mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-30 23:54:04 +08:00
1591cb6083
Now we have CONFIG_ARCH_DMA_ADDR_T_64BIT. We can fix the hacky dma_addr_t size test cleanly. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: David S. Miller <davem@davemloft.net>
2099 lines
63 KiB
C
2099 lines
63 KiB
C
/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
|
|
/*
|
|
Written 1998-2000 by Donald Becker.
|
|
|
|
Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
|
|
send all bug reports to me, and not to Donald Becker, as this code
|
|
has been heavily modified from Donald's original version.
|
|
|
|
This software may be used and distributed according to the terms of
|
|
the GNU General Public License (GPL), incorporated herein by reference.
|
|
Drivers based on or derived from this code fall under the GPL and must
|
|
retain the authorship, copyright and license notice. This file is not
|
|
a complete program and may only be used when the entire operating
|
|
system is licensed under the GPL.
|
|
|
|
The information below comes from Donald Becker's original driver:
|
|
|
|
The author may be reached as becker@scyld.com, or C/O
|
|
Scyld Computing Corporation
|
|
410 Severn Ave., Suite 210
|
|
Annapolis MD 21403
|
|
|
|
Support and updates available at
|
|
http://www.scyld.com/network/starfire.html
|
|
[link no longer provides useful info -jgarzik]
|
|
|
|
*/
|
|
|
|
#define DRV_NAME "starfire"
|
|
#define DRV_VERSION "2.1"
|
|
#define DRV_RELDATE "July 6, 2008"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/firmware.h>
|
|
#include <asm/processor.h> /* Processor type for cache alignment. */
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* The current frame processor firmware fails to checksum a fragment
|
|
* of length 1. If and when this is fixed, the #define below can be removed.
|
|
*/
|
|
#define HAS_BROKEN_FIRMWARE
|
|
|
|
/*
|
|
* If using the broken firmware, data must be padded to the next 32-bit boundary.
|
|
*/
|
|
#ifdef HAS_BROKEN_FIRMWARE
|
|
#define PADDING_MASK 3
|
|
#endif
|
|
|
|
/*
|
|
* Define this if using the driver with the zero-copy patch
|
|
*/
|
|
#define ZEROCOPY
|
|
|
|
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
|
|
#define VLAN_SUPPORT
|
|
#endif
|
|
|
|
/* The user-configurable values.
|
|
These may be modified when a driver module is loaded.*/
|
|
|
|
/* Used for tuning interrupt latency vs. overhead. */
|
|
static int intr_latency;
|
|
static int small_frames;
|
|
|
|
static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
|
|
static int max_interrupt_work = 20;
|
|
static int mtu;
|
|
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
|
|
The Starfire has a 512 element hash table based on the Ethernet CRC. */
|
|
static const int multicast_filter_limit = 512;
|
|
/* Whether to do TCP/UDP checksums in hardware */
|
|
static int enable_hw_cksum = 1;
|
|
|
|
#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
|
|
/*
|
|
* Set the copy breakpoint for the copy-only-tiny-frames scheme.
|
|
* Setting to > 1518 effectively disables this feature.
|
|
*
|
|
* NOTE:
|
|
* The ia64 doesn't allow for unaligned loads even of integers being
|
|
* misaligned on a 2 byte boundary. Thus always force copying of
|
|
* packets as the starfire doesn't allow for misaligned DMAs ;-(
|
|
* 23/10/2000 - Jes
|
|
*
|
|
* The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
|
|
* at least, having unaligned frames leads to a rather serious performance
|
|
* penalty. -Ion
|
|
*/
|
|
#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
|
|
static int rx_copybreak = PKT_BUF_SZ;
|
|
#else
|
|
static int rx_copybreak /* = 0 */;
|
|
#endif
|
|
|
|
/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
|
|
#ifdef __sparc__
|
|
#define DMA_BURST_SIZE 64
|
|
#else
|
|
#define DMA_BURST_SIZE 128
|
|
#endif
|
|
|
|
/* Used to pass the media type, etc.
|
|
Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
|
|
The media type is usually passed in 'options[]'.
|
|
These variables are deprecated, use ethtool instead. -Ion
|
|
*/
|
|
#define MAX_UNITS 8 /* More are supported, limit only on options */
|
|
static int options[MAX_UNITS] = {0, };
|
|
static int full_duplex[MAX_UNITS] = {0, };
|
|
|
|
/* Operational parameters that are set at compile time. */
|
|
|
|
/* The "native" ring sizes are either 256 or 2048.
|
|
However in some modes a descriptor may be marked to wrap the ring earlier.
|
|
*/
|
|
#define RX_RING_SIZE 256
|
|
#define TX_RING_SIZE 32
|
|
/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
|
|
#define DONE_Q_SIZE 1024
|
|
/* All queues must be aligned on a 256-byte boundary */
|
|
#define QUEUE_ALIGN 256
|
|
|
|
#if RX_RING_SIZE > 256
|
|
#define RX_Q_ENTRIES Rx2048QEntries
|
|
#else
|
|
#define RX_Q_ENTRIES Rx256QEntries
|
|
#endif
|
|
|
|
/* Operational parameters that usually are not changed. */
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (2 * HZ)
|
|
|
|
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
|
|
/* 64-bit dma_addr_t */
|
|
#define ADDR_64BITS /* This chip uses 64 bit addresses. */
|
|
#define netdrv_addr_t __le64
|
|
#define cpu_to_dma(x) cpu_to_le64(x)
|
|
#define dma_to_cpu(x) le64_to_cpu(x)
|
|
#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
|
|
#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
|
|
#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
|
|
#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
|
|
#define RX_DESC_ADDR_SIZE RxDescAddr64bit
|
|
#else /* 32-bit dma_addr_t */
|
|
#define netdrv_addr_t __le32
|
|
#define cpu_to_dma(x) cpu_to_le32(x)
|
|
#define dma_to_cpu(x) le32_to_cpu(x)
|
|
#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
|
|
#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
|
|
#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
|
|
#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
|
|
#define RX_DESC_ADDR_SIZE RxDescAddr32bit
|
|
#endif
|
|
|
|
#define skb_first_frag_len(skb) skb_headlen(skb)
|
|
#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
|
|
|
|
/* Firmware names */
|
|
#define FIRMWARE_RX "adaptec/starfire_rx.bin"
|
|
#define FIRMWARE_TX "adaptec/starfire_tx.bin"
|
|
|
|
/* These identify the driver base version and may not be removed. */
|
|
static const char version[] __devinitconst =
|
|
KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
|
|
" (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
|
|
MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_FIRMWARE(FIRMWARE_RX);
|
|
MODULE_FIRMWARE(FIRMWARE_TX);
|
|
|
|
module_param(max_interrupt_work, int, 0);
|
|
module_param(mtu, int, 0);
|
|
module_param(debug, int, 0);
|
|
module_param(rx_copybreak, int, 0);
|
|
module_param(intr_latency, int, 0);
|
|
module_param(small_frames, int, 0);
|
|
module_param_array(options, int, NULL, 0);
|
|
module_param_array(full_duplex, int, NULL, 0);
|
|
module_param(enable_hw_cksum, int, 0);
|
|
MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
|
|
MODULE_PARM_DESC(mtu, "MTU (all boards)");
|
|
MODULE_PARM_DESC(debug, "Debug level (0-6)");
|
|
MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
|
|
MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
|
|
MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
|
|
MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
|
|
MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
|
|
MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
|
|
|
|
/*
|
|
Theory of Operation
|
|
|
|
I. Board Compatibility
|
|
|
|
This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
|
|
|
|
II. Board-specific settings
|
|
|
|
III. Driver operation
|
|
|
|
IIIa. Ring buffers
|
|
|
|
The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
|
|
ring sizes are set fixed by the hardware, but may optionally be wrapped
|
|
earlier by the END bit in the descriptor.
|
|
This driver uses that hardware queue size for the Rx ring, where a large
|
|
number of entries has no ill effect beyond increases the potential backlog.
|
|
The Tx ring is wrapped with the END bit, since a large hardware Tx queue
|
|
disables the queue layer priority ordering and we have no mechanism to
|
|
utilize the hardware two-level priority queue. When modifying the
|
|
RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
|
|
levels.
|
|
|
|
IIIb/c. Transmit/Receive Structure
|
|
|
|
See the Adaptec manual for the many possible structures, and options for
|
|
each structure. There are far too many to document all of them here.
|
|
|
|
For transmit this driver uses type 0/1 transmit descriptors (depending
|
|
on the 32/64 bitness of the architecture), and relies on automatic
|
|
minimum-length padding. It does not use the completion queue
|
|
consumer index, but instead checks for non-zero status entries.
