mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-12 08:45:11 +08:00
3ad33b2436
We hit the BUG_ON() in mm/rmap.c:vma_address() when trying to migrate via mbind(MPOL_MF_MOVE) a non-anon region that spans multiple vmas. For anon-regions, we just fail to migrate any pages beyond the 1st vma in the range. This occurs because do_mbind() collects a list of pages to migrate by calling check_range(). check_range() walks the task's mm, spanning vmas as necessary, to collect the migratable pages into a list. Then, do_mbind() calls migrate_pages() passing the list of pages, a function to allocate new pages based on vma policy [new_vma_page()], and a pointer to the first vma of the range. For each page in the list, new_vma_page() calls page_address_in_vma() passing the page and the vma [first in range] to obtain the address to get for alloc_page_vma(). The page address is needed to get interleaving policy correct. If the pages in the list come from multiple vmas, eventually, new_page_address() will pass that page to page_address_in_vma() with the incorrect vma. For !PageAnon pages, this will result in a bug check in rmap.c:vma_address(). For anon pages, vma_address() will just return EFAULT and fail the migration. This patch modifies new_vma_page() to check the return value from page_address_in_vma(). If the return value is EFAULT, new_vma_page() searchs forward via vm_next for the vma that maps the page--i.e., that does not return EFAULT. This assumes that the pages in the list handed to migrate_pages() is in address order. This is currently case. The patch documents this assumption in a new comment block for new_vma_page(). If new_vma_page() cannot locate the vma mapping the page in a forward search in the mm, it will pass a NULL vma to alloc_page_vma(). This will result in the allocation using the task policy, if any, else system default policy. This situation is unlikely, but the patch documents this behavior with a comment. Note, this patch results in restarting from the first vma in a multi-vma range each time new_vma_page() is called. If this is not acceptable, we can make the vma argument a pointer, both in new_vma_page() and it's caller unmap_and_move() so that the value held by the loop in migrate_pages() always passes down the last vma in which a page was found. This will require changes to all new_page_t functions passed to migrate_pages(). Is this necessary? For this patch to work, we can't bug check in vma_address() for pages outside the argument vma. This patch removes the BUG_ON(). All other callers [besides new_vma_page()] already check the return status. Tested on x86_64, 4 node NUMA platform. Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2039 lines
51 KiB
C
2039 lines
51 KiB
C
/*
|
|
* Simple NUMA memory policy for the Linux kernel.
|
|
*
|
|
* Copyright 2003,2004 Andi Kleen, SuSE Labs.
|
|
* (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
|
|
* Subject to the GNU Public License, version 2.
|
|
*
|
|
* NUMA policy allows the user to give hints in which node(s) memory should
|
|
* be allocated.
|
|
*
|
|
* Support four policies per VMA and per process:
|
|
*
|
|
* The VMA policy has priority over the process policy for a page fault.
|
|
*
|
|
* interleave Allocate memory interleaved over a set of nodes,
|
|
* with normal fallback if it fails.
|
|
* For VMA based allocations this interleaves based on the
|
|
* offset into the backing object or offset into the mapping
|
|
* for anonymous memory. For process policy an process counter
|
|
* is used.
|
|
*
|
|
* bind Only allocate memory on a specific set of nodes,
|
|
* no fallback.
|
|
* FIXME: memory is allocated starting with the first node
|
|
* to the last. It would be better if bind would truly restrict
|
|
* the allocation to memory nodes instead
|
|
*
|
|
* preferred Try a specific node first before normal fallback.
|
|
* As a special case node -1 here means do the allocation
|
|
* on the local CPU. This is normally identical to default,
|
|
* but useful to set in a VMA when you have a non default
|
|
* process policy.
|
|
*
|
|
* default Allocate on the local node first, or when on a VMA
|
|
* use the process policy. This is what Linux always did
|
|
* in a NUMA aware kernel and still does by, ahem, default.
|
|
*
|
|
* The process policy is applied for most non interrupt memory allocations
|
|
* in that process' context. Interrupts ignore the policies and always
|
|
* try to allocate on the local CPU. The VMA policy is only applied for memory
|
|
* allocations for a VMA in the VM.
|
|
*
|
|
* Currently there are a few corner cases in swapping where the policy
|
|
* is not applied, but the majority should be handled. When process policy
|
|
* is used it is not remembered over swap outs/swap ins.
|
|
*
|
|
* Only the highest zone in the zone hierarchy gets policied. Allocations
|
|
* requesting a lower zone just use default policy. This implies that
|
|
* on systems with highmem kernel lowmem allocation don't get policied.
|
|
* Same with GFP_DMA allocations.
|
|
*
|
|
* For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
|
|
* all users and remembered even when nobody has memory mapped.
|
|
*/
|
|
|
|
/* Notebook:
|
|
fix mmap readahead to honour policy and enable policy for any page cache
|
|
object
|
|
statistics for bigpages
|
|
global policy for page cache? currently it uses process policy. Requires
|
|
first item above.
|
|
handle mremap for shared memory (currently ignored for the policy)
|
|
grows down?
|
|
make bind policy root only? It can trigger oom much faster and the
|
|
kernel is not always grateful with that.
|
|
could replace all the switch()es with a mempolicy_ops structure.
|
|
*/
|
|
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/module.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
/* Internal flags */
|
|
#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
|
|
#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
|
|
#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
|
|
|
|
static struct kmem_cache *policy_cache;
|
|
static struct kmem_cache *sn_cache;
|
|
|
|
/* Highest zone. An specific allocation for a zone below that is not
|
|
policied. */
|
|
enum zone_type policy_zone = 0;
|
|
|
|
struct mempolicy default_policy = {
|
|
.refcnt = ATOMIC_INIT(1), /* never free it */
|
|
.policy = MPOL_DEFAULT,
|
|
};
|
|
|
|
static void mpol_rebind_policy(struct mempolicy *pol,
|
|
const nodemask_t *newmask);
|
|
|
|
/* Do sanity checking on a policy */
|
|
static int mpol_check_policy(int mode, nodemask_t *nodes)
|
|
{
|
|
int empty = nodes_empty(*nodes);
|
|
|
|
switch (mode) {
|
|
case MPOL_DEFAULT:
|
|
if (!empty)
|
|
return -EINVAL;
|
|
break;
|
|
case MPOL_BIND:
|
|
case MPOL_INTERLEAVE:
|
|
/* Preferred will only use the first bit, but allow
|
|
more for now. */
|
|
if (empty)
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
return nodes_subset(*nodes, node_states[N_HIGH_MEMORY]) ? 0 : -EINVAL;
|
|
}
|
|
|
|
/* Generate a custom zonelist for the BIND policy. */
|
|
static struct zonelist *bind_zonelist(nodemask_t *nodes)
|
|
{
|
|
struct zonelist *zl;
|
|
int num, max, nd;
|
|
enum zone_type k;
|
|
|
|
max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
|
|
max++; /* space for zlcache_ptr (see mmzone.h) */
|
|
zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
|
|
if (!zl)
|
|
return ERR_PTR(-ENOMEM);
|
|
zl->zlcache_ptr = NULL;
|
|
num = 0;
|
|
/* First put in the highest zones from all nodes, then all the next
|
|
lower zones etc. Avoid empty zones because the memory allocator
|
|
doesn't like them. If you implement node hot removal you
|
|
have to fix that. */
|
|
k = MAX_NR_ZONES - 1;
|
|
while (1) {
|
|
for_each_node_mask(nd, *nodes) {
|
|
struct zone *z = &NODE_DATA(nd)->node_zones[k];
|
|
if (z->present_pages > 0)
|
|
zl->zones[num++] = z;
|
|
}
|
|
if (k == 0)
|
|
break;
|
|
k--;
|
|
}
|
|
if (num == 0) {
|
|
kfree(zl);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
zl->zones[num] = NULL;
|
|
return zl;
|
|
}
|
|
|
|
/* Create a new policy */
|
|
static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
|
|
{
|
|
struct mempolicy *policy;
|
|
|
|
pr_debug("setting mode %d nodes[0] %lx\n",
|
|
mode, nodes ? nodes_addr(*nodes)[0] : -1);
|
|
|
|
if (mode == MPOL_DEFAULT)
|
|
return NULL;
|
|
policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
|
|
if (!policy)
|
|
return ERR_PTR(-ENOMEM);
|
|
atomic_set(&policy->refcnt, 1);
|
|
switch (mode) {
|
|
case MPOL_INTERLEAVE:
|
|
policy->v.nodes = *nodes;
|
|
nodes_and(policy->v.nodes, policy->v.nodes,
|
|
node_states[N_HIGH_MEMORY]);
|
|
if (nodes_weight(policy->v.nodes) == 0) {
|
|
kmem_cache_free(policy_cache, policy);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
policy->v.preferred_node = first_node(*nodes);
|
|
if (policy->v.preferred_node >= MAX_NUMNODES)
|
|
policy->v.preferred_node = -1;
|
|
break;
|
|
case MPOL_BIND:
|
|
policy->v.zonelist = bind_zonelist(nodes);
|
|
if (IS_ERR(policy->v.zonelist)) {
|
|
void *error_code = policy->v.zonelist;
|
|
kmem_cache_free(policy_cache, policy);
|
|
return error_code;
|
|
}
|
|
break;
|
|
}
|
|
policy->policy = mode;
|
|
policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
|
|
return policy;
|
|
}
|
|
|
|
static void gather_stats(struct page *, void *, int pte_dirty);
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags);
|
|
|
|
/* Scan through pages checking if pages follow certain conditions. */
|
|
static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pte_t *orig_pte;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
do {
|
|
struct page *page;
|
|
int nid;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
page = vm_normal_page(vma, addr, *pte);
|
|
if (!page)
|
|
continue;
|
|
/*
|
|
* The check for PageReserved here is important to avoid
|
|
* handling zero pages and other pages that may have been
|
|
* marked special by the system.
