mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-09 07:14:48 +08:00
9d004b2f4f
- Add driver-core infrastructure for lockdep validation of device_lock(), and fixup a deadlock report that was previously hidden behind the 'lockdep no validate' policy. - Add CXL _OSC support for claiming native control of CXL hotplug and error handling. - Disable suspend in the presence of CXL memory unless and until a protocol is identified for restoring PCI device context from memory hosted on CXL PCI devices. - Add support for snooping CXL mailbox commands to protect against inopportune changes, like set-partition with the 'immediate' flag set. - Rework how the driver detects legacy CXL 1.1 configurations (CXL DVSEC / 'mem_enable') before enabling new CXL 2.0 decode configurations (CXL HDM Capability). - Miscellaneous cleanups and fixes from -next exposure. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYpFUogAKCRDfioYZHlFs Zz+VAP9o/NkYhbaM2Ne9ImgsdJii96gA8nN7q/q/ZoXjsSx2WQD+NRC5d3ZwZDCa 9YKEkntnvbnAZOCs+ZUuyZBgNh6vsgU= =p92w -----END PGP SIGNATURE----- Merge tag 'cxl-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl Pull cxl updates from Dan Williams: "Compute Express Link (CXL) updates for this cycle. The highlight is new driver-core infrastructure and CXL subsystem changes for allowing lockdep to validate device_lock() usage. Thanks to PeterZ for setting me straight on the current capabilities of the lockdep API, and Greg acked it as well. On the CXL ACPI side this update adds support for CXL _OSC so that platform firmware knows that it is safe to still grant Linux native control of PCIe hotplug and error handling in the presence of CXL devices. A circular dependency problem was discovered between suspend and CXL memory for cases where the suspend image might be stored in CXL memory where that image also contains the PCI register state to restore to re-enable the device. Disable suspend for now until an architecture is defined to clarify that conflict. Lastly a collection of reworks, fixes, and cleanups to the CXL subsystem where support for snooping mailbox commands and properly handling the "mem_enable" flow are the highlights. Summary: - Add driver-core infrastructure for lockdep validation of device_lock(), and fixup a deadlock report that was previously hidden behind the 'lockdep no validate' policy. - Add CXL _OSC support for claiming native control of CXL hotplug and error handling. - Disable suspend in the presence of CXL memory unless and until a protocol is identified for restoring PCI device context from memory hosted on CXL PCI devices. - Add support for snooping CXL mailbox commands to protect against inopportune changes, like set-partition with the 'immediate' flag set. - Rework how the driver detects legacy CXL 1.1 configurations (CXL DVSEC / 'mem_enable') before enabling new CXL 2.0 decode configurations (CXL HDM Capability). - Miscellaneous cleanups and fixes from -next exposure" * tag 'cxl-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl: (47 commits) cxl/port: Enable HDM Capability after validating DVSEC Ranges cxl/port: Reuse 'struct cxl_hdm' context for hdm init cxl/port: Move endpoint HDM Decoder Capability init to port driver cxl/pci: Drop @info argument to cxl_hdm_decode_init() cxl/mem: Merge cxl_dvsec_ranges() and cxl_hdm_decode_init() cxl/mem: Skip range enumeration if mem_enable clear cxl/mem: Consolidate CXL DVSEC Range enumeration in the core cxl/pci: Move cxl_await_media_ready() to the core cxl/mem: Validate port connectivity before dvsec ranges cxl/mem: Fix cxl_mem_probe() error exit cxl/pci: Drop wait_for_valid() from cxl_await_media_ready() cxl/pci: Consolidate wait_for_media() and wait_for_media_ready() cxl/mem: Drop mem_enabled check from wait_for_media() nvdimm: Fix firmware activation deadlock scenarios device-core: Kill the lockdep_mutex nvdimm: Drop nd_device_lock() ACPI: NFIT: Drop nfit_device_lock() nvdimm: Replace lockdep_mutex with local lock classes cxl: Drop cxl_device_lock() cxl/acpi: Add root device lockdep validation ...