|
|
|
|
For receive this driver uses type 2/3 receive descriptors. The driver
|
|
allocates full frame size skbuffs for the Rx ring buffers, so all frames
|
|
should fit in a single descriptor. The driver does not use the completion
|
|
queue consumer index, but instead checks for non-zero status entries.
|
|
|
|
When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
|
|
is allocated and the frame is copied to the new skbuff. When the incoming
|
|
frame is larger, the skbuff is passed directly up the protocol stack.
|
|
Buffers consumed this way are replaced by newly allocated skbuffs in a later
|
|
phase of receive.
|
|
|
|
A notable aspect of operation is that unaligned buffers are not permitted by
|
|
the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
|
|
isn't longword aligned, which may cause problems on some machine
|
|
e.g. Alphas and IA64. For these architectures, the driver is forced to copy
|
|
the frame into a new skbuff unconditionally. Copied frames are put into the
|
|
skbuff at an offset of "+2", thus 16-byte aligning the IP header.
|
|
|
|
IIId. Synchronization
|
|
|
|
The driver runs as two independent, single-threaded flows of control. One
|
|
is the send-packet routine, which enforces single-threaded use by the
|
|
dev->tbusy flag. The other thread is the interrupt handler, which is single
|
|
threaded by the hardware and interrupt handling software.
|
|
|
|
The send packet thread has partial control over the Tx ring and the netif_queue
|
|
status. If the number of free Tx slots in the ring falls below a certain number
|
|
(currently hardcoded to 4), it signals the upper layer to stop the queue.
|
|
|
|
The interrupt handler has exclusive control over the Rx ring and records stats
|
|
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
|
|
empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
|
|
number of free Tx slow is above the threshold, it signals the upper layer to
|
|
restart the queue.
|
|
|
|
IV. Notes
|
|
|
|
IVb. References
|
|
|
|
The Adaptec Starfire manuals, available only from Adaptec.
|
|
http://www.scyld.com/expert/100mbps.html
|
|
http://www.scyld.com/expert/NWay.html
|
|
|
|
IVc. Errata
|
|
|
|
- StopOnPerr is broken, don't enable
|
|
- Hardware ethernet padding exposes random data, perform software padding
|
|
instead (unverified -- works correctly for all the hardware I have)
|
|
|
|
*/
|
|
|
|
|
|
|
|
enum chip_capability_flags {CanHaveMII=1, };
|
|
|
|
enum chipset {
|
|
CH_6915 = 0,
|
|
};
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
|
|
{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
|
|
{ 0, }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
|
|
|
|
/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
|
|
static const struct chip_info {
|
|
const char *name;
|
|
int drv_flags;
|
|
} netdrv_tbl[] __devinitdata = {
|
|
{ "Adaptec Starfire 6915", CanHaveMII },
|
|
};
|
|
|
|
|
|
/* Offsets to the device registers.
|
|
Unlike software-only systems, device drivers interact with complex hardware.
|
|
It's not useful to define symbolic names for every register bit in the
|
|
device. The name can only partially document the semantics and make
|
|
the driver longer and more difficult to read.
|
|
In general, only the important configuration values or bits changed
|
|
multiple times should be defined symbolically.
|
|
*/
|
|
enum register_offsets {
|
|
PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
|
|
IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
|
|
MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
|
|
GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
|
|
TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
|
|
TxRingHiAddr=0x5009C, /* 64 bit address extension. */
|
|
TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
|
|
TxThreshold=0x500B0,
|
|
CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
|
|
RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
|
|
CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
|
|
RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
|
|
RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
|
|
TxMode=0x55000, VlanType=0x55064,
|
|
PerfFilterTable=0x56000, HashTable=0x56100,
|
|
TxGfpMem=0x58000, RxGfpMem=0x5a000,
|
|
};
|
|
|
|
/*
|
|
* Bits in the interrupt status/mask registers.
|
|
* Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
|
|
* enables all the interrupt sources that are or'ed into those status bits.
|
|
*/
|
|
enum intr_status_bits {
|
|
IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
|
|
IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
|
|
IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
|
|
IntrTxComplQLow=0x200000, IntrPCI=0x100000,
|
|
IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
|
|
IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
|
|
IntrNormalSummary=0x8000, IntrTxDone=0x4000,
|
|
IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
|
|
IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
|
|
IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
|
|
IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
|
|
IntrNoTxCsum=0x20, IntrTxBadID=0x10,
|
|
IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
|
|
IntrTxGfp=0x02, IntrPCIPad=0x01,
|
|
/* not quite bits */
|
|
IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
|
|
IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
|
|
IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
|
|
};
|
|
|
|
/* Bits in the RxFilterMode register. */
|
|
enum rx_mode_bits {
|
|
AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
|
|
AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
|
|
PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
|
|
WakeupOnGFP=0x0800,
|
|
};
|
|
|
|
/* Bits in the TxMode register */
|
|
enum tx_mode_bits {
|
|
MiiSoftReset=0x8000, MIILoopback=0x4000,
|
|
TxFlowEnable=0x0800, RxFlowEnable=0x0400,
|
|
PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
|
|
};
|
|
|
|
/* Bits in the TxDescCtrl register. */
|
|
enum tx_ctrl_bits {
|
|
TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
|
|
TxDescSpace128=0x30, TxDescSpace256=0x40,
|
|
TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
|
|
TxDescType3=0x03, TxDescType4=0x04,
|
|
TxNoDMACompletion=0x08,
|
|
TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
|
|
TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
|
|
TxDMABurstSizeShift=8,
|
|
};
|
|
|
|
/* Bits in the RxDescQCtrl register. */
|
|
enum rx_ctrl_bits {
|
|
RxBufferLenShift=16, RxMinDescrThreshShift=0,
|
|
RxPrefetchMode=0x8000, RxVariableQ=0x2000,
|
|
Rx2048QEntries=0x4000, Rx256QEntries=0,
|
|
RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
|
|
RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
|
|
RxDescSpace4=0x000, RxDescSpace8=0x100,
|
|
RxDescSpace16=0x200, RxDescSpace32=0x300,
|
|
RxDescSpace64=0x400, RxDescSpace128=0x500,
|
|
RxConsumerWrEn=0x80,
|
|
};
|
|
|
|
/* Bits in the RxDMACtrl register. */
|
|
enum rx_dmactrl_bits {
|
|
RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
|
|
RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
|
|
RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
|
|
RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
|
|
RxChecksumRejectTCPOnly=0x01000000,
|
|
RxCompletionQ2Enable=0x800000,
|
|
RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
|
|
RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
|
|
RxDMAQ2NonIP=0x400000,
|
|
RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
|
|
RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
|
|
RxBurstSizeShift=0,
|
|
};
|
|
|
|
/* Bits in the RxCompletionAddr register */
|
|
enum rx_compl_bits {
|
|
RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
|
|
RxComplProducerWrEn=0x40,
|
|
RxComplType0=0x00, RxComplType1=0x10,
|
|
RxComplType2=0x20, RxComplType3=0x30,
|
|
RxComplThreshShift=0,
|
|
};
|
|
|
|
/* Bits in the TxCompletionAddr register */
|
|
enum tx_compl_bits {
|
|
TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
|
|
TxComplProducerWrEn=0x40,
|
|
TxComplIntrStatus=0x20,
|
|
CommonQueueMode=0x10,
|
|
TxComplThreshShift=0,
|
|
};
|
|
|
|
/* Bits in the GenCtrl register */
|
|
enum gen_ctrl_bits {
|
|
RxEnable=0x05, TxEnable=0x0a,
|
|
RxGFPEnable=0x10, TxGFPEnable=0x20,
|
|
};
|
|
|
|