|
|
*
|
|
* If the PageReserved would not be checked here then f.e.
|
|
* the location of the zero page could have an influence
|
|
* on MPOL_MF_STRICT, zero pages would be counted for
|
|
* the per node stats, and there would be useless attempts
|
|
* to put zero pages on the migration list.
|
|
*/
|
|
if (PageReserved(page))
|
|
continue;
|
|
nid = page_to_nid(page);
|
|
if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
|
|
continue;
|
|
|
|
if (flags & MPOL_MF_STATS)
|
|
gather_stats(page, private, pte_dirty(*pte));
|
|
else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
|
|
migrate_page_add(page, private, flags);
|
|
else
|
|
break;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
return addr != end;
|
|
}
|
|
|
|
static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
if (check_pte_range(vma, pmd, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
if (check_pmd_range(vma, pud, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int check_pgd_range(struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags,
|
|
void *private)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
if (check_pud_range(vma, pgd, addr, next, nodes,
|
|
flags, private))
|
|
return -EIO;
|
|
} while (pgd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if all pages in a range are on a set of nodes.
|
|
* If pagelist != NULL then isolate pages from the LRU and
|
|
* put them on the pagelist.
|
|
*/
|
|
static struct vm_area_struct *
|
|
check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
|
|
const nodemask_t *nodes, unsigned long flags, void *private)
|
|
{
|
|
int err;
|
|
struct vm_area_struct *first, *vma, *prev;
|
|
|
|
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
|
|
|
|
err = migrate_prep();
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
first = find_vma(mm, start);
|
|
if (!first)
|
|
return ERR_PTR(-EFAULT);
|
|
prev = NULL;
|
|
for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
|
|
if (!(flags & MPOL_MF_DISCONTIG_OK)) {
|
|
if (!vma->vm_next && vma->vm_end < end)
|
|
return ERR_PTR(-EFAULT);
|
|
if (prev && prev->vm_end < vma->vm_start)
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
if (!is_vm_hugetlb_page(vma) &&
|
|
((flags & MPOL_MF_STRICT) ||
|
|
((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
|
|
vma_migratable(vma)))) {
|
|
unsigned long endvma = vma->vm_end;
|
|
|
|
if (endvma > end)
|
|
endvma = end;
|
|
if (vma->vm_start > start)
|
|
start = vma->vm_start;
|
|
err = check_pgd_range(vma, start, endvma, nodes,
|
|
flags, private);
|
|
if (err) {
|
|
first = ERR_PTR(err);
|
|
break;
|
|
}
|
|
}
|
|
prev = vma;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
/* Apply policy to a single VMA */
|
|
static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
|
|
{
|
|
int err = 0;
|
|
struct mempolicy *old = vma->vm_policy;
|
|
|
|
pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
|
|
vma->vm_start, vma->vm_end, vma->vm_pgoff,
|
|
vma->vm_ops, vma->vm_file,
|
|
vma->vm_ops ? vma->vm_ops->set_policy : NULL);
|
|
|
|
if (vma->vm_ops && vma->vm_ops->set_policy)
|
|
err = vma->vm_ops->set_policy(vma, new);
|
|
if (!err) {
|
|
mpol_get(new);
|
|
vma->vm_policy = new;
|
|
mpol_free(old);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Step 2: apply policy to a range and do splits. */
|
|
static int mbind_range(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, struct mempolicy *new)
|
|
{
|
|
struct vm_area_struct *next;
|
|
int err;
|
|
|
|
err = 0;
|
|
for (; vma && vma->vm_start < end; vma = next) {
|
|
next = vma->vm_next;
|
|
if (vma->vm_start < start)
|
|
err = split_vma(vma->vm_mm, vma, start, 1);
|
|
if (!err && vma->vm_end > end)
|
|
err = split_vma(vma->vm_mm, vma, end, 0);
|
|
if (!err)
|
|
err = policy_vma(vma, new);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int contextualize_policy(int mode, nodemask_t *nodes)
|
|
{
|
|
if (!nodes)
|
|
return 0;
|
|
|
|
cpuset_update_task_memory_state();
|
|
if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
|
|
return -EINVAL;
|
|
return mpol_check_policy(mode, nodes);
|
|
}
|
|
|
|
|
|
/*
|
|
* Update task->flags PF_MEMPOLICY bit: set iff non-default
|
|
* mempolicy. Allows more rapid checking of this (combined perhaps
|
|
* with other PF_* flag bits) on memory allocation hot code paths.
|
|
*
|
|
* If called from outside this file, the task 'p' should -only- be
|
|
* a newly forked child not yet visible on the task list, because
|
|
* manipulating the task flags of a visible task is not safe.
|
|
*
|
|
* The above limitation is why this routine has the funny name
|
|
* mpol_fix_fork_child_flag().
|
|
*
|
|
* It is also safe to call this with a task pointer of current,
|
|
* which the static wrapper mpol_set_task_struct_flag() does,
|
|
* for use within this file.
