapsed cycle count is less than the pause filter
|
|
* threshold, then the internal pause count is decremented. If the count
|
|
* value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
|
|
* triggered. If advanced pause filtering is supported and pause filter
|
|
* threshold field is set to zero, the filter will operate in the simpler,
|
|
* count only mode.
|
|
*/
|
|
|
|
static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
|
|
module_param(pause_filter_thresh, ushort, 0444);
|
|
|
|
static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
|
|
module_param(pause_filter_count, ushort, 0444);
|
|
|
|
/* Default doubles per-vcpu window every exit. */
|
|
static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
|
|
module_param(pause_filter_count_grow, ushort, 0444);
|
|
|
|
/* Default resets per-vcpu window every exit to pause_filter_count. */
|
|
static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
|
|
module_param(pause_filter_count_shrink, ushort, 0444);
|
|
|
|
/* Default is to compute the maximum so we can never overflow. */
|
|
static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
|
|
module_param(pause_filter_count_max, ushort, 0444);
|
|
|
|
/* allow nested paging (virtualized MMU) for all guests */
|
|
static int npt = true;
|
|
module_param(npt, int, S_IRUGO);
|
|
|
|
/* allow nested virtualization in KVM/SVM */
|
|
static int nested = true;
|
|
module_param(nested, int, S_IRUGO);
|
|
|
|
/* enable/disable Next RIP Save */
|
|
static int nrips = true;
|
|
module_param(nrips, int, 0444);
|
|
|
|
/* enable/disable Virtual VMLOAD VMSAVE */
|
|
static int vls = true;
|
|
module_param(vls, int, 0444);
|
|
|
|
/* enable/disable Virtual GIF */
|
|
static int vgif = true;
|
|
module_param(vgif, int, 0444);
|
|
|
|
/* enable/disable SEV support */
|
|
static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
|
|
module_param(sev, int, 0444);
|
|
|
|
static bool __read_mostly dump_invalid_vmcb = 0;
|
|
module_param(dump_invalid_vmcb, bool, 0644);
|
|
|
|
static u8 rsm_ins_bytes[] = "\x0f\xaa";
|
|
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm);
|
|
|
|
static unsigned long iopm_base;
|
|
|
|
struct kvm_ldttss_desc {
|
|
u16 limit0;
|
|
u16 base0;
|
|
unsigned base1:8, type:5, dpl:2, p:1;
|
|
unsigned limit1:4, zero0:3, g:1, base2:8;
|
|
u32 base3;
|
|
u32 zero1;
|
|
} __attribute__((packed));
|
|
|
|
DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
|
|
|
|
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
|
|
|
|
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
|
|
#define MSRS_RANGE_SIZE 2048
|
|
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
|
|
|
|
u32 svm_msrpm_offset(u32 msr)
|
|
{
|
|
u32 offset;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_MSR_MAPS; i++) {
|
|
if (msr < msrpm_ranges[i] ||
|
|
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
|
|
continue;
|
|
|
|
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
|
|
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
|
|
|
|
/* Now we have the u8 offset - but need the u32 offset */
|
|
return offset / 4;
|
|
}
|
|
|
|
/* MSR not in any range */
|
|
return MSR_INVALID;
|
|
}
|
|
|
|
#define MAX_INST_SIZE 15
|
|
|
|
static inline void clgi(void)
|
|
{
|
|
asm volatile (__ex("clgi"));
|
|
}
|
|
|
|
static inline void stgi(void)
|
|
{
|
|
asm volatile (__ex("stgi"));
|
|
}
|
|
|
|
static inline void invlpga(unsigned long addr, u32 asid)
|
|
{
|
|
asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
|
|
}
|
|
|
|
static int get_max_npt_level(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return PT64_ROOT_4LEVEL;
|
|
#else
|
|
return PT32E_ROOT_LEVEL;
|
|
#endif
|
|
}
|
|
|
|
int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 old_efer = vcpu->arch.efer;
|
|
vcpu->arch.efer = efer;
|
|
|
|
if (!npt_enabled) {
|
|
/* Shadow paging assumes NX to be available. */
|
|
efer |= EFER_NX;
|
|
|
|
if (!(efer & EFER_LMA))
|
|
efer &= ~EFER_LME;
|
|
}
|
|
|
|
if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
|
|
if (!(efer & EFER_SVME)) {
|
|
svm_leave_nested(svm);
|
|
svm_set_gif(svm, true);
|
|
|
|
/*
|
|
* Free the nested guest state, unless we are in SMM.
|
|
* In this case we will return to the nested guest
|
|
* as soon as we leave SMM.
|
|
*/
|
|
if (!is_smm(&svm->vcpu))
|
|
svm_free_nested(svm);
|
|
|
|
} else {
|
|
int ret = svm_allocate_nested(svm);
|
|
|
|
if (ret) {
|
|
vcpu->arch.efer = old_efer;
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
svm->vmcb->save.efer = efer | EFER_SVME;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
return 0;
|
|
}
|
|
|
|
static int is_external_interrupt(u32 info)
|
|
{
|
|
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
|
|
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
|
|
}
|
|
|
|
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ret = 0;
|
|
|
|
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
|
|
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
|
|
return ret;
|
|
}
|
|
|
|
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (mask == 0)
|
|
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
|
|
else
|
|
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
|
|
|
|
}
|
|
|
|
static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (nrips && svm->vmcb->control.next_rip != 0) {
|
|
WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
|
|
svm->next_rip = svm->vmcb->control.next_rip;
|
|
}
|
|
|
|
if (!svm->next_rip) {
|
|
if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
|
|
return 0;
|
|
} else {
|
|
kvm_rip_write(vcpu, svm->next_rip);
|
|
}
|
|
svm_set_interrupt_shadow(vcpu, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_queue_exception(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned nr = vcpu->arch.exception.nr;
|
|
bool has_error_code = vcpu->arch.exception.has_error_code;
|
|
u32 error_code = vcpu->arch.exception.error_code;
|
|
|
|
kvm_deliver_exception_payload(&svm->vcpu);
|
|
|
|
if (nr == BP_VECTOR && !nrips) {
|
|
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
|
|
|
|
/*
|
|
* For guest debugging where we have to reinject #BP if some
|
|
* INT3 is guest-owned:
|
|
* Emulate nRIP by moving RIP forward. Will fail if injection
|
|
* raises a fault that is not intercepted. Still better than
|
|
* failing in all cases.
|
|
*/
|
|
(void)skip_emulated_instruction(&svm->vcpu);
|
|
rip = kvm_rip_read(&svm->vcpu);
|
|
svm->int3_rip = rip + svm->vmcb->save.cs.base;
|
|
svm->int3_injected = rip - old_rip;
|
|
}
|
|
|
|
svm->vmcb->control.event_inj = nr
|
|
| SVM_EVTINJ_VALID
|
|
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
|
|
| SVM_EVTINJ_TYPE_EXEPT;
|
|
svm->vmcb->control.event_inj_err = error_code;
|
|
}
|
|
|
|
static void svm_init_erratum_383(void)
|
|
{
|
|
u32 low, high;
|
|
int err;
|
|
u64 val;
|
|
|
|
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
|
|
return;
|
|
|
|
/* Use _safe variants to not break nested virtualization */
|
|
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
|
|
if (err)
|
|
return;
|
|
|
|
val |= (1ULL << 47);
|
|
|
|
low = lower_32_bits(val);
|
|
high = upper_32_bits(val);
|
|
|
|
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
|
|
|
|
erratum_383_found = true;
|
|
}
|
|
|
|
static void svm_init_osvw(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Guests should see errata 400 and 415 as fixed (assuming that
|
|
* HLT and IO instructions are intercepted).
|
|
*/
|
|
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
|
|
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
|
|
|
|
/*
|
|
* By increasing VCPU's osvw.length to 3 we are telling the guest that
|
|
* all osvw.status bits inside that length, including bit 0 (which is
|
|
* reserved for erratum 298), are valid. However, if host processor's
|
|
* osvw_len is 0 then osvw_status[0] carries no information. We need to
|
|
* be conservative here and therefore we tell the guest that erratum 298
|
|
* is present (because we really don't know).
|
|
*/
|
|
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
|
|
vcpu->arch.osvw.status |= 1;
|
|
}
|
|
|
|
static int has_svm(void)
|
|
{
|
|
const char *msg;
|
|
|
|
if (!cpu_has_svm(&msg)) {
|
|
printk(KERN_INFO "has_svm: %s\n", msg);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_hardware_disable(void)
|
|
{
|
|
/* Make sure we clean up behind us */
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
|
|
cpu_svm_disable();
|
|
|
|
amd_pmu_disable_virt();
|
|
}
|
|
|
|
static int svm_hardware_enable(void)
|
|
{
|
|
|
|
struct svm_cpu_data *sd;
|
|
uint64_t efer;
|
|
struct desc_struct *gdt;
|
|
int me = raw_smp_processor_id();
|
|
|
|
rdmsrl(MSR_EFER, efer);
|
|
if (efer & EFER_SVME)
|
|
return -EBUSY;
|
|
|
|
if (!has_svm()) {
|
|
pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
sd = per_cpu(svm_data, me);
|
|
if (!sd) {
|
|
pr_err("%s: svm_data is NULL on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sd->asid_generation = 1;
|
|
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
|
|
sd->next_asid = sd->max_asid + 1;
|
|
sd->min_asid = max_sev_asid + 1;
|
|
|
|
gdt = get_current_gdt_rw();
|
|
sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
|
|
|
|
wrmsrl(MSR_EFER, efer | EFER_SVME);
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get OSVW bits.
|
|
*
|
|
* Note that it is possible to have a system with mixed processor
|
|
* revisions and therefore different OSVW bits. If bits are not the same
|
|
* on different processors then choose the worst case (i.e. if erratum
|
|
* is present on one processor and not on another then assume that the
|
|
* erratum is present everywhere).
|
|
*/
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
|
|
uint64_t len, status = 0;
|
|
int err;
|
|
|
|
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
|
|
if (!err)
|
|
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
|
|
&err);
|
|
|
|
if (err)
|
|
osvw_status = osvw_len = 0;
|
|
else {
|
|
if (len < osvw_len)
|
|
osvw_len = len;
|
|
osvw_status |= status;
|
|
osvw_status &= (1ULL << osvw_len) - 1;
|
|
}
|
|
} else
|
|
osvw_status = osvw_len = 0;
|
|
|
|
svm_init_erratum_383();
|
|
|
|
amd_pmu_enable_virt();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpu_uninit(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
|
|
|
|
if (!sd)
|
|
return;
|
|
|
|
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
|
|
kfree(sd->sev_vmcbs);
|
|
__free_page(sd->save_area);
|
|
kfree(sd);
|
|
}
|
|
|
|
static int svm_cpu_init(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd;
|
|
|
|
sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
|
|
if (!sd)
|
|
return -ENOMEM;
|
|
sd->cpu = cpu;
|
|
sd->save_area = alloc_page(GFP_KERNEL);
|
|
if (!sd->save_area)
|
|
goto free_cpu_data;
|
|
|
|
if (svm_sev_enabled()) {
|
|
sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
|
|
sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!sd->sev_vmcbs)
|
|
goto free_save_area;
|
|
}
|
|
|
|
per_cpu(svm_data, cpu) = sd;
|
|
|
|
return 0;
|
|
|
|
free_save_area:
|
|
__free_page(sd->save_area);
|
|
free_cpu_data:
|
|
kfree(sd);
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
static int direct_access_msr_slot(u32 msr)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
|
|
if (direct_access_msrs[i].index == msr)
|
|
return i;
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
|
|
int write)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int slot = direct_access_msr_slot(msr);
|
|
|
|
if (slot == -ENOENT)
|
|
return;
|
|
|
|
/* Set the shadow bitmaps to the desired intercept states */
|
|
if (read)
|
|
set_bit(slot, svm->shadow_msr_intercept.read);
|
|
else
|
|
clear_bit(slot, svm->shadow_msr_intercept.read);
|
|
|
|
if (write)
|
|
set_bit(slot, svm->shadow_msr_intercept.write);
|
|
else
|
|
clear_bit(slot, svm->shadow_msr_intercept.write);
|
|
}
|
|
|
|
static bool valid_msr_intercept(u32 index)
|
|
{
|
|
return direct_access_msr_slot(index) != -ENOENT;
|
|
}
|
|
|
|
static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
u8 bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
u32 *msrpm;
|
|
|
|
msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
|
|
to_svm(vcpu)->msrpm;
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
return !!test_bit(bit_write, &tmp);
|
|
}
|
|
|
|
static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
|
|
u32 msr, int read, int write)
|
|
{
|
|
u8 bit_read, bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
|
|
/*
|
|
* If this warning triggers extend the direct_access_msrs list at the
|
|
* beginning of the file
|
|
*/
|
|
WARN_ON(!valid_msr_intercept(msr));
|
|
|
|
/* Enforce non allowed MSRs to trap */
|
|
if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
|
|
read = 0;
|
|
|
|
if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
|
|
write = 0;
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_read = 2 * (msr & 0x0f);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
|
|
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
|
|
|
|
msrpm[offset] = tmp;
|
|
}
|
|
|
|
static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
|
|
int read, int write)
|
|
{
|
|
set_shadow_msr_intercept(vcpu, msr, read, write);
|
|
set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
|
|
}
|
|
|
|
u32 *svm_vcpu_alloc_msrpm(void)
|
|
{
|
|
struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
|
|
u32 *msrpm;
|
|
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
msrpm = page_address(pages);
|
|
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
|
|
|
|
return msrpm;
|
|
}
|
|
|
|
void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
if (!direct_access_msrs[i].always)
|
|
continue;
|
|
set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
|
|
}
|
|
}
|
|
|
|
|
|
void svm_vcpu_free_msrpm(u32 *msrpm)
|
|
{
|
|
__free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
|
|
}
|
|
|
|
static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 i;
|
|
|
|
/*
|
|
* Set intercept permissions for all direct access MSRs again. They
|
|
* will automatically get filtered through the MSR filter, so we are
|
|
* back in sync after this.