773 lines
20 KiB
C
773 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Persistent Memory Driver
|
|
*
|
|
* Copyright (c) 2014-2015, Intel Corporation.
|
|
* Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
|
|
* Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/badblocks.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/nd.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/cacheflush.h>
|
|
#include "pmem.h"
|
|
#include "btt.h"
|
|
#include "pfn.h"
|
|
#include "nd.h"
|
|
|
|
static struct device *to_dev(struct pmem_device *pmem)
|
|
{
|
|
/*
|
|
* nvdimm bus services need a 'dev' parameter, and we record the device
|
|
* at init in bb.dev.
|
|
*/
|
|
return pmem->bb.dev;
|
|
}
|
|
|
|
static struct nd_region *to_region(struct pmem_device *pmem)
|
|
{
|
|
return to_nd_region(to_dev(pmem)->parent);
|
|
}
|
|
|
|
static phys_addr_t to_phys(struct pmem_device *pmem, phys_addr_t offset)
|
|
{
|
|
return pmem->phys_addr + offset;
|
|
}
|
|
|
|
static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
|
|
{
|
|
return (offset - pmem->data_offset) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
|
|
{
|
|
return (sector << SECTOR_SHIFT) + pmem->data_offset;
|
|
}
|
|
|
|
static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
|
|
unsigned int len)
|
|
{
|
|
phys_addr_t phys = to_phys(pmem, offset);
|
|
unsigned long pfn_start, pfn_end, pfn;
|
|
|
|
/* only pmem in the linear map supports HWPoison */
|
|
if (is_vmalloc_addr(pmem->virt_addr))
|
|
return;
|
|
|
|
pfn_start = PHYS_PFN(phys);
|
|
pfn_end = pfn_start + PHYS_PFN(len);
|
|
for (pfn = pfn_start; pfn < pfn_end; pfn++) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
/*
|
|
* Note, no need to hold a get_dev_pagemap() reference
|
|
* here since we're in the driver I/O path and
|
|
* outstanding I/O requests pin the dev_pagemap.
|
|
*/
|
|
if (test_and_clear_pmem_poison(page))
|
|
clear_mce_nospec(pfn);
|
|
}
|
|
}
|
|
|
|
static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
|
|
{
|
|
if (blks == 0)
|
|
return;
|
|
badblocks_clear(&pmem->bb, sector, blks);
|
|
if (pmem->bb_state)
|
|
sysfs_notify_dirent(pmem->bb_state);
|
|
}
|
|
|
|
static long __pmem_clear_poison(struct pmem_device *pmem,
|
|
phys_addr_t offset, unsigned int len)
|
|
{
|
|
phys_addr_t phys = to_phys(pmem, offset);
|
|
long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
|
|
|
|
if (cleared > 0) {
|
|
pmem_mkpage_present(pmem, offset, cleared);
|
|
arch_invalidate_pmem(pmem->virt_addr + offset, len);
|
|
}
|
|
return cleared;
|
|
}
|
|
|
|
static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
|
|
phys_addr_t offset, unsigned int len)
|
|
{
|
|
long cleared = __pmem_clear_poison(pmem, offset, len);
|
|
|
|
if (cleared < 0)
|
|
return BLK_STS_IOERR;
|
|
|
|
pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
|
|
if (cleared < len)
|
|
return BLK_STS_IOERR;
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void write_pmem(void *pmem_addr, struct page *page,
|
|
unsigned int off, unsigned int len)
|
|
{
|
|
unsigned int chunk;
|
|
void *mem;
|
|
|
|
while (len) {
|
|
mem = kmap_atomic(page);
|
|
chunk = min_t(unsigned int, len, PAGE_SIZE - off);
|
|
memcpy_flushcache(pmem_addr, mem + off, chunk);
|
|
kunmap_atomic(mem);
|
|
len -= chunk;
|
|
off = 0;
|
|
page++;
|
|
pmem_addr += chunk;
|
|
}
|
|
}
|
|
|
|
static blk_status_t read_pmem(struct page *page, unsigned int off,
|
|
void *pmem_addr, unsigned int len)
|
|
{
|
|
unsigned int chunk;
|
|
unsigned long rem;
|
|
void *mem;
|
|
|
|
while (len) {
|
|
mem = kmap_atomic(page);
|
|
chunk = min_t(unsigned int, len, PAGE_SIZE - off);
|
|
rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
|
|
kunmap_atomic(mem);
|
|
if (rem)
|
|
return BLK_STS_IOERR;
|
|
len -= chunk;
|
|
off = 0;
|
|
page++;
|
|
pmem_addr += chunk;
|
|
}