|
|
*/
|
|
|
|
void mpol_fix_fork_child_flag(struct task_struct *p)
|
|
{
|
|
if (p->mempolicy)
|
|
p->flags |= PF_MEMPOLICY;
|
|
else
|
|
p->flags &= ~PF_MEMPOLICY;
|
|
}
|
|
|
|
static void mpol_set_task_struct_flag(void)
|
|
{
|
|
mpol_fix_fork_child_flag(current);
|
|
}
|
|
|
|
/* Set the process memory policy */
|
|
static long do_set_mempolicy(int mode, nodemask_t *nodes)
|
|
{
|
|
struct mempolicy *new;
|
|
|
|
if (contextualize_policy(mode, nodes))
|
|
return -EINVAL;
|
|
new = mpol_new(mode, nodes);
|
|
if (IS_ERR(new))
|
|
return PTR_ERR(new);
|
|
mpol_free(current->mempolicy);
|
|
current->mempolicy = new;
|
|
mpol_set_task_struct_flag();
|
|
if (new && new->policy == MPOL_INTERLEAVE)
|
|
current->il_next = first_node(new->v.nodes);
|
|
return 0;
|
|
}
|
|
|
|
/* Fill a zone bitmap for a policy */
|
|
static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
|
|
{
|
|
int i;
|
|
|
|
nodes_clear(*nodes);
|
|
switch (p->policy) {
|
|
case MPOL_BIND:
|
|
for (i = 0; p->v.zonelist->zones[i]; i++)
|
|
node_set(zone_to_nid(p->v.zonelist->zones[i]),
|
|
*nodes);
|
|
break;
|
|
case MPOL_DEFAULT:
|
|
break;
|
|
case MPOL_INTERLEAVE:
|
|
*nodes = p->v.nodes;
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
/* or use current node instead of memory_map? */
|
|
if (p->v.preferred_node < 0)
|
|
*nodes = node_states[N_HIGH_MEMORY];
|
|
else
|
|
node_set(p->v.preferred_node, *nodes);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int lookup_node(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
struct page *p;
|
|
int err;
|
|
|
|
err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
|
|
if (err >= 0) {
|
|
err = page_to_nid(p);
|
|
put_page(p);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Retrieve NUMA policy */
|
|
static long do_get_mempolicy(int *policy, nodemask_t *nmask,
|
|
unsigned long addr, unsigned long flags)
|
|
{
|
|
int err;
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma = NULL;
|
|
struct mempolicy *pol = current->mempolicy;
|
|
|
|
cpuset_update_task_memory_state();
|
|
if (flags &
|
|
~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
|
|
return -EINVAL;
|
|
|
|
if (flags & MPOL_F_MEMS_ALLOWED) {
|
|
if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
|
|
return -EINVAL;
|
|
*policy = 0; /* just so it's initialized */
|
|
*nmask = cpuset_current_mems_allowed;
|
|
return 0;
|
|
}
|
|
|
|
if (flags & MPOL_F_ADDR) {
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma_intersection(mm, addr, addr+1);
|
|
if (!vma) {
|
|
up_read(&mm->mmap_sem);
|
|
return -EFAULT;
|
|
}
|
|
if (vma->vm_ops && vma->vm_ops->get_policy)
|
|
pol = vma->vm_ops->get_policy(vma, addr);
|
|
else
|
|
pol = vma->vm_policy;
|
|
} else if (addr)
|
|
return -EINVAL;
|
|
|
|
if (!pol)
|
|
pol = &default_policy;
|
|
|
|
if (flags & MPOL_F_NODE) {
|
|
if (flags & MPOL_F_ADDR) {
|
|
err = lookup_node(mm, addr);
|
|
if (err < 0)
|
|
goto out;
|
|
*policy = err;
|
|
} else if (pol == current->mempolicy &&
|
|
pol->policy == MPOL_INTERLEAVE) {
|
|
*policy = current->il_next;
|
|
} else {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
} else
|
|
*policy = pol->policy;
|
|
|
|
if (vma) {
|
|
up_read(¤t->mm->mmap_sem);
|
|
vma = NULL;
|
|
}
|
|
|
|
err = 0;
|
|
if (nmask)
|
|
get_zonemask(pol, nmask);
|
|
|
|
out:
|
|
if (vma)
|
|
up_read(¤t->mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
/*
|
|
* page migration
|
|
*/
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags)
|
|
{
|
|
/*
|
|
* Avoid migrating a page that is shared with others.
|
|
*/
|
|
if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
|
|
isolate_lru_page(page, pagelist);
|
|
}
|
|
|
|
static struct page *new_node_page(struct page *page, unsigned long node, int **x)
|
|
{
|
|
return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
|
|
}
|
|
|
|
/*
|
|
* Migrate pages from one node to a target node.
|
|
* Returns error or the number of pages not migrated.
|
|
*/
|
|
static int migrate_to_node(struct mm_struct *mm, int source, int dest,
|
|
int flags)
|
|
{
|
|
nodemask_t nmask;
|
|
LIST_HEAD(pagelist);
|
|
int err = 0;
|
|
|
|
nodes_clear(nmask);
|
|
node_set(source, nmask);
|
|
|
|
check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
|
|
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
|
|
|
|
if (!list_empty(&pagelist))
|
|
err = migrate_pages(&pagelist, new_node_page, dest);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Move pages between the two nodesets so as to preserve the physical
|
|
* layout as much as possible.
|
|
*
|
|
* Returns the number of page that could not be moved.
|
|
*/
|
|
int do_migrate_pages(struct mm_struct *mm,
|
|
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
|
|
{
|
|
LIST_HEAD(pagelist);
|
|
int busy = 0;
|
|
int err = 0;
|
|
nodemask_t tmp;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
err = migrate_vmas(mm, from_nodes, to_nodes, flags);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* Find a 'source' bit set in 'tmp' whose corresponding 'dest'
|
|
* bit in 'to' is not also set in 'tmp'. Clear the found 'source'
|
|
* bit in 'tmp', and return that <source, dest> pair for migration.
|
|
* The pair of nodemasks 'to' and 'from' define the map.
|
|
*
|
|
* If no pair of bits is found that way, fallback to picking some
|
|
* pair of 'source' and 'dest' bits that are not the same. If the
|
|
* 'source' and 'dest' bits are the same, this represents a node
|
|
* that will be migrating to itself, so no pages need move.
|
|
*
|
|
* If no bits are left in 'tmp', or if all remaining bits left
|
|
* in 'tmp' correspond to the same bit in 'to', return false
|
|
* (nothing left to migrate).
|
|
*
|
|
* This lets us pick a pair of nodes to migrate between, such that
|
|
* if possible the dest node is not already occupied by some other
|
|
* source node, minimizing the risk of overloading the memory on a
|
|
* node that would happen if we migrated incoming memory to a node
|
|
* before migrating outgoing memory source that same node.
|
|
*
|
|
* A single scan of tmp is sufficient. As we go, we remember the
|
|
* most recent <s, d> pair that moved (s != d). If we find a pair
|
|
* that not only moved, but what's better, moved to an empty slot
|
|
* (d is not set in tmp), then we break out then, with that pair.
|
|
* Otherwise when we finish scannng from_tmp, we at least have the
|
|
* most recent <s, d> pair that moved. If we get all the way through
|
|
* the scan of tmp without finding any node that moved, much less
|
|
* moved to an empty node, then there is nothing left worth migrating.
|
|
*/
|
|
|
|
tmp = *from_nodes;
|
|
while (!nodes_empty(tmp)) {
|
|
int s,d;
|
|
int source = -1;
|
|
int dest = 0;
|
|
|
|
for_each_node_mask(s, tmp) {
|
|
d = node_remap(s, *from_nodes, *to_nodes);
|
|
if (s == d)
|
|
continue;
|
|
|
|
source = s; /* Node moved. Memorize */
|
|
dest = d;
|
|
|
|
/* dest not in remaining from nodes? */
|
|
if (!node_isset(dest, tmp))
|
|
break;
|
|
}
|
|
if (source == -1)
|
|
break;
|
|
|
|
node_clear(source, tmp);
|
|
err = migrate_to_node(mm, source, dest, flags);
|
|
if (err > 0)
|
|
busy += err;
|
|
if (err < 0)
|
|
break;
|
|
}
|
|
out:
|
|
up_read(&mm->mmap_sem);
|
|
if (err < 0)
|
|
return err;
|
|
return busy;
|
|
|
|
}
|
|
|
|
/*
|
|
* Allocate a new page for page migration based on vma policy.
|
|
* Start assuming that page is mapped by vma pointed to by @private.
|
|
* Search forward from there, if not. N.B., this assumes that the
|
|
* list of pages handed to migrate_pages()--which is how we get here--
|
|
* is in virtual address order.
