linux/drivers/tty/serial/sirfsoc_uart.c
Greg Kroah-Hartman 4793f2ebff tty: serial: Remove redundant license text
Now that the SPDX tag is in all tty files, that identifies the license
in a specific and legally-defined manner.  So the extra GPL text wording
can be removed as it is no longer needed at all.

This is done on a quest to remove the 700+ different ways that files in
the kernel describe the GPL license text.  And there's unneeded stuff
like the address (sometimes incorrect) for the FSF which is never
needed.

No copyright headers or other non-license-description text was removed.

Cc: Jiri Slaby <jslaby@suse.com>
Cc: Eric Anholt <eric@anholt.net>
Cc: Stefan Wahren <stefan.wahren@i2se.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Ray Jui <rjui@broadcom.com>
Cc: Scott Branden <sbranden@broadcom.com>
Cc: bcm-kernel-feedback-list@broadcom.com
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Joachim Eastwood <manabian@gmail.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Tobias Klauser <tklauser@distanz.ch>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Richard Genoud <richard.genoud@gmail.com>
Cc: Alexander Shiyan <shc_work@mail.ru>
Cc: Baruch Siach <baruch@tkos.co.il>
Cc: Pat Gefre <pfg@sgi.com>
Cc: "Guilherme G. Piccoli" <gpiccoli@linux.vnet.ibm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
Cc: Carlo Caione <carlo@caione.org>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Andy Gross <andy.gross@linaro.org>
Cc: David Brown <david.brown@linaro.org>
Cc: "Andreas Färber" <afaerber@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Kevin Cernekee <cernekee@gmail.com>
Cc: Laxman Dewangan <ldewangan@nvidia.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Jonathan Hunter <jonathanh@nvidia.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Patrice Chotard <patrice.chotard@st.com>
Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com>
Cc: Alexandre Torgue <alexandre.torgue@st.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Peter Korsgaard <jacmet@sunsite.dk>
Cc: Timur Tabi <timur@tabi.org>
Cc: Tony Prisk <linux@prisktech.co.nz>
Cc: Michal Simek <michal.simek@xilinx.com>
Cc: "Sören Brinkmann" <soren.brinkmann@xilinx.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-08 13:08:12 +01:00

1499 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for CSR SiRFprimaII onboard UARTs.
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*/
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/sysrq.h>
#include <linux/console.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of_gpio.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <asm/irq.h>
#include <asm/mach/irq.h>
#include "sirfsoc_uart.h"
static unsigned int
sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count);
static unsigned int
sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count);
static struct uart_driver sirfsoc_uart_drv;
static void sirfsoc_uart_tx_dma_complete_callback(void *param);
static const struct sirfsoc_baudrate_to_regv baudrate_to_regv[] = {
{4000000, 2359296},
{3500000, 1310721},
{3000000, 1572865},
{2500000, 1245186},
{2000000, 1572866},
{1500000, 1245188},
{1152000, 1638404},
{1000000, 1572869},
{921600, 1114120},
{576000, 1245196},
{500000, 1245198},
{460800, 1572876},
{230400, 1310750},
{115200, 1310781},
{57600, 1310843},
{38400, 1114328},
{19200, 1114545},
{9600, 1114979},
};
static struct sirfsoc_uart_port *sirf_ports[SIRFSOC_UART_NR];
static inline struct sirfsoc_uart_port *to_sirfport(struct uart_port *port)
{
return container_of(port, struct sirfsoc_uart_port, port);
}
static inline unsigned int sirfsoc_uart_tx_empty(struct uart_port *port)
{
unsigned long reg;
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status;
reg = rd_regl(port, ureg->sirfsoc_tx_fifo_status);
return (reg & ufifo_st->ff_empty(port)) ? TIOCSER_TEMT : 0;
}
static unsigned int sirfsoc_uart_get_mctrl(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
if (!sirfport->hw_flow_ctrl || !sirfport->ms_enabled)
goto cts_asserted;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
if (!(rd_regl(port, ureg->sirfsoc_afc_ctrl) &
SIRFUART_AFC_CTS_STATUS))
goto cts_asserted;
else
goto cts_deasserted;
} else {
if (!gpio_get_value(sirfport->cts_gpio))
goto cts_asserted;
else
goto cts_deasserted;
}
cts_deasserted:
return TIOCM_CAR | TIOCM_DSR;
cts_asserted:
return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
}
static void sirfsoc_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
unsigned int assert = mctrl & TIOCM_RTS;
unsigned int val = assert ? SIRFUART_AFC_CTRL_RX_THD : 0x0;
unsigned int current_val;
if (mctrl & TIOCM_LOOP) {
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART)
wr_regl(port, ureg->sirfsoc_line_ctrl,
rd_regl(port, ureg->sirfsoc_line_ctrl) |
SIRFUART_LOOP_BACK);
else
wr_regl(port, ureg->sirfsoc_mode1,
rd_regl(port, ureg->sirfsoc_mode1) |
SIRFSOC_USP_LOOP_BACK_CTRL);
} else {
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART)
wr_regl(port, ureg->sirfsoc_line_ctrl,
rd_regl(port, ureg->sirfsoc_line_ctrl) &
~SIRFUART_LOOP_BACK);
else
wr_regl(port, ureg->sirfsoc_mode1,
rd_regl(port, ureg->sirfsoc_mode1) &
~SIRFSOC_USP_LOOP_BACK_CTRL);
}
if (!sirfport->hw_flow_ctrl || !sirfport->ms_enabled)
return;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
current_val = rd_regl(port, ureg->sirfsoc_afc_ctrl) & ~0xFF;
val |= current_val;