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static blk_status_t pmem_do_read(struct pmem_device *pmem,
|
|
struct page *page, unsigned int page_off,
|
|
sector_t sector, unsigned int len)
|
|
{
|
|
blk_status_t rc;
|
|
phys_addr_t pmem_off = to_offset(pmem, sector);
|
|
void *pmem_addr = pmem->virt_addr + pmem_off;
|
|
|
|
if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
|
|
return BLK_STS_IOERR;
|
|
|
|
rc = read_pmem(page, page_off, pmem_addr, len);
|
|
flush_dcache_page(page);
|
|
return rc;
|
|
}
|
|
|
|
static blk_status_t pmem_do_write(struct pmem_device *pmem,
|
|
struct page *page, unsigned int page_off,
|
|
sector_t sector, unsigned int len)
|
|
{
|
|
phys_addr_t pmem_off = to_offset(pmem, sector);
|
|
void *pmem_addr = pmem->virt_addr + pmem_off;
|
|
|
|
if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
|
|
blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
|
|
|
|
if (rc != BLK_STS_OK)
|
|
return rc;
|
|
}
|
|
|
|
flush_dcache_page(page);
|
|
write_pmem(pmem_addr, page, page_off, len);
|
|
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
static void pmem_submit_bio(struct bio *bio)
|
|
{
|
|
int ret = 0;
|
|
blk_status_t rc = 0;
|
|
bool do_acct;
|
|
unsigned long start;
|
|
struct bio_vec bvec;
|
|
struct bvec_iter iter;
|
|
struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
|
|
struct nd_region *nd_region = to_region(pmem);
|
|
|
|
if (bio->bi_opf & REQ_PREFLUSH)
|
|
ret = nvdimm_flush(nd_region, bio);
|
|
|
|
do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
|
|
if (do_acct)
|
|
start = bio_start_io_acct(bio);
|
|
bio_for_each_segment(bvec, bio, iter) {
|
|
if (op_is_write(bio_op(bio)))
|
|
rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
|
|
iter.bi_sector, bvec.bv_len);
|
|
else
|
|
rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
|
|
iter.bi_sector, bvec.bv_len);
|
|
if (rc) {
|
|
bio->bi_status = rc;
|
|
break;
|
|
}
|
|
}
|
|
if (do_acct)
|
|
bio_end_io_acct(bio, start);
|
|
|
|
if (bio->bi_opf & REQ_FUA)
|
|
ret = nvdimm_flush(nd_region, bio);
|
|
|
|
if (ret)
|
|
bio->bi_status = errno_to_blk_status(ret);
|
|
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static int pmem_rw_page(struct block_device *bdev, sector_t sector,
|
|
struct page *page, unsigned int op)
|
|
{
|
|
struct pmem_device *pmem = bdev->bd_disk->private_data;
|
|
blk_status_t rc;
|
|
|
|
if (op_is_write(op))
|
|
rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
|
|
else
|
|
rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
|
|
/*
|
|
* The ->rw_page interface is subtle and tricky. The core
|
|
* retries on any error, so we can only invoke page_endio() in
|
|
* the successful completion case. Otherwise, we'll see crashes
|
|
* caused by double completion.
|
|
*/
|
|
if (rc == 0)
|
|
page_endio(page, op_is_write(op), 0);
|
|
|
|
return blk_status_to_errno(rc);
|
|
}
|
|
|
|
/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
|
|
__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
|
|
long nr_pages, enum dax_access_mode mode, void **kaddr,
|
|
pfn_t *pfn)
|
|
{
|
|
resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
|
|
sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
|
|
unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
|
|
struct badblocks *bb = &pmem->bb;
|
|
sector_t first_bad;
|
|
int num_bad;
|
|
|
|
if (kaddr)
|
|
*kaddr = pmem->virt_addr + offset;
|
|
if (pfn)
|
|
*pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
|
|
|
|
if (bb->count &&
|
|
badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
|
|
long actual_nr;
|
|
|
|
if (mode != DAX_RECOVERY_WRITE)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Set the recovery stride is set to kernel page size because
|
|
* the underlying driver and firmware clear poison functions
|
|
* don't appear to handle large chunk(such as 2MiB) reliably.