/* Bits in the IntrTimerCtrl register */
|
|
enum intr_ctrl_bits {
|
|
Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
|
|
SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
|
|
IntrLatencyMask=0x1f,
|
|
};
|
|
|
|
/* The Rx and Tx buffer descriptors. */
|
|
struct starfire_rx_desc {
|
|
netdrv_addr_t rxaddr;
|
|
};
|
|
enum rx_desc_bits {
|
|
RxDescValid=1, RxDescEndRing=2,
|
|
};
|
|
|
|
/* Completion queue entry. */
|
|
struct short_rx_done_desc {
|
|
__le32 status; /* Low 16 bits is length. */
|
|
};
|
|
struct basic_rx_done_desc {
|
|
__le32 status; /* Low 16 bits is length. */
|
|
__le16 vlanid;
|
|
__le16 status2;
|
|
};
|
|
struct csum_rx_done_desc {
|
|
__le32 status; /* Low 16 bits is length. */
|
|
__le16 csum; /* Partial checksum */
|
|
__le16 status2;
|
|
};
|
|
struct full_rx_done_desc {
|
|
__le32 status; /* Low 16 bits is length. */
|
|
__le16 status3;
|
|
__le16 status2;
|
|
__le16 vlanid;
|
|
__le16 csum; /* partial checksum */
|
|
__le32 timestamp;
|
|
};
|
|
/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
|
|
#ifdef VLAN_SUPPORT
|
|
typedef struct full_rx_done_desc rx_done_desc;
|
|
#define RxComplType RxComplType3
|
|
#else /* not VLAN_SUPPORT */
|
|
typedef struct csum_rx_done_desc rx_done_desc;
|
|
#define RxComplType RxComplType2
|
|
#endif /* not VLAN_SUPPORT */
|
|
|
|
enum rx_done_bits {
|
|
RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
|
|
};
|
|
|
|
/* Type 1 Tx descriptor. */
|
|
struct starfire_tx_desc_1 {
|
|
__le32 status; /* Upper bits are status, lower 16 length. */
|
|
__le32 addr;
|
|
};
|
|
|
|
/* Type 2 Tx descriptor. */
|
|
struct starfire_tx_desc_2 {
|
|
__le32 status; /* Upper bits are status, lower 16 length. */
|
|
__le32 reserved;
|
|
__le64 addr;
|
|
};
|
|
|
|
#ifdef ADDR_64BITS
|
|
typedef struct starfire_tx_desc_2 starfire_tx_desc;
|
|
#define TX_DESC_TYPE TxDescType2
|
|
#else /* not ADDR_64BITS */
|
|
typedef struct starfire_tx_desc_1 starfire_tx_desc;
|
|
#define TX_DESC_TYPE TxDescType1
|
|
#endif /* not ADDR_64BITS */
|
|
#define TX_DESC_SPACING TxDescSpaceUnlim
|
|
|
|
enum tx_desc_bits {
|
|
TxDescID=0xB0000000,
|
|
TxCRCEn=0x01000000, TxDescIntr=0x08000000,
|
|
TxRingWrap=0x04000000, TxCalTCP=0x02000000,
|
|
};
|
|
struct tx_done_desc {
|
|
__le32 status; /* timestamp, index. */
|
|
#if 0
|
|
__le32 intrstatus; /* interrupt status */
|
|
#endif
|
|
};
|
|
|
|
struct rx_ring_info {
|
|
struct sk_buff *skb;
|
|
dma_addr_t mapping;
|
|
};
|
|
struct tx_ring_info {
|
|
struct sk_buff *skb;
|
|
dma_addr_t mapping;
|
|
unsigned int used_slots;
|
|
};
|
|
|
|
#define PHY_CNT 2
|
|
struct netdev_private {
|
|
/* Descriptor rings first for alignment. */
|
|
struct starfire_rx_desc *rx_ring;
|
|
starfire_tx_desc *tx_ring;
|
|
dma_addr_t rx_ring_dma;
|
|
dma_addr_t tx_ring_dma;
|
|
/* The addresses of rx/tx-in-place skbuffs. */
|
|
struct rx_ring_info rx_info[RX_RING_SIZE];
|
|
struct tx_ring_info tx_info[TX_RING_SIZE];
|
|
/* Pointers to completion queues (full pages). */
|
|
rx_done_desc *rx_done_q;
|
|
dma_addr_t rx_done_q_dma;
|
|
unsigned int rx_done;
|
|
struct tx_done_desc *tx_done_q;
|
|
dma_addr_t tx_done_q_dma;
|
|
unsigned int tx_done;
|
|
struct napi_struct napi;
|
|
struct net_device *dev;
|
|
struct pci_dev *pci_dev;
|
|
#ifdef VLAN_SUPPORT
|
|
struct vlan_group *vlgrp;
|
|
#endif
|
|
void *queue_mem;
|
|
dma_addr_t queue_mem_dma;
|
|
size_t queue_mem_size;
|
|
|
|
/* Frequently used values: keep some adjacent for cache effect. */
|
|
spinlock_t lock;
|
|
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
|
|
unsigned int cur_tx, dirty_tx, reap_tx;
|
|
unsigned int rx_buf_sz; /* Based on MTU+slack. */
|
|
/* These values keep track of the transceiver/media in use. */
|
|
int speed100; /* Set if speed == 100MBit. */
|
|
u32 tx_mode;
|
|
u32 intr_timer_ctrl;
|
|
u8 tx_threshold;
|
|
/* MII transceiver section. */
|
|
struct mii_if_info mii_if; /* MII lib hooks/info */
|
|
int phy_cnt; /* MII device addresses. */
|
|
unsigned char phys[PHY_CNT]; /* MII device addresses. */
|
|
void __iomem *base;
|
|
};
|
|
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location);
|
|
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
|
|
static int netdev_open(struct net_device *dev);
|
|
static void check_duplex(struct net_device *dev);
|
|
static void tx_timeout(struct net_device *dev);
|
|
static void init_ring(struct net_device *dev);
|
|
static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
|
|
static irqreturn_t intr_handler(int irq, void *dev_instance);
|
|
static void netdev_error(struct net_device *dev, int intr_status);
|
|
static int __netdev_rx(struct net_device *dev, int *quota);
|
|
static int netdev_poll(struct napi_struct *napi, int budget);
|
|
static void refill_rx_ring(struct net_device *dev);
|
|
static void netdev_error(struct net_device *dev, int intr_status);
|
|
static void set_rx_mode(struct net_device *dev);
|
|
static struct net_device_stats *get_stats(struct net_device *dev);
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static int netdev_close(struct net_device *dev);
|
|
static void netdev_media_change(struct net_device *dev);
|
|
static const struct ethtool_ops ethtool_ops;
|
|
|
|
|
|
#ifdef VLAN_SUPPORT
|
|
static void netdev_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
spin_lock(&np->lock);
|
|
if (debug > 2)
|
|
printk("%s: Setting vlgrp to %p\n", dev->name, grp);
|
|
np->vlgrp = grp;
|
|
set_rx_mode(dev);
|
|
spin_unlock(&np->lock);
|
|
}
|
|
|
|
static void netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
spin_lock(&np->lock);
|
|
if (debug > 1)
|
|
printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
|
|
set_rx_mode(dev);
|
|
spin_unlock(&np->lock);
|
|
}
|
|
|
|
static void netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
spin_lock(&np->lock);
|
|
if (debug > 1)
|
|
printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
|
|
vlan_group_set_device(np->vlgrp, vid, NULL);
|
|
set_rx_mode(dev);
|
|
spin_unlock(&np->lock);
|
|
}
|
|
#endif /* VLAN_SUPPORT */
|
|
|
|
|
|
static const struct net_device_ops netdev_ops = {
|
|
.ndo_open = netdev_open,
|
|
.ndo_stop = netdev_close,
|
|
.ndo_start_xmit = start_tx,
|
|
.ndo_tx_timeout = tx_timeout,
|
|
.ndo_get_stats = get_stats,
|
|
.ndo_set_multicast_list = &set_rx_mode,
|
|
.ndo_do_ioctl = netdev_ioctl,
|
|
.ndo_change_mtu = eth_change_mtu,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
#ifdef VLAN_SUPPORT
|
|
.ndo_vlan_rx_register = netdev_vlan_rx_register,
|
|
.ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
|
|
#endif
|
|
};
|
|
|
|
static int __devinit starfire_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct netdev_private *np;
|
|
int i, irq, option, chip_idx = ent->driver_data;
|
|
struct net_device *dev;
|
|
static int card_idx = -1;
|
|
long ioaddr;
|
|
void __iomem *base;
|
|
int drv_flags, io_size;
|
|
int boguscnt;
|
|
|
|
/* when built into the kernel, we only print version if device is found */
|
|
#ifndef MODULE
|
|
static int printed_version;
|
|
if (!printed_version++)
|
|
printk(version);
|
|
#endif
|
|
|
|
card_idx++;
|
|
|
|
if (pci_enable_device (pdev))
|
|
return -EIO;
|
|
|
|
ioaddr = pci_resource_start(pdev, 0);
|
|
io_size = pci_resource_len(pdev, 0);
|
|
if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
|
|
printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
|
|
return -ENODEV;
|
|
}
|
|
|
|
dev = alloc_etherdev(sizeof(*np));
|
|
if (!dev) {
|
|
printk(KERN_ERR DRV_NAME " %d: cannot alloc etherdev, aborting\n", card_idx);
|
|
return -ENOMEM;
|
|
}
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
irq = pdev->irq;
|
|
|
|
if (pci_request_regions (pdev, DRV_NAME)) {
|
|
printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
|
|
goto err_out_free_netdev;
|
|
}
|
|
|
|
base = ioremap(ioaddr, io_size);
|
|
if (!base) {
|
|
printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
|
|
card_idx, io_size, ioaddr);
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
/* enable MWI -- it vastly improves Rx performance on sparc64 */
|
|
pci_try_set_mwi(pdev);
|
|
|
|
#ifdef ZEROCOPY
|
|
/* Starfire can do TCP/UDP checksumming */
|
|
if (enable_hw_cksum)
|
|
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
|
|
#endif /* ZEROCOPY */
|
|
|
|
#ifdef VLAN_SUPPORT
|
|
dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