wr_regl(port, ureg->sirfsoc_afc_ctrl, val);
} else {
if (!val)
gpio_set_value(sirfport->rts_gpio, 1);
else
gpio_set_value(sirfport->rts_gpio, 0);
}
}
static void sirfsoc_uart_stop_tx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
if (sirfport->tx_dma_chan) {
if (sirfport->tx_dma_state == TX_DMA_RUNNING) {
dmaengine_pause(sirfport->tx_dma_chan);
sirfport->tx_dma_state = TX_DMA_PAUSE;
} else {
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_txfifo_empty_en);
}
} else {
if (sirfport->uart_reg->uart_type == SIRF_USP_UART)
wr_regl(port, ureg->sirfsoc_tx_rx_en, rd_regl(port,
ureg->sirfsoc_tx_rx_en) & ~SIRFUART_TX_EN);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_txfifo_empty_en);
}
}
static void sirfsoc_uart_tx_with_dma(struct sirfsoc_uart_port *sirfport)
{
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct circ_buf *xmit = &port->state->xmit;
unsigned long tran_size;
unsigned long tran_start;
unsigned long pio_tx_size;
tran_size = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
tran_start = (unsigned long)(xmit->buf + xmit->tail);
if (uart_circ_empty(xmit) || uart_tx_stopped(port) ||
!tran_size)
return;
if (sirfport->tx_dma_state == TX_DMA_PAUSE) {
dmaengine_resume(sirfport->tx_dma_chan);
return;
}
if (sirfport->tx_dma_state == TX_DMA_RUNNING)
return;
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)&
~(uint_en->sirfsoc_txfifo_empty_en));
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_txfifo_empty_en);
/*
* DMA requires buffer address and buffer length are both aligned with
* 4 bytes, so we use PIO for
* 1. if address is not aligned with 4bytes, use PIO for the first 1~3
* bytes, and move to DMA for the left part aligned with 4bytes
* 2. if buffer length is not aligned with 4bytes, use DMA for aligned
* part first, move to PIO for the left 1~3 bytes
*/
if (tran_size < 4 || BYTES_TO_ALIGN(tran_start)) {
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP);
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)|
SIRFUART_IO_MODE);
if (BYTES_TO_ALIGN(tran_start)) {
pio_tx_size = sirfsoc_uart_pio_tx_chars(sirfport,
BYTES_TO_ALIGN(tran_start));
tran_size -= pio_tx_size;
}
if (tran_size < 4)
sirfsoc_uart_pio_tx_chars(sirfport, tran_size);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)|
uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_txfifo_empty_en);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
} else {
/* tx transfer mode switch into dma mode */
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP);
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)&
~SIRFUART_IO_MODE);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
tran_size &= ~(0x3);
sirfport->tx_dma_addr = dma_map_single(port->dev,
xmit->buf + xmit->tail,
tran_size, DMA_TO_DEVICE);
sirfport->tx_dma_desc = dmaengine_prep_slave_single(
sirfport->tx_dma_chan, sirfport->tx_dma_addr,
tran_size, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!sirfport->tx_dma_desc) {
dev_err(port->dev, "DMA prep slave single fail\n");
return;
}
sirfport->tx_dma_desc->callback =
sirfsoc_uart_tx_dma_complete_callback;
sirfport->tx_dma_desc->callback_param = (void *)sirfport;
sirfport->transfer_size = tran_size;
dmaengine_submit(sirfport->tx_dma_desc);
dma_async_issue_pending(sirfport->tx_dma_chan);
sirfport->tx_dma_state = TX_DMA_RUNNING;
}
}
static void sirfsoc_uart_start_tx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
if (sirfport->tx_dma_chan)
sirfsoc_uart_tx_with_dma(sirfport);
else {
if (sirfport->uart_reg->uart_type == SIRF_USP_UART)
wr_regl(port, ureg->sirfsoc_tx_rx_en, rd_regl(port,
ureg->sirfsoc_tx_rx_en) | SIRFUART_TX_EN);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP);
sirfsoc_uart_pio_tx_chars(sirfport, port->fifosize);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)|
uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_txfifo_empty_en);
}
}
static void sirfsoc_uart_stop_rx(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
if (sirfport->rx_dma_chan) {
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~(SIRFUART_RX_DMA_INT_EN(uint_en,
sirfport->uart_reg->uart_type) |
uint_en->sirfsoc_rx_done_en));
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
SIRFUART_RX_DMA_INT_EN(uint_en,
sirfport->uart_reg->uart_type)|
uint_en->sirfsoc_rx_done_en);
dmaengine_terminate_all(sirfport->rx_dma_chan);
} else {
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)&
~(SIRFUART_RX_IO_INT_EN(uint_en,
sirfport->uart_reg->uart_type)));
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
SIRFUART_RX_IO_INT_EN(uint_en,
sirfport->uart_reg->uart_type));
}
}
static void sirfsoc_uart_disable_ms(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
if (!sirfport->hw_flow_ctrl)
return;
sirfport->ms_enabled = false;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
wr_regl(port, ureg->sirfsoc_afc_ctrl,
rd_regl(port, ureg->sirfsoc_afc_ctrl) & ~0x3FF);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)&
~uint_en->sirfsoc_cts_en);
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_cts_en);
} else
disable_irq(gpio_to_irq(sirfport->cts_gpio));
}
static irqreturn_t sirfsoc_uart_usp_cts_handler(int irq, void *dev_id)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)dev_id;
struct uart_port *port = &sirfport->port;
spin_lock(&port->lock);
if (gpio_is_valid(sirfport->cts_gpio) && sirfport->ms_enabled)
uart_handle_cts_change(port,
!gpio_get_value(sirfport->cts_gpio));