|
|
*/
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 msr = direct_access_msrs[i].index;
|
|
u32 read = test_bit(i, svm->shadow_msr_intercept.read);
|
|
u32 write = test_bit(i, svm->shadow_msr_intercept.write);
|
|
|
|
set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
|
|
}
|
|
}
|
|
|
|
static void add_msr_offset(u32 offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; ++i) {
|
|
|
|
/* Offset already in list? */
|
|
if (msrpm_offsets[i] == offset)
|
|
return;
|
|
|
|
/* Slot used by another offset? */
|
|
if (msrpm_offsets[i] != MSR_INVALID)
|
|
continue;
|
|
|
|
/* Add offset to list */
|
|
msrpm_offsets[i] = offset;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this BUG triggers the msrpm_offsets table has an overflow. Just
|
|
* increase MSRPM_OFFSETS in this case.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
static void init_msrpm_offsets(void)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 offset;
|
|
|
|
offset = svm_msrpm_offset(direct_access_msrs[i].index);
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
add_msr_offset(offset);
|
|
}
|
|
}
|
|
|
|
static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
}
|
|
|
|
static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
|
|
}
|
|
|
|
void disable_nmi_singlestep(struct vcpu_svm *svm)
|
|
{
|
|
svm->nmi_singlestep = false;
|
|
|
|
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
|
|
/* Clear our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
}
|
|
|
|
static void grow_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
control->pause_filter_count = __grow_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_grow,
|
|
pause_filter_count_max);
|
|
|
|
if (control->pause_filter_count != old) {
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
}
|
|
|
|
static void shrink_ple_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
int old = control->pause_filter_count;
|
|
|
|
control->pause_filter_count =
|
|
__shrink_ple_window(old,
|
|
pause_filter_count,
|
|
pause_filter_count_shrink,
|
|
pause_filter_count);
|
|
if (control->pause_filter_count != old) {
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
trace_kvm_ple_window_update(vcpu->vcpu_id,
|
|
control->pause_filter_count, old);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The default MMIO mask is a single bit (excluding the present bit),
|
|
* which could conflict with the memory encryption bit. Check for
|
|
* memory encryption support and override the default MMIO mask if
|
|
* memory encryption is enabled.
|
|
*/
|
|
static __init void svm_adjust_mmio_mask(void)
|
|
{
|
|
unsigned int enc_bit, mask_bit;
|
|
u64 msr, mask;
|
|
|
|
/* If there is no memory encryption support, use existing mask */
|
|
if (cpuid_eax(0x80000000) < 0x8000001f)
|
|
return;
|
|
|
|
/* If memory encryption is not enabled, use existing mask */
|
|
rdmsrl(MSR_K8_SYSCFG, msr);
|
|
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
return;
|
|
|
|
enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
|
|
mask_bit = boot_cpu_data.x86_phys_bits;
|
|
|
|
/* Increment the mask bit if it is the same as the encryption bit */
|
|
if (enc_bit == mask_bit)
|
|
mask_bit++;
|
|
|
|
/*
|
|
* If the mask bit location is below 52, then some bits above the
|
|
* physical addressing limit will always be reserved, so use the
|
|
* rsvd_bits() function to generate the mask. This mask, along with
|
|
* the present bit, will be used to generate a page fault with
|
|
* PFER.RSV = 1.
|
|
*
|
|
* If the mask bit location is 52 (or above), then clear the mask.
|
|
*/
|
|
mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
|
|
|
|
kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
|
|
}
|
|
|
|
static void svm_hardware_teardown(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (svm_sev_enabled())
|
|
sev_hardware_teardown();
|
|
|
|
for_each_possible_cpu(cpu)
|
|
svm_cpu_uninit(cpu);
|
|
|
|
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
}
|
|
|
|
static __init void svm_set_cpu_caps(void)
|
|
{
|
|
kvm_set_cpu_caps();
|
|
|
|
supported_xss = 0;
|
|
|
|
/* CPUID 0x80000001 and 0x8000000A (SVM features) */
|
|
if (nested) {
|
|
kvm_cpu_cap_set(X86_FEATURE_SVM);
|
|
|
|
if (nrips)
|
|
kvm_cpu_cap_set(X86_FEATURE_NRIPS);
|
|
|
|
if (npt_enabled)
|
|
kvm_cpu_cap_set(X86_FEATURE_NPT);
|
|
}
|
|
|
|
/* CPUID 0x80000008 */
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
|
|
boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
|
|
|
|
/* Enable INVPCID feature */
|
|
kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
|
|
}
|
|
|
|
static __init int svm_hardware_setup(void)
|
|
{
|
|
int cpu;
|
|
struct page *iopm_pages;
|
|
void *iopm_va;
|
|
int r;
|
|
|
|
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
|
|
|
|
if (!iopm_pages)
|
|
return -ENOMEM;
|
|
|
|
iopm_va = page_address(iopm_pages);
|
|
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
|
|
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
|
|
|
|
init_msrpm_offsets();
|
|
|
|
supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
|
|
kvm_enable_efer_bits(EFER_FFXSR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
kvm_has_tsc_control = true;
|
|
kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
|
|
kvm_tsc_scaling_ratio_frac_bits = 32;
|
|
}
|
|
|
|
/* Check for pause filtering support */
|
|
if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
|
|
pause_filter_count = 0;
|
|
pause_filter_thresh = 0;
|
|
} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
|
|
pause_filter_thresh = 0;
|
|
}
|
|
|
|
if (nested) {
|
|
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
|
|
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
|
|
}
|
|
|
|
if (sev) {
|
|
if (boot_cpu_has(X86_FEATURE_SEV) &&
|
|
IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
|
|
r = sev_hardware_setup();
|
|
if (r)
|
|
sev = false;
|
|
} else {
|
|
sev = false;
|
|
}
|
|
}
|
|
|
|
svm_adjust_mmio_mask();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
r = svm_cpu_init(cpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_NPT))
|
|
npt_enabled = false;
|
|
|
|
if (npt_enabled && !npt)
|
|
npt_enabled = false;
|
|
|
|
kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
|
|
pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
|
|
|
|
if (nrips) {
|
|
if (!boot_cpu_has(X86_FEATURE_NRIPS))
|
|
nrips = false;
|
|
}
|
|
|
|
if (avic) {
|
|
if (!npt_enabled ||
|
|
!boot_cpu_has(X86_FEATURE_AVIC) ||
|
|
!IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
|
|
avic = false;
|
|
} else {
|
|
pr_info("AVIC enabled\n");
|
|
|
|
amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
|
|
}
|
|
}
|
|
|
|
if (vls) {
|
|
if (!npt_enabled ||
|
|
!boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
|
|
!IS_ENABLED(CONFIG_X86_64)) {
|
|
vls = false;
|
|
} else {
|
|
pr_info("Virtual VMLOAD VMSAVE supported\n");
|
|
}
|
|
}
|
|
|
|
if (vgif) {
|
|
if (!boot_cpu_has(X86_FEATURE_VGIF))
|
|
vgif = false;
|
|
else
|
|
pr_info("Virtual GIF supported\n");
|
|
}
|
|
|
|
svm_set_cpu_caps();
|
|
|
|
/*
|
|
* It seems that on AMD processors PTE's accessed bit is
|
|
* being set by the CPU hardware before the NPF vmexit.
|
|
* This is not expected behaviour and our tests fail because
|
|
* of it.
|
|
* A workaround here is to disable support for
|
|
* GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
|
|
* In this case userspace can know if there is support using
|
|
* KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
|
|
* it
|
|
* If future AMD CPU models change the behaviour described above,
|
|
* this variable can be changed accordingly
|
|
*/
|
|
allow_smaller_maxphyaddr = !npt_enabled;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
svm_hardware_teardown();
|
|
return r;
|
|
}
|
|
|
|
static void init_seg(struct vmcb_seg *seg)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
|
|
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | type;
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 g_tsc_offset = 0;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* Write L1's TSC offset. */
|
|
g_tsc_offset = svm->vmcb->control.tsc_offset -
|
|
svm->nested.hsave->control.tsc_offset;
|
|
svm->nested.hsave->control.tsc_offset = offset;
|
|
}
|
|
|
|
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
|
|
svm->vmcb->control.tsc_offset - g_tsc_offset,
|
|
offset);
|
|
|
|
svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
return svm->vmcb->control.tsc_offset;
|
|
}
|
|
|
|
static void svm_check_invpcid(struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* Intercept INVPCID instruction only if shadow page table is
|
|
* enabled. Interception is not required with nested page table
|
|
* enabled.
|
|
*/
|
|
if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
|
|
if (!npt_enabled)
|
|
svm_set_intercept(svm, INTERCEPT_INVPCID);
|
|
else
|
|
svm_clr_intercept(svm, INTERCEPT_INVPCID);
|
|
}
|
|
}
|
|
|
|
static void init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
svm_set_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR3_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR4_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
|
|
if (!kvm_vcpu_apicv_active(&svm->vcpu))
|
|
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
set_dr_intercepts(svm);
|
|
|
|
set_exception_intercept(svm, PF_VECTOR);
|
|
set_exception_intercept(svm, UD_VECTOR);
|
|
set_exception_intercept(svm, MC_VECTOR);
|
|
set_exception_intercept(svm, AC_VECTOR);
|
|
set_exception_intercept(svm, DB_VECTOR);
|
|
/*
|
|
* Guest access to VMware backdoor ports could legitimately
|
|
* trigger #GP because of TSS I/O permission bitmap.
|
|
* We intercept those #GP and allow access to them anyway
|
|
* as VMware does.
|
|
*/
|
|
if (enable_vmware_backdoor)
|
|
set_exception_intercept(svm, GP_VECTOR);
|
|
|
|
svm_set_intercept(svm, INTERCEPT_INTR);
|
|
svm_set_intercept(svm, INTERCEPT_NMI);
|
|
svm_set_intercept(svm, INTERCEPT_SMI);
|
|
svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
|
|
svm_set_intercept(svm, INTERCEPT_RDPMC);
|
|
svm_set_intercept(svm, INTERCEPT_CPUID);
|
|
svm_set_intercept(svm, INTERCEPT_INVD);
|
|
svm_set_intercept(svm, INTERCEPT_INVLPG);
|
|
svm_set_intercept(svm, INTERCEPT_INVLPGA);
|
|
svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
|
|
svm_set_intercept(svm, INTERCEPT_MSR_PROT);
|
|
svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
|
|
svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
|
|
svm_set_intercept(svm, INTERCEPT_VMRUN);
|
|
svm_set_intercept(svm, INTERCEPT_VMMCALL);
|
|
svm_set_intercept(svm, INTERCEPT_VMLOAD);
|
|
svm_set_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
svm_set_intercept(svm, INTERCEPT_CLGI);
|
|
svm_set_intercept(svm, INTERCEPT_SKINIT);
|
|
svm_set_intercept(svm, INTERCEPT_WBINVD);
|
|
svm_set_intercept(svm, INTERCEPT_XSETBV);
|
|
svm_set_intercept(svm, INTERCEPT_RDPRU);
|
|
svm_set_intercept(svm, INTERCEPT_RSM);
|
|
|
|
if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
|
|
svm_set_intercept(svm, INTERCEPT_MONITOR);
|
|
svm_set_intercept(svm, INTERCEPT_MWAIT);
|
|
}
|
|
|
|
if (!kvm_hlt_in_guest(svm->vcpu.kvm))
|
|
svm_set_intercept(svm, INTERCEPT_HLT);
|
|
|
|
control->iopm_base_pa = __sme_set(iopm_base);
|
|
control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
|
|
control->int_ctl = V_INTR_MASKING_MASK;
|
|
|
|
init_seg(&save->es);
|
|
init_seg(&save->ss);
|
|
init_seg(&save->ds);
|
|
init_seg(&save->fs);
|
|
init_seg(&save->gs);
|
|
|
|
save->cs.selector = 0xf000;
|
|
save->cs.base = 0xffff0000;
|
|
/* Executable/Readable Code Segment */
|
|
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
|
|
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
|
|
save->cs.limit = 0xffff;
|
|
|
|
save->gdtr.limit = 0xffff;
|
|
save->idtr.limit = 0xffff;
|
|
|
|
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
|
|
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
|
|
|
|
svm_set_efer(&svm->vcpu, 0);
|
|
save->dr6 = 0xffff0ff0;
|
|
kvm_set_rflags(&svm->vcpu, 2);
|
|
save->rip = 0x0000fff0;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
|
|
|
|
/*
|
|
* svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
|
|
* It also updates the guest-visible cr0 value.