|
|
#endif /* VLAN_RX_KILL_VID */
|
|
#ifdef ADDR_64BITS
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
#endif /* ADDR_64BITS */
|
|
|
|
/* Serial EEPROM reads are hidden by the hardware. */
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
|
|
|
|
#if ! defined(final_version) /* Dump the EEPROM contents during development. */
|
|
if (debug > 4)
|
|
for (i = 0; i < 0x20; i++)
|
|
printk("%2.2x%s",
|
|
(unsigned int)readb(base + EEPROMCtrl + i),
|
|
i % 16 != 15 ? " " : "\n");
|
|
#endif
|
|
|
|
/* Issue soft reset */
|
|
writel(MiiSoftReset, base + TxMode);
|
|
udelay(1000);
|
|
writel(0, base + TxMode);
|
|
|
|
/* Reset the chip to erase previous misconfiguration. */
|
|
writel(1, base + PCIDeviceConfig);
|
|
boguscnt = 1000;
|
|
while (--boguscnt > 0) {
|
|
udelay(10);
|
|
if ((readl(base + PCIDeviceConfig) & 1) == 0)
|
|
break;
|
|
}
|
|
if (boguscnt == 0)
|
|
printk("%s: chipset reset never completed!\n", dev->name);
|
|
/* wait a little longer */
|
|
udelay(1000);
|
|
|
|
dev->base_addr = (unsigned long)base;
|
|
dev->irq = irq;
|
|
|
|
np = netdev_priv(dev);
|
|
np->dev = dev;
|
|
np->base = base;
|
|
spin_lock_init(&np->lock);
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
np->pci_dev = pdev;
|
|
|
|
np->mii_if.dev = dev;
|
|
np->mii_if.mdio_read = mdio_read;
|
|
np->mii_if.mdio_write = mdio_write;
|
|
np->mii_if.phy_id_mask = 0x1f;
|
|
np->mii_if.reg_num_mask = 0x1f;
|
|
|
|
drv_flags = netdrv_tbl[chip_idx].drv_flags;
|
|
|
|
option = card_idx < MAX_UNITS ? options[card_idx] : 0;
|
|
if (dev->mem_start)
|
|
option = dev->mem_start;
|
|
|
|
/* The lower four bits are the media type. */
|
|
if (option & 0x200)
|
|
np->mii_if.full_duplex = 1;
|
|
|
|
if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
|
|
np->mii_if.full_duplex = 1;
|
|
|
|
if (np->mii_if.full_duplex)
|
|
np->mii_if.force_media = 1;
|
|
else
|
|
np->mii_if.force_media = 0;
|
|
np->speed100 = 1;
|
|
|
|
/* timer resolution is 128 * 0.8us */
|
|
np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
|
|
Timer10X | EnableIntrMasking;
|
|
|
|
if (small_frames > 0) {
|
|
np->intr_timer_ctrl |= SmallFrameBypass;
|
|
switch (small_frames) {
|
|
case 1 ... 64:
|
|
np->intr_timer_ctrl |= SmallFrame64;
|
|
break;
|
|
case 65 ... 128:
|
|
np->intr_timer_ctrl |= SmallFrame128;
|
|
break;
|
|
case 129 ... 256:
|
|
np->intr_timer_ctrl |= SmallFrame256;
|
|
break;
|
|
default:
|
|
np->intr_timer_ctrl |= SmallFrame512;
|
|
if (small_frames > 512)
|
|
printk("Adjusting small_frames down to 512\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
dev->netdev_ops = &netdev_ops;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
SET_ETHTOOL_OPS(dev, ðtool_ops);
|
|
|
|
netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
|
|
|
|
if (mtu)
|
|
dev->mtu = mtu;
|
|
|
|
if (register_netdev(dev))
|
|
goto err_out_cleardev;
|
|
|
|
printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
|
|
dev->name, netdrv_tbl[chip_idx].name, base,
|
|
dev->dev_addr, irq);
|
|
|
|
if (drv_flags & CanHaveMII) {
|
|
int phy, phy_idx = 0;
|
|
int mii_status;
|
|
for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
|
|
mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
|
|
mdelay(100);
|
|
boguscnt = 1000;
|
|
while (--boguscnt > 0)
|
|
if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
|
|
break;
|
|
if (boguscnt == 0) {
|
|
printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
|
|
continue;
|
|
}
|
|
mii_status = mdio_read(dev, phy, MII_BMSR);
|
|
if (mii_status != 0) {
|
|
np->phys[phy_idx++] = phy;
|
|
np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
|
|
printk(KERN_INFO "%s: MII PHY found at address %d, status "
|
|
"%#4.4x advertising %#4.4x.\n",
|
|
dev->name, phy, mii_status, np->mii_if.advertising);
|
|
/* there can be only one PHY on-board */
|
|
break;
|
|
}
|
|
}
|
|
np->phy_cnt = phy_idx;
|
|
if (np->phy_cnt > 0)
|
|
np->mii_if.phy_id = np->phys[0];
|
|
else
|
|
memset(&np->mii_if, 0, sizeof(np->mii_if));
|
|
}
|
|
|
|
printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
|
|
dev->name, enable_hw_cksum ? "enabled" : "disabled");
|
|
return 0;
|
|
|
|
err_out_cleardev:
|
|
pci_set_drvdata(pdev, NULL);
|
|
iounmap(base);
|
|
err_out_free_res:
|
|
pci_release_regions (pdev);
|
|
err_out_free_netdev:
|
|
free_netdev(dev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
|
|
/* Read the MII Management Data I/O (MDIO) interfaces. */
|
|
static int mdio_read(struct net_device *dev, int phy_id, int location)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
|
|
int result, boguscnt=1000;
|
|
/* ??? Should we add a busy-wait here? */
|
|
do {
|
|
result = readl(mdio_addr);
|
|
} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
|
|
if (boguscnt == 0)
|
|
return 0;
|
|
if ((result & 0xffff) == 0xffff)
|
|
return 0;
|
|
return result & 0xffff;
|
|
}
|
|
|
|
|
|
static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
|
|
writel(value, mdio_addr);
|
|
/* The busy-wait will occur before a read. */
|
|
}
|
|
|
|
|
|
static int netdev_open(struct net_device *dev)
|
|
{
|
|
const struct firmware *fw_rx, *fw_tx;
|
|
const __be32 *fw_rx_data, *fw_tx_data;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
int i, retval;
|
|
size_t tx_size, rx_size;
|
|
size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
|
|
|
|
/* Do we ever need to reset the chip??? */
|
|
|
|
retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/* Disable the Rx and Tx, and reset the chip. */
|
|
writel(0, ioaddr + GenCtrl);
|
|
writel(1, ioaddr + PCIDeviceConfig);
|
|
if (debug > 1)
|
|
printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
|
|
dev->name, dev->irq);
|
|
|
|
/* Allocate the various queues. */
|
|
if (!np->queue_mem) {
|
|
tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
|
|
rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
|
|
tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
|
|
rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
|
|
np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
|
|
np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
|
|
if (np->queue_mem == NULL) {
|
|
free_irq(dev->irq, dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
np->tx_done_q = np->queue_mem;
|
|
np->tx_done_q_dma = np->queue_mem_dma;
|
|
np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
|
|
np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
|
|
np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
|
|
np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
|
|
np->rx_ring = (void *) np->tx_ring + tx_ring_size;
|
|
np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
|
|
}
|
|
|
|
/* Start with no carrier, it gets adjusted later */
|
|
netif_carrier_off(dev);
|
|
init_ring(dev);
|
|
/* Set the size of the Rx buffers. */
|
|
writel((np->rx_buf_sz << RxBufferLenShift) |
|
|
(0 << RxMinDescrThreshShift) |
|
|
RxPrefetchMode | RxVariableQ |
|
|
RX_Q_ENTRIES |
|
|
RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
|
|
RxDescSpace4,
|
|
ioaddr + RxDescQCtrl);
|
|
|
|
/* Set up the Rx DMA controller. */
|
|
writel(RxChecksumIgnore |
|
|
(0 << RxEarlyIntThreshShift) |
|
|
(6 << RxHighPrioThreshShift) |
|
|
((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
|
|
ioaddr + RxDMACtrl);
|
|
|
|
/* Set Tx descriptor */
|
|
writel((2 << TxHiPriFIFOThreshShift) |
|
|
(0 << TxPadLenShift) |
|
|
((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
|
|
TX_DESC_Q_ADDR_SIZE |
|
|
TX_DESC_SPACING | TX_DESC_TYPE,
|
|
ioaddr + TxDescCtrl);
|
|
|
|
writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
|
|
writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
|
|
writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
|
|
writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
|
|
writel(np->tx_ring_dma, ioaddr + TxRingPtr);
|
|
|
|
writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
|
|
writel(np->rx_done_q_dma |
|
|
RxComplType |
|
|
(0 << RxComplThreshShift),
|
|
ioaddr + RxCompletionAddr);
|
|
|
|
if (debug > 1)
|
|
printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
|
|
|
|
/* Fill both the Tx SA register and the Rx perfect filter. */
|
|
for (i = 0; i < 6; i++)
|
|
writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
|
|
/* The first entry is special because it bypasses the VLAN filter.