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static void sirfsoc_uart_enable_ms(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
if (!sirfport->hw_flow_ctrl)
return;
sirfport->ms_enabled = true;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
wr_regl(port, ureg->sirfsoc_afc_ctrl,
rd_regl(port, ureg->sirfsoc_afc_ctrl) |
SIRFUART_AFC_TX_EN | SIRFUART_AFC_RX_EN |
SIRFUART_AFC_CTRL_RX_THD);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)
| uint_en->sirfsoc_cts_en);
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_cts_en);
} else
enable_irq(gpio_to_irq(sirfport->cts_gpio));
}
static void sirfsoc_uart_break_ctl(struct uart_port *port, int break_state)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
unsigned long ulcon = rd_regl(port, ureg->sirfsoc_line_ctrl);
if (break_state)
ulcon |= SIRFUART_SET_BREAK;
else
ulcon &= ~SIRFUART_SET_BREAK;
wr_regl(port, ureg->sirfsoc_line_ctrl, ulcon);
}
}
static unsigned int
sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status;
unsigned int ch, rx_count = 0;
struct tty_struct *tty;
tty = tty_port_tty_get(&port->state->port);
if (!tty)
return -ENODEV;
while (!(rd_regl(port, ureg->sirfsoc_rx_fifo_status) &
ufifo_st->ff_empty(port))) {
ch = rd_regl(port, ureg->sirfsoc_rx_fifo_data) |
SIRFUART_DUMMY_READ;
if (unlikely(uart_handle_sysrq_char(port, ch)))
continue;
uart_insert_char(port, 0, 0, ch, TTY_NORMAL);
rx_count++;
if (rx_count >= max_rx_count)
break;
}
port->icount.rx += rx_count;
return rx_count;
}
static unsigned int
sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count)
{
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status;
struct circ_buf *xmit = &port->state->xmit;
unsigned int num_tx = 0;
while (!uart_circ_empty(xmit) &&
!(rd_regl(port, ureg->sirfsoc_tx_fifo_status) &
ufifo_st->ff_full(port)) &&
count--) {
wr_regl(port, ureg->sirfsoc_tx_fifo_data,
xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
num_tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
return num_tx;
}
static void sirfsoc_uart_tx_dma_complete_callback(void *param)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param;
struct uart_port *port = &sirfport->port;
struct circ_buf *xmit = &port->state->xmit;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
xmit->tail = (xmit->tail + sirfport->transfer_size) &
(UART_XMIT_SIZE - 1);
port->icount.tx += sirfport->transfer_size;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (sirfport->tx_dma_addr)
dma_unmap_single(port->dev, sirfport->tx_dma_addr,
sirfport->transfer_size, DMA_TO_DEVICE);
sirfport->tx_dma_state = TX_DMA_IDLE;
sirfsoc_uart_tx_with_dma(sirfport);
spin_unlock_irqrestore(&port->lock, flags);
}
static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id)
{
unsigned long intr_status;
unsigned long cts_status;
unsigned long flag = TTY_NORMAL;
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)dev_id;
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status;
struct sirfsoc_int_status *uint_st = &sirfport->uart_reg->uart_int_st;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct uart_state *state = port->state;
struct circ_buf *xmit = &port->state->xmit;
spin_lock(&port->lock);
intr_status = rd_regl(port, ureg->sirfsoc_int_st_reg);
wr_regl(port, ureg->sirfsoc_int_st_reg, intr_status);
intr_status &= rd_regl(port, ureg->sirfsoc_int_en_reg);
if (unlikely(intr_status & (SIRFUART_ERR_INT_STAT(uint_st,
sirfport->uart_reg->uart_type)))) {
if (intr_status & uint_st->sirfsoc_rxd_brk) {
port->icount.brk++;
if (uart_handle_break(port))
goto recv_char;
}
if (intr_status & uint_st->sirfsoc_rx_oflow) {
port->icount.overrun++;
flag = TTY_OVERRUN;
}
if (intr_status & uint_st->sirfsoc_frm_err) {
port->icount.frame++;
flag = TTY_FRAME;
}
if (intr_status & uint_st->sirfsoc_parity_err) {
port->icount.parity++;
flag = TTY_PARITY;
}
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START);
intr_status &= port->read_status_mask;
uart_insert_char(port, intr_status,
uint_en->sirfsoc_rx_oflow_en, 0, flag);
}
recv_char:
if ((sirfport->uart_reg->uart_type == SIRF_REAL_UART) &&
(intr_status & SIRFUART_CTS_INT_ST(uint_st)) &&
!sirfport->tx_dma_state) {
cts_status = rd_regl(port, ureg->sirfsoc_afc_ctrl) &
SIRFUART_AFC_CTS_STATUS;
if (cts_status != 0)
cts_status = 0;
else
cts_status = 1;
uart_handle_cts_change(port, cts_status);
wake_up_interruptible(&state->port.delta_msr_wait);
}
if (!sirfport->rx_dma_chan &&
(intr_status & SIRFUART_RX_IO_INT_ST(uint_st))) {
/*
* chip will trigger continuous RX_TIMEOUT interrupt
* in RXFIFO empty and not trigger if RXFIFO recevice
* data in limit time, original method use RX_TIMEOUT
* will trigger lots of useless interrupt in RXFIFO
* empty.RXFIFO received one byte will trigger RX_DONE
* interrupt.use RX_DONE to wait for data received
* into RXFIFO, use RX_THD/RX_FULL for lots data receive
* and use RX_TIMEOUT for the last left data.
*/
if (intr_status & uint_st->sirfsoc_rx_done) {
if (!sirfport->is_atlas7) {
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)
& ~(uint_en->sirfsoc_rx_done_en));
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)
| (uint_en->sirfsoc_rx_timeout_en));
} else {
wr_regl(port, ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_rx_done_en);
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_rx_timeout_en);
}
} else {
if (intr_status & uint_st->sirfsoc_rx_timeout) {
if (!sirfport->is_atlas7) {