|
|
*/
|
|
svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
|
|
save->cr4 = X86_CR4_PAE;
|
|
/* rdx = ?? */
|
|
|
|
if (npt_enabled) {
|
|
/* Setup VMCB for Nested Paging */
|
|
control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
|
|
svm_clr_intercept(svm, INTERCEPT_INVLPG);
|
|
clr_exception_intercept(svm, PF_VECTOR);
|
|
svm_clr_intercept(svm, INTERCEPT_CR3_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
save->g_pat = svm->vcpu.arch.pat;
|
|
save->cr3 = 0;
|
|
save->cr4 = 0;
|
|
}
|
|
svm->asid_generation = 0;
|
|
|
|
svm->nested.vmcb12_gpa = 0;
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
|
|
control->pause_filter_count = pause_filter_count;
|
|
if (pause_filter_thresh)
|
|
control->pause_filter_thresh = pause_filter_thresh;
|
|
svm_set_intercept(svm, INTERCEPT_PAUSE);
|
|
} else {
|
|
svm_clr_intercept(svm, INTERCEPT_PAUSE);
|
|
}
|
|
|
|
svm_check_invpcid(svm);
|
|
|
|
if (kvm_vcpu_apicv_active(&svm->vcpu))
|
|
avic_init_vmcb(svm);
|
|
|
|
/*
|
|
* If hardware supports Virtual VMLOAD VMSAVE then enable it
|
|
* in VMCB and clear intercepts to avoid #VMEXIT.
|
|
*/
|
|
if (vls) {
|
|
svm_clr_intercept(svm, INTERCEPT_VMLOAD);
|
|
svm_clr_intercept(svm, INTERCEPT_VMSAVE);
|
|
svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
|
|
}
|
|
|
|
if (vgif) {
|
|
svm_clr_intercept(svm, INTERCEPT_STGI);
|
|
svm_clr_intercept(svm, INTERCEPT_CLGI);
|
|
svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
|
|
}
|
|
|
|
if (sev_guest(svm->vcpu.kvm)) {
|
|
svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
|
|
clr_exception_intercept(svm, UD_VECTOR);
|
|
}
|
|
|
|
vmcb_mark_all_dirty(svm->vmcb);
|
|
|
|
enable_gif(svm);
|
|
|
|
}
|
|
|
|
static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 dummy;
|
|
u32 eax = 1;
|
|
|
|
svm->spec_ctrl = 0;
|
|
svm->virt_spec_ctrl = 0;
|
|
|
|
if (!init_event) {
|
|
svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
|
|
MSR_IA32_APICBASE_ENABLE;
|
|
if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
|
|
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
|
|
}
|
|
init_vmcb(svm);
|
|
|
|
kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
|
|
kvm_rdx_write(vcpu, eax);
|
|
|
|
if (kvm_vcpu_apicv_active(vcpu) && !init_event)
|
|
avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
|
|
}
|
|
|
|
static int svm_create_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
struct page *vmcb_page;
|
|
int err;
|
|
|
|
BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
|
|
svm = to_svm(vcpu);
|
|
|
|
err = -ENOMEM;
|
|
vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
|
|
if (!vmcb_page)
|
|
goto out;
|
|
|
|
err = avic_init_vcpu(svm);
|
|
if (err)
|
|
goto error_free_vmcb_page;
|
|
|
|
/* We initialize this flag to true to make sure that the is_running
|
|
* bit would be set the first time the vcpu is loaded.
|
|
*/
|
|
if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
|
|
svm->avic_is_running = true;
|
|
|
|
svm->msrpm = svm_vcpu_alloc_msrpm();
|
|
if (!svm->msrpm)
|
|
goto error_free_vmcb_page;
|
|
|
|
svm_vcpu_init_msrpm(vcpu, svm->msrpm);
|
|
|
|
svm->vmcb = page_address(vmcb_page);
|
|
svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
|
|
svm->asid_generation = 0;
|
|
init_vmcb(svm);
|
|
|
|
svm_init_osvw(vcpu);
|
|
vcpu->arch.microcode_version = 0x01000065;
|
|
|
|
return 0;
|
|
|
|
error_free_vmcb_page:
|
|
__free_page(vmcb_page);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void svm_clear_current_vmcb(struct vmcb *vmcb)
|
|
{
|
|
int i;
|
|
|
|
for_each_online_cpu(i)
|
|
cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
|
|
}
|
|
|
|
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* The vmcb page can be recycled, causing a false negative in
|
|
* svm_vcpu_load(). So, ensure that no logical CPU has this
|
|
* vmcb page recorded as its current vmcb.
|
|
*/
|
|
svm_clear_current_vmcb(svm->vmcb);
|
|
|
|
svm_free_nested(svm);
|
|
|
|
__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
|
|
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
|
|
}
|
|
|
|
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
int i;
|
|
|
|
if (unlikely(cpu != vcpu->cpu)) {
|
|
svm->asid_generation = 0;
|
|
vmcb_mark_all_dirty(svm->vmcb);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
|
|
#endif
|
|
savesegment(fs, svm->host.fs);
|
|
savesegment(gs, svm->host.gs);
|
|
svm->host.ldt = kvm_read_ldt();
|
|
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
|
|
if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
|
|
__this_cpu_write(current_tsc_ratio, tsc_ratio);
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
|
|
}
|
|
}
|
|
/* This assumes that the kernel never uses MSR_TSC_AUX */
|
|
if (static_cpu_has(X86_FEATURE_RDTSCP))
|
|
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
|
|
|
|
if (sd->current_vmcb != svm->vmcb) {
|
|
sd->current_vmcb = svm->vmcb;
|
|
indirect_branch_prediction_barrier();
|
|
}
|
|
avic_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
avic_vcpu_put(vcpu);
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
kvm_load_ldt(svm->host.ldt);
|
|
#ifdef CONFIG_X86_64
|
|
loadsegment(fs, svm->host.fs);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
|
|
load_gs_index(svm->host.gs);
|
|
#else
|
|
#ifdef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
}
|
|
|
|
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long rflags = svm->vmcb->save.rflags;
|
|
|
|
if (svm->nmi_singlestep) {
|
|
/* Hide our flags if they were not set by the guest */
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
|
|
rflags &= ~X86_EFLAGS_TF;
|
|
if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
|
|
rflags &= ~X86_EFLAGS_RF;
|
|
}
|
|
return rflags;
|
|
}
|
|
|
|
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
if (to_svm(vcpu)->nmi_singlestep)
|
|
rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
|
|
/*
|
|
* Any change of EFLAGS.VM is accompanied by a reload of SS
|
|
* (caused by either a task switch or an inter-privilege IRET),
|
|
* so we do not need to update the CPL here.
|
|
*/
|
|
to_svm(vcpu)->vmcb->save.rflags = rflags;
|
|
}
|
|
|
|
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
switch (reg) {
|
|
case VCPU_EXREG_PDPTR:
|
|
BUG_ON(!npt_enabled);
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
|
|
static void svm_set_vintr(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control;
|
|
|
|
/* The following fields are ignored when AVIC is enabled */
|
|
WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
|
|
svm_set_intercept(svm, INTERCEPT_VINTR);
|
|
|
|
/*
|
|
* This is just a dummy VINTR to actually cause a vmexit to happen.
|
|
* Actual injection of virtual interrupts happens through EVENTINJ.
|
|
*/
|
|
control = &svm->vmcb->control;
|
|
control->int_vector = 0x0;
|
|
control->int_ctl &= ~V_INTR_PRIO_MASK;
|
|
control->int_ctl |= V_IRQ_MASK |
|
|
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static void svm_clear_vintr(struct vcpu_svm *svm)
|
|
{
|
|
const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
|
|
svm_clr_intercept(svm, INTERCEPT_VINTR);
|
|
|
|
/* Drop int_ctl fields related to VINTR injection. */
|
|
svm->vmcb->control.int_ctl &= mask;
|
|
if (is_guest_mode(&svm->vcpu)) {
|
|
svm->nested.hsave->control.int_ctl &= mask;
|
|
|
|
WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
|
|
(svm->nested.ctl.int_ctl & V_TPR_MASK));
|
|
svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
|
|
}
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS: return &save->cs;
|
|
case VCPU_SREG_DS: return &save->ds;
|
|
case VCPU_SREG_ES: return &save->es;
|
|
case VCPU_SREG_FS: return &save->fs;
|
|
case VCPU_SREG_GS: return &save->gs;
|
|
case VCPU_SREG_SS: return &save->ss;
|
|
case VCPU_SREG_TR: return &save->tr;
|
|
case VCPU_SREG_LDTR: return &save->ldtr;
|
|
}
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
return s->base;
|
|
}
|
|
|
|
static void svm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
var->base = s->base;
|
|
var->limit = s->limit;
|
|
var->selector = s->selector;
|
|
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
|
|
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
|
|
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
|
|
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
|
|
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
|
|
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
|
|
|
|
/*
|
|
* AMD CPUs circa 2014 track the G bit for all segments except CS.
|
|
* However, the SVM spec states that the G bit is not observed by the
|
|
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
|
|
* So let's synthesize a legal G bit for all segments, this helps
|
|
* running KVM nested. It also helps cross-vendor migration, because
|
|
* Intel's vmentry has a check on the 'G' bit.
|
|
*/
|
|
var->g = s->limit > 0xfffff;
|
|
|
|
/*
|
|
* AMD's VMCB does not have an explicit unusable field, so emulate it
|
|
* for cross vendor migration purposes by "not present"
|
|
*/
|
|
var->unusable = !var->present;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_TR:
|
|
/*
|
|
* Work around a bug where the busy flag in the tr selector
|
|
* isn't exposed
|
|
*/
|
|
var->type |= 0x2;
|
|
break;
|
|
case VCPU_SREG_DS:
|
|
case VCPU_SREG_ES:
|
|
case VCPU_SREG_FS:
|
|
case VCPU_SREG_GS:
|
|
/*
|
|
* The accessed bit must always be set in the segment
|
|
* descriptor cache, although it can be cleared in the
|
|
* descriptor, the cached bit always remains at 1. Since
|
|
* Intel has a check on this, set it here to support
|
|
* cross-vendor migration.
|
|
*/
|
|
if (!var->unusable)
|
|
var->type |= 0x1;
|
|
break;
|
|
case VCPU_SREG_SS:
|
|
/*
|
|
* On AMD CPUs sometimes the DB bit in the segment
|
|
* descriptor is left as 1, although the whole segment has
|
|
* been made unusable. Clear it here to pass an Intel VMX
|
|
* entry check when cross vendor migrating.
|
|
*/
|
|
if (var->unusable)
|
|
var->db = 0;
|
|
/* This is symmetric with svm_set_segment() */
|
|
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
return save->cpl;
|
|
}
|
|
|
|
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.idtr.limit;
|
|
dt->address = svm->vmcb->save.idtr.base;
|
|
}
|
|
|
|
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.idtr.limit = dt->size;
|
|
svm->vmcb->save.idtr.base = dt->address ;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.gdtr.limit;
|
|
dt->address = svm->vmcb->save.gdtr.base;
|
|
}
|
|
|
|
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.gdtr.limit = dt->size;
|
|
svm->vmcb->save.gdtr.base = dt->address ;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void update_cr0_intercept(struct vcpu_svm *svm)
|
|
{
|
|
ulong gcr0 = svm->vcpu.arch.cr0;
|
|
u64 *hcr0 = &svm->vmcb->save.cr0;
|
|
|
|
*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
|
|
| (gcr0 & SVM_CR0_SELECTIVE_MASK);
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
|
|
if (gcr0 == *hcr0) {
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
} else {
|
|
svm_set_intercept(svm, INTERCEPT_CR0_READ);
|
|
svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
}
|
|
}
|
|
|
|
void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer |= EFER_LMA;
|
|
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
|
|
}
|
|
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer &= ~EFER_LMA;
|
|
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
|
|
}
|
|
}
|
|
#endif
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
if (!npt_enabled)
|
|
cr0 |= X86_CR0_PG | X86_CR0_WP;
|
|
|
|
/*
|
|
* re-enable caching here because the QEMU bios
|
|
* does not do it - this results in some delay at
|
|
* reboot
|
|
*/
|
|
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
|
|
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
|
svm->vmcb->save.cr0 = cr0;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
update_cr0_intercept(svm);
|
|
}
|
|
|
|
int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
|
|
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
|
|
|
|
if (cr4 & X86_CR4_VMXE)
|
|
return 1;
|
|
|
|
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
|
|
svm_flush_tlb(vcpu);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (!npt_enabled)
|
|
cr4 |= X86_CR4_PAE;
|
|
cr4 |= host_cr4_mce;
|
|
to_svm(vcpu)->vmcb->save.cr4 = cr4;
|
|
vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
return 0;
|
|
}
|
|
|
|
static void svm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
s->base = var->base;
|
|
s->limit = var->limit;
|
|
s->selector = var->selector;
|
|
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
|
|
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
|
|
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
|
|
s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
|
|
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
|
|
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
|
|
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
|
|
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
|
|
|
|
/*
|
|
* This is always accurate, except if SYSRET returned to a segment
|
|
* with SS.DPL != 3. Intel does not have this quirk, and always
|
|
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
|
|
* would entail passing the CPL to userspace and back.