|
|
Don't use it. */
|
|
writew(0, ioaddr + PerfFilterTable);
|
|
writew(0, ioaddr + PerfFilterTable + 4);
|
|
writew(0, ioaddr + PerfFilterTable + 8);
|
|
for (i = 1; i < 16; i++) {
|
|
__be16 *eaddrs = (__be16 *)dev->dev_addr;
|
|
void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
|
|
writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
|
|
writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
|
|
writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
|
|
}
|
|
|
|
/* Initialize other registers. */
|
|
/* Configure the PCI bus bursts and FIFO thresholds. */
|
|
np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
|
|
writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
|
|
udelay(1000);
|
|
writel(np->tx_mode, ioaddr + TxMode);
|
|
np->tx_threshold = 4;
|
|
writel(np->tx_threshold, ioaddr + TxThreshold);
|
|
|
|
writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
|
|
|
|
napi_enable(&np->napi);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
if (debug > 1)
|
|
printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
|
|
set_rx_mode(dev);
|
|
|
|
np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
|
|
check_duplex(dev);
|
|
|
|
/* Enable GPIO interrupts on link change */
|
|
writel(0x0f00ff00, ioaddr + GPIOCtrl);
|
|
|
|
/* Set the interrupt mask */
|
|
writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
|
|
IntrTxDMADone | IntrStatsMax | IntrLinkChange |
|
|
IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
|
|
ioaddr + IntrEnable);
|
|
/* Enable PCI interrupts. */
|
|
writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
|
|
ioaddr + PCIDeviceConfig);
|
|
|
|
#ifdef VLAN_SUPPORT
|
|
/* Set VLAN type to 802.1q */
|
|
writel(ETH_P_8021Q, ioaddr + VlanType);
|
|
#endif /* VLAN_SUPPORT */
|
|
|
|
retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
|
|
if (retval) {
|
|
printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
|
|
FIRMWARE_RX);
|
|
goto out_init;
|
|
}
|
|
if (fw_rx->size % 4) {
|
|
printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
|
|
fw_rx->size, FIRMWARE_RX);
|
|
retval = -EINVAL;
|
|
goto out_rx;
|
|
}
|
|
retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
|
|
if (retval) {
|
|
printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
|
|
FIRMWARE_TX);
|
|
goto out_rx;
|
|
}
|
|
if (fw_tx->size % 4) {
|
|
printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
|
|
fw_tx->size, FIRMWARE_TX);
|
|
retval = -EINVAL;
|
|
goto out_tx;
|
|
}
|
|
fw_rx_data = (const __be32 *)&fw_rx->data[0];
|
|
fw_tx_data = (const __be32 *)&fw_tx->data[0];
|
|
rx_size = fw_rx->size / 4;
|
|
tx_size = fw_tx->size / 4;
|
|
|
|
/* Load Rx/Tx firmware into the frame processors */
|
|
for (i = 0; i < rx_size; i++)
|
|
writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
|
|
for (i = 0; i < tx_size; i++)
|
|
writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
|
|
if (enable_hw_cksum)
|
|
/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
|
|
writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
|
|
else
|
|
/* Enable the Rx and Tx units only. */
|
|
writel(TxEnable|RxEnable, ioaddr + GenCtrl);
|
|
|
|
if (debug > 1)
|
|
printk(KERN_DEBUG "%s: Done netdev_open().\n",
|
|
dev->name);
|
|
|
|
out_tx:
|
|
release_firmware(fw_tx);
|
|
out_rx:
|
|
release_firmware(fw_rx);
|
|
out_init:
|
|
if (retval)
|
|
netdev_close(dev);
|
|
return retval;
|
|
}
|
|
|
|
|
|
static void check_duplex(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u16 reg0;
|
|
int silly_count = 1000;
|
|
|
|
mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
|
|
mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
|
|
udelay(500);
|
|
while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
|
|
/* do nothing */;
|
|
if (!silly_count) {
|
|
printk("%s: MII reset failed!\n", dev->name);
|
|
return;
|
|
}
|
|
|
|
reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
|
|
|
|
if (!np->mii_if.force_media) {
|
|
reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
|
|
} else {
|
|
reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
|
|
if (np->speed100)
|
|
reg0 |= BMCR_SPEED100;
|
|
if (np->mii_if.full_duplex)
|
|
reg0 |= BMCR_FULLDPLX;
|
|
printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
|
|
dev->name,
|
|
np->speed100 ? "100" : "10",
|
|
np->mii_if.full_duplex ? "full" : "half");
|
|
}
|
|
mdio_write(dev, np->phys[0], MII_BMCR, reg0);
|
|
}
|
|
|
|
|
|
static void tx_timeout(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
int old_debug;
|
|
|
|
printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
|
|
"resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
|
|
|
|
/* Perhaps we should reinitialize the hardware here. */
|
|
|
|
/*
|
|
* Stop and restart the interface.
|
|
* Cheat and increase the debug level temporarily.
|
|
*/
|
|
old_debug = debug;
|
|
debug = 2;
|
|
netdev_close(dev);
|
|
netdev_open(dev);
|
|
debug = old_debug;
|
|
|
|
/* Trigger an immediate transmit demand. */
|
|
|
|
dev->trans_start = jiffies; /* prevent tx timeout */
|
|
dev->stats.tx_errors++;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
|
|
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
|
|
static void init_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
np->cur_rx = np->cur_tx = np->reap_tx = 0;
|
|
np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
|
|
|
|
np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
|
|
|
|
/* Fill in the Rx buffers. Handle allocation failure gracefully. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
|
|
np->rx_info[i].skb = skb;
|
|
if (skb == NULL)
|
|
break;
|
|
np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
/* Grrr, we cannot offset to correctly align the IP header. */
|
|
np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
|
|
}
|
|
writew(i - 1, np->base + RxDescQIdx);
|
|
np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
|
|
|
|
/* Clear the remainder of the Rx buffer ring. */
|
|
for ( ; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].rxaddr = 0;
|
|
np->rx_info[i].skb = NULL;
|
|
np->rx_info[i].mapping = 0;
|
|
}
|
|
/* Mark the last entry as wrapping the ring. */
|
|
np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
|
|
|
|
/* Clear the completion rings. */
|
|
for (i = 0; i < DONE_Q_SIZE; i++) {
|
|
np->rx_done_q[i].status = 0;
|
|
np->tx_done_q[i].status = 0;
|
|
}
|
|
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
|
|
}
|
|
|
|
|
|
static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
unsigned int entry;
|
|
u32 status;
|
|
int i;
|
|
|
|
/*
|
|
* be cautious here, wrapping the queue has weird semantics
|
|
* and we may not have enough slots even when it seems we do.