|
|
*/
|
|
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
|
|
{
|
|
struct vm_area_struct *vma = (struct vm_area_struct *)private;
|
|
unsigned long uninitialized_var(address);
|
|
|
|
while (vma) {
|
|
address = page_address_in_vma(page, vma);
|
|
if (address != -EFAULT)
|
|
break;
|
|
vma = vma->vm_next;
|
|
}
|
|
|
|
/*
|
|
* if !vma, alloc_page_vma() will use task or system default policy
|
|
*/
|
|
return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
|
|
}
|
|
#else
|
|
|
|
static void migrate_page_add(struct page *page, struct list_head *pagelist,
|
|
unsigned long flags)
|
|
{
|
|
}
|
|
|
|
int do_migrate_pages(struct mm_struct *mm,
|
|
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static long do_mbind(unsigned long start, unsigned long len,
|
|
unsigned long mode, nodemask_t *nmask,
|
|
unsigned long flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm = current->mm;
|
|
struct mempolicy *new;
|
|
unsigned long end;
|
|
int err;
|
|
LIST_HEAD(pagelist);
|
|
|
|
if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
|
|
MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
|
|
|| mode > MPOL_MAX)
|
|
return -EINVAL;
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
if (start & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
if (mode == MPOL_DEFAULT)
|
|
flags &= ~MPOL_MF_STRICT;
|
|
|
|
len = (len + PAGE_SIZE - 1) & PAGE_MASK;
|
|
end = start + len;
|
|
|
|
if (end < start)
|
|
return -EINVAL;
|
|
if (end == start)
|
|
return 0;
|
|
|
|
if (mpol_check_policy(mode, nmask))
|
|
return -EINVAL;
|
|
|
|
new = mpol_new(mode, nmask);
|
|
if (IS_ERR(new))
|
|
return PTR_ERR(new);
|
|
|
|
/*
|
|
* If we are using the default policy then operation
|
|
* on discontinuous address spaces is okay after all
|
|
*/
|
|
if (!new)
|
|
flags |= MPOL_MF_DISCONTIG_OK;
|
|
|
|
pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
|
|
mode, nmask ? nodes_addr(*nmask)[0] : -1);
|
|
|
|
down_write(&mm->mmap_sem);
|
|
vma = check_range(mm, start, end, nmask,
|
|
flags | MPOL_MF_INVERT, &pagelist);
|
|
|
|
err = PTR_ERR(vma);
|
|
if (!IS_ERR(vma)) {
|
|
int nr_failed = 0;
|
|
|
|
err = mbind_range(vma, start, end, new);
|
|
|
|
if (!list_empty(&pagelist))
|
|
nr_failed = migrate_pages(&pagelist, new_vma_page,
|
|
(unsigned long)vma);
|
|
|
|
if (!err && nr_failed && (flags & MPOL_MF_STRICT))
|
|
err = -EIO;
|
|
}
|
|
|
|
up_write(&mm->mmap_sem);
|
|
mpol_free(new);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* User space interface with variable sized bitmaps for nodelists.
|
|
*/
|
|
|
|
/* Copy a node mask from user space. */
|
|
static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
|
|
unsigned long maxnode)
|
|
{
|
|
unsigned long k;
|
|
unsigned long nlongs;
|
|
unsigned long endmask;
|
|
|
|
--maxnode;
|
|
nodes_clear(*nodes);
|
|
if (maxnode == 0 || !nmask)
|
|
return 0;
|
|
if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
|
|
return -EINVAL;
|
|
|
|
nlongs = BITS_TO_LONGS(maxnode);
|
|
if ((maxnode % BITS_PER_LONG) == 0)
|
|
endmask = ~0UL;
|
|
else
|
|
endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
|
|
|
|
/* When the user specified more nodes than supported just check
|
|
if the non supported part is all zero. */
|
|
if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
|
|
if (nlongs > PAGE_SIZE/sizeof(long))
|
|
return -EINVAL;
|
|
for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
|
|
unsigned long t;
|
|
if (get_user(t, nmask + k))
|
|
return -EFAULT;
|
|
if (k == nlongs - 1) {
|
|
if (t & endmask)
|
|
return -EINVAL;
|
|
} else if (t)
|
|
return -EINVAL;
|
|
}
|
|
nlongs = BITS_TO_LONGS(MAX_NUMNODES);
|
|
endmask = ~0UL;
|
|
}
|
|
|
|
if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
|
|
return -EFAULT;
|
|
nodes_addr(*nodes)[nlongs-1] &= endmask;
|
|
return 0;
|
|
}
|
|
|
|
/* Copy a kernel node mask to user space */
|
|
static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
|
|
nodemask_t *nodes)
|
|
{
|
|
unsigned long copy = ALIGN(maxnode-1, 64) / 8;
|
|
const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
|
|
|
|
if (copy > nbytes) {
|
|
if (copy > PAGE_SIZE)
|
|
return -EINVAL;
|
|
if (clear_user((char __user *)mask + nbytes, copy - nbytes))
|
|
return -EFAULT;
|
|
copy = nbytes;
|
|
}
|
|
return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
|
|
}
|
|
|
|
asmlinkage long sys_mbind(unsigned long start, unsigned long len,
|
|
unsigned long mode,
|
|
unsigned long __user *nmask, unsigned long maxnode,
|
|
unsigned flags)
|
|
{
|
|
nodemask_t nodes;
|
|
int err;
|
|
|
|
err = get_nodes(&nodes, nmask, maxnode);
|
|
if (err)
|
|
return err;
|
|
#ifdef CONFIG_CPUSETS
|
|
/* Restrict the nodes to the allowed nodes in the cpuset */
|
|
nodes_and(nodes, nodes, current->mems_allowed);
|
|
#endif
|
|
return do_mbind(start, len, mode, &nodes, flags);
|
|
}
|
|
|
|
/* Set the process memory policy */
|
|
asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
|
|
unsigned long maxnode)
|
|
{
|
|
int err;
|
|
nodemask_t nodes;
|
|
|
|
if (mode < 0 || mode > MPOL_MAX)
|
|
return -EINVAL;
|
|
err = get_nodes(&nodes, nmask, maxnode);
|
|
if (err)
|
|
return err;
|
|
return do_set_mempolicy(mode, &nodes);
|
|
}
|
|
|
|
asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
|
|
const unsigned long __user *old_nodes,
|
|
const unsigned long __user *new_nodes)
|
|
{
|
|
struct mm_struct *mm;
|
|
struct task_struct *task;
|
|
nodemask_t old;
|
|
nodemask_t new;
|
|
nodemask_t task_nodes;
|
|
int err;
|
|
|
|
err = get_nodes(&old, old_nodes, maxnode);
|
|
if (err)
|
|
return err;
|
|
|
|
err = get_nodes(&new, new_nodes, maxnode);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Find the mm_struct */
|
|
read_lock(&tasklist_lock);
|
|
task = pid ? find_task_by_vpid(pid) : current;
|
|
if (!task) {
|
|
read_unlock(&tasklist_lock);
|
|
return -ESRCH;
|
|
}
|
|
mm = get_task_mm(task);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. The right exists if the process has administrative
|
|
* capabilities, superuser privileges or the same
|
|
* userid as the target process.