|
|
*/
|
|
actual_nr = PHYS_PFN(
|
|
PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
|
|
dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
|
|
sector, nr_pages, first_bad, actual_nr);
|
|
if (actual_nr)
|
|
return actual_nr;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If badblocks are present but not in the range, limit known good range
|
|
* to the requested range.
|
|
*/
|
|
if (bb->count)
|
|
return nr_pages;
|
|
return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
|
|
}
|
|
|
|
static const struct block_device_operations pmem_fops = {
|
|
.owner = THIS_MODULE,
|
|
.submit_bio = pmem_submit_bio,
|
|
.rw_page = pmem_rw_page,
|
|
};
|
|
|
|
static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
|
|
size_t nr_pages)
|
|
{
|
|
struct pmem_device *pmem = dax_get_private(dax_dev);
|
|
|
|
return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
|
|
PFN_PHYS(pgoff) >> SECTOR_SHIFT,
|
|
PAGE_SIZE));
|
|
}
|
|
|
|
static long pmem_dax_direct_access(struct dax_device *dax_dev,
|
|
pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
|
|
void **kaddr, pfn_t *pfn)
|
|
{
|
|
struct pmem_device *pmem = dax_get_private(dax_dev);
|
|
|
|
return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
|
|
}
|
|
|
|
/*
|
|
* The recovery write thread started out as a normal pwrite thread and
|
|
* when the filesystem was told about potential media error in the
|
|
* range, filesystem turns the normal pwrite to a dax_recovery_write.
|
|
*
|
|
* The recovery write consists of clearing media poison, clearing page
|
|
* HWPoison bit, reenable page-wide read-write permission, flush the
|
|
* caches and finally write. A competing pread thread will be held
|
|
* off during the recovery process since data read back might not be
|
|
* valid, and this is achieved by clearing the badblock records after
|
|
* the recovery write is complete. Competing recovery write threads
|
|
* are already serialized by writer lock held by dax_iomap_rw().
|
|
*/
|
|
static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
|
|
void *addr, size_t bytes, struct iov_iter *i)
|
|
{
|
|
struct pmem_device *pmem = dax_get_private(dax_dev);
|
|
size_t olen, len, off;
|
|
phys_addr_t pmem_off;
|
|
struct device *dev = pmem->bb.dev;
|
|
long cleared;
|
|
|
|
off = offset_in_page(addr);
|
|
len = PFN_PHYS(PFN_UP(off + bytes));
|
|
if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
|
|
return _copy_from_iter_flushcache(addr, bytes, i);
|
|
|
|
/*
|
|
* Not page-aligned range cannot be recovered. This should not
|
|
* happen unless something else went wrong.
|
|
*/
|
|
if (off || !PAGE_ALIGNED(bytes)) {
|
|
dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
|
|
addr, bytes);
|
|
return 0;
|
|
}
|
|
|
|
pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
|
|
cleared = __pmem_clear_poison(pmem, pmem_off, len);
|
|
if (cleared > 0 && cleared < len) {
|
|
dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
|
|
cleared, len);
|
|
return 0;
|
|
}
|
|
if (cleared < 0) {
|
|
dev_dbg(dev, "poison clear failed: %ld\n", cleared);
|
|
return 0;
|
|
}
|
|
|
|
olen = _copy_from_iter_flushcache(addr, bytes, i);
|
|
pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
|
|
|
|
return olen;
|
|
}
|
|
|
|
static const struct dax_operations pmem_dax_ops = {
|
|
.direct_access = pmem_dax_direct_access,