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)
& ~(uint_en->sirfsoc_rx_timeout_en));
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)
| (uint_en->sirfsoc_rx_done_en));
} else {
wr_regl(port,
ureg->sirfsoc_int_en_clr_reg,
uint_en->sirfsoc_rx_timeout_en);
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_rx_done_en);
}
}
sirfsoc_uart_pio_rx_chars(port, port->fifosize);
}
}
spin_unlock(&port->lock);
tty_flip_buffer_push(&state->port);
spin_lock(&port->lock);
if (intr_status & uint_st->sirfsoc_txfifo_empty) {
if (sirfport->tx_dma_chan)
sirfsoc_uart_tx_with_dma(sirfport);
else {
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
spin_unlock(&port->lock);
return IRQ_HANDLED;
} else {
sirfsoc_uart_pio_tx_chars(sirfport,
port->fifosize);
if ((uart_circ_empty(xmit)) &&
(rd_regl(port, ureg->sirfsoc_tx_fifo_status) &
ufifo_st->ff_empty(port)))
sirfsoc_uart_stop_tx(port);
}
}
}
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static void sirfsoc_uart_rx_dma_complete_callback(void *param)
{
}
/* submit rx dma task into dmaengine */
static void sirfsoc_uart_start_next_rx_dma(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) &
~SIRFUART_IO_MODE);
sirfport->rx_dma_items.xmit.tail =
sirfport->rx_dma_items.xmit.head = 0;
sirfport->rx_dma_items.desc =
dmaengine_prep_dma_cyclic(sirfport->rx_dma_chan,
sirfport->rx_dma_items.dma_addr, SIRFSOC_RX_DMA_BUF_SIZE,
SIRFSOC_RX_DMA_BUF_SIZE / 2,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (IS_ERR_OR_NULL(sirfport->rx_dma_items.desc)) {
dev_err(port->dev, "DMA slave single fail\n");
return;
}
sirfport->rx_dma_items.desc->callback =
sirfsoc_uart_rx_dma_complete_callback;
sirfport->rx_dma_items.desc->callback_param = sirfport;
sirfport->rx_dma_items.cookie =
dmaengine_submit(sirfport->rx_dma_items.desc);
dma_async_issue_pending(sirfport->rx_dma_chan);
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) |
SIRFUART_RX_DMA_INT_EN(uint_en,
sirfport->uart_reg->uart_type));
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
SIRFUART_RX_DMA_INT_EN(uint_en,
sirfport->uart_reg->uart_type));
}
static unsigned int
sirfsoc_usp_calc_sample_div(unsigned long set_rate,
unsigned long ioclk_rate, unsigned long *sample_reg)
{
unsigned long min_delta = ~0UL;
unsigned short sample_div;
unsigned long ioclk_div = 0;
unsigned long temp_delta;
for (sample_div = SIRF_USP_MIN_SAMPLE_DIV;
sample_div <= SIRF_MAX_SAMPLE_DIV; sample_div++) {
temp_delta = ioclk_rate -
(ioclk_rate + (set_rate * sample_div) / 2)
/ (set_rate * sample_div) * set_rate * sample_div;
temp_delta = (temp_delta > 0) ? temp_delta : -temp_delta;
if (temp_delta < min_delta) {
ioclk_div = (2 * ioclk_rate /
(set_rate * sample_div) + 1) / 2 - 1;
if (ioclk_div > SIRF_IOCLK_DIV_MAX)
continue;
min_delta = temp_delta;
*sample_reg = sample_div;
if (!temp_delta)
break;
}
}
return ioclk_div;
}
static unsigned int
sirfsoc_uart_calc_sample_div(unsigned long baud_rate,
unsigned long ioclk_rate, unsigned long *set_baud)
{
unsigned long min_delta = ~0UL;
unsigned short sample_div;
unsigned int regv = 0;
unsigned long ioclk_div;
unsigned long baud_tmp;
int temp_delta;
for (sample_div = SIRF_MIN_SAMPLE_DIV;
sample_div <= SIRF_MAX_SAMPLE_DIV; sample_div++) {
ioclk_div = (ioclk_rate / (baud_rate * (sample_div + 1))) - 1;
if (ioclk_div > SIRF_IOCLK_DIV_MAX)
continue;
baud_tmp = ioclk_rate / ((ioclk_div + 1) * (sample_div + 1));
temp_delta = baud_tmp - baud_rate;
temp_delta = (temp_delta > 0) ? temp_delta : -temp_delta;
if (temp_delta < min_delta) {
regv = regv & (~SIRF_IOCLK_DIV_MASK);
regv = regv | ioclk_div;
regv = regv & (~SIRF_SAMPLE_DIV_MASK);
regv = regv | (sample_div << SIRF_SAMPLE_DIV_SHIFT);
min_delta = temp_delta;
*set_baud = baud_tmp;
}
}
return regv;
}
static void sirfsoc_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned long config_reg = 0;
unsigned long baud_rate;
unsigned long set_baud;
unsigned long flags;
unsigned long ic;
unsigned int clk_div_reg = 0;
unsigned long txfifo_op_reg, ioclk_rate;
unsigned long rx_time_out;
int threshold_div;
u32 data_bit_len, stop_bit_len, len_val;
unsigned long sample_div_reg = 0xf;
ioclk_rate = port->uartclk;
switch (termios->c_cflag & CSIZE) {
default:
case CS8:
data_bit_len = 8;
config_reg |= SIRFUART_DATA_BIT_LEN_8;
break;
case CS7:
data_bit_len = 7;
config_reg |= SIRFUART_DATA_BIT_LEN_7;
break;
case CS6:
data_bit_len = 6;
config_reg |= SIRFUART_DATA_BIT_LEN_6;
break;
case CS5:
data_bit_len = 5;
config_reg |= SIRFUART_DATA_BIT_LEN_5;
break;
}
if (termios->c_cflag & CSTOPB) {
config_reg |= SIRFUART_STOP_BIT_LEN_2;
stop_bit_len = 2;
} else
stop_bit_len = 1;
spin_lock_irqsave(&port->lock, flags);
port->read_status_mask = uint_en->sirfsoc_rx_oflow_en;
port->ignore_status_mask = 0;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
if (termios->c_iflag & INPCK)
port->read_status_mask |= uint_en->sirfsoc_frm_err_en |
uint_en->sirfsoc_parity_err_en;
} else {
if (termios->c_iflag & INPCK)
port->read_status_mask |= uint_en->sirfsoc_frm_err_en;
}
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
port->read_status_mask |= uint_en->sirfsoc_rxd_brk_en;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |=
uint_en->sirfsoc_frm_err_en |
uint_en->sirfsoc_parity_err_en;
if (termios->c_cflag & PARENB) {
if (termios->c_cflag & CMSPAR) {
if (termios->c_cflag & PARODD)
config_reg |= SIRFUART_STICK_BIT_MARK;
else
config_reg |= SIRFUART_STICK_BIT_SPACE;
} else {