|
|
*/
|
|
if (seg == VCPU_SREG_SS)
|
|
/* This is symmetric with svm_get_segment() */
|
|
svm->vmcb->save.cpl = (var->dpl & 3);
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
|
|
}
|
|
|
|
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
clr_exception_intercept(svm, BP_VECTOR);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
set_exception_intercept(svm, BP_VECTOR);
|
|
}
|
|
}
|
|
|
|
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
|
|
{
|
|
if (sd->next_asid > sd->max_asid) {
|
|
++sd->asid_generation;
|
|
sd->next_asid = sd->min_asid;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
|
|
}
|
|
|
|
svm->asid_generation = sd->asid_generation;
|
|
svm->vmcb->control.asid = sd->next_asid++;
|
|
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
|
|
{
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (unlikely(value != vmcb->save.dr6)) {
|
|
vmcb->save.dr6 = value;
|
|
vmcb_mark_dirty(vmcb, VMCB_DR);
|
|
}
|
|
}
|
|
|
|
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
get_debugreg(vcpu->arch.db[0], 0);
|
|
get_debugreg(vcpu->arch.db[1], 1);
|
|
get_debugreg(vcpu->arch.db[2], 2);
|
|
get_debugreg(vcpu->arch.db[3], 3);
|
|
/*
|
|
* We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
|
|
* because db_interception might need it. We can do it before vmentry.
|
|
*/
|
|
vcpu->arch.dr6 = svm->vmcb->save.dr6;
|
|
vcpu->arch.dr7 = svm->vmcb->save.dr7;
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
|
|
set_dr_intercepts(svm);
|
|
}
|
|
|
|
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.dr7 = value;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static int pf_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
}
|
|
|
|
static int npf_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
|
|
u64 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
trace_kvm_page_fault(fault_address, error_code);
|
|
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
|
|
static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
|
|
svm->vmcb->control.insn_bytes : NULL,
|
|
svm->vmcb->control.insn_len);
|
|
}
|
|
|
|
static int db_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
if (!(svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
|
|
!svm->nmi_singlestep) {
|
|
u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
|
|
kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->nmi_singlestep) {
|
|
disable_nmi_singlestep(svm);
|
|
/* Make sure we check for pending NMIs upon entry */
|
|
kvm_make_request(KVM_REQ_EVENT, vcpu);
|
|
}
|
|
|
|
if (svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
|
|
kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
|
|
kvm_run->debug.arch.pc =
|
|
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bp_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = BP_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
static int ud_interception(struct vcpu_svm *svm)
|
|
{
|
|
return handle_ud(&svm->vcpu);
|
|
}
|
|
|
|
static int ac_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
|
|
return 1;
|
|
}
|
|
|
|
static int gp_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u32 error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
WARN_ON_ONCE(!enable_vmware_backdoor);
|
|
|
|
/*
|
|
* VMware backdoor emulation on #GP interception only handles IN{S},
|
|
* OUT{S}, and RDPMC, none of which generate a non-zero error code.
|
|
*/
|
|
if (error_code) {
|
|
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
|
|
return 1;
|
|
}
|
|
return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
|
|
}
|
|
|
|
static bool is_erratum_383(void)
|
|
{
|
|
int err, i;
|
|
u64 value;
|
|
|
|
if (!erratum_383_found)
|
|
return false;
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
|
|
if (err)
|
|
return false;
|
|
|
|
/* Bit 62 may or may not be set for this mce */
|
|
value &= ~(1ULL << 62);
|
|
|
|
if (value != 0xb600000000010015ULL)
|
|
return false;
|
|
|
|
/* Clear MCi_STATUS registers */
|
|
for (i = 0; i < 6; ++i)
|
|
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
|
|
if (!err) {
|
|
u32 low, high;
|
|
|
|
value &= ~(1ULL << 2);
|
|
low = lower_32_bits(value);
|
|
high = upper_32_bits(value);
|
|
|
|
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
|
|
}
|
|
|
|
/* Flush tlb to evict multi-match entries */
|
|
__flush_tlb_all();
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Trigger machine check on the host. We assume all the MSRs are already set up
|
|
* by the CPU and that we still run on the same CPU as the MCE occurred on.
|
|
* We pass a fake environment to the machine check handler because we want
|
|
* the guest to be always treated like user space, no matter what context
|
|
* it used internally.
|
|
*/
|
|
static void kvm_machine_check(void)
|
|
{
|
|
#if defined(CONFIG_X86_MCE)
|
|
struct pt_regs regs = {
|
|
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
|
|
.flags = X86_EFLAGS_IF,
|
|
};
|
|
|
|
do_machine_check(®s);
|
|
#endif
|
|
}
|
|
|
|
static void svm_handle_mce(struct vcpu_svm *svm)
|
|
{
|
|
if (is_erratum_383()) {
|
|
/*
|
|
* Erratum 383 triggered. Guest state is corrupt so kill the
|
|
* guest.
|
|
*/
|
|
pr_err("KVM: Guest triggered AMD Erratum 383\n");
|
|
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* On an #MC intercept the MCE handler is not called automatically in
|
|
* the host. So do it by hand here.
|
|
*/
|
|
kvm_machine_check();
|
|
}
|
|
|
|
static int mc_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int shutdown_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
/*
|
|
* VMCB is undefined after a SHUTDOWN intercept
|
|
* so reinitialize it.
|
|
*/
|
|
clear_page(svm->vmcb);
|
|
init_vmcb(svm);
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int io_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++svm->vcpu.stat.io_exits;
|
|
string = (io_info & SVM_IOIO_STR_MASK) != 0;
|
|
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
|
|
if (string)
|
|
return kvm_emulate_instruction(vcpu, 0);
|
|
|
|
port = io_info >> 16;
|
|
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
|
|
svm->next_rip = svm->vmcb->control.exit_info_2;
|
|
|
|
return kvm_fast_pio(&svm->vcpu, size, port, in);
|
|
}
|
|
|
|
static int nmi_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int intr_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int nop_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int halt_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_halt(&svm->vcpu);
|
|
}
|
|
|
|
static int vmmcall_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_hypercall(&svm->vcpu);
|
|
}
|
|
|
|
static int vmload_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct kvm_host_map map;
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
|
|
if (ret) {
|
|
if (ret == -EINVAL)
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
nested_vmcb = map.hva;
|
|
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
|
|
kvm_vcpu_unmap(&svm->vcpu, &map, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vmsave_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct kvm_host_map map;
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
|
|
if (ret) {
|
|
if (ret == -EINVAL)
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
nested_vmcb = map.hva;
|
|
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
|
|
kvm_vcpu_unmap(&svm->vcpu, &map, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vmrun_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
return nested_svm_vmrun(svm);
|
|
}
|
|
|
|
void svm_set_gif(struct vcpu_svm *svm, bool value)
|
|
{
|
|
if (value) {
|
|
/*
|
|
* If VGIF is enabled, the STGI intercept is only added to
|
|
* detect the opening of the SMI/NMI window; remove it now.
|
|
* Likewise, clear the VINTR intercept, we will set it
|
|
* again while processing KVM_REQ_EVENT if needed.
|
|
*/
|
|
if (vgif_enabled(svm))
|
|
svm_clr_intercept(svm, INTERCEPT_STGI);
|
|
if (svm_is_intercept(svm, INTERCEPT_VINTR))
|
|
svm_clear_vintr(svm);
|
|
|
|
enable_gif(svm);
|
|
if (svm->vcpu.arch.smi_pending ||
|
|
svm->vcpu.arch.nmi_pending ||
|
|
kvm_cpu_has_injectable_intr(&svm->vcpu))
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
} else {
|
|
disable_gif(svm);
|
|
|
|
/*
|
|
* After a CLGI no interrupts should come. But if vGIF is
|
|
* in use, we still rely on the VINTR intercept (rather than
|
|
* STGI) to detect an open interrupt window.
|
|
*/
|
|
if (!vgif_enabled(svm))
|
|
svm_clear_vintr(svm);
|
|
}
|
|
}
|
|
|
|
static int stgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
svm_set_gif(svm, true);
|
|
return ret;
|
|
}
|
|
|
|
static int clgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
int ret;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
ret = kvm_skip_emulated_instruction(&svm->vcpu);
|
|
svm_set_gif(svm, false);
|
|
return ret;
|
|
}
|
|
|
|
static int invlpga_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
|
|
kvm_rax_read(&svm->vcpu));
|
|
|
|
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
|
|
kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
|
|
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int skinit_interception(struct vcpu_svm *svm)
|
|
{
|
|
trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
|
|
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int wbinvd_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_wbinvd(&svm->vcpu);
|
|
}
|
|
|
|
static int xsetbv_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
|
|
u32 index = kvm_rcx_read(&svm->vcpu);
|
|
|
|
if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int rdpru_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int task_switch_interception(struct vcpu_svm *svm)
|
|
{
|
|
u16 tss_selector;
|
|
int reason;
|
|
int int_type = svm->vmcb->control.exit_int_info &
|
|
SVM_EXITINTINFO_TYPE_MASK;
|
|
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
|
|
uint32_t type =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
|
|
uint32_t idt_v =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
|
|
bool has_error_code = false;
|
|
u32 error_code = 0;
|
|
|
|
tss_selector = (u16)svm->vmcb->control.exit_info_1;
|
|
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
|
|
reason = TASK_SWITCH_IRET;
|
|
else if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
|
|
reason = TASK_SWITCH_JMP;
|
|
else if (idt_v)
|
|
reason = TASK_SWITCH_GATE;
|
|
else
|
|
reason = TASK_SWITCH_CALL;
|
|
|
|
if (reason == TASK_SWITCH_GATE) {
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
|
|
has_error_code = true;
|
|
error_code =
|
|
(u32)svm->vmcb->control.exit_info_2;
|
|
}
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reason != TASK_SWITCH_GATE ||
|
|
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
|
|
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
|
|
(int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
|
|
if (!skip_emulated_instruction(&svm->vcpu))
|
|
return 0;
|
|
}
|
|
|
|
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
|
|
int_vec = -1;
|
|
|
|
return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
|
|
has_error_code, error_code);
|
|
}
|
|
|
|
static int cpuid_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_cpuid(&svm->vcpu);
|
|
}
|
|
|
|
static int iret_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.nmi_window_exits;
|
|
svm_clr_intercept(svm, INTERCEPT_IRET);
|
|
svm->vcpu.arch.hflags |= HF_IRET_MASK;
|
|
svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int invd_interception(struct vcpu_svm *svm)
|
|
{
|
|
/* Treat an INVD instruction as a NOP and just skip it. */
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int invlpg_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return kvm_emulate_instruction(&svm->vcpu, 0);
|
|
|
|
kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int emulate_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_instruction(&svm->vcpu, 0);
|
|
}
|
|
|
|
static int rsm_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
|
|
}
|
|
|
|
static int rdpmc_interception(struct vcpu_svm *svm)
|
|
{
|
|
int err;
|
|
|
|
if (!nrips)
|
|
return emulate_on_interception(svm);
|
|
|
|
err = kvm_rdpmc(&svm->vcpu);
|
|
return kvm_complete_insn_gp(&svm->vcpu, err);
|
|
}
|
|
|
|
static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
|
|
unsigned long val)
|
|
{
|
|
unsigned long cr0 = svm->vcpu.arch.cr0;
|
|
bool ret = false;
|
|
|
|
if (!is_guest_mode(&svm->vcpu) ||
|
|
(!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
|
|
return false;
|
|
|
|
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
|
|
val &= ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (cr0 ^ val) {
|
|
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define CR_VALID (1ULL << 63)
|
|
|
|
static int cr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, cr;
|
|
unsigned long val;
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
|
|
cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
|
|
else
|
|
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
|
|
|
|
err = 0;
|
|
if (cr >= 16) { /* mov to cr */
|
|
cr -= 16;
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
trace_kvm_cr_write(cr, val);
|
|
switch (cr) {
|
|
case 0:
|
|
if (!check_selective_cr0_intercepted(svm, val))
|
|
err = kvm_set_cr0(&svm->vcpu, val);
|
|
else
|
|
return 1;
|
|
|
|
break;
|
|
case 3:
|
|
err = kvm_set_cr3(&svm->vcpu, val);
|
|
break;
|
|
case 4:
|
|
err = kvm_set_cr4(&svm->vcpu, val);
|
|
break;
|
|
case 8:
|
|
err = kvm_set_cr8(&svm->vcpu, val);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled write to CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
} else { /* mov from cr */
|
|
switch (cr) {
|
|
case 0:
|
|
val = kvm_read_cr0(&svm->vcpu);
|
|
break;
|
|
case 2:
|
|
val = svm->vcpu.arch.cr2;
|
|
break;
|
|
case 3:
|
|
val = kvm_read_cr3(&svm->vcpu);
|
|
break;
|
|
case 4:
|
|
val = kvm_read_cr4(&svm->vcpu);
|
|
break;
|
|
case 8:
|
|
val = kvm_get_cr8(&svm->vcpu);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled read from CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
trace_kvm_cr_read(cr, val);
|
|
}
|
|
return kvm_complete_insn_gp(&svm->vcpu, err);
|
|
}
|
|
|
|
static int dr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, dr;
|
|
unsigned long val;
|
|
|
|
if (svm->vcpu.guest_debug == 0) {
|
|
/*
|
|
* No more DR vmexits; force a reload of the debug registers
|
|
* and reenter on this instruction. The next vmexit will
|
|
* retrieve the full state of the debug registers.