|
|
*/
|
|
if ((current->euid != task->suid) && (current->euid != task->uid) &&
|
|
(current->uid != task->suid) && (current->uid != task->uid) &&
|
|
!capable(CAP_SYS_NICE)) {
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
task_nodes = cpuset_mems_allowed(task);
|
|
/* Is the user allowed to access the target nodes? */
|
|
if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = security_task_movememory(task);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = do_migrate_pages(mm, &old, &new,
|
|
capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
|
|
out:
|
|
mmput(mm);
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Retrieve NUMA policy */
|
|
asmlinkage long sys_get_mempolicy(int __user *policy,
|
|
unsigned long __user *nmask,
|
|
unsigned long maxnode,
|
|
unsigned long addr, unsigned long flags)
|
|
{
|
|
int err;
|
|
int uninitialized_var(pval);
|
|
nodemask_t nodes;
|
|
|
|
if (nmask != NULL && maxnode < MAX_NUMNODES)
|
|
return -EINVAL;
|
|
|
|
err = do_get_mempolicy(&pval, &nodes, addr, flags);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (policy && put_user(pval, policy))
|
|
return -EFAULT;
|
|
|
|
if (nmask)
|
|
err = copy_nodes_to_user(nmask, maxnode, &nodes);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
asmlinkage long compat_sys_get_mempolicy(int __user *policy,
|
|
compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode,
|
|
compat_ulong_t addr, compat_ulong_t flags)
|
|
{
|
|
long err;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
DECLARE_BITMAP(bm, MAX_NUMNODES);
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask)
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
|
|
err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
|
|
|
|
if (!err && nmask) {
|
|
err = copy_from_user(bm, nm, alloc_size);
|
|
/* ensure entire bitmap is zeroed */
|
|
err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
|
|
err |= compat_put_bitmap(nmask, bm, nr_bits);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode)
|
|
{
|
|
long err = 0;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
DECLARE_BITMAP(bm, MAX_NUMNODES);
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask) {
|
|
err = compat_get_bitmap(bm, nmask, nr_bits);
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
err |= copy_to_user(nm, bm, alloc_size);
|
|
}
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
return sys_set_mempolicy(mode, nm, nr_bits+1);
|
|
}
|
|
|
|
asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
|
|
compat_ulong_t mode, compat_ulong_t __user *nmask,
|
|
compat_ulong_t maxnode, compat_ulong_t flags)
|
|
{
|
|
long err = 0;
|
|
unsigned long __user *nm = NULL;
|
|
unsigned long nr_bits, alloc_size;
|
|
nodemask_t bm;
|
|
|
|
nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
|
|
alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
|
|
|
|
if (nmask) {
|
|
err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
|
|
nm = compat_alloc_user_space(alloc_size);
|
|
err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
|
|
}
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* get_vma_policy(@task, @vma, @addr)
|
|
* @task - task for fallback if vma policy == default
|
|
* @vma - virtual memory area whose policy is sought
|
|
* @addr - address in @vma for shared policy lookup
|
|
*
|
|
* Returns effective policy for a VMA at specified address.
|
|
* Falls back to @task or system default policy, as necessary.
|
|
* Returned policy has extra reference count if shared, vma,
|
|
* or some other task's policy [show_numa_maps() can pass
|
|
* @task != current]. It is the caller's responsibility to
|
|
* free the reference in these cases.
|
|
*/
|
|
static struct mempolicy * get_vma_policy(struct task_struct *task,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct mempolicy *pol = task->mempolicy;
|
|
int shared_pol = 0;
|
|
|
|
if (vma) {
|
|
if (vma->vm_ops && vma->vm_ops->get_policy) {
|
|
pol = vma->vm_ops->get_policy(vma, addr);
|
|
shared_pol = 1; /* if pol non-NULL, add ref below */
|
|
} else if (vma->vm_policy &&
|
|
vma->vm_policy->policy != MPOL_DEFAULT)
|
|
pol = vma->vm_policy;
|
|
}
|
|
if (!pol)
|
|
pol = &default_policy;
|
|
else if (!shared_pol && pol != current->mempolicy)
|
|
mpol_get(pol); /* vma or other task's policy */
|
|
return pol;
|
|
}
|
|
|
|
/* Return a zonelist representing a mempolicy */
|
|
static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
|
|
{
|
|
int nd;
|
|
|
|
switch (policy->policy) {
|
|
case MPOL_PREFERRED:
|
|
nd = policy->v.preferred_node;
|
|
if (nd < 0)
|
|
nd = numa_node_id();
|
|
break;
|
|
case MPOL_BIND:
|
|
/* Lower zones don't get a policy applied */
|
|
/* Careful: current->mems_allowed might have moved */
|
|
if (gfp_zone(gfp) >= policy_zone)
|
|
if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
|
|
return policy->v.zonelist;
|
|
/*FALL THROUGH*/
|
|
case MPOL_INTERLEAVE: /* should not happen */
|
|
case MPOL_DEFAULT:
|
|
nd = numa_node_id();
|
|
break;
|
|
default:
|
|
nd = 0;
|
|
BUG();
|
|
}
|
|
return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
|
|
}
|
|
|
|
/* Do dynamic interleaving for a process */
|
|
static unsigned interleave_nodes(struct mempolicy *policy)
|
|
{
|
|
unsigned nid, next;
|
|
struct task_struct *me = current;
|
|
|
|
nid = me->il_next;
|
|
next = next_node(nid, policy->v.nodes);
|
|
if (next >= MAX_NUMNODES)
|
|
next = first_node(policy->v.nodes);
|
|
me->il_next = next;
|
|
return nid;
|
|
}
|
|
|
|
/*
|
|
* Depending on the memory policy provide a node from which to allocate the
|
|
* next slab entry.
|
|
*/
|
|
unsigned slab_node(struct mempolicy *policy)
|
|
{
|
|
int pol = policy ? policy->policy : MPOL_DEFAULT;
|
|
|
|
switch (pol) {
|
|
case MPOL_INTERLEAVE:
|
|
return interleave_nodes(policy);
|
|
|
|
case MPOL_BIND:
|
|
/*
|
|
* Follow bind policy behavior and start allocation at the
|
|
* first node.
|
|
*/
|
|
return zone_to_nid(policy->v.zonelist->zones[0]);
|
|
|
|
case MPOL_PREFERRED:
|
|
if (policy->v.preferred_node >= 0)
|
|
return policy->v.preferred_node;
|
|
/* Fall through */
|
|
|
|
default:
|
|
return numa_node_id();
|
|
}
|
|
}
|
|
|
|
/* Do static interleaving for a VMA with known offset. */
|
|
static unsigned offset_il_node(struct mempolicy *pol,
|
|
struct vm_area_struct *vma, unsigned long off)
|
|
{
|
|
unsigned nnodes = nodes_weight(pol->v.nodes);
|
|
unsigned target = (unsigned)off % nnodes;
|
|
int c;
|
|
int nid = -1;
|
|
|
|
c = 0;
|
|
do {
|
|
nid = next_node(nid, pol->v.nodes);
|
|
c++;
|
|
} while (c <= target);
|
|
return nid;
|
|
}
|
|
|
|
/* Determine a node number for interleave */
|
|
static inline unsigned interleave_nid(struct mempolicy *pol,
|
|
struct vm_area_struct *vma, unsigned long addr, int shift)
|
|
{
|
|
if (vma) {
|
|
unsigned long off;
|
|
|
|
/*
|
|
* for small pages, there is no difference between
|
|
* shift and PAGE_SHIFT, so the bit-shift is safe.
|
|
* for huge pages, since vm_pgoff is in units of small
|
|
* pages, we need to shift off the always 0 bits to get
|
|
* a useful offset.
|
|
*/
|
|
BUG_ON(shift < PAGE_SHIFT);
|
|
off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
|
|
off += (addr - vma->vm_start) >> shift;
|
|
return offset_il_node(pol, vma, off);
|
|
} else
|
|
return interleave_nodes(pol);
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLBFS
|
|
/*
|
|
* huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
|
|
* @vma = virtual memory area whose policy is sought
|
|
* @addr = address in @vma for shared policy lookup and interleave policy
|
|
* @gfp_flags = for requested zone
|
|
* @mpol = pointer to mempolicy pointer for reference counted 'BIND policy
|
|
*
|
|
* Returns a zonelist suitable for a huge page allocation.
|
|
* If the effective policy is 'BIND, returns pointer to policy's zonelist.
|
|
* If it is also a policy for which get_vma_policy() returns an extra
|
|
* reference, we must hold that reference until after allocation.
|
|
* In that case, return policy via @mpol so hugetlb allocation can drop
|
|
* the reference. For non-'BIND referenced policies, we can/do drop the
|
|
* reference here, so the caller doesn't need to know about the special case
|
|
* for default and current task policy.
|
|
*/
|
|
struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
|
|
gfp_t gfp_flags, struct mempolicy **mpol)
|
|
{
|
|
struct mempolicy *pol = get_vma_policy(current, vma, addr);
|
|
struct zonelist *zl;
|
|
|
|
*mpol = NULL; /* probably no unref needed */
|
|
if (pol->policy == MPOL_INTERLEAVE) {
|
|
unsigned nid;
|
|
|
|
nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
|
|
__mpol_free(pol); /* finished with pol */
|
|
return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags);
|
|
}
|
|
|
|
zl = zonelist_policy(GFP_HIGHUSER, pol);
|
|
if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
|
|
if (pol->policy != MPOL_BIND)
|
|
__mpol_free(pol); /* finished with pol */
|
|
else
|
|
*mpol = pol; /* unref needed after allocation */
|
|
}
|
|
return zl;
|
|
}
|
|
#endif
|
|
|
|
/* Allocate a page in interleaved policy.