|
|
*/
|
|
if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
|
|
netif_stop_queue(dev);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
|
|
return NETDEV_TX_OK;
|
|
}
|
|
#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
|
|
|
|
entry = np->cur_tx % TX_RING_SIZE;
|
|
for (i = 0; i < skb_num_frags(skb); i++) {
|
|
int wrap_ring = 0;
|
|
status = TxDescID;
|
|
|
|
if (i == 0) {
|
|
np->tx_info[entry].skb = skb;
|
|
status |= TxCRCEn;
|
|
if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
|
|
status |= TxRingWrap;
|
|
wrap_ring = 1;
|
|
}
|
|
if (np->reap_tx) {
|
|
status |= TxDescIntr;
|
|
np->reap_tx = 0;
|
|
}
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
status |= TxCalTCP;
|
|
dev->stats.tx_compressed++;
|
|
}
|
|
status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
|
|
|
|
np->tx_info[entry].mapping =
|
|
pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
|
|
} else {
|
|
skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
|
|
status |= this_frag->size;
|
|
np->tx_info[entry].mapping =
|
|
pci_map_single(np->pci_dev, page_address(this_frag->page) + this_frag->page_offset, this_frag->size, PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
|
|
np->tx_ring[entry].status = cpu_to_le32(status);
|
|
if (debug > 3)
|
|
printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
|
|
dev->name, np->cur_tx, np->dirty_tx,
|
|
entry, status);
|
|
if (wrap_ring) {
|
|
np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
|
|
np->cur_tx += np->tx_info[entry].used_slots;
|
|
entry = 0;
|
|
} else {
|
|
np->tx_info[entry].used_slots = 1;
|
|
np->cur_tx += np->tx_info[entry].used_slots;
|
|
entry++;
|
|
}
|
|
/* scavenge the tx descriptors twice per TX_RING_SIZE */
|
|
if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
|
|
np->reap_tx = 1;
|
|
}
|
|
|
|
/* Non-x86: explicitly flush descriptor cache lines here. */
|
|
/* Ensure all descriptors are written back before the transmit is
|
|
initiated. - Jes */
|
|
wmb();
|
|
|
|
/* Update the producer index. */
|
|
writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
|
|
|
|
/* 4 is arbitrary, but should be ok */
|
|
if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
|
|
netif_stop_queue(dev);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
|
|
/* The interrupt handler does all of the Rx thread work and cleans up
|
|
after the Tx thread. */
|
|
static irqreturn_t intr_handler(int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
int boguscnt = max_interrupt_work;
|
|
int consumer;
|
|
int tx_status;
|
|
int handled = 0;
|
|
|
|
do {
|
|
u32 intr_status = readl(ioaddr + IntrClear);
|
|
|
|
if (debug > 4)
|
|
printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
|
|
dev->name, intr_status);
|
|
|
|
if (intr_status == 0 || intr_status == (u32) -1)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
if (intr_status & (IntrRxDone | IntrRxEmpty)) {
|
|
u32 enable;
|
|
|
|
if (likely(napi_schedule_prep(&np->napi))) {
|
|
__napi_schedule(&np->napi);
|
|
enable = readl(ioaddr + IntrEnable);
|
|
enable &= ~(IntrRxDone | IntrRxEmpty);
|
|
writel(enable, ioaddr + IntrEnable);
|
|
/* flush PCI posting buffers */
|
|
readl(ioaddr + IntrEnable);
|
|
} else {
|
|
/* Paranoia check */
|
|
enable = readl(ioaddr + IntrEnable);
|
|
if (enable & (IntrRxDone | IntrRxEmpty)) {
|
|
printk(KERN_INFO
|
|
"%s: interrupt while in poll!\n",
|
|
dev->name);
|
|
enable &= ~(IntrRxDone | IntrRxEmpty);
|
|
writel(enable, ioaddr + IntrEnable);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Scavenge the skbuff list based on the Tx-done queue.
|
|
There are redundant checks here that may be cleaned up
|
|
after the driver has proven to be reliable. */
|
|
consumer = readl(ioaddr + TxConsumerIdx);
|
|
if (debug > 3)
|
|
printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
|
|
dev->name, consumer);
|
|
|
|
while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
|
|
if (debug > 3)
|
|
printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
|
|
dev->name, np->dirty_tx, np->tx_done, tx_status);
|
|
if ((tx_status & 0xe0000000) == 0xa0000000) {
|
|
dev->stats.tx_packets++;
|
|
} else if ((tx_status & 0xe0000000) == 0x80000000) {
|
|
u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
|
|
struct sk_buff *skb = np->tx_info[entry].skb;
|
|
np->tx_info[entry].skb = NULL;
|
|
pci_unmap_single(np->pci_dev,
|
|
np->tx_info[entry].mapping,
|
|
skb_first_frag_len(skb),
|
|
PCI_DMA_TODEVICE);
|
|
np->tx_info[entry].mapping = 0;
|
|
np->dirty_tx += np->tx_info[entry].used_slots;
|
|
entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
|
|
{
|
|
int i;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
pci_unmap_single(np->pci_dev,
|
|
np->tx_info[entry].mapping,
|
|
skb_shinfo(skb)->frags[i].size,
|
|
PCI_DMA_TODEVICE);
|
|
np->dirty_tx++;
|
|
entry++;
|
|
}
|
|
}
|
|
|
|
dev_kfree_skb_irq(skb);
|
|
}
|
|
np->tx_done_q[np->tx_done].status = 0;
|
|
np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
|
|
}
|
|
writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
|
|
|
|
if (netif_queue_stopped(dev) &&
|
|
(np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
|
|
/* The ring is no longer full, wake the queue. */
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/* Stats overflow */
|
|
if (intr_status & IntrStatsMax)
|
|
get_stats(dev);
|
|
|
|
/* Media change interrupt. */
|
|
if (intr_status & IntrLinkChange)
|
|
netdev_media_change(dev);
|
|
|
|
/* Abnormal error summary/uncommon events handlers. */
|
|
if (intr_status & IntrAbnormalSummary)
|
|
netdev_error(dev, intr_status);
|
|
|
|
if (--boguscnt < 0) {
|
|
if (debug > 1)
|
|
printk(KERN_WARNING "%s: Too much work at interrupt, "
|
|
"status=%#8.8x.\n",
|
|
dev->name, intr_status);
|
|
break;
|
|
}
|
|
} while (1);
|
|
|
|
if (debug > 4)
|
|
printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
|
|
dev->name, (int) readl(ioaddr + IntrStatus));
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
|
|
/*
|
|
* This routine is logically part of the interrupt/poll handler, but separated
|
|
* for clarity and better register allocation.
|
|
*/
|
|
static int __netdev_rx(struct net_device *dev, int *quota)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u32 desc_status;
|
|
int retcode = 0;
|
|
|
|
/* If EOP is set on the next entry, it's a new packet. Send it up. */
|
|
while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
|
|
struct sk_buff *skb;
|
|
u16 pkt_len;
|
|
int entry;
|
|
rx_done_desc *desc = &np->rx_done_q[np->rx_done];
|
|
|
|
if (debug > 4)
|
|
printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
|
|
if (!(desc_status & RxOK)) {
|
|
/* There was an error. */
|
|
if (debug > 2)
|
|
printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
|
|
dev->stats.rx_errors++;
|
|
if (desc_status & RxFIFOErr)
|
|
dev->stats.rx_fifo_errors++;
|
|
goto next_rx;
|
|
}
|
|
|
|
if (*quota <= 0) { /* out of rx quota */
|
|
retcode = 1;
|
|
goto out;
|
|
}
|
|
(*quota)--;
|
|
|
|
pkt_len = desc_status; /* Implicitly Truncate */
|
|
entry = (desc_status >> 16) & 0x7ff;
|
|
|
|
if (debug > 4)
|
|
printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
|
|
/* Check if the packet is long enough to accept without copying
|
|
to a minimally-sized skbuff. */
|
|
if (pkt_len < rx_copybreak &&
|
|
(skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
|
|
skb_reserve(skb, 2); /* 16 byte align the IP header */
|
|
pci_dma_sync_single_for_cpu(np->pci_dev,
|
|
np->rx_info[entry].mapping,
|
|
pkt_len, PCI_DMA_FROMDEVICE);
|
|
skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
|
|
pci_dma_sync_single_for_device(np->pci_dev,
|
|
np->rx_info[entry].mapping,
|
|
pkt_len, PCI_DMA_FROMDEVICE);
|
|
skb_put(skb, pkt_len);
|
|
} else {
|
|
pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
|
|
skb = np->rx_info[entry].skb;
|
|
skb_put(skb, pkt_len);
|
|
np->rx_info[entry].skb = NULL;
|
|
np->rx_info[entry].mapping = 0;
|
|
}
|
|
#ifndef final_version /* Remove after testing. */
|
|
/* You will want this info for the initial debug. */
|
|
if (debug > 5) {
|
|
printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
|
|
skb->data, skb->data + 6,
|
|
skb->data[12], skb->data[13]);
|
|
}
|
|
#endif
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
#ifdef VLAN_SUPPORT
|
|
if (debug > 4)
|
|
printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
|
|
#endif
|
|
if (le16_to_cpu(desc->status2) & 0x0100) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
dev->stats.rx_compressed++;
|
|
}
|
|
/*
|
|
* This feature doesn't seem to be working, at least
|
|
* with the two firmware versions I have. If the GFP sees
|
|
* an IP fragment, it either ignores it completely, or reports
|
|
* "bad checksum" on it.