if (termios->c_cflag & PARODD)
config_reg |= SIRFUART_STICK_BIT_ODD;
else
config_reg |= SIRFUART_STICK_BIT_EVEN;
}
}
} else {
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |=
uint_en->sirfsoc_frm_err_en;
if (termios->c_cflag & PARENB)
dev_warn(port->dev,
"USP-UART not support parity err\n");
}
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |=
uint_en->sirfsoc_rxd_brk_en;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |=
uint_en->sirfsoc_rx_oflow_en;
}
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= SIRFUART_DUMMY_READ;
/* Hardware Flow Control Settings */
if (UART_ENABLE_MS(port, termios->c_cflag)) {
if (!sirfport->ms_enabled)
sirfsoc_uart_enable_ms(port);
} else {
if (sirfport->ms_enabled)
sirfsoc_uart_disable_ms(port);
}
baud_rate = uart_get_baud_rate(port, termios, old, 0, 4000000);
if (ioclk_rate == 150000000) {
for (ic = 0; ic < SIRF_BAUD_RATE_SUPPORT_NR; ic++)
if (baud_rate == baudrate_to_regv[ic].baud_rate)
clk_div_reg = baudrate_to_regv[ic].reg_val;
}
set_baud = baud_rate;
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
if (unlikely(clk_div_reg == 0))
clk_div_reg = sirfsoc_uart_calc_sample_div(baud_rate,
ioclk_rate, &set_baud);
wr_regl(port, ureg->sirfsoc_divisor, clk_div_reg);
} else {
clk_div_reg = sirfsoc_usp_calc_sample_div(baud_rate,
ioclk_rate, &sample_div_reg);
sample_div_reg--;
set_baud = ((ioclk_rate / (clk_div_reg+1) - 1) /
(sample_div_reg + 1));
/* setting usp mode 2 */
len_val = ((1 << SIRFSOC_USP_MODE2_RXD_DELAY_OFFSET) |
(1 << SIRFSOC_USP_MODE2_TXD_DELAY_OFFSET));
len_val |= ((clk_div_reg & SIRFSOC_USP_MODE2_CLK_DIVISOR_MASK)
<< SIRFSOC_USP_MODE2_CLK_DIVISOR_OFFSET);
wr_regl(port, ureg->sirfsoc_mode2, len_val);
}
if (tty_termios_baud_rate(termios))
tty_termios_encode_baud_rate(termios, set_baud, set_baud);
/* set receive timeout && data bits len */
rx_time_out = SIRFSOC_UART_RX_TIMEOUT(set_baud, 20000);
rx_time_out = SIRFUART_RECV_TIMEOUT_VALUE(rx_time_out);
txfifo_op_reg = rd_regl(port, ureg->sirfsoc_tx_fifo_op);
wr_regl(port, ureg->sirfsoc_tx_fifo_op,
(txfifo_op_reg & ~SIRFUART_FIFO_START));
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
config_reg |= SIRFUART_UART_RECV_TIMEOUT(rx_time_out);
wr_regl(port, ureg->sirfsoc_line_ctrl, config_reg);
} else {
/*tx frame ctrl*/
len_val = (data_bit_len - 1) << SIRFSOC_USP_TX_DATA_LEN_OFFSET;
len_val |= (data_bit_len + 1 + stop_bit_len - 1) <<
SIRFSOC_USP_TX_FRAME_LEN_OFFSET;
len_val |= ((data_bit_len - 1) <<
SIRFSOC_USP_TX_SHIFTER_LEN_OFFSET);
len_val |= (((clk_div_reg & 0xc00) >> 10) <<
SIRFSOC_USP_TX_CLK_DIVISOR_OFFSET);
wr_regl(port, ureg->sirfsoc_tx_frame_ctrl, len_val);
/*rx frame ctrl*/
len_val = (data_bit_len - 1) << SIRFSOC_USP_RX_DATA_LEN_OFFSET;
len_val |= (data_bit_len + 1 + stop_bit_len - 1) <<
SIRFSOC_USP_RX_FRAME_LEN_OFFSET;
len_val |= (data_bit_len - 1) <<
SIRFSOC_USP_RX_SHIFTER_LEN_OFFSET;
len_val |= (((clk_div_reg & 0xf000) >> 12) <<
SIRFSOC_USP_RX_CLK_DIVISOR_OFFSET);
wr_regl(port, ureg->sirfsoc_rx_frame_ctrl, len_val);
/*async param*/
wr_regl(port, ureg->sirfsoc_async_param_reg,
(SIRFUART_USP_RECV_TIMEOUT(rx_time_out)) |
(sample_div_reg & SIRFSOC_USP_ASYNC_DIV2_MASK) <<
SIRFSOC_USP_ASYNC_DIV2_OFFSET);
}
if (sirfport->tx_dma_chan)
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_DMA_MODE);
else
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_IO_MODE);
if (sirfport->rx_dma_chan)
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) &
~SIRFUART_IO_MODE);
else
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) |
SIRFUART_IO_MODE);
sirfport->rx_period_time = 20000000;
/* Reset Rx/Tx FIFO Threshold level for proper baudrate */
if (set_baud < 1000000)
threshold_div = 1;
else
threshold_div = 2;
wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl,
SIRFUART_FIFO_THD(port) / threshold_div);
wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl,
SIRFUART_FIFO_THD(port) / threshold_div);
txfifo_op_reg |= SIRFUART_FIFO_START;
wr_regl(port, ureg->sirfsoc_tx_fifo_op, txfifo_op_reg);
uart_update_timeout(port, termios->c_cflag, set_baud);
wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_TX_EN | SIRFUART_RX_EN);
spin_unlock_irqrestore(&port->lock, flags);
}
static void sirfsoc_uart_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
if (!state)
clk_prepare_enable(sirfport->clk);
else
clk_disable_unprepare(sirfport->clk);
}
static int sirfsoc_uart_startup(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned int index = port->line;
int ret;
irq_modify_status(port->irq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
ret = request_irq(port->irq,
sirfsoc_uart_isr,
0,
SIRFUART_PORT_NAME,
sirfport);
if (ret != 0) {
dev_err(port->dev, "UART%d request IRQ line (%d) failed.\n",
index, port->irq);
goto irq_err;
}
/* initial hardware settings */
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl) |
SIRFUART_IO_MODE);
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) |
SIRFUART_IO_MODE);
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) &
~SIRFUART_RX_DMA_FLUSH);
wr_regl(port, ureg->sirfsoc_tx_dma_io_len, 0);
wr_regl(port, ureg->sirfsoc_rx_dma_io_len, 0);
wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_RX_EN | SIRFUART_TX_EN);
if (sirfport->uart_reg->uart_type == SIRF_USP_UART)
wr_regl(port, ureg->sirfsoc_mode1,
SIRFSOC_USP_ENDIAN_CTRL_LSBF |
SIRFSOC_USP_EN);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_RESET);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, SIRFUART_FIFO_THD(port));
wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, SIRFUART_FIFO_THD(port));
if (sirfport->rx_dma_chan)
wr_regl(port, ureg->sirfsoc_rx_fifo_level_chk,
SIRFUART_RX_FIFO_CHK_SC(port->line, 0x1) |
SIRFUART_RX_FIFO_CHK_LC(port->line, 0x2) |
SIRFUART_RX_FIFO_CHK_HC(port->line, 0x4));
if (sirfport->tx_dma_chan) {
sirfport->tx_dma_state = TX_DMA_IDLE;
wr_regl(port, ureg->sirfsoc_tx_fifo_level_chk,
SIRFUART_TX_FIFO_CHK_SC(port->line, 0x1b) |
SIRFUART_TX_FIFO_CHK_LC(port->line, 0xe) |
SIRFUART_TX_FIFO_CHK_HC(port->line, 0x4));
}
sirfport->ms_enabled = false;
if (sirfport->uart_reg->uart_type == SIRF_USP_UART &&
sirfport->hw_flow_ctrl) {
irq_modify_status(gpio_to_irq(sirfport->cts_gpio),
IRQ_NOREQUEST, IRQ_NOAUTOEN);
ret = request_irq(gpio_to_irq(sirfport->cts_gpio),
sirfsoc_uart_usp_cts_handler, IRQF_TRIGGER_FALLING |
IRQF_TRIGGER_RISING, "usp_cts_irq", sirfport);
if (ret != 0) {
dev_err(port->dev, "UART-USP:request gpio irq fail\n");
goto init_rx_err;
}
}
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART &&
sirfport->rx_dma_chan)
wr_regl(port, ureg->sirfsoc_swh_dma_io,
SIRFUART_CLEAR_RX_ADDR_EN);
if (sirfport->uart_reg->uart_type == SIRF_USP_UART &&
sirfport->rx_dma_chan)
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) |
SIRFSOC_USP_FRADDR_CLR_EN);
if (sirfport->rx_dma_chan && !sirfport->is_hrt_enabled) {
sirfport->is_hrt_enabled = true;
sirfport->rx_period_time = 20000000;
sirfport->rx_last_pos = -1;
sirfport->pio_fetch_cnt = 0;
sirfport->rx_dma_items.xmit.tail =
sirfport->rx_dma_items.xmit.head = 0;
hrtimer_start(&sirfport->hrt,
ns_to_ktime(sirfport->rx_period_time),
HRTIMER_MODE_REL);
}
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START);
if (sirfport->rx_dma_chan)
sirfsoc_uart_start_next_rx_dma(port);
else {
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) |
SIRFUART_RX_IO_INT_EN(uint_en,
sirfport->uart_reg->uart_type));
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
SIRFUART_RX_IO_INT_EN(uint_en,
sirfport->uart_reg->uart_type));
}
enable_irq(port->irq);
return 0;
init_rx_err:
free_irq(port->irq, sirfport);
irq_err:
return ret;
}
static void sirfsoc_uart_shutdown(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct circ_buf *xmit;
xmit = &sirfport->rx_dma_items.xmit;
if (!sirfport->is_atlas7)
wr_regl(port, ureg->sirfsoc_int_en_reg, 0);
else
wr_regl(port, ureg->sirfsoc_int_en_clr_reg, ~0UL);
free_irq(port->irq, sirfport);
if (sirfport->ms_enabled)
sirfsoc_uart_disable_ms(port);
if (sirfport->uart_reg->uart_type == SIRF_USP_UART &&
sirfport->hw_flow_ctrl) {
gpio_set_value(sirfport->rts_gpio, 1);
free_irq(gpio_to_irq(sirfport->cts_gpio), sirfport);
}
if (sirfport->tx_dma_chan)
sirfport->tx_dma_state = TX_DMA_IDLE;
if (sirfport->rx_dma_chan && sirfport->is_hrt_enabled) {
while (((rd_regl(port, ureg->sirfsoc_rx_fifo_status) &
SIRFUART_RX_FIFO_MASK) > sirfport->pio_fetch_cnt) &&
!CIRC_CNT(xmit->head, xmit->tail,
SIRFSOC_RX_DMA_BUF_SIZE))
;
sirfport->is_hrt_enabled = false;
hrtimer_cancel(&sirfport->hrt);
}
}
static const char *sirfsoc_uart_type(struct uart_port *port)
{
return port->type == SIRFSOC_PORT_TYPE ? SIRFUART_PORT_NAME : NULL;
}
static int sirfsoc_uart_request_port(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_uart_param *uart_param = &sirfport->uart_reg->uart_param;
void *ret;
ret = request_mem_region(port->mapbase,
SIRFUART_MAP_SIZE, uart_param->port_name);
return ret ? 0 : -EBUSY;
}
static void sirfsoc_uart_release_port(struct uart_port *port)
{
release_mem_region(port->mapbase, SIRFUART_MAP_SIZE);
}
static void sirfsoc_uart_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE) {
port->type = SIRFSOC_PORT_TYPE;
sirfsoc_uart_request_port(port);
}
}
static const struct uart_ops sirfsoc_uart_ops = {
.tx_empty = sirfsoc_uart_tx_empty,
.get_mctrl = sirfsoc_uart_get_mctrl,
.set_mctrl = sirfsoc_uart_set_mctrl,
.stop_tx = sirfsoc_uart_stop_tx,
.start_tx = sirfsoc_uart_start_tx,
.stop_rx = sirfsoc_uart_stop_rx,
.enable_ms = sirfsoc_uart_enable_ms,
.break_ctl = sirfsoc_uart_break_ctl,
.startup = sirfsoc_uart_startup,
.shutdown = sirfsoc_uart_shutdown,
.set_termios = sirfsoc_uart_set_termios,
.pm = sirfsoc_uart_pm,
.type = sirfsoc_uart_type,
.release_port = sirfsoc_uart_release_port,
.request_port = sirfsoc_uart_request_port,
.config_port = sirfsoc_uart_config_port,
};
#ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE
static int __init
sirfsoc_uart_console_setup(struct console *co, char *options)
{
unsigned int baud = 115200;
unsigned int bits = 8;
unsigned int parity = 'n';
unsigned int flow = 'n';
struct sirfsoc_uart_port *sirfport;
struct sirfsoc_register *ureg;
if (co->index < 0 || co->index >= SIRFSOC_UART_NR)
co->index = 1;
sirfport = sirf_ports[co->index];
if (!sirfport)
return -ENODEV;
ureg = &sirfport->uart_reg->uart_reg;
if (!sirfport->port.mapbase)
return -ENODEV;
/* enable usp in mode1 register */
if (sirfport->uart_reg->uart_type == SIRF_USP_UART)
wr_regl(&sirfport->port, ureg->sirfsoc_mode1, SIRFSOC_USP_EN |
SIRFSOC_USP_ENDIAN_CTRL_LSBF);
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
sirfport->port.cons = co;
/* default console tx/rx transfer using io mode */
sirfport->rx_dma_chan = NULL;
sirfport->tx_dma_chan = NULL;
return uart_set_options(&sirfport->port, co, baud, parity, bits, flow);
}