|
|
Own path because it needs to do special accounting. */
|
|
static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
|
|
unsigned nid)
|
|
{
|
|
struct zonelist *zl;
|
|
struct page *page;
|
|
|
|
zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
|
|
page = __alloc_pages(gfp, order, zl);
|
|
if (page && page_zone(page) == zl->zones[0])
|
|
inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* alloc_page_vma - Allocate a page for a VMA.
|
|
*
|
|
* @gfp:
|
|
* %GFP_USER user allocation.
|
|
* %GFP_KERNEL kernel allocations,
|
|
* %GFP_HIGHMEM highmem/user allocations,
|
|
* %GFP_FS allocation should not call back into a file system.
|
|
* %GFP_ATOMIC don't sleep.
|
|
*
|
|
* @vma: Pointer to VMA or NULL if not available.
|
|
* @addr: Virtual Address of the allocation. Must be inside the VMA.
|
|
*
|
|
* This function allocates a page from the kernel page pool and applies
|
|
* a NUMA policy associated with the VMA or the current process.
|
|
* When VMA is not NULL caller must hold down_read on the mmap_sem of the
|
|
* mm_struct of the VMA to prevent it from going away. Should be used for
|
|
* all allocations for pages that will be mapped into
|
|
* user space. Returns NULL when no page can be allocated.
|
|
*
|
|
* Should be called with the mm_sem of the vma hold.
|
|
*/
|
|
struct page *
|
|
alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct mempolicy *pol = get_vma_policy(current, vma, addr);
|
|
struct zonelist *zl;
|
|
|
|
cpuset_update_task_memory_state();
|
|
|
|
if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
|
|
unsigned nid;
|
|
|
|
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
|
|
return alloc_page_interleave(gfp, 0, nid);
|
|
}
|
|
zl = zonelist_policy(gfp, pol);
|
|
if (pol != &default_policy && pol != current->mempolicy) {
|
|
/*
|
|
* slow path: ref counted policy -- shared or vma
|
|
*/
|
|
struct page *page = __alloc_pages(gfp, 0, zl);
|
|
__mpol_free(pol);
|
|
return page;
|
|
}
|
|
/*
|
|
* fast path: default or task policy
|
|
*/
|
|
return __alloc_pages(gfp, 0, zl);
|
|
}
|
|
|
|
/**
|
|
* alloc_pages_current - Allocate pages.
|
|
*
|
|
* @gfp:
|
|
* %GFP_USER user allocation,
|
|
* %GFP_KERNEL kernel allocation,
|
|
* %GFP_HIGHMEM highmem allocation,
|
|
* %GFP_FS don't call back into a file system.
|
|
* %GFP_ATOMIC don't sleep.
|
|
* @order: Power of two of allocation size in pages. 0 is a single page.
|
|
*
|
|
* Allocate a page from the kernel page pool. When not in
|
|
* interrupt context and apply the current process NUMA policy.
|
|
* Returns NULL when no page can be allocated.
|
|
*
|
|
* Don't call cpuset_update_task_memory_state() unless
|
|
* 1) it's ok to take cpuset_sem (can WAIT), and
|
|
* 2) allocating for current task (not interrupt).
|
|
*/
|
|
struct page *alloc_pages_current(gfp_t gfp, unsigned order)
|
|
{
|
|
struct mempolicy *pol = current->mempolicy;
|
|
|
|
if ((gfp & __GFP_WAIT) && !in_interrupt())
|
|
cpuset_update_task_memory_state();
|
|
if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
|
|
pol = &default_policy;
|
|
if (pol->policy == MPOL_INTERLEAVE)
|
|
return alloc_page_interleave(gfp, order, interleave_nodes(pol));
|
|
return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
|
|
}
|
|
EXPORT_SYMBOL(alloc_pages_current);
|
|
|
|
/*
|
|
* If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
|
|
* rebinds the mempolicy its copying by calling mpol_rebind_policy()
|
|
* with the mems_allowed returned by cpuset_mems_allowed(). This
|
|
* keeps mempolicies cpuset relative after its cpuset moves. See
|
|
* further kernel/cpuset.c update_nodemask().
|
|
*/
|
|
|
|
/* Slow path of a mempolicy copy */
|
|
struct mempolicy *__mpol_copy(struct mempolicy *old)
|
|
{
|
|
struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
|
|
|
|
if (!new)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (current_cpuset_is_being_rebound()) {
|
|
nodemask_t mems = cpuset_mems_allowed(current);
|
|
mpol_rebind_policy(old, &mems);
|
|
}
|
|
*new = *old;
|
|
atomic_set(&new->refcnt, 1);
|
|
if (new->policy == MPOL_BIND) {
|
|
int sz = ksize(old->v.zonelist);
|
|
new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
|
|
if (!new->v.zonelist) {
|
|
kmem_cache_free(policy_cache, new);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
}
|
|
return new;
|
|
}
|
|
|
|
/* Slow path of a mempolicy comparison */
|
|
int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
|
|
{
|
|
if (!a || !b)
|
|
return 0;
|
|
if (a->policy != b->policy)
|
|
return 0;
|
|
switch (a->policy) {
|
|
case MPOL_DEFAULT:
|
|
return 1;
|
|
case MPOL_INTERLEAVE:
|
|
return nodes_equal(a->v.nodes, b->v.nodes);
|
|
case MPOL_PREFERRED:
|
|
return a->v.preferred_node == b->v.preferred_node;
|
|
case MPOL_BIND: {
|
|
int i;
|
|
for (i = 0; a->v.zonelist->zones[i]; i++)
|
|
if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
|
|
return 0;
|
|
return b->v.zonelist->zones[i] == NULL;
|
|
}
|
|
default:
|
|
BUG();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Slow path of a mpol destructor. */
|
|
void __mpol_free(struct mempolicy *p)
|
|
{
|
|
if (!atomic_dec_and_test(&p->refcnt))
|
|
return;
|
|
if (p->policy == MPOL_BIND)
|
|
kfree(p->v.zonelist);
|
|
p->policy = MPOL_DEFAULT;
|
|
kmem_cache_free(policy_cache, p);
|
|
}
|
|
|
|
/*
|
|
* Shared memory backing store policy support.
|
|
*
|
|
* Remember policies even when nobody has shared memory mapped.
|
|
* The policies are kept in Red-Black tree linked from the inode.
|
|
* They are protected by the sp->lock spinlock, which should be held
|
|
* for any accesses to the tree.