|
|
*
|
|
* Maybe I missed something -- corrections are welcome.
|
|
* Until then, the printk stays. :-) -Ion
|
|
*/
|
|
else if (le16_to_cpu(desc->status2) & 0x0040) {
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
skb->csum = le16_to_cpu(desc->csum);
|
|
printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
|
|
}
|
|
#ifdef VLAN_SUPPORT
|
|
if (np->vlgrp && le16_to_cpu(desc->status2) & 0x0200) {
|
|
u16 vlid = le16_to_cpu(desc->vlanid);
|
|
|
|
if (debug > 4) {
|
|
printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
|
|
vlid);
|
|
}
|
|
/*
|
|
* vlan_hwaccel_rx expects a packet with the VLAN tag
|
|
* stripped out.
|
|
*/
|
|
vlan_hwaccel_rx(skb, np->vlgrp, vlid);
|
|
} else
|
|
#endif /* VLAN_SUPPORT */
|
|
netif_receive_skb(skb);
|
|
dev->stats.rx_packets++;
|
|
|
|
next_rx:
|
|
np->cur_rx++;
|
|
desc->status = 0;
|
|
np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
|
|
}
|
|
|
|
if (*quota == 0) { /* out of rx quota */
|
|
retcode = 1;
|
|
goto out;
|
|
}
|
|
writew(np->rx_done, np->base + CompletionQConsumerIdx);
|
|
|
|
out:
|
|
refill_rx_ring(dev);
|
|
if (debug > 5)
|
|
printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
|
|
retcode, np->rx_done, desc_status);
|
|
return retcode;
|
|
}
|
|
|
|
static int netdev_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct netdev_private *np = container_of(napi, struct netdev_private, napi);
|
|
struct net_device *dev = np->dev;
|
|
u32 intr_status;
|
|
void __iomem *ioaddr = np->base;
|
|
int quota = budget;
|
|
|
|
do {
|
|
writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
|
|
|
|
if (__netdev_rx(dev, "a))
|
|
goto out;
|
|
|
|
intr_status = readl(ioaddr + IntrStatus);
|
|
} while (intr_status & (IntrRxDone | IntrRxEmpty));
|
|
|
|
napi_complete(napi);
|
|
intr_status = readl(ioaddr + IntrEnable);
|
|
intr_status |= IntrRxDone | IntrRxEmpty;
|
|
writel(intr_status, ioaddr + IntrEnable);
|
|
|
|
out:
|
|
if (debug > 5)
|
|
printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
|
|
budget - quota);
|
|
|
|
/* Restart Rx engine if stopped. */
|
|
return budget - quota;
|
|
}
|
|
|
|
static void refill_rx_ring(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
int entry = -1;
|
|
|
|
/* Refill the Rx ring buffers. */
|
|
for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
|
|
entry = np->dirty_rx % RX_RING_SIZE;
|
|
if (np->rx_info[entry].skb == NULL) {
|
|
skb = dev_alloc_skb(np->rx_buf_sz);
|
|
np->rx_info[entry].skb = skb;
|
|
if (skb == NULL)
|
|
break; /* Better luck next round. */
|
|
np->rx_info[entry].mapping =
|
|
pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
np->rx_ring[entry].rxaddr =
|
|
cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
|
|
}
|
|
if (entry == RX_RING_SIZE - 1)
|
|
np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
|
|
}
|
|
if (entry >= 0)
|
|
writew(entry, np->base + RxDescQIdx);
|
|
}
|
|
|
|
|
|
static void netdev_media_change(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
u16 reg0, reg1, reg4, reg5;
|
|
u32 new_tx_mode;
|
|
u32 new_intr_timer_ctrl;
|
|
|
|
/* reset status first */
|
|
mdio_read(dev, np->phys[0], MII_BMCR);
|
|
mdio_read(dev, np->phys[0], MII_BMSR);
|
|
|
|
reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
|
|
reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
|
|
|
|
if (reg1 & BMSR_LSTATUS) {
|
|
/* link is up */
|
|
if (reg0 & BMCR_ANENABLE) {
|
|
/* autonegotiation is enabled */
|
|
reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
|
|
reg5 = mdio_read(dev, np->phys[0], MII_LPA);
|
|
if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
|
|
np->speed100 = 1;
|
|
np->mii_if.full_duplex = 1;
|
|
} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
|
|
np->speed100 = 1;
|
|
np->mii_if.full_duplex = 0;
|
|
} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
|
|
np->speed100 = 0;
|
|
np->mii_if.full_duplex = 1;
|
|
} else {
|
|
np->speed100 = 0;
|
|
np->mii_if.full_duplex = 0;
|
|
}
|
|
} else {
|
|
/* autonegotiation is disabled */
|
|
if (reg0 & BMCR_SPEED100)
|
|
np->speed100 = 1;
|
|
else
|
|
np->speed100 = 0;
|
|
if (reg0 & BMCR_FULLDPLX)
|
|
np->mii_if.full_duplex = 1;
|
|
else
|
|
np->mii_if.full_duplex = 0;
|
|
}
|
|
netif_carrier_on(dev);
|
|
printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
|
|
dev->name,
|
|
np->speed100 ? "100" : "10",
|
|
np->mii_if.full_duplex ? "full" : "half");
|
|
|
|
new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
|
|
if (np->mii_if.full_duplex)
|
|
new_tx_mode |= FullDuplex;
|
|
if (np->tx_mode != new_tx_mode) {
|
|
np->tx_mode = new_tx_mode;
|
|
writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
|
|
udelay(1000);
|
|
writel(np->tx_mode, ioaddr + TxMode);
|
|
}
|
|
|
|
new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
|
|
if (np->speed100)
|
|
new_intr_timer_ctrl |= Timer10X;
|
|
if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
|
|
np->intr_timer_ctrl = new_intr_timer_ctrl;
|
|
writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
|
|
}
|
|
} else {
|
|
netif_carrier_off(dev);
|
|
printk(KERN_DEBUG "%s: Link is down\n", dev->name);
|
|
}
|
|
}
|
|
|
|
|
|
static void netdev_error(struct net_device *dev, int intr_status)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
/* Came close to underrunning the Tx FIFO, increase threshold. */
|
|
if (intr_status & IntrTxDataLow) {
|
|
if (np->tx_threshold <= PKT_BUF_SZ / 16) {
|
|
writel(++np->tx_threshold, np->base + TxThreshold);
|
|
printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
|
|
dev->name, np->tx_threshold * 16);
|
|
} else
|
|
printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
|
|
}
|
|
if (intr_status & IntrRxGFPDead) {
|
|
dev->stats.rx_fifo_errors++;
|
|
dev->stats.rx_errors++;
|
|
}
|
|
if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
|
|
dev->stats.tx_fifo_errors++;
|
|
dev->stats.tx_errors++;
|
|
}
|
|
if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
|
|
printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
|
|
dev->name, intr_status);
|
|
}
|
|
|
|
|
|
static struct net_device_stats *get_stats(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
|
|
/* This adapter architecture needs no SMP locks. */
|
|
dev->stats.tx_bytes = readl(ioaddr + 0x57010);
|
|
dev->stats.rx_bytes = readl(ioaddr + 0x57044);
|
|
dev->stats.tx_packets = readl(ioaddr + 0x57000);
|
|
dev->stats.tx_aborted_errors =
|
|
readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
|
|
dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
|
|
dev->stats.collisions =
|
|
readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
|
|
|
|
/* The chip only need report frame silently dropped. */
|
|
dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
|
|
writew(0, ioaddr + RxDMAStatus);
|
|
dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
|
|
dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
|
|
dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
|
|
dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
|
|
|
|
return &dev->stats;
|
|
}
|
|
|
|
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
u32 rx_mode = MinVLANPrio;
|
|
struct netdev_hw_addr *ha;
|
|
int i;
|
|
#ifdef VLAN_SUPPORT
|
|
|
|
rx_mode |= VlanMode;
|
|
if (np->vlgrp) {
|
|
int vlan_count = 0;
|
|
void __iomem *filter_addr = ioaddr + HashTable + 8;
|
|
for (i = 0; i < VLAN_VID_MASK; i++) {
|
|
if (vlan_group_get_device(np->vlgrp, i)) {
|
|
if (vlan_count >= 32)
|
|
break;
|
|
writew(i, filter_addr);
|
|
filter_addr += 16;
|
|
vlan_count++;
|
|
}
|
|
}
|
|
if (i == VLAN_VID_MASK) {
|
|
rx_mode |= PerfectFilterVlan;
|
|
while (vlan_count < 32) {
|
|
writew(0, filter_addr);
|
|
filter_addr += 16;
|
|
vlan_count++;