static void sirfsoc_uart_console_putchar(struct uart_port *port, int ch)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_fifo_status *ufifo_st = &sirfport->uart_reg->fifo_status;
while (rd_regl(port, ureg->sirfsoc_tx_fifo_status) &
ufifo_st->ff_full(port))
cpu_relax();
wr_regl(port, ureg->sirfsoc_tx_fifo_data, ch);
}
static void sirfsoc_uart_console_write(struct console *co, const char *s,
unsigned int count)
{
struct sirfsoc_uart_port *sirfport = sirf_ports[co->index];
uart_console_write(&sirfport->port, s, count,
sirfsoc_uart_console_putchar);
}
static struct console sirfsoc_uart_console = {
.name = SIRFSOC_UART_NAME,
.device = uart_console_device,
.flags = CON_PRINTBUFFER,
.index = -1,
.write = sirfsoc_uart_console_write,
.setup = sirfsoc_uart_console_setup,
.data = &sirfsoc_uart_drv,
};
static int __init sirfsoc_uart_console_init(void)
{
register_console(&sirfsoc_uart_console);
return 0;
}
console_initcall(sirfsoc_uart_console_init);
#endif
static struct uart_driver sirfsoc_uart_drv = {
.owner = THIS_MODULE,
.driver_name = SIRFUART_PORT_NAME,
.nr = SIRFSOC_UART_NR,
.dev_name = SIRFSOC_UART_NAME,
.major = SIRFSOC_UART_MAJOR,
.minor = SIRFSOC_UART_MINOR,
#ifdef CONFIG_SERIAL_SIRFSOC_CONSOLE
.cons = &sirfsoc_uart_console,
#else
.cons = NULL,
#endif
};
static enum hrtimer_restart
sirfsoc_uart_rx_dma_hrtimer_callback(struct hrtimer *hrt)
{
struct sirfsoc_uart_port *sirfport;
struct uart_port *port;
int count, inserted;
struct dma_tx_state tx_state;
struct tty_struct *tty;
struct sirfsoc_register *ureg;
struct circ_buf *xmit;
struct sirfsoc_fifo_status *ufifo_st;
int max_pio_cnt;
sirfport = container_of(hrt, struct sirfsoc_uart_port, hrt);
port = &sirfport->port;
inserted = 0;
tty = port->state->port.tty;
ureg = &sirfport->uart_reg->uart_reg;
xmit = &sirfport->rx_dma_items.xmit;
ufifo_st = &sirfport->uart_reg->fifo_status;
dmaengine_tx_status(sirfport->rx_dma_chan,
sirfport->rx_dma_items.cookie, &tx_state);
if (SIRFSOC_RX_DMA_BUF_SIZE - tx_state.residue !=
sirfport->rx_last_pos) {
xmit->head = SIRFSOC_RX_DMA_BUF_SIZE - tx_state.residue;
sirfport->rx_last_pos = xmit->head;
sirfport->pio_fetch_cnt = 0;
}
count = CIRC_CNT_TO_END(xmit->head, xmit->tail,
SIRFSOC_RX_DMA_BUF_SIZE);
while (count > 0) {
inserted = tty_insert_flip_string(tty->port,
(const unsigned char *)&xmit->buf[xmit->tail], count);
if (!inserted)
goto next_hrt;
port->icount.rx += inserted;
xmit->tail = (xmit->tail + inserted) &
(SIRFSOC_RX_DMA_BUF_SIZE - 1);
count = CIRC_CNT_TO_END(xmit->head, xmit->tail,
SIRFSOC_RX_DMA_BUF_SIZE);
tty_flip_buffer_push(tty->port);
}
/*
* if RX DMA buffer data have all push into tty buffer, and there is
* only little data(less than a dma transfer unit) left in rxfifo,
* fetch it out in pio mode and switch back to dma immediately
*/
if (!inserted && !count &&
((rd_regl(port, ureg->sirfsoc_rx_fifo_status) &
SIRFUART_RX_FIFO_MASK) > sirfport->pio_fetch_cnt)) {
dmaengine_pause(sirfport->rx_dma_chan);
/* switch to pio mode */
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) |
SIRFUART_IO_MODE);
/*
* UART controller SWH_DMA_IO register have CLEAR_RX_ADDR_EN
* When found changing I/O to DMA mode, it clears
* two low bits of read point;
* USP have similar FRADDR_CLR_EN bit in USP_RX_DMA_IO_CTRL.
* Fetch data out from rxfifo into DMA buffer in PIO mode,
* while switch back to DMA mode, the data fetched will override
* by DMA, as hardware have a strange behaviour:
* after switch back to DMA mode, check rxfifo status it will
* be the number PIO fetched, so record the fetched data count
* to avoid the repeated fetch
*/
max_pio_cnt = 3;
while (!(rd_regl(port, ureg->sirfsoc_rx_fifo_status) &
ufifo_st->ff_empty(port)) && max_pio_cnt--) {
xmit->buf[xmit->head] =
rd_regl(port, ureg->sirfsoc_rx_fifo_data);
xmit->head = (xmit->head + 1) &
(SIRFSOC_RX_DMA_BUF_SIZE - 1);
sirfport->pio_fetch_cnt++;
}
/* switch back to dma mode */
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) &
~SIRFUART_IO_MODE);
dmaengine_resume(sirfport->rx_dma_chan);
}
next_hrt:
hrtimer_forward_now(hrt, ns_to_ktime(sirfport->rx_period_time));
return HRTIMER_RESTART;
}
static const struct of_device_id sirfsoc_uart_ids[] = {
{ .compatible = "sirf,prima2-uart", .data = &sirfsoc_uart,},
{ .compatible = "sirf,atlas7-uart", .data = &sirfsoc_uart},
{ .compatible = "sirf,prima2-usp-uart", .data = &sirfsoc_usp},
{ .compatible = "sirf,atlas7-usp-uart", .data = &sirfsoc_usp},
{}
};
MODULE_DEVICE_TABLE(of, sirfsoc_uart_ids);
static int sirfsoc_uart_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct sirfsoc_uart_port *sirfport;
struct uart_port *port;
struct resource *res;
int ret;
struct dma_slave_config slv_cfg = {
.src_maxburst = 1,
};
struct dma_slave_config tx_slv_cfg = {
.dst_maxburst = 2,
};
const struct of_device_id *match;
match = of_match_node(sirfsoc_uart_ids, np);
sirfport = devm_kzalloc(&pdev->dev, sizeof(*sirfport), GFP_KERNEL);
if (!sirfport) {
ret = -ENOMEM;
goto err;
}
sirfport->port.line = of_alias_get_id(np, "serial");
sirf_ports[sirfport->port.line] = sirfport;
sirfport->port.iotype = UPIO_MEM;
sirfport->port.flags = UPF_BOOT_AUTOCONF;
port = &sirfport->port;
port->dev = &pdev->dev;
port->private_data = sirfport;
sirfport->uart_reg = (struct sirfsoc_uart_register *)match->data;
sirfport->hw_flow_ctrl =
of_property_read_bool(np, "uart-has-rtscts") ||
of_property_read_bool(np, "sirf,uart-has-rtscts") /* deprecated */;
if (of_device_is_compatible(np, "sirf,prima2-uart") ||