|
|
.zero_page_range = pmem_dax_zero_page_range,
|
|
.recovery_write = pmem_recovery_write,
|
|
};
|
|
|
|
static ssize_t write_cache_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct pmem_device *pmem = dev_to_disk(dev)->private_data;
|
|
|
|
return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
|
|
}
|
|
|
|
static ssize_t write_cache_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct pmem_device *pmem = dev_to_disk(dev)->private_data;
|
|
bool write_cache;
|
|
int rc;
|
|
|
|
rc = strtobool(buf, &write_cache);
|
|
if (rc)
|
|
return rc;
|
|
dax_write_cache(pmem->dax_dev, write_cache);
|
|
return len;
|
|
}
|
|
static DEVICE_ATTR_RW(write_cache);
|
|
|
|
static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
|
|
{
|
|
#ifndef CONFIG_ARCH_HAS_PMEM_API
|
|
if (a == &dev_attr_write_cache.attr)
|
|
return 0;
|
|
#endif
|
|
return a->mode;
|
|
}
|
|
|
|
static struct attribute *dax_attributes[] = {
|
|
&dev_attr_write_cache.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group dax_attribute_group = {
|
|
.name = "dax",
|
|
.attrs = dax_attributes,
|
|
.is_visible = dax_visible,
|
|
};
|
|
|
|
static const struct attribute_group *pmem_attribute_groups[] = {
|
|
&dax_attribute_group,
|
|
NULL,
|
|
};
|
|
|
|
static void pmem_release_disk(void *__pmem)
|
|
{
|
|
struct pmem_device *pmem = __pmem;
|
|
|
|
dax_remove_host(pmem->disk);
|
|
kill_dax(pmem->dax_dev);
|
|
put_dax(pmem->dax_dev);
|
|
del_gendisk(pmem->disk);
|
|
|
|
blk_cleanup_disk(pmem->disk);
|
|
}
|
|
|
|
static int pmem_attach_disk(struct device *dev,
|
|
struct nd_namespace_common *ndns)
|
|
{
|
|
struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
|
|
struct nd_region *nd_region = to_nd_region(dev->parent);
|
|
int nid = dev_to_node(dev), fua;
|
|
struct resource *res = &nsio->res;
|
|
struct range bb_range;
|
|
struct nd_pfn *nd_pfn = NULL;
|
|
struct dax_device *dax_dev;
|
|
struct nd_pfn_sb *pfn_sb;
|
|
struct pmem_device *pmem;
|
|
struct request_queue *q;
|
|
struct gendisk *disk;
|
|
void *addr;
|
|
int rc;
|
|
|
|
pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
|
|
if (!pmem)
|
|
return -ENOMEM;
|
|
|
|
rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* while nsio_rw_bytes is active, parse a pfn info block if present */
|
|
if (is_nd_pfn(dev)) {
|
|
nd_pfn = to_nd_pfn(dev);
|
|
rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* we're attaching a block device, disable raw namespace access */
|
|
devm_namespace_disable(dev, ndns);
|
|
|
|
dev_set_drvdata(dev, pmem);
|
|
pmem->phys_addr = res->start;
|
|
pmem->size = resource_size(res);
|
|
fua = nvdimm_has_flush(nd_region);
|
|
if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
|
|
dev_warn(dev, "unable to guarantee persistence of writes\n");
|
|
fua = 0;
|
|
}
|
|
|
|
if (!devm_request_mem_region(dev, res->start, resource_size(res),
|
|
dev_name(&ndns->dev))) {
|
|
dev_warn(dev, "could not reserve region %pR\n", res);
|
|
return -EBUSY;
|
|
}
|
|
|
|
disk = blk_alloc_disk(nid);
|
|
if (!disk)
|
|
return -ENOMEM;
|
|
q = disk->queue;
|
|
|
|
pmem->disk = disk;
|
|
pmem->pgmap.owner = pmem;
|
|
pmem->pfn_flags = PFN_DEV;
|
|
if (is_nd_pfn(dev)) {
|
|
pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
|
|
addr = devm_memremap_pages(dev, &pmem->pgmap);
|
|
pfn_sb = nd_pfn->pfn_sb;
|
|
pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
|
|
pmem->pfn_pad = resource_size(res) -
|
|
range_len(&pmem->pgmap.range);
|
|
pmem->pfn_flags |= PFN_MAP;
|
|
bb_range = pmem->pgmap.range;
|
|
bb_range.start += pmem->data_offset;
|
|
} else if (pmem_should_map_pages(dev)) {
|
|
pmem->pgmap.range.start = res->start;
|
|
pmem->pgmap.range.end = res->end;
|
|
pmem->pgmap.nr_range = 1;
|
|
pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
|
|
addr = devm_memremap_pages(dev, &pmem->pgmap);
|
|
pmem->pfn_flags |= PFN_MAP;
|
|
bb_range = pmem->pgmap.range;
|
|
} else {
|
|
addr = devm_memremap(dev, pmem->phys_addr,
|
|
pmem->size, ARCH_MEMREMAP_PMEM);
|
|
bb_range.start = res->start;
|
|
bb_range.end = res->end;
|
|
}
|
|
|
|
if (IS_ERR(addr)) {
|
|
rc = PTR_ERR(addr);
|
|
goto out;
|
|
}
|
|
pmem->virt_addr = addr;
|
|
|
|
blk_queue_write_cache(q, true, fua);
|
|
blk_queue_physical_block_size(q, PAGE_SIZE);
|
|
blk_queue_logical_block_size(q, pmem_sector_size(ndns));
|
|
blk_queue_max_hw_sectors(q, UINT_MAX);
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
|
|
if (pmem->pfn_flags & PFN_MAP)
|
|
blk_queue_flag_set(QUEUE_FLAG_DAX, q);
|
|
|
|
disk->fops = &pmem_fops;
|
|
disk->private_data = pmem;
|
|
nvdimm_namespace_disk_name(ndns, disk->disk_name);
|
|
set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
|
|
/ 512);
|
|
if (devm_init_badblocks(dev, &pmem->bb))
|
|
return -ENOMEM;
|
|
nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
|
|
disk->bb = &pmem->bb;
|
|
|
|
dax_dev = alloc_dax(pmem, &pmem_dax_ops);
|
|
if (IS_ERR(dax_dev)) {
|
|
rc = PTR_ERR(dax_dev);
|
|
goto out;
|
|
}
|
|
set_dax_nocache(dax_dev);
|
|
set_dax_nomc(dax_dev);
|
|
if (is_nvdimm_sync(nd_region))
|
|
set_dax_synchronous(dax_dev);
|
|
rc = dax_add_host(dax_dev, disk);
|
|
if (rc)
|
|
goto out_cleanup_dax;
|
|
dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
|
|
pmem->dax_dev = dax_dev;
|
|
|
|
rc = device_add_disk(dev, disk, pmem_attribute_groups);
|
|
if (rc)
|
|
goto out_remove_host;
|
|
if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
|
|
return -ENOMEM;
|
|
|
|
nvdimm_check_and_set_ro(disk);
|
|
|
|
pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
|
|
"badblocks");
|
|
if (!pmem->bb_state)
|
|
dev_warn(dev, "'badblocks' notification disabled\n");
|
|
return 0;
|
|
|
|
out_remove_host:
|
|
dax_remove_host(pmem->disk);
|
|
out_cleanup_dax:
|
|
kill_dax(pmem->dax_dev);
|
|
put_dax(pmem->dax_dev);
|
|
out:
|
|
blk_cleanup_disk(pmem->disk);
|
|
return rc;
|
|
}
|
|
|
|
static int nd_pmem_probe(struct device *dev)
|
|
{
|
|
int ret;
|
|
struct nd_namespace_common *ndns;
|
|
|
|
ndns = nvdimm_namespace_common_probe(dev);
|
|
if (IS_ERR(ndns))
|
|
return PTR_ERR(ndns);
|
|
|
|
if (is_nd_btt(dev))
|
|
return nvdimm_namespace_attach_btt(ndns);
|
|
|
|
if (is_nd_pfn(dev))
|
|
return pmem_attach_disk(dev, ndns);
|
|
|
|
ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nd_btt_probe(dev, ndns);
|
|
if (ret == 0)
|
|
return -ENXIO;
|
|
|
|
/*
|
|
* We have two failure conditions here, there is no
|
|
* info reserver block or we found a valid info reserve block
|
|
* but failed to initialize the pfn superblock.
|
|
*
|
|
* For the first case consider namespace as a raw pmem namespace
|
|
* and attach a disk.
|
|
*
|
|
* For the latter, consider this a success and advance the namespace
|
|
* seed.