|
|
*/
|
|
clr_dr_intercepts(svm);
|
|
svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
|
|
return 1;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
|
|
|
|
if (dr >= 16) { /* mov to DRn */
|
|
if (!kvm_require_dr(&svm->vcpu, dr - 16))
|
|
return 1;
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
kvm_set_dr(&svm->vcpu, dr - 16, val);
|
|
} else {
|
|
if (!kvm_require_dr(&svm->vcpu, dr))
|
|
return 1;
|
|
kvm_get_dr(&svm->vcpu, dr, &val);
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
}
|
|
|
|
return kvm_skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
static int cr8_write_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
int r;
|
|
|
|
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
|
|
/* instruction emulation calls kvm_set_cr8() */
|
|
r = cr_interception(svm);
|
|
if (lapic_in_kernel(&svm->vcpu))
|
|
return r;
|
|
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
|
|
return r;
|
|
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
|
|
static int svm_get_msr_feature(struct kvm_msr_entry *msr)
|
|
{
|
|
msr->data = 0;
|
|
|
|
switch (msr->index) {
|
|
case MSR_F10H_DECFG:
|
|
if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
|
|
msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
|
|
break;
|
|
case MSR_IA32_PERF_CAPABILITIES:
|
|
return 0;
|
|
default:
|
|
return KVM_MSR_RET_INVALID;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
switch (msr_info->index) {
|
|
case MSR_STAR:
|
|
msr_info->data = svm->vmcb->save.star;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
msr_info->data = svm->vmcb->save.lstar;
|
|
break;
|
|
case MSR_CSTAR:
|
|
msr_info->data = svm->vmcb->save.cstar;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
msr_info->data = svm->vmcb->save.kernel_gs_base;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
msr_info->data = svm->vmcb->save.sfmask;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
msr_info->data = svm->vmcb->save.sysenter_cs;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
msr_info->data = svm->sysenter_eip;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
msr_info->data = svm->sysenter_esp;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
|
|
return 1;
|
|
msr_info->data = svm->tsc_aux;
|
|
break;
|
|
/*
|
|
* Nobody will change the following 5 values in the VMCB so we can
|
|
* safely return them on rdmsr. They will always be 0 until LBRV is
|
|
* implemented.
|
|
*/
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
msr_info->data = svm->vmcb->save.dbgctl;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
msr_info->data = svm->vmcb->save.br_from;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
msr_info->data = svm->vmcb->save.br_to;
|
|
break;
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
msr_info->data = svm->vmcb->save.last_excp_from;
|
|
break;
|
|
case MSR_IA32_LASTINTTOIP:
|
|
msr_info->data = svm->vmcb->save.last_excp_to;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
msr_info->data = svm->nested.hsave_msr;
|
|
break;
|
|
case MSR_VM_CR:
|
|
msr_info->data = svm->nested.vm_cr_msr;
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
|
|
return 1;
|
|
|
|
msr_info->data = svm->spec_ctrl;
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr_info->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
msr_info->data = svm->virt_spec_ctrl;
|
|
break;
|
|
case MSR_F15H_IC_CFG: {
|
|
|
|
int family, model;
|
|
|
|
family = guest_cpuid_family(vcpu);
|
|
model = guest_cpuid_model(vcpu);
|
|
|
|
if (family < 0 || model < 0)
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
|
|
msr_info->data = 0;
|
|
|
|
if (family == 0x15 &&
|
|
(model >= 0x2 && model < 0x20))
|
|
msr_info->data = 0x1E;
|
|
}
|
|
break;
|
|
case MSR_F10H_DECFG:
|
|
msr_info->data = svm->msr_decfg;
|
|
break;
|
|
default:
|
|
return kvm_get_msr_common(vcpu, msr_info);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rdmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_rdmsr(&svm->vcpu);
|
|
}
|
|
|
|
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int svm_dis, chg_mask;
|
|
|
|
if (data & ~SVM_VM_CR_VALID_MASK)
|
|
return 1;
|
|
|
|
chg_mask = SVM_VM_CR_VALID_MASK;
|
|
|
|
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
|
|
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
|
|
|
|
svm->nested.vm_cr_msr &= ~chg_mask;
|
|
svm->nested.vm_cr_msr |= (data & chg_mask);
|
|
|
|
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
|
|
|
|
/* check for svm_disable while efer.svme is set */
|
|
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
u32 ecx = msr->index;
|
|
u64 data = msr->data;
|
|
switch (ecx) {
|
|
case MSR_IA32_CR_PAT:
|
|
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
|
|
return 1;
|
|
vcpu->arch.pat = data;
|
|
svm->vmcb->save.g_pat = data;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
|
|
break;
|
|
case MSR_IA32_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
|
|
return 1;
|
|
|
|
if (kvm_spec_ctrl_test_value(data))
|
|
return 1;
|
|
|
|
svm->spec_ctrl = data;
|
|
if (!data)
|
|
break;
|
|
|
|
/*
|
|
* For non-nested:
|
|
* When it's written (to non-zero) for the first time, pass
|
|
* it through.
|
|
*
|
|
* For nested:
|
|
* The handling of the MSR bitmap for L2 guests is done in
|
|
* nested_svm_vmrun_msrpm.
|
|
* We update the L1 MSR bit as well since it will end up
|
|
* touching the MSR anyway now.
|
|
*/
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
|
|
break;
|
|
case MSR_IA32_PRED_CMD:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
|
|
return 1;
|
|
|
|
if (data & ~PRED_CMD_IBPB)
|
|
return 1;
|
|
if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
|
|
return 1;
|
|
if (!data)
|
|
break;
|
|
|
|
wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
|
|
set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
|
|
break;
|
|
case MSR_AMD64_VIRT_SPEC_CTRL:
|
|
if (!msr->host_initiated &&
|
|
!guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
|
|
return 1;
|
|
|
|
if (data & ~SPEC_CTRL_SSBD)
|
|
return 1;
|
|
|
|
svm->virt_spec_ctrl = data;
|
|
break;
|
|
case MSR_STAR:
|
|
svm->vmcb->save.star = data;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
svm->vmcb->save.lstar = data;
|
|
break;
|
|
case MSR_CSTAR:
|
|
svm->vmcb->save.cstar = data;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
svm->vmcb->save.kernel_gs_base = data;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
svm->vmcb->save.sfmask = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
svm->vmcb->save.sysenter_cs = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
svm->sysenter_eip = data;
|
|
svm->vmcb->save.sysenter_eip = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
svm->sysenter_esp = data;
|
|
svm->vmcb->save.sysenter_esp = data;
|
|
break;
|
|
case MSR_TSC_AUX:
|
|
if (!boot_cpu_has(X86_FEATURE_RDTSCP))
|
|
return 1;
|
|
|
|
/*
|
|
* This is rare, so we update the MSR here instead of using
|
|
* direct_access_msrs. Doing that would require a rdmsr in
|
|
* svm_vcpu_put.
|
|
*/
|
|
svm->tsc_aux = data;
|
|
wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!boot_cpu_has(X86_FEATURE_LBRV)) {
|
|
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
}
|
|
if (data & DEBUGCTL_RESERVED_BITS)
|
|
return 1;
|
|
|
|
svm->vmcb->save.dbgctl = data;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
|
|
if (data & (1ULL<<0))
|
|
svm_enable_lbrv(vcpu);
|
|
else
|
|
svm_disable_lbrv(vcpu);
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
svm->nested.hsave_msr = data;
|
|
break;
|
|
case MSR_VM_CR:
|
|
return svm_set_vm_cr(vcpu, data);
|
|
case MSR_VM_IGNNE:
|
|
vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
|
|
break;
|
|
case MSR_F10H_DECFG: {
|
|
struct kvm_msr_entry msr_entry;
|
|
|
|
msr_entry.index = msr->index;
|
|
if (svm_get_msr_feature(&msr_entry))
|
|
return 1;
|
|
|
|
/* Check the supported bits */
|
|
if (data & ~msr_entry.data)
|
|
return 1;
|
|
|
|
/* Don't allow the guest to change a bit, #GP */
|
|
if (!msr->host_initiated && (data ^ msr_entry.data))
|
|
return 1;
|
|
|
|
svm->msr_decfg = data;
|
|
break;
|
|
}
|
|
case MSR_IA32_APICBASE:
|
|
if (kvm_vcpu_apicv_active(vcpu))
|
|
avic_update_vapic_bar(to_svm(vcpu), data);
|
|
fallthrough;
|
|
default:
|
|
return kvm_set_msr_common(vcpu, msr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int wrmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_emulate_wrmsr(&svm->vcpu);
|
|
}
|
|
|
|
static int msr_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (svm->vmcb->control.exit_info_1)
|
|
return wrmsr_interception(svm);
|
|
else
|
|
return rdmsr_interception(svm);
|
|
}
|
|
|
|
static int interrupt_window_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
svm_clear_vintr(svm);
|
|
|
|
/*
|
|
* For AVIC, the only reason to end up here is ExtINTs.
|
|
* In this case AVIC was temporarily disabled for
|
|
* requesting the IRQ window and we have to re-enable it.
|
|
*/
|
|
svm_toggle_avic_for_irq_window(&svm->vcpu, true);
|
|
|
|
++svm->vcpu.stat.irq_window_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int pause_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
bool in_kernel = (svm_get_cpl(vcpu) == 0);
|
|
|
|
if (!kvm_pause_in_guest(vcpu->kvm))
|
|
grow_ple_window(vcpu);
|
|
|
|
kvm_vcpu_on_spin(vcpu, in_kernel);
|
|
return 1;
|
|
}
|
|
|
|
static int nop_interception(struct vcpu_svm *svm)
|
|
{
|
|
return kvm_skip_emulated_instruction(&(svm->vcpu));
|
|
}
|
|
|
|
static int monitor_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
static int mwait_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
static int invpcid_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
unsigned long type;
|
|
gva_t gva;
|
|
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
|
|
kvm_queue_exception(vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* For an INVPCID intercept:
|
|
* EXITINFO1 provides the linear address of the memory operand.
|
|
* EXITINFO2 provides the contents of the register operand.