|
|
*/
|
|
|
|
/* lookup first element intersecting start-end */
|
|
/* Caller holds sp->lock */
|
|
static struct sp_node *
|
|
sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
|
|
{
|
|
struct rb_node *n = sp->root.rb_node;
|
|
|
|
while (n) {
|
|
struct sp_node *p = rb_entry(n, struct sp_node, nd);
|
|
|
|
if (start >= p->end)
|
|
n = n->rb_right;
|
|
else if (end <= p->start)
|
|
n = n->rb_left;
|
|
else
|
|
break;
|
|
}
|
|
if (!n)
|
|
return NULL;
|
|
for (;;) {
|
|
struct sp_node *w = NULL;
|
|
struct rb_node *prev = rb_prev(n);
|
|
if (!prev)
|
|
break;
|
|
w = rb_entry(prev, struct sp_node, nd);
|
|
if (w->end <= start)
|
|
break;
|
|
n = prev;
|
|
}
|
|
return rb_entry(n, struct sp_node, nd);
|
|
}
|
|
|
|
/* Insert a new shared policy into the list. */
|
|
/* Caller holds sp->lock */
|
|
static void sp_insert(struct shared_policy *sp, struct sp_node *new)
|
|
{
|
|
struct rb_node **p = &sp->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct sp_node *nd;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
nd = rb_entry(parent, struct sp_node, nd);
|
|
if (new->start < nd->start)
|
|
p = &(*p)->rb_left;
|
|
else if (new->end > nd->end)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
rb_link_node(&new->nd, parent, p);
|
|
rb_insert_color(&new->nd, &sp->root);
|
|
pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
|
|
new->policy ? new->policy->policy : 0);
|
|
}
|
|
|
|
/* Find shared policy intersecting idx */
|
|
struct mempolicy *
|
|
mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
|
|
{
|
|
struct mempolicy *pol = NULL;
|
|
struct sp_node *sn;
|
|
|
|
if (!sp->root.rb_node)
|
|
return NULL;
|
|
spin_lock(&sp->lock);
|
|
sn = sp_lookup(sp, idx, idx+1);
|
|
if (sn) {
|
|
mpol_get(sn->policy);
|
|
pol = sn->policy;
|
|
}
|
|
spin_unlock(&sp->lock);
|
|
return pol;
|
|
}
|
|
|
|
static void sp_delete(struct shared_policy *sp, struct sp_node *n)
|
|
{
|
|
pr_debug("deleting %lx-l%lx\n", n->start, n->end);
|
|
rb_erase(&n->nd, &sp->root);
|
|
mpol_free(n->policy);
|
|
kmem_cache_free(sn_cache, n);
|
|
}
|
|
|
|
static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
|
|
struct mempolicy *pol)
|
|
{
|
|
struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
|
|
|
|
if (!n)
|
|
return NULL;
|
|
n->start = start;
|
|
n->end = end;
|
|
mpol_get(pol);
|
|
n->policy = pol;
|
|
return n;
|
|
}
|
|
|
|
/* Replace a policy range. */
|
|
static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
|
|
unsigned long end, struct sp_node *new)
|
|
{
|
|
struct sp_node *n, *new2 = NULL;
|
|
|
|
restart:
|
|
spin_lock(&sp->lock);
|
|
n = sp_lookup(sp, start, end);
|
|
/* Take care of old policies in the same range. */
|
|
while (n && n->start < end) {
|
|
struct rb_node *next = rb_next(&n->nd);
|
|
if (n->start >= start) {
|
|
if (n->end <= end)
|
|
sp_delete(sp, n);
|
|
else
|
|
n->start = end;
|
|
} else {
|
|
/* Old policy spanning whole new range. */
|
|
if (n->end > end) {
|
|
if (!new2) {
|
|
spin_unlock(&sp->lock);
|
|
new2 = sp_alloc(end, n->end, n->policy);
|
|
if (!new2)
|
|
return -ENOMEM;
|
|
goto restart;
|
|
}
|
|
n->end = start;
|
|
sp_insert(sp, new2);
|
|
new2 = NULL;
|
|
break;
|
|
} else
|
|
n->end = start;
|
|
}
|
|
if (!next)
|
|
break;
|
|
n = rb_entry(next, struct sp_node, nd);
|
|
}
|
|
if (new)
|
|
sp_insert(sp, new);
|
|
spin_unlock(&sp->lock);
|
|
if (new2) {
|
|
mpol_free(new2->policy);
|
|
kmem_cache_free(sn_cache, new2);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void mpol_shared_policy_init(struct shared_policy *info, int policy,
|
|
nodemask_t *policy_nodes)
|
|
{
|
|
info->root = RB_ROOT;
|
|
spin_lock_init(&info->lock);
|
|
|
|
if (policy != MPOL_DEFAULT) {
|
|
struct mempolicy *newpol;
|
|
|
|
/* Falls back to MPOL_DEFAULT on any error */
|
|
newpol = mpol_new(policy, policy_nodes);
|
|
if (!IS_ERR(newpol)) {
|
|
/* Create pseudo-vma that contains just the policy */
|
|
struct vm_area_struct pvma;
|
|
|
|
memset(&pvma, 0, sizeof(struct vm_area_struct));
|
|
/* Policy covers entire file */
|
|
pvma.vm_end = TASK_SIZE;
|
|
mpol_set_shared_policy(info, &pvma, newpol);
|
|
mpol_free(newpol);
|
|
}
|
|
}
|
|
}
|
|
|
|
int mpol_set_shared_policy(struct shared_policy *info,
|
|
struct vm_area_struct *vma, struct mempolicy *npol)
|
|
{
|
|
int err;
|
|
struct sp_node *new = NULL;
|
|
unsigned long sz = vma_pages(vma);
|
|
|
|
pr_debug("set_shared_policy %lx sz %lu %d %lx\n",
|
|
vma->vm_pgoff,
|
|
sz, npol? npol->policy : -1,
|
|
npol ? nodes_addr(npol->v.nodes)[0] : -1);
|
|
|
|
if (npol) {
|
|
new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
}
|
|
err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
|
|
if (err && new)
|
|
kmem_cache_free(sn_cache, new);
|
|
return err;
|
|
}
|
|
|
|
/* Free a backing policy store on inode delete. */
|
|
void mpol_free_shared_policy(struct shared_policy *p)
|
|
{
|
|
struct sp_node *n;
|
|
struct rb_node *next;
|
|
|
|
if (!p->root.rb_node)
|
|
return;
|
|
spin_lock(&p->lock);
|
|
next = rb_first(&p->root);
|
|
while (next) {
|
|
n = rb_entry(next, struct sp_node, nd);
|
|
next = rb_next(&n->nd);
|
|
rb_erase(&n->nd, &p->root);
|
|
mpol_free(n->policy);
|
|
kmem_cache_free(sn_cache, n);
|
|
}
|
|
spin_unlock(&p->lock);
|
|
}
|
|
|
|
/* assumes fs == KERNEL_DS */
|
|
void __init numa_policy_init(void)
|
|
{
|
|
nodemask_t interleave_nodes;
|
|
unsigned long largest = 0;
|
|
int nid, prefer = 0;
|
|
|
|
policy_cache = kmem_cache_create("numa_policy",
|
|
sizeof(struct mempolicy),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
sn_cache = kmem_cache_create("shared_policy_node",
|
|
sizeof(struct sp_node),
|
|
0, SLAB_PANIC, NULL);
|
|
|
|
/*
|
|
* Set interleaving policy for system init. Interleaving is only
|
|
* enabled across suitably sized nodes (default is >= 16MB), or
|
|
* fall back to the largest node if they're all smaller.
|
|
*/
|
|
nodes_clear(interleave_nodes);
|
|
for_each_node_state(nid, N_HIGH_MEMORY) {
|
|
unsigned long total_pages = node_present_pages(nid);
|
|
|
|
/* Preserve the largest node */
|
|
if (largest < total_pages) {
|
|
largest = total_pages;
|
|
prefer = nid;
|
|
}
|
|
|
|
/* Interleave this node? */
|
|
if ((total_pages << PAGE_SHIFT) >= (16 << 20))
|
|
node_set(nid, interleave_nodes);
|
|
}
|
|
|
|
/* All too small, use the largest */
|
|
if (unlikely(nodes_empty(interleave_nodes)))
|
|
node_set(prefer, interleave_nodes);
|
|
|
|
if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes))
|
|
printk("numa_policy_init: interleaving failed\n");
|
|
}
|
|
|
|
/* Reset policy of current process to default */
|
|
void numa_default_policy(void)
|
|
{
|
|
do_set_mempolicy(MPOL_DEFAULT, NULL);
|
|
}
|
|
|
|
/* Migrate a policy to a different set of nodes */
|
|
static void mpol_rebind_policy(struct mempolicy *pol,
|
|
const nodemask_t *newmask)
|
|
{
|
|
nodemask_t *mpolmask;
|
|
nodemask_t tmp;
|
|
|
|
if (!pol)
|
|
return;
|
|
mpolmask = &pol->cpuset_mems_allowed;
|
|
if (nodes_equal(*mpolmask, *newmask))
|
|
return;
|
|
|
|
switch (pol->policy) {
|
|
case MPOL_DEFAULT:
|
|
break;
|
|
case MPOL_INTERLEAVE:
|
|
nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
|
|
pol->v.nodes = tmp;
|
|
*mpolmask = *newmask;
|
|
current->il_next = node_remap(current->il_next,
|
|
*mpolmask, *newmask);
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
pol->v.preferred_node = node_remap(pol->v.preferred_node,
|
|
*mpolmask, *newmask);
|
|
*mpolmask = *newmask;
|
|
break;
|
|
case MPOL_BIND: {
|
|
nodemask_t nodes;
|
|
struct zone **z;
|
|
struct zonelist *zonelist;
|
|
|
|
nodes_clear(nodes);
|
|
for (z = pol->v.zonelist->zones; *z; z++)
|
|
node_set(zone_to_nid(*z), nodes);
|
|
nodes_remap(tmp, nodes, *mpolmask, *newmask);
|
|
nodes = tmp;
|
|
|
|
zonelist = bind_zonelist(&nodes);
|
|
|
|
/* If no mem, then zonelist is NULL and we keep old zonelist.