of_device_is_compatible(np, "sirf,atlas7-uart"))
sirfport->uart_reg->uart_type = SIRF_REAL_UART;
if (of_device_is_compatible(np, "sirf,prima2-usp-uart") ||
of_device_is_compatible(np, "sirf,atlas7-usp-uart")) {
sirfport->uart_reg->uart_type = SIRF_USP_UART;
if (!sirfport->hw_flow_ctrl)
goto usp_no_flow_control;
if (of_find_property(np, "cts-gpios", NULL))
sirfport->cts_gpio =
of_get_named_gpio(np, "cts-gpios", 0);
else
sirfport->cts_gpio = -1;
if (of_find_property(np, "rts-gpios", NULL))
sirfport->rts_gpio =
of_get_named_gpio(np, "rts-gpios", 0);
else
sirfport->rts_gpio = -1;
if ((!gpio_is_valid(sirfport->cts_gpio) ||
!gpio_is_valid(sirfport->rts_gpio))) {
ret = -EINVAL;
dev_err(&pdev->dev,
"Usp flow control must have cts and rts gpio");
goto err;
}
ret = devm_gpio_request(&pdev->dev, sirfport->cts_gpio,
"usp-cts-gpio");
if (ret) {
dev_err(&pdev->dev, "Unable request cts gpio");
goto err;
}
gpio_direction_input(sirfport->cts_gpio);
ret = devm_gpio_request(&pdev->dev, sirfport->rts_gpio,
"usp-rts-gpio");
if (ret) {
dev_err(&pdev->dev, "Unable request rts gpio");
goto err;
}
gpio_direction_output(sirfport->rts_gpio, 1);
}
usp_no_flow_control:
if (of_device_is_compatible(np, "sirf,atlas7-uart") ||
of_device_is_compatible(np, "sirf,atlas7-usp-uart"))
sirfport->is_atlas7 = true;
if (of_property_read_u32(np, "fifosize", &port->fifosize)) {
dev_err(&pdev->dev,
"Unable to find fifosize in uart node.\n");
ret = -EFAULT;
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "Insufficient resources.\n");
ret = -EFAULT;
goto err;
}
port->mapbase = res->start;
port->membase = devm_ioremap(&pdev->dev,
res->start, resource_size(res));
if (!port->membase) {
dev_err(&pdev->dev, "Cannot remap resource.\n");
ret = -ENOMEM;
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(&pdev->dev, "Insufficient resources.\n");
ret = -EFAULT;
goto err;
}
port->irq = res->start;
sirfport->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(sirfport->clk)) {
ret = PTR_ERR(sirfport->clk);
goto err;
}
port->uartclk = clk_get_rate(sirfport->clk);
port->ops = &sirfsoc_uart_ops;
spin_lock_init(&port->lock);
platform_set_drvdata(pdev, sirfport);
ret = uart_add_one_port(&sirfsoc_uart_drv, port);
if (ret != 0) {
dev_err(&pdev->dev, "Cannot add UART port(%d).\n", pdev->id);
goto err;
}
sirfport->rx_dma_chan = dma_request_slave_channel(port->dev, "rx");
sirfport->rx_dma_items.xmit.buf =
dma_alloc_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
&sirfport->rx_dma_items.dma_addr, GFP_KERNEL);
if (!sirfport->rx_dma_items.xmit.buf) {
dev_err(port->dev, "Uart alloc bufa failed\n");
ret = -ENOMEM;
goto alloc_coherent_err;
}
sirfport->rx_dma_items.xmit.head =
sirfport->rx_dma_items.xmit.tail = 0;
if (sirfport->rx_dma_chan)
dmaengine_slave_config(sirfport->rx_dma_chan, &slv_cfg);
sirfport->tx_dma_chan = dma_request_slave_channel(port->dev, "tx");
if (sirfport->tx_dma_chan)
dmaengine_slave_config(sirfport->tx_dma_chan, &tx_slv_cfg);
if (sirfport->rx_dma_chan) {
hrtimer_init(&sirfport->hrt, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sirfport->hrt.function = sirfsoc_uart_rx_dma_hrtimer_callback;
sirfport->is_hrt_enabled = false;
}
return 0;
alloc_coherent_err:
dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
sirfport->rx_dma_items.xmit.buf,
sirfport->rx_dma_items.dma_addr);
dma_release_channel(sirfport->rx_dma_chan);
err:
return ret;
}
static int sirfsoc_uart_remove(struct platform_device *pdev)
{
struct sirfsoc_uart_port *sirfport = platform_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
uart_remove_one_port(&sirfsoc_uart_drv, port);
if (sirfport->rx_dma_chan) {
dmaengine_terminate_all(sirfport->rx_dma_chan);
dma_release_channel(sirfport->rx_dma_chan);
dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
sirfport->rx_dma_items.xmit.buf,
sirfport->rx_dma_items.dma_addr);
}
if (sirfport->tx_dma_chan) {
dmaengine_terminate_all(sirfport->tx_dma_chan);
dma_release_channel(sirfport->tx_dma_chan);
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int
sirfsoc_uart_suspend(struct device *pdev)
{
struct sirfsoc_uart_port *sirfport = dev_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
uart_suspend_port(&sirfsoc_uart_drv, port);
return 0;
}
static int sirfsoc_uart_resume(struct device *pdev)
{
struct sirfsoc_uart_port *sirfport = dev_get_drvdata(pdev);
struct uart_port *port = &sirfport->port;
uart_resume_port(&sirfsoc_uart_drv, port);
return 0;
}
#endif
static const struct dev_pm_ops sirfsoc_uart_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_uart_suspend, sirfsoc_uart_resume)
};
static struct platform_driver sirfsoc_uart_driver = {
.probe = sirfsoc_uart_probe,
.remove = sirfsoc_uart_remove,
.driver = {
.name = SIRFUART_PORT_NAME,
.of_match_table = sirfsoc_uart_ids,
.pm = &sirfsoc_uart_pm_ops,
},
};
static int __init sirfsoc_uart_init(void)
{
int ret = 0;
ret = uart_register_driver(&sirfsoc_uart_drv);
if (ret)
goto out;
ret = platform_driver_register(&sirfsoc_uart_driver);
if (ret)
uart_unregister_driver(&sirfsoc_uart_drv);
out:
return ret;
}
module_init(sirfsoc_uart_init);
static void __exit sirfsoc_uart_exit(void)
{
platform_driver_unregister(&sirfsoc_uart_driver);
uart_unregister_driver(&sirfsoc_uart_drv);
}
module_exit(sirfsoc_uart_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Bin Shi <Bin.Shi@csr.com>, Rong Wang<Rong.Wang@csr.com>");
MODULE_DESCRIPTION("CSR SiRFprimaII Uart Driver");