|
|
*/
|
|
type = svm->vmcb->control.exit_info_2;
|
|
gva = svm->vmcb->control.exit_info_1;
|
|
|
|
if (type > 3) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
return kvm_handle_invpcid(vcpu, type, gva);
|
|
}
|
|
|
|
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
|
|
[SVM_EXIT_READ_CR0] = cr_interception,
|
|
[SVM_EXIT_READ_CR3] = cr_interception,
|
|
[SVM_EXIT_READ_CR4] = cr_interception,
|
|
[SVM_EXIT_READ_CR8] = cr_interception,
|
|
[SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR0] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR3] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR4] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
|
|
[SVM_EXIT_READ_DR0] = dr_interception,
|
|
[SVM_EXIT_READ_DR1] = dr_interception,
|
|
[SVM_EXIT_READ_DR2] = dr_interception,
|
|
[SVM_EXIT_READ_DR3] = dr_interception,
|
|
[SVM_EXIT_READ_DR4] = dr_interception,
|
|
[SVM_EXIT_READ_DR5] = dr_interception,
|
|
[SVM_EXIT_READ_DR6] = dr_interception,
|
|
[SVM_EXIT_READ_DR7] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR0] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR1] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR2] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR3] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR4] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR5] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR6] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR7] = dr_interception,
|
|
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
|
|
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
|
|
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
|
|
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
|
|
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
|
|
[SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
|
|
[SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
|
|
[SVM_EXIT_INTR] = intr_interception,
|
|
[SVM_EXIT_NMI] = nmi_interception,
|
|
[SVM_EXIT_SMI] = nop_on_interception,
|
|
[SVM_EXIT_INIT] = nop_on_interception,
|
|
[SVM_EXIT_VINTR] = interrupt_window_interception,
|
|
[SVM_EXIT_RDPMC] = rdpmc_interception,
|
|
[SVM_EXIT_CPUID] = cpuid_interception,
|
|
[SVM_EXIT_IRET] = iret_interception,
|
|
[SVM_EXIT_INVD] = invd_interception,
|
|
[SVM_EXIT_PAUSE] = pause_interception,
|
|
[SVM_EXIT_HLT] = halt_interception,
|
|
[SVM_EXIT_INVLPG] = invlpg_interception,
|
|
[SVM_EXIT_INVLPGA] = invlpga_interception,
|
|
[SVM_EXIT_IOIO] = io_interception,
|
|
[SVM_EXIT_MSR] = msr_interception,
|
|
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
|
|
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
|
|
[SVM_EXIT_VMRUN] = vmrun_interception,
|
|
[SVM_EXIT_VMMCALL] = vmmcall_interception,
|
|
[SVM_EXIT_VMLOAD] = vmload_interception,
|
|
[SVM_EXIT_VMSAVE] = vmsave_interception,
|
|
[SVM_EXIT_STGI] = stgi_interception,
|
|
[SVM_EXIT_CLGI] = clgi_interception,
|
|
[SVM_EXIT_SKINIT] = skinit_interception,
|
|
[SVM_EXIT_WBINVD] = wbinvd_interception,
|
|
[SVM_EXIT_MONITOR] = monitor_interception,
|
|
[SVM_EXIT_MWAIT] = mwait_interception,
|
|
[SVM_EXIT_XSETBV] = xsetbv_interception,
|
|
[SVM_EXIT_RDPRU] = rdpru_interception,
|
|
[SVM_EXIT_INVPCID] = invpcid_interception,
|
|
[SVM_EXIT_NPF] = npf_interception,
|
|
[SVM_EXIT_RSM] = rsm_interception,
|
|
[SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
|
|
[SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
|
|
};
|
|
|
|
static void dump_vmcb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
if (!dump_invalid_vmcb) {
|
|
pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
|
|
return;
|
|
}
|
|
|
|
pr_err("VMCB Control Area:\n");
|
|
pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
|
|
pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
|
|
pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
|
|
pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
|
|
pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
|
|
pr_err("%-20s%08x %08x\n", "intercepts:",
|
|
control->intercepts[INTERCEPT_WORD3],
|
|
control->intercepts[INTERCEPT_WORD4]);
|
|
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
|
|
pr_err("%-20s%d\n", "pause filter threshold:",
|
|
control->pause_filter_thresh);
|
|
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
|
|
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
|
|
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
|
|
pr_err("%-20s%d\n", "asid:", control->asid);
|
|
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
|
|
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
|
|
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
|
|
pr_err("%-20s%08x\n", "int_state:", control->int_state);
|
|
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
|
|
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
|
|
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
|
|
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
|
|
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
|
|
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
|
|
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
|
|
pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
|
|
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
|
|
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
|
|
pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
|
|
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
|
|
pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
|
|
pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
|
|
pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
|
|
pr_err("VMCB State Save Area:\n");
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"es:",
|
|
save->es.selector, save->es.attrib,
|
|
save->es.limit, save->es.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"cs:",
|
|
save->cs.selector, save->cs.attrib,
|
|
save->cs.limit, save->cs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ss:",
|
|
save->ss.selector, save->ss.attrib,
|
|
save->ss.limit, save->ss.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ds:",
|
|
save->ds.selector, save->ds.attrib,
|
|
save->ds.limit, save->ds.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"fs:",
|
|
save->fs.selector, save->fs.attrib,
|
|
save->fs.limit, save->fs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gs:",
|
|
save->gs.selector, save->gs.attrib,
|
|
save->gs.limit, save->gs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gdtr:",
|
|
save->gdtr.selector, save->gdtr.attrib,
|
|
save->gdtr.limit, save->gdtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ldtr:",
|
|
save->ldtr.selector, save->ldtr.attrib,
|
|
save->ldtr.limit, save->ldtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"idtr:",
|
|
save->idtr.selector, save->idtr.attrib,
|
|
save->idtr.limit, save->idtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"tr:",
|
|
save->tr.selector, save->tr.attrib,
|
|
save->tr.limit, save->tr.base);
|
|
pr_err("cpl: %d efer: %016llx\n",
|
|
save->cpl, save->efer);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr0:", save->cr0, "cr2:", save->cr2);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr3:", save->cr3, "cr4:", save->cr4);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"dr6:", save->dr6, "dr7:", save->dr7);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rip:", save->rip, "rflags:", save->rflags);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rsp:", save->rsp, "rax:", save->rax);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"star:", save->star, "lstar:", save->lstar);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cstar:", save->cstar, "sfmask:", save->sfmask);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"kernel_gs_base:", save->kernel_gs_base,
|
|
"sysenter_cs:", save->sysenter_cs);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"sysenter_esp:", save->sysenter_esp,
|
|
"sysenter_eip:", save->sysenter_eip);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"br_from:", save->br_from, "br_to:", save->br_to);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"excp_from:", save->last_excp_from,
|
|
"excp_to:", save->last_excp_to);
|
|
}
|
|
|
|
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
|
|
u32 *intr_info, u32 *error_code)
|
|
{
|
|
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
|
|
|
|
*info1 = control->exit_info_1;
|
|
*info2 = control->exit_info_2;
|
|
*intr_info = control->exit_int_info;
|
|
if ((*intr_info & SVM_EXITINTINFO_VALID) &&
|
|
(*intr_info & SVM_EXITINTINFO_VALID_ERR))
|
|
*error_code = control->exit_int_info_err;
|
|
else
|
|
*error_code = 0;
|
|
}
|
|
|
|
static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
|
|
|
|
if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
|
|
vcpu->arch.cr0 = svm->vmcb->save.cr0;
|
|
if (npt_enabled)
|
|
vcpu->arch.cr3 = svm->vmcb->save.cr3;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
int vmexit;
|
|
|
|
trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
|
|
|
|
vmexit = nested_svm_exit_special(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_CONTINUE)
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= svm->vmcb->control.exit_code;
|
|
kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
|
|
dump_vmcb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
|
|
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
|
|
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
|
|
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
|
|
printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
|
|
"exit_code 0x%x\n",
|
|
__func__, svm->vmcb->control.exit_int_info,
|
|
exit_code);
|
|
|
|
if (exit_fastpath != EXIT_FASTPATH_NONE)
|
|
return 1;
|
|
|
|
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|
|
|| !svm_exit_handlers[exit_code]) {
|
|
vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
|
|
dump_vmcb(vcpu);
|
|
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
vcpu->run->internal.suberror =
|
|
KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
|
|
vcpu->run->internal.ndata = 2;
|
|
vcpu->run->internal.data[0] = exit_code;
|
|
vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
if (exit_code == SVM_EXIT_MSR)
|
|
return msr_interception(svm);
|
|
else if (exit_code == SVM_EXIT_VINTR)
|
|
return interrupt_window_interception(svm);
|
|
else if (exit_code == SVM_EXIT_INTR)
|
|
return intr_interception(svm);
|
|
else if (exit_code == SVM_EXIT_HLT)
|
|
return halt_interception(svm);
|
|
else if (exit_code == SVM_EXIT_NPF)
|
|
return npf_interception(svm);
|
|
#endif
|
|
return svm_exit_handlers[exit_code](svm);
|
|
}
|
|
|
|
static void reload_tss(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
|
|
|
|
sd->tss_desc->type = 9; /* available 32/64-bit TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static void pre_svm_run(struct vcpu_svm *svm)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
|
|
|
|
if (sev_guest(svm->vcpu.kvm))
|
|
return pre_sev_run(svm, svm->vcpu.cpu);
|
|
|
|
/* FIXME: handle wraparound of asid_generation */
|
|
if (svm->asid_generation != sd->asid_generation)
|
|
new_asid(svm, sd);
|
|
}
|
|
|
|
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
|
|
vcpu->arch.hflags |= HF_NMI_MASK;
|
|
svm_set_intercept(svm, INTERCEPT_IRET);
|
|
++vcpu->stat.nmi_injections;
|
|
}
|
|
|
|
static void svm_set_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
BUG_ON(!(gif_set(svm)));
|
|
|
|
trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
|
|
++vcpu->stat.irq_injections;
|
|
|
|
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
|
|
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu))
|
|
return;
|
|
|
|
svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
if (irr == -1)
|
|
return;
|
|
|
|
if (tpr >= irr)
|
|
svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
bool ret;
|
|
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
|
|
return false;
|
|
|
|
ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
|
|
(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
/* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
|
|
return -EBUSY;
|
|
|
|
return !svm_nmi_blocked(vcpu);
|
|
}
|
|
|
|
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
}
|
|
|
|
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (masked) {
|
|
svm->vcpu.arch.hflags |= HF_NMI_MASK;
|
|
svm_set_intercept(svm, INTERCEPT_IRET);
|
|
} else {
|
|
svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
|
|
svm_clr_intercept(svm, INTERCEPT_IRET);
|
|
}
|
|
}
|
|
|
|
bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* As long as interrupts are being delivered... */
|
|
if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
|
|
? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
|
|
: !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
|
|
return true;
|
|
|
|
/* ... vmexits aren't blocked by the interrupt shadow */
|
|
if (nested_exit_on_intr(svm))
|
|
return false;
|
|
} else {
|
|
if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
|
|
return true;
|
|
}
|
|
|
|
return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
|
|
}
|
|
|
|
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* An IRQ must not be injected into L2 if it's supposed to VM-Exit,
|
|
* e.g. if the IRQ arrived asynchronously after checking nested events.
|
|
*/
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
|
|
return -EBUSY;
|
|
|
|
return !svm_interrupt_blocked(vcpu);
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
|
|
* 1, because that's a separate STGI/VMRUN intercept. The next time we
|
|
* get that intercept, this function will be called again though and
|
|
* we'll get the vintr intercept. However, if the vGIF feature is
|
|
* enabled, the STGI interception will not occur. Enable the irq
|
|
* window under the assumption that the hardware will set the GIF.
|
|
*/
|
|
if (vgif_enabled(svm) || gif_set(svm)) {
|
|
/*
|
|
* IRQ window is not needed when AVIC is enabled,
|
|
* unless we have pending ExtINT since it cannot be injected
|
|
* via AVIC. In such case, we need to temporarily disable AVIC,
|
|
* and fallback to injecting IRQ via V_IRQ.
|
|
*/
|
|
svm_toggle_avic_for_irq_window(vcpu, false);
|
|
svm_set_vintr(svm);
|
|
}
|
|
}
|
|
|
|
static void enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
|
|
== HF_NMI_MASK)
|
|
return; /* IRET will cause a vm exit */
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif_enabled(svm))
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
return; /* STGI will cause a vm exit */
|
|
}
|
|
|
|
/*
|
|
* Something prevents NMI from been injected. Single step over possible
|
|
* problem (IRET or exception injection or interrupt shadow)
|
|
*/
|
|
svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
|
|
svm->nmi_singlestep = true;
|
|
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
}
|
|
|
|
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void svm_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* Flush only the current ASID even if the TLB flush was invoked via
|
|
* kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
|
|
* ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
|
|
* unconditionally does a TLB flush on both nested VM-Enter and nested
|
|
* VM-Exit (via kvm_mmu_reset_context()).