|
|
*/
|
|
ret = nd_pfn_probe(dev, ndns);
|
|
if (ret == 0)
|
|
return -ENXIO;
|
|
else if (ret == -EOPNOTSUPP)
|
|
return ret;
|
|
|
|
ret = nd_dax_probe(dev, ndns);
|
|
if (ret == 0)
|
|
return -ENXIO;
|
|
else if (ret == -EOPNOTSUPP)
|
|
return ret;
|
|
|
|
/* probe complete, attach handles namespace enabling */
|
|
devm_namespace_disable(dev, ndns);
|
|
|
|
return pmem_attach_disk(dev, ndns);
|
|
}
|
|
|
|
static void nd_pmem_remove(struct device *dev)
|
|
{
|
|
struct pmem_device *pmem = dev_get_drvdata(dev);
|
|
|
|
if (is_nd_btt(dev))
|
|
nvdimm_namespace_detach_btt(to_nd_btt(dev));
|
|
else {
|
|
/*
|
|
* Note, this assumes device_lock() context to not
|
|
* race nd_pmem_notify()
|
|
*/
|
|
sysfs_put(pmem->bb_state);
|
|
pmem->bb_state = NULL;
|
|
}
|
|
nvdimm_flush(to_nd_region(dev->parent), NULL);
|
|
}
|
|
|
|
static void nd_pmem_shutdown(struct device *dev)
|
|
{
|
|
nvdimm_flush(to_nd_region(dev->parent), NULL);
|
|
}
|
|
|
|
static void pmem_revalidate_poison(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region;
|
|
resource_size_t offset = 0, end_trunc = 0;
|
|
struct nd_namespace_common *ndns;
|
|
struct nd_namespace_io *nsio;
|
|
struct badblocks *bb;
|
|
struct range range;
|
|
struct kernfs_node *bb_state;
|
|
|
|
if (is_nd_btt(dev)) {
|
|
struct nd_btt *nd_btt = to_nd_btt(dev);
|
|
|
|
ndns = nd_btt->ndns;
|
|
nd_region = to_nd_region(ndns->dev.parent);
|
|
nsio = to_nd_namespace_io(&ndns->dev);
|
|
bb = &nsio->bb;
|
|
bb_state = NULL;
|
|
} else {
|
|
struct pmem_device *pmem = dev_get_drvdata(dev);
|
|
|
|
nd_region = to_region(pmem);
|
|
bb = &pmem->bb;
|
|
bb_state = pmem->bb_state;
|
|
|
|
if (is_nd_pfn(dev)) {
|
|
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
|
|
struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
|
|
|
|
ndns = nd_pfn->ndns;
|
|
offset = pmem->data_offset +
|
|
__le32_to_cpu(pfn_sb->start_pad);
|
|
end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
|
|
} else {
|
|
ndns = to_ndns(dev);
|
|
}
|
|
|
|
nsio = to_nd_namespace_io(&ndns->dev);
|
|
}
|
|
|
|
range.start = nsio->res.start + offset;
|
|
range.end = nsio->res.end - end_trunc;
|
|
nvdimm_badblocks_populate(nd_region, bb, &range);
|
|
if (bb_state)
|
|
sysfs_notify_dirent(bb_state);
|
|
}
|
|
|
|
static void pmem_revalidate_region(struct device *dev)
|
|
{
|
|
struct pmem_device *pmem;
|
|
|
|
if (is_nd_btt(dev)) {
|
|
struct nd_btt *nd_btt = to_nd_btt(dev);
|
|
struct btt *btt = nd_btt->btt;
|
|
|
|
nvdimm_check_and_set_ro(btt->btt_disk);
|
|
return;
|
|
}
|
|
|
|
pmem = dev_get_drvdata(dev);
|
|
nvdimm_check_and_set_ro(pmem->disk);
|
|
}
|
|
|
|
static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
|
|
{
|
|
switch (event) {
|
|
case NVDIMM_REVALIDATE_POISON:
|
|
pmem_revalidate_poison(dev);
|
|
break;
|
|
case NVDIMM_REVALIDATE_REGION:
|
|
pmem_revalidate_region(dev);
|
|
break;
|
|
default:
|
|
dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
|
|
break;
|
|
}
|
|
}
|
|
|
|
MODULE_ALIAS("pmem");
|
|
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
|
|
MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
|
|
static struct nd_device_driver nd_pmem_driver = {
|
|
.probe = nd_pmem_probe,
|
|
.remove = nd_pmem_remove,
|
|
.notify = nd_pmem_notify,
|
|
.shutdown = nd_pmem_shutdown,
|
|
.drv = {
|
|
.name = "nd_pmem",
|
|
},
|
|
.type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
|
|
};
|
|
|
|
module_nd_driver(nd_pmem_driver);
|
|
|
|
MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
|
|
MODULE_LICENSE("GPL v2");
|