|
|
* If that old zonelist has no remaining mems_allowed nodes,
|
|
* then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
|
|
*/
|
|
|
|
if (!IS_ERR(zonelist)) {
|
|
/* Good - got mem - substitute new zonelist */
|
|
kfree(pol->v.zonelist);
|
|
pol->v.zonelist = zonelist;
|
|
}
|
|
*mpolmask = *newmask;
|
|
break;
|
|
}
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wrapper for mpol_rebind_policy() that just requires task
|
|
* pointer, and updates task mempolicy.
|
|
*/
|
|
|
|
void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
|
|
{
|
|
mpol_rebind_policy(tsk->mempolicy, new);
|
|
}
|
|
|
|
/*
|
|
* Rebind each vma in mm to new nodemask.
|
|
*
|
|
* Call holding a reference to mm. Takes mm->mmap_sem during call.
|
|
*/
|
|
|
|
void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
down_write(&mm->mmap_sem);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next)
|
|
mpol_rebind_policy(vma->vm_policy, new);
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* Display pages allocated per node and memory policy via /proc.
|
|
*/
|
|
|
|
static const char * const policy_types[] =
|
|
{ "default", "prefer", "bind", "interleave" };
|
|
|
|
/*
|
|
* Convert a mempolicy into a string.
|
|
* Returns the number of characters in buffer (if positive)
|
|
* or an error (negative)
|
|
*/
|
|
static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
|
|
{
|
|
char *p = buffer;
|
|
int l;
|
|
nodemask_t nodes;
|
|
int mode = pol ? pol->policy : MPOL_DEFAULT;
|
|
|
|
switch (mode) {
|
|
case MPOL_DEFAULT:
|
|
nodes_clear(nodes);
|
|
break;
|
|
|
|
case MPOL_PREFERRED:
|
|
nodes_clear(nodes);
|
|
node_set(pol->v.preferred_node, nodes);
|
|
break;
|
|
|
|
case MPOL_BIND:
|
|
get_zonemask(pol, &nodes);
|
|
break;
|
|
|
|
case MPOL_INTERLEAVE:
|
|
nodes = pol->v.nodes;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
return -EFAULT;
|
|
}
|
|
|
|
l = strlen(policy_types[mode]);
|
|
if (buffer + maxlen < p + l + 1)
|
|
return -ENOSPC;
|
|
|
|
strcpy(p, policy_types[mode]);
|
|
p += l;
|
|
|
|
if (!nodes_empty(nodes)) {
|
|
if (buffer + maxlen < p + 2)
|
|
return -ENOSPC;
|
|
*p++ = '=';
|
|
p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
|
|
}
|
|
return p - buffer;
|
|
}
|
|
|
|
struct numa_maps {
|
|
unsigned long pages;
|
|
unsigned long anon;
|
|
unsigned long active;
|
|
unsigned long writeback;
|
|
unsigned long mapcount_max;
|
|
unsigned long dirty;
|
|
unsigned long swapcache;
|
|
unsigned long node[MAX_NUMNODES];
|
|
};
|
|
|
|
static void gather_stats(struct page *page, void *private, int pte_dirty)
|
|
{
|
|
struct numa_maps *md = private;
|
|
int count = page_mapcount(page);
|
|
|
|
md->pages++;
|
|
if (pte_dirty || PageDirty(page))
|
|
md->dirty++;
|
|
|
|
if (PageSwapCache(page))
|
|
md->swapcache++;
|
|
|
|
if (PageActive(page))
|
|
md->active++;
|
|
|
|
if (PageWriteback(page))
|
|
md->writeback++;
|
|
|
|
if (PageAnon(page))
|
|
md->anon++;
|
|
|
|
if (count > md->mapcount_max)
|
|
md->mapcount_max = count;
|
|
|
|
md->node[page_to_nid(page)]++;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static void check_huge_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct numa_maps *md)
|
|
{
|
|
unsigned long addr;
|
|
struct page *page;
|
|
|
|
for (addr = start; addr < end; addr += HPAGE_SIZE) {
|
|
pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
|
|
pte_t pte;
|
|
|
|
if (!ptep)
|
|
continue;
|
|
|
|
pte = *ptep;
|
|
if (pte_none(pte))
|
|
continue;
|
|
|
|
page = pte_page(pte);
|
|
if (!page)
|
|
continue;
|
|
|
|
gather_stats(page, md, pte_dirty(*ptep));
|
|
}
|
|
}
|
|
#else
|
|
static inline void check_huge_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
struct numa_maps *md)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
int show_numa_map(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct vm_area_struct *vma = v;
|
|
struct numa_maps *md;
|
|
struct file *file = vma->vm_file;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mempolicy *pol;
|
|
int n;
|
|
char buffer[50];
|
|
|
|
if (!mm)
|
|
return 0;
|
|
|
|
md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
|
|
if (!md)
|
|
return 0;
|
|
|
|
pol = get_vma_policy(priv->task, vma, vma->vm_start);
|
|
mpol_to_str(buffer, sizeof(buffer), pol);
|
|
/*
|
|
* unref shared or other task's mempolicy
|
|
*/
|
|
if (pol != &default_policy && pol != current->mempolicy)
|
|
__mpol_free(pol);
|
|
|
|
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
|
|
|
|
if (file) {
|
|
seq_printf(m, " file=");
|
|
seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
|
|
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
|
|
seq_printf(m, " heap");
|
|
} else if (vma->vm_start <= mm->start_stack &&
|
|
vma->vm_end >= mm->start_stack) {
|
|
seq_printf(m, " stack");
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
check_huge_range(vma, vma->vm_start, vma->vm_end, md);
|
|
seq_printf(m, " huge");
|
|
} else {
|
|
check_pgd_range(vma, vma->vm_start, vma->vm_end,
|
|
&node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
|
|
}
|
|
|
|
if (!md->pages)
|
|
goto out;
|
|
|
|
if (md->anon)
|
|
seq_printf(m," anon=%lu",md->anon);
|
|
|
|
if (md->dirty)
|
|
seq_printf(m," dirty=%lu",md->dirty);
|
|
|
|
if (md->pages != md->anon && md->pages != md->dirty)
|
|
seq_printf(m, " mapped=%lu", md->pages);
|
|
|
|
if (md->mapcount_max > 1)
|
|
seq_printf(m, " mapmax=%lu", md->mapcount_max);
|
|
|
|
if (md->swapcache)
|
|
seq_printf(m," swapcache=%lu", md->swapcache);
|
|
|
|
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
|
|
seq_printf(m," active=%lu", md->active);
|
|
|
|
if (md->writeback)
|
|
seq_printf(m," writeback=%lu", md->writeback);
|
|
|
|
for_each_node_state(n, N_HIGH_MEMORY)
|
|
if (md->node[n])
|
|
seq_printf(m, " N%d=%lu", n, md->node[n]);
|
|
out:
|
|
seq_putc(m, '\n');
|
|
kfree(md);
|
|
|
|
if (m->count < m->size)
|
|
m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
|
|
return 0;
|
|
}
|