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
else
|
|
svm->asid_generation--;
|
|
}
|
|
|
|
static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
invlpga(gva, svm->vmcb->control.asid);
|
|
}
|
|
|
|
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu))
|
|
return;
|
|
|
|
if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
|
|
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
|
|
kvm_set_cr8(vcpu, cr8);
|
|
}
|
|
}
|
|
|
|
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr8;
|
|
|
|
if (nested_svm_virtualize_tpr(vcpu) ||
|
|
kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
cr8 = kvm_get_cr8(vcpu);
|
|
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
|
|
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
|
|
}
|
|
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm)
|
|
{
|
|
u8 vector;
|
|
int type;
|
|
u32 exitintinfo = svm->vmcb->control.exit_int_info;
|
|
unsigned int3_injected = svm->int3_injected;
|
|
|
|
svm->int3_injected = 0;
|
|
|
|
/*
|
|
* If we've made progress since setting HF_IRET_MASK, we've
|
|
* executed an IRET and can allow NMI injection.
|
|
*/
|
|
if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
|
|
&& kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
|
|
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
}
|
|
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
|
|
return;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
|
|
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
|
|
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = true;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
/*
|
|
* In case of software exceptions, do not reinject the vector,
|
|
* but re-execute the instruction instead. Rewind RIP first
|
|
* if we emulated INT3 before.
|
|
*/
|
|
if (kvm_exception_is_soft(vector)) {
|
|
if (vector == BP_VECTOR && int3_injected &&
|
|
kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
|
|
kvm_rip_write(&svm->vcpu,
|
|
kvm_rip_read(&svm->vcpu) -
|
|
int3_injected);
|
|
break;
|
|
}
|
|
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
|
|
u32 err = svm->vmcb->control.exit_int_info_err;
|
|
kvm_requeue_exception_e(&svm->vcpu, vector, err);
|
|
|
|
} else
|
|
kvm_requeue_exception(&svm->vcpu, vector);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_queue_interrupt(&svm->vcpu, vector, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
|
|
control->exit_int_info = control->event_inj;
|
|
control->exit_int_info_err = control->event_inj_err;
|
|
control->event_inj = 0;
|
|
svm_complete_interrupts(svm);
|
|
}
|
|
|
|
static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
|
|
to_svm(vcpu)->vmcb->control.exit_info_1)
|
|
return handle_fastpath_set_msr_irqoff(vcpu);
|
|
|
|
return EXIT_FASTPATH_NONE;
|
|
}
|
|
|
|
void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
|
|
|
|
static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
|
|
struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* VMENTER enables interrupts (host state), but the kernel state is
|
|
* interrupts disabled when this is invoked. Also tell RCU about
|
|
* it. This is the same logic as for exit_to_user_mode().
|
|
*
|
|
* This ensures that e.g. latency analysis on the host observes
|
|
* guest mode as interrupt enabled.
|
|
*
|
|
* guest_enter_irqoff() informs context tracking about the
|
|
* transition to guest mode and if enabled adjusts RCU state
|
|
* accordingly.
|
|
*/
|
|
instrumentation_begin();
|
|
trace_hardirqs_on_prepare();
|
|
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
|
|
instrumentation_end();
|
|
|
|
guest_enter_irqoff();
|
|
lockdep_hardirqs_on(CALLER_ADDR0);
|
|
|
|
__svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
|
|
#else
|
|
loadsegment(fs, svm->host.fs);
|
|
#ifndef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* VMEXIT disables interrupts (host state), but tracing and lockdep
|
|
* have them in state 'on' as recorded before entering guest mode.
|
|
* Same as enter_from_user_mode().
|
|
*
|
|
* guest_exit_irqoff() restores host context and reinstates RCU if
|
|
* enabled and required.
|
|
*
|
|
* This needs to be done before the below as native_read_msr()
|
|
* contains a tracepoint and x86_spec_ctrl_restore_host() calls
|
|
* into world and some more.
|
|
*/
|
|
lockdep_hardirqs_off(CALLER_ADDR0);
|
|
guest_exit_irqoff();
|
|
|
|
instrumentation_begin();
|
|
trace_hardirqs_off_finish();
|
|
instrumentation_end();
|
|
}
|
|
|
|
static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
/*
|
|
* Disable singlestep if we're injecting an interrupt/exception.
|
|
* We don't want our modified rflags to be pushed on the stack where
|
|
* we might not be able to easily reset them if we disabled NMI
|
|
* singlestep later.
|
|
*/
|
|
if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
|
|
/*
|
|
* Event injection happens before external interrupts cause a
|
|
* vmexit and interrupts are disabled here, so smp_send_reschedule
|
|
* is enough to force an immediate vmexit.
|
|
*/
|
|
disable_nmi_singlestep(svm);
|
|
smp_send_reschedule(vcpu->cpu);
|
|
}
|
|
|
|
pre_svm_run(svm);
|
|
|
|
sync_lapic_to_cr8(vcpu);
|
|
|
|
svm->vmcb->save.cr2 = vcpu->arch.cr2;
|
|
|
|
/*
|
|
* Run with all-zero DR6 unless needed, so that we can get the exact cause
|
|
* of a #DB.
|
|
*/
|
|
if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
|
|
svm_set_dr6(svm, vcpu->arch.dr6);
|
|
else
|
|
svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
|
|
|
|
clgi();
|
|
kvm_load_guest_xsave_state(vcpu);
|
|
|
|
kvm_wait_lapic_expire(vcpu);
|
|
|
|
/*
|
|
* If this vCPU has touched SPEC_CTRL, restore the guest's value if
|
|
* it's non-zero. Since vmentry is serialising on affected CPUs, there
|
|
* is no need to worry about the conditional branch over the wrmsr
|
|
* being speculatively taken.
|
|
*/
|
|
x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
|
|
|
|
svm_vcpu_enter_exit(vcpu, svm);
|
|
|
|
/*
|
|
* We do not use IBRS in the kernel. If this vCPU has used the
|
|
* SPEC_CTRL MSR it may have left it on; save the value and
|
|
* turn it off. This is much more efficient than blindly adding
|
|
* it to the atomic save/restore list. Especially as the former
|
|
* (Saving guest MSRs on vmexit) doesn't even exist in KVM.
|
|
*
|
|
* For non-nested case:
|
|
* If the L01 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*
|
|
* For nested case:
|
|
* If the L02 MSR bitmap does not intercept the MSR, then we need to
|
|
* save it.
|
|
*/
|
|
if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
|
|
svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
|
|
|
|
reload_tss(vcpu);
|
|
|
|
x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
|
|
|
|
vcpu->arch.cr2 = svm->vmcb->save.cr2;
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_before_interrupt(&svm->vcpu);
|
|
|
|
kvm_load_host_xsave_state(vcpu);
|
|
stgi();
|
|
|
|
/* Any pending NMI will happen here */
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_after_interrupt(&svm->vcpu);
|
|
|
|
sync_cr8_to_lapic(vcpu);
|
|
|
|
svm->next_rip = 0;
|
|
if (is_guest_mode(&svm->vcpu)) {
|
|
sync_nested_vmcb_control(svm);
|
|
svm->nested.nested_run_pending = 0;
|
|
}
|
|
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
|
|
vmcb_mark_all_clean(svm->vmcb);
|
|
|
|
/* if exit due to PF check for async PF */
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
|
|
svm->vcpu.arch.apf.host_apf_flags =
|
|
kvm_read_and_reset_apf_flags();
|
|
|
|
if (npt_enabled) {
|
|
vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
|
|
vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
|
|
}
|
|
|
|
/*
|
|
* We need to handle MC intercepts here before the vcpu has a chance to
|
|
* change the physical cpu
|
|
*/
|
|
if (unlikely(svm->vmcb->control.exit_code ==
|
|
SVM_EXIT_EXCP_BASE + MC_VECTOR))
|
|
svm_handle_mce(svm);
|
|
|
|
svm_complete_interrupts(svm);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return EXIT_FASTPATH_NONE;
|
|
|
|
return svm_exit_handlers_fastpath(vcpu);
|
|
}
|
|
|
|
static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
|
|
int root_level)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long cr3;
|
|
|
|
cr3 = __sme_set(root);
|
|
if (npt_enabled) {
|
|
svm->vmcb->control.nested_cr3 = cr3;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
|
|
|
|
/* Loading L2's CR3 is handled by enter_svm_guest_mode. */
|
|
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
|
|
return;
|
|
cr3 = vcpu->arch.cr3;
|
|
}
|
|
|
|
svm->vmcb->save.cr3 = cr3;
|
|
vmcb_mark_dirty(svm->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static int is_disabled(void)
|
|
{
|
|
u64 vm_cr;
|
|
|
|
rdmsrl(MSR_VM_CR, vm_cr);
|
|
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xd9;
|
|
}
|
|
|
|
static int __init svm_check_processor_compat(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static bool svm_cpu_has_accelerated_tpr(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_has_emulated_msr(u32 index)
|
|
{
|
|
switch (index) {
|
|
case MSR_IA32_MCG_EXT_CTL:
|
|
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
|
|
boot_cpu_has(X86_FEATURE_XSAVE) &&
|
|
boot_cpu_has(X86_FEATURE_XSAVES);
|
|
|
|
/* Update nrips enabled cache */
|
|
svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
|
|
guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
|
|
|
|
/* Check again if INVPCID interception if required */
|
|
svm_check_invpcid(svm);
|
|
|
|
if (!kvm_vcpu_apicv_active(vcpu))
|
|
return;
|
|
|
|
/*
|
|
* AVIC does not work with an x2APIC mode guest. If the X2APIC feature
|
|
* is exposed to the guest, disable AVIC.
|
|
*/
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
|
|
kvm_request_apicv_update(vcpu->kvm, false,
|
|
APICV_INHIBIT_REASON_X2APIC);
|
|
|
|
/*
|
|
* Currently, AVIC does not work with nested virtualization.
|
|
* So, we disable AVIC when cpuid for SVM is set in the L1 guest.
|
|
*/
|
|
if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
|
|
kvm_request_apicv_update(vcpu->kvm, false,
|
|
APICV_INHIBIT_REASON_NESTED);
|
|
}
|
|
|
|
static bool svm_has_wbinvd_exit(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#define PRE_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_PRE_EXCEPT, }
|
|
#define POST_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_EXCEPT, }
|
|
#define POST_MEM(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_MEMACCESS, }
|
|
|
|
static const struct __x86_intercept {
|
|
u32 exit_code;
|
|
enum x86_intercept_stage stage;
|
|
} x86_intercept_map[] = {
|
|
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
|
|
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
|
|
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
|
|
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
|
|
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
|
|
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
|
|
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
|
|
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
|
|
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
|
|
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
|
|
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
|
|
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
|
|
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
|
|
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
|
|
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
|
|
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
|
|
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
|
|
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
|
|
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
|
|
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
|
|
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
|
|
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
|
|
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
|
|
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
|
|
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
|
|
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
|
|
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
|
|
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
|
|
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
|
|
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
|
|
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
|
|
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
|
|
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
|
|
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
|
|
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
|
|
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
|
|
};
|
|
|
|
#undef PRE_EX
|
|
#undef POST_EX
|
|
#undef POST_MEM
|
|
|
|
static int svm_check_intercept(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage,
|
|
struct x86_exception *exception)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int vmexit, ret = X86EMUL_CONTINUE;
|
|
struct __x86_intercept icpt_info;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
|
|
goto out;
|
|
|
|
icpt_info = x86_intercept_map[info->intercept];
|
|
|
|
if (stage != icpt_info.stage)
|
|
goto out;
|
|
|
|
switch (icpt_info.exit_code) {
|
|
case SVM_EXIT_READ_CR0:
|
|
if (info->intercept == x86_intercept_cr_read)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_WRITE_CR0: {
|
|
unsigned long cr0, val;
|
|
|
|
if (info->intercept == x86_intercept_cr_write)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
|
|
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
|
|
info->intercept == x86_intercept_clts)
|
|
break;
|
|
|
|
if (!(vmcb_is_intercept(&svm->nested.ctl,
|
|
INTERCEPT_SELECTIVE_CR0)))
|
|
break;
|
|
|
|
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
|
|
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (info->intercept == x86_intercept_lmsw) {
|
|
cr0 &= 0xfUL;
|
|
val &= 0xfUL;
|
|
/* lmsw can't clear PE - catch this here */
|
|
if (cr0 & X86_CR0_PE)
|
|
val |= X86_CR0_PE;
|
|
}
|
|
|
|
if (cr0 ^ val)
|
|
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0:
|
|
case SVM_EXIT_WRITE_DR0:
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
if (info->intercept == x86_intercept_wrmsr)
|
|
vmcb->control.exit_info_1 = 1;
|
|
else
|
|
vmcb->control.exit_info_1 = 0;
|
|
break;
|
|
case SVM_EXIT_PAUSE:
|
|
/*
|
|
* We get this for NOP only, but pause
|
|
* is rep not, check this here
|
|
*/
|
|
if (info->rep_prefix != REPE_PREFIX)
|
|
goto out;
|
|
break;
|
|
case SVM_EXIT_IOIO: {
|
|
u64 exit_info;
|
|
u32 bytes;
|
|
|
|
if (info->intercept == x86_intercept_in ||
|
|
info->intercept == x86_intercept_ins) {
|
|
exit_info = ((info->src_val & 0xffff) << 16) |
|
|
SVM_IOIO_TYPE_MASK;
|
|
bytes = info->dst_bytes;
|
|
} else {
|
|
exit_info = (info->dst_val & 0xffff) << 16;
|
|
bytes = info->src_bytes;
|
|
}
|
|
|
|
if (info->intercept == x86_intercept_outs ||
|
|
info->intercept == x86_intercept_ins)
|
|
exit_info |= SVM_IOIO_STR_MASK;
|
|
|
|
if (info->rep_prefix)
|
|
exit_info |= SVM_IOIO_REP_MASK;
|
|
|
|
bytes = min(bytes, 4u);
|
|
|
|
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
|
|
|
|
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
|
|
|
|
vmcb->control.exit_info_1 = exit_info;
|
|
vmcb->control.exit_info_2 = info->next_rip;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
|
|
if (static_cpu_has(X86_FEATURE_NRIPS))
|
|
vmcb->control.next_rip = info->next_rip;
|
|
vmcb->control.exit_code = icpt_info.exit_code;
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
|
|
: X86EMUL_CONTINUE;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
if (!kvm_pause_in_guest(vcpu->kvm))
|
|
shrink_ple_window(vcpu);
|
|
}
|
|
|
|
static void svm_setup_mce(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* [63:9] are reserved. */
|
|
vcpu->arch.mcg_cap &= 0x1ff;
|
|
}
|
|
|
|
bool svm_smi_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* Per APM Vol.2 15.22.2 "Response to SMI" */
|
|
if (!gif_set(svm))
|
|
return true;
|
|
|
|
return is_smm(vcpu);
|
|
}
|
|
|
|
static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
if (svm->nested.nested_run_pending)
|
|
return -EBUSY;
|
|
|
|
/* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
|
|
if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
|
|
return -EBUSY;
|
|
|
|
return !svm_smi_blocked(vcpu);
|
|
}
|
|
|
|
static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int ret;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
/* FED8h - SVM Guest */
|
|
put_smstate(u64, smstate, 0x7ed8, 1);
|
|
/* FEE0h - SVM Guest VMCB Physical Address */
|
|
put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
ret = nested_svm_vmexit(svm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_host_map map;
|
|
int ret = 0;
|
|
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
|
|
u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
|
|
u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
|
|
u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
|
|
|
|
if (guest) {
|
|
if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
|
|
return 1;
|
|
|
|
if (!(saved_efer & EFER_SVME))
|
|
return 1;
|
|
|
|
if (kvm_vcpu_map(&svm->vcpu,
|
|
gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
|
|
return 1;
|
|
|
|
if (svm_allocate_nested(svm))
|
|
return 1;
|
|
|
|
ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
|
|
kvm_vcpu_unmap(&svm->vcpu, &map, true);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void enable_smi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!gif_set(svm)) {
|
|
if (vgif_enabled(svm))
|
|
svm_set_intercept(svm, INTERCEPT_STGI);
|
|
/* STGI will cause a vm exit */
|
|
} else {
|
|
/* We must be in SMM; RSM will cause a vmexit anyway. */
|
|
}
|
|
}
|
|
|
|
static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
|
|
{
|
|
bool smep, smap, is_user;
|
|
unsigned long cr4;
|
|
|
|
/*
|
|
* Detect and workaround Errata 1096 Fam_17h_00_0Fh.