|
|
}
|
|
}
|
|
}
|
|
#endif /* VLAN_SUPPORT */
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
rx_mode |= AcceptAll;
|
|
} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
|
|
(dev->flags & IFF_ALLMULTI)) {
|
|
/* Too many to match, or accept all multicasts. */
|
|
rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
|
|
} else if (netdev_mc_count(dev) <= 14) {
|
|
/* Use the 16 element perfect filter, skip first two entries. */
|
|
void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
|
|
__be16 *eaddrs;
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
eaddrs = (__be16 *) ha->addr;
|
|
writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
|
|
}
|
|
eaddrs = (__be16 *)dev->dev_addr;
|
|
i = netdev_mc_count(dev) + 2;
|
|
while (i++ < 16) {
|
|
writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
|
|
}
|
|
rx_mode |= AcceptBroadcast|PerfectFilter;
|
|
} else {
|
|
/* Must use a multicast hash table. */
|
|
void __iomem *filter_addr;
|
|
__be16 *eaddrs;
|
|
__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
|
|
|
|
memset(mc_filter, 0, sizeof(mc_filter));
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
/* The chip uses the upper 9 CRC bits
|
|
as index into the hash table */
|
|
int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
|
|
__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
|
|
|
|
*fptr |= cpu_to_le32(1 << (bit_nr & 31));
|
|
}
|
|
/* Clear the perfect filter list, skip first two entries. */
|
|
filter_addr = ioaddr + PerfFilterTable + 2 * 16;
|
|
eaddrs = (__be16 *)dev->dev_addr;
|
|
for (i = 2; i < 16; i++) {
|
|
writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
|
|
writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
|
|
}
|
|
for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
|
|
writew(mc_filter[i], filter_addr);
|
|
rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
|
|
}
|
|
writel(rx_mode, ioaddr + RxFilterMode);
|
|
}
|
|
|
|
static int check_if_running(struct net_device *dev)
|
|
{
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->bus_info, pci_name(np->pci_dev));
|
|
}
|
|
|
|
static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
spin_lock_irq(&np->lock);
|
|
mii_ethtool_gset(&np->mii_if, ecmd);
|
|
spin_unlock_irq(&np->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int res;
|
|
spin_lock_irq(&np->lock);
|
|
res = mii_ethtool_sset(&np->mii_if, ecmd);
|
|
spin_unlock_irq(&np->lock);
|
|
check_duplex(dev);
|
|
return res;
|
|
}
|
|
|
|
static int nway_reset(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return mii_nway_restart(&np->mii_if);
|
|
}
|
|
|
|
static u32 get_link(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return mii_link_ok(&np->mii_if);
|
|
}
|
|
|
|
static u32 get_msglevel(struct net_device *dev)
|
|
{
|
|
return debug;
|
|
}
|
|
|
|
static void set_msglevel(struct net_device *dev, u32 val)
|
|
{
|
|
debug = val;
|
|
}
|
|
|
|
static const struct ethtool_ops ethtool_ops = {
|
|
.begin = check_if_running,
|
|
.get_drvinfo = get_drvinfo,
|
|
.get_settings = get_settings,
|
|
.set_settings = set_settings,
|
|
.nway_reset = nway_reset,
|
|
.get_link = get_link,
|
|
.get_msglevel = get_msglevel,
|
|
.set_msglevel = set_msglevel,
|
|
};
|
|
|
|
static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct mii_ioctl_data *data = if_mii(rq);
|
|
int rc;
|
|
|
|
if (!netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&np->lock);
|
|
rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
|
|
spin_unlock_irq(&np->lock);
|
|
|
|
if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
|
|
check_duplex(dev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int netdev_close(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->base;
|
|
int i;
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
napi_disable(&np->napi);
|
|
|
|
if (debug > 1) {
|
|
printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
|
|
dev->name, (int) readl(ioaddr + IntrStatus));
|
|
printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
|
|
dev->name, np->cur_tx, np->dirty_tx,
|
|
np->cur_rx, np->dirty_rx);
|
|
}
|
|
|
|
/* Disable interrupts by clearing the interrupt mask. */
|
|
writel(0, ioaddr + IntrEnable);
|
|
|
|
/* Stop the chip's Tx and Rx processes. */
|
|
writel(0, ioaddr + GenCtrl);
|
|
readl(ioaddr + GenCtrl);
|
|
|
|
if (debug > 5) {
|
|
printk(KERN_DEBUG" Tx ring at %#llx:\n",
|
|
(long long) np->tx_ring_dma);
|
|
for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
|
|
printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
|
|
i, le32_to_cpu(np->tx_ring[i].status),
|
|
(long long) dma_to_cpu(np->tx_ring[i].addr),
|
|
le32_to_cpu(np->tx_done_q[i].status));
|
|
printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
|
|
(long long) np->rx_ring_dma, np->rx_done_q);
|
|
if (np->rx_done_q)
|
|
for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
|
|
printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
|
|
i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
|
|
}
|
|
}
|
|
|
|
free_irq(dev->irq, dev);
|
|
|
|
/* Free all the skbuffs in the Rx queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
|
|
if (np->rx_info[i].skb != NULL) {
|
|
pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(np->rx_info[i].skb);
|
|
}
|
|
np->rx_info[i].skb = NULL;
|
|
np->rx_info[i].mapping = 0;
|
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
struct sk_buff *skb = np->tx_info[i].skb;
|
|
if (skb == NULL)
|
|
continue;
|
|
pci_unmap_single(np->pci_dev,
|
|
np->tx_info[i].mapping,
|
|
skb_first_frag_len(skb), PCI_DMA_TODEVICE);
|
|
np->tx_info[i].mapping = 0;
|
|
dev_kfree_skb(skb);
|
|
np->tx_info[i].skb = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
|
|
if (netif_running(dev)) {
|
|
netif_device_detach(dev);
|
|
netdev_close(dev);
|
|
}
|
|
|
|
pci_save_state(pdev);
|
|
pci_set_power_state(pdev, pci_choose_state(pdev,state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int starfire_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
|
|
if (netif_running(dev)) {
|
|
netdev_open(dev);
|
|
netif_device_attach(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
|
|
static void __devexit starfire_remove_one (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
BUG_ON(!dev);
|
|
|
|
unregister_netdev(dev);
|
|
|
|
if (np->queue_mem)
|
|
pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
|
|
|
|
|
|
/* XXX: add wakeup code -- requires firmware for MagicPacket */
|
|
pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
|
|
pci_disable_device(pdev);
|
|
|
|
iounmap(np->base);
|
|
pci_release_regions(pdev);
|
|
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_netdev(dev); /* Will also free np!! */
|
|
}
|
|
|
|
|
|
static struct pci_driver starfire_driver = {
|
|
.name = DRV_NAME,
|
|
.probe = starfire_init_one,
|
|
.remove = __devexit_p(starfire_remove_one),
|
|
#ifdef CONFIG_PM
|
|
.suspend = starfire_suspend,
|
|
.resume = starfire_resume,
|
|
#endif /* CONFIG_PM */
|
|
.id_table = starfire_pci_tbl,
|
|
};
|
|
|
|
|
|
static int __init starfire_init (void)
|
|
{
|
|
/* when a module, this is printed whether or not devices are found in probe */
|
|
#ifdef MODULE
|
|
printk(version);
|
|
|
|
printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
|
|
#endif
|
|
|
|
BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
|
|
|
|
return pci_register_driver(&starfire_driver);
|
|
}
|
|
|
|
|
|
static void __exit starfire_cleanup (void)
|
|
{
|
|
pci_unregister_driver (&starfire_driver);
|
|
}
|
|
|
|
|
|
module_init(starfire_init);
|
|
module_exit(starfire_cleanup);
|
|
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-basic-offset: 8
|
|
* tab-width: 8
|
|
* End:
|
|
*/
|