|
|
*
|
|
* Errata:
|
|
* When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
|
|
* possible that CPU microcode implementing DecodeAssist will fail
|
|
* to read bytes of instruction which caused #NPF. In this case,
|
|
* GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
|
|
* return 0 instead of the correct guest instruction bytes.
|
|
*
|
|
* This happens because CPU microcode reading instruction bytes
|
|
* uses a special opcode which attempts to read data using CPL=0
|
|
* priviledges. The microcode reads CS:RIP and if it hits a SMAP
|
|
* fault, it gives up and returns no instruction bytes.
|
|
*
|
|
* Detection:
|
|
* We reach here in case CPU supports DecodeAssist, raised #NPF and
|
|
* returned 0 in GuestIntrBytes field of the VMCB.
|
|
* First, errata can only be triggered in case vCPU CR4.SMAP=1.
|
|
* Second, if vCPU CR4.SMEP=1, errata could only be triggered
|
|
* in case vCPU CPL==3 (Because otherwise guest would have triggered
|
|
* a SMEP fault instead of #NPF).
|
|
* Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
|
|
* As most guests enable SMAP if they have also enabled SMEP, use above
|
|
* logic in order to attempt minimize false-positive of detecting errata
|
|
* while still preserving all cases semantic correctness.
|
|
*
|
|
* Workaround:
|
|
* To determine what instruction the guest was executing, the hypervisor
|
|
* will have to decode the instruction at the instruction pointer.
|
|
*
|
|
* In non SEV guest, hypervisor will be able to read the guest
|
|
* memory to decode the instruction pointer when insn_len is zero
|
|
* so we return true to indicate that decoding is possible.
|
|
*
|
|
* But in the SEV guest, the guest memory is encrypted with the
|
|
* guest specific key and hypervisor will not be able to decode the
|
|
* instruction pointer so we will not able to workaround it. Lets
|
|
* print the error and request to kill the guest.
|
|
*/
|
|
if (likely(!insn || insn_len))
|
|
return true;
|
|
|
|
/*
|
|
* If RIP is invalid, go ahead with emulation which will cause an
|
|
* internal error exit.
|
|
*/
|
|
if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
|
|
return true;
|
|
|
|
cr4 = kvm_read_cr4(vcpu);
|
|
smep = cr4 & X86_CR4_SMEP;
|
|
smap = cr4 & X86_CR4_SMAP;
|
|
is_user = svm_get_cpl(vcpu) == 3;
|
|
if (smap && (!smep || is_user)) {
|
|
if (!sev_guest(vcpu->kvm))
|
|
return true;
|
|
|
|
pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* TODO: Last condition latch INIT signals on vCPU when
|
|
* vCPU is in guest-mode and vmcb12 defines intercept on INIT.
|
|
* To properly emulate the INIT intercept,
|
|
* svm_check_nested_events() should call nested_svm_vmexit()
|
|
* if an INIT signal is pending.
|
|
*/
|
|
return !gif_set(svm) ||
|
|
(vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
|
|
}
|
|
|
|
static void svm_vm_destroy(struct kvm *kvm)
|
|
{
|
|
avic_vm_destroy(kvm);
|
|
sev_vm_destroy(kvm);
|
|
}
|
|
|
|
static int svm_vm_init(struct kvm *kvm)
|
|
{
|
|
if (!pause_filter_count || !pause_filter_thresh)
|
|
kvm->arch.pause_in_guest = true;
|
|
|
|
if (avic) {
|
|
int ret = avic_vm_init(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
kvm_apicv_init(kvm, avic);
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_x86_ops svm_x86_ops __initdata = {
|
|
.hardware_unsetup = svm_hardware_teardown,
|
|
.hardware_enable = svm_hardware_enable,
|
|
.hardware_disable = svm_hardware_disable,
|
|
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
|
|
.has_emulated_msr = svm_has_emulated_msr,
|
|
|
|
.vcpu_create = svm_create_vcpu,
|
|
.vcpu_free = svm_free_vcpu,
|
|
.vcpu_reset = svm_vcpu_reset,
|
|
|
|
.vm_size = sizeof(struct kvm_svm),
|
|
.vm_init = svm_vm_init,
|
|
.vm_destroy = svm_vm_destroy,
|
|
|
|
.prepare_guest_switch = svm_prepare_guest_switch,
|
|
.vcpu_load = svm_vcpu_load,
|
|
.vcpu_put = svm_vcpu_put,
|
|
.vcpu_blocking = svm_vcpu_blocking,
|
|
.vcpu_unblocking = svm_vcpu_unblocking,
|
|
|
|
.update_exception_bitmap = update_exception_bitmap,
|
|
.get_msr_feature = svm_get_msr_feature,
|
|
.get_msr = svm_get_msr,
|
|
.set_msr = svm_set_msr,
|
|
.get_segment_base = svm_get_segment_base,
|
|
.get_segment = svm_get_segment,
|
|
.set_segment = svm_set_segment,
|
|
.get_cpl = svm_get_cpl,
|
|
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
|
|
.set_cr0 = svm_set_cr0,
|
|
.set_cr4 = svm_set_cr4,
|
|
.set_efer = svm_set_efer,
|
|
.get_idt = svm_get_idt,
|
|
.set_idt = svm_set_idt,
|
|
.get_gdt = svm_get_gdt,
|
|
.set_gdt = svm_set_gdt,
|
|
.set_dr7 = svm_set_dr7,
|
|
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
|
|
.cache_reg = svm_cache_reg,
|
|
.get_rflags = svm_get_rflags,
|
|
.set_rflags = svm_set_rflags,
|
|
|
|
.tlb_flush_all = svm_flush_tlb,
|
|
.tlb_flush_current = svm_flush_tlb,
|
|
.tlb_flush_gva = svm_flush_tlb_gva,
|
|
.tlb_flush_guest = svm_flush_tlb,
|
|
|
|
.run = svm_vcpu_run,
|
|
.handle_exit = handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.update_emulated_instruction = NULL,
|
|
.set_interrupt_shadow = svm_set_interrupt_shadow,
|
|
.get_interrupt_shadow = svm_get_interrupt_shadow,
|
|
.patch_hypercall = svm_patch_hypercall,
|
|
.set_irq = svm_set_irq,
|
|
.set_nmi = svm_inject_nmi,
|
|
.queue_exception = svm_queue_exception,
|
|
.cancel_injection = svm_cancel_injection,
|
|
.interrupt_allowed = svm_interrupt_allowed,
|
|
.nmi_allowed = svm_nmi_allowed,
|
|
.get_nmi_mask = svm_get_nmi_mask,
|
|
.set_nmi_mask = svm_set_nmi_mask,
|
|
.enable_nmi_window = enable_nmi_window,
|
|
.enable_irq_window = enable_irq_window,
|
|
.update_cr8_intercept = update_cr8_intercept,
|
|
.set_virtual_apic_mode = svm_set_virtual_apic_mode,
|
|
.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
|
|
.check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
|
|
.pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
|
|
.load_eoi_exitmap = svm_load_eoi_exitmap,
|
|
.hwapic_irr_update = svm_hwapic_irr_update,
|
|
.hwapic_isr_update = svm_hwapic_isr_update,
|
|
.sync_pir_to_irr = kvm_lapic_find_highest_irr,
|
|
.apicv_post_state_restore = avic_post_state_restore,
|
|
|
|
.set_tss_addr = svm_set_tss_addr,
|
|
.set_identity_map_addr = svm_set_identity_map_addr,
|
|
.get_mt_mask = svm_get_mt_mask,
|
|
|
|
.get_exit_info = svm_get_exit_info,
|
|
|
|
.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
|
|
|
|
.has_wbinvd_exit = svm_has_wbinvd_exit,
|
|
|
|
.write_l1_tsc_offset = svm_write_l1_tsc_offset,
|
|
|
|
.load_mmu_pgd = svm_load_mmu_pgd,
|
|
|
|
.check_intercept = svm_check_intercept,
|
|
.handle_exit_irqoff = svm_handle_exit_irqoff,
|
|
|
|
.request_immediate_exit = __kvm_request_immediate_exit,
|
|
|
|
.sched_in = svm_sched_in,
|
|
|
|
.pmu_ops = &amd_pmu_ops,
|
|
.nested_ops = &svm_nested_ops,
|
|
|
|
.deliver_posted_interrupt = svm_deliver_avic_intr,
|
|
.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
|
|
.update_pi_irte = svm_update_pi_irte,
|
|
.setup_mce = svm_setup_mce,
|
|
|
|
.smi_allowed = svm_smi_allowed,
|
|
.pre_enter_smm = svm_pre_enter_smm,
|
|
.pre_leave_smm = svm_pre_leave_smm,
|
|
.enable_smi_window = enable_smi_window,
|
|
|
|
.mem_enc_op = svm_mem_enc_op,
|
|
.mem_enc_reg_region = svm_register_enc_region,
|
|
.mem_enc_unreg_region = svm_unregister_enc_region,
|
|
|
|
.can_emulate_instruction = svm_can_emulate_instruction,
|
|
|
|
.apic_init_signal_blocked = svm_apic_init_signal_blocked,
|
|
|
|
.msr_filter_changed = svm_msr_filter_changed,
|
|
};
|
|
|
|
static struct kvm_x86_init_ops svm_init_ops __initdata = {
|
|
.cpu_has_kvm_support = has_svm,
|
|
.disabled_by_bios = is_disabled,
|
|
.hardware_setup = svm_hardware_setup,
|
|
.check_processor_compatibility = svm_check_processor_compat,
|
|
|
|
.runtime_ops = &svm_x86_ops,
|
|
};
|
|
|
|
static int __init svm_init(void)
|
|
{
|
|
__unused_size_checks();
|
|
|
|
return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
|
|
__alignof__(struct vcpu_svm), THIS_MODULE);
|
|
}
|
|
|
|
static void __exit svm_exit(void)
|
|
{
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(svm_init)
|
|
module_exit(svm_exit)
|