mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-19 00:54:41 +08:00
f3ebdf042d
Staring at the comment "Recheck VMA as permissions can change since
migration started" in remove_migration_pte() can result in confusion,
because if the source PTE/PMD indicates write permissions, then there
should be no need to check VMA write permissions when restoring migration
entries or PTE-mapping a PMD.
Commit d3cb8bf608
("mm: migrate: Close race between migration completion
and mprotect") introduced the maybe_mkwrite() handling in
remove_migration_pte() in 2014, stating that a race between mprotect() and
migration finishing would be possible, and that we could end up with a
writable PTE that should be readable.
However, mprotect() code first updates vma->vm_flags / vma->vm_page_prot
and then walks the page tables to (a) set all present writable PTEs to
read-only and (b) convert all writable migration entries to readable
migration entries. While walking the page tables and modifying the
entries, migration code has to grab the PT locks to synchronize against
concurrent page table modifications.
Assuming migration would find a writable migration entry (while holding
the PT lock) and replace it with a writable present PTE, surely mprotect()
code didn't stumble over the writable migration entry yet (converting it
into a readable migration entry) and would instead wait for the PT lock to
convert the now present writable PTE into a read-only PTE. As mprotect()
didn't finish yet, the behavior is just like migration didn't happen: a
writable PTE will be converted to a read-only PTE.
So it's fine to rely on the writability information in the source PTE/PMD
and not recheck against the VMA as long as we're holding the PT lock to
synchronize with anyone who concurrently wants to downgrade write
permissions (like mprotect()) by first adjusting vma->vm_flags /
vma->vm_page_prot to then walk over the page tables to adjust the page
table entries.
Running test cases that should reveal such races -- mprotect(PROT_READ)
racing with page migration or THP splitting -- for multiple hours did not
reveal an issue with this cleanup.
Link: https://lkml.kernel.org/r/20230418142113.439494-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
3301 lines
88 KiB
C
3301 lines
88 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2009 Red Hat, Inc.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/numa_balancing.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/page_owner.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/memory-tiers.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
#include "swap.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/thp.h>
|
|
|
|
/*
|
|
* By default, transparent hugepage support is disabled in order to avoid
|
|
* risking an increased memory footprint for applications that are not
|
|
* guaranteed to benefit from it. When transparent hugepage support is
|
|
* enabled, it is for all mappings, and khugepaged scans all mappings.
|
|
* Defrag is invoked by khugepaged hugepage allocations and by page faults
|
|
* for all hugepage allocations.
|
|
*/
|
|
unsigned long transparent_hugepage_flags __read_mostly =
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
|
|
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
|
|
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
|
|
#endif
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
|
|
static struct shrinker deferred_split_shrinker;
|
|
|
|
static atomic_t huge_zero_refcount;
|
|
struct page *huge_zero_page __read_mostly;
|
|
unsigned long huge_zero_pfn __read_mostly = ~0UL;
|
|
|
|
bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
|
|
bool smaps, bool in_pf, bool enforce_sysfs)
|
|
{
|
|
if (!vma->vm_mm) /* vdso */
|
|
return false;
|
|
|
|
/*
|
|
* Explicitly disabled through madvise or prctl, or some
|
|
* architectures may disable THP for some mappings, for
|
|
* example, s390 kvm.
|
|
* */
|
|
if ((vm_flags & VM_NOHUGEPAGE) ||
|
|
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
|
|
return false;
|
|
/*
|
|
* If the hardware/firmware marked hugepage support disabled.
|
|
*/
|
|
if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
|
|
return false;
|
|
|
|
/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
|
|
if (vma_is_dax(vma))
|
|
return in_pf;
|
|
|
|
/*
|
|
* Special VMA and hugetlb VMA.
|
|
* Must be checked after dax since some dax mappings may have
|
|
* VM_MIXEDMAP set.
|
|
*/
|
|
if (vm_flags & VM_NO_KHUGEPAGED)
|
|
return false;
|
|
|
|
/*
|
|
* Check alignment for file vma and size for both file and anon vma.
|
|
*
|
|
* Skip the check for page fault. Huge fault does the check in fault
|
|
* handlers. And this check is not suitable for huge PUD fault.
|
|
*/
|
|
if (!in_pf &&
|
|
!transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
|
|
return false;
|
|
|
|
/*
|
|
* Enabled via shmem mount options or sysfs settings.
|
|
* Must be done before hugepage flags check since shmem has its
|
|
* own flags.
|
|
*/
|
|
if (!in_pf && shmem_file(vma->vm_file))
|
|
return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
|
|
!enforce_sysfs, vma->vm_mm, vm_flags);
|
|
|
|
/* Enforce sysfs THP requirements as necessary */
|
|
if (enforce_sysfs &&
|
|
(!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
|
|
!hugepage_flags_always())))
|
|
return false;
|
|
|
|
/* Only regular file is valid */
|
|
if (!in_pf && file_thp_enabled(vma))
|
|
return true;
|
|
|
|
if (!vma_is_anonymous(vma))
|
|
return false;
|
|
|
|
if (vma_is_temporary_stack(vma))
|
|
return false;
|
|
|
|
/*
|
|
* THPeligible bit of smaps should show 1 for proper VMAs even
|
|
* though anon_vma is not initialized yet.
|
|
*
|
|
* Allow page fault since anon_vma may be not initialized until
|
|
* the first page fault.
|
|
*/
|
|
if (!vma->anon_vma)
|
|
return (smaps || in_pf);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool get_huge_zero_page(void)
|
|
{
|
|
struct page *zero_page;
|
|
retry:
|
|
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
|
|
return true;
|
|
|
|
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
|
|
HPAGE_PMD_ORDER);
|
|
if (!zero_page) {
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
|
|
return false;
|
|
}
|
|
preempt_disable();
|
|
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
|
|
preempt_enable();
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
goto retry;
|
|
}
|
|
WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
|
|
|
|
/* We take additional reference here. It will be put back by shrinker */
|
|
atomic_set(&huge_zero_refcount, 2);
|
|
preempt_enable();
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC);
|
|
return true;
|
|
}
|
|
|
|
static void put_huge_zero_page(void)
|
|
{
|
|
/*
|
|
* Counter should never go to zero here. Only shrinker can put
|
|
* last reference.
|
|
*/
|
|
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
|
|
}
|
|
|
|
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
return READ_ONCE(huge_zero_page);
|
|
|
|
if (!get_huge_zero_page())
|
|
return NULL;
|
|
|
|
if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
|
|
return READ_ONCE(huge_zero_page);
|
|
}
|
|
|
|
void mm_put_huge_zero_page(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
/* we can free zero page only if last reference remains */
|
|
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
|
|
struct page *zero_page = xchg(&huge_zero_page, NULL);
|
|
BUG_ON(zero_page == NULL);
|
|
WRITE_ONCE(huge_zero_pfn, ~0UL);
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
return HPAGE_PMD_NR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shrinker huge_zero_page_shrinker = {
|
|
.count_objects = shrink_huge_zero_page_count,
|
|
.scan_objects = shrink_huge_zero_page_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
const char *output;
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
|
|
output = "[always] madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always [madvise] never";
|
|
else
|
|
output = "always madvise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret = count;
|
|
|
|
if (sysfs_streq(buf, "always")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
ret = -EINVAL;
|
|
|
|
if (ret > 0) {
|
|
int err = start_stop_khugepaged();
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
|
|
|
|
ssize_t single_hugepage_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
return sysfs_emit(buf, "%d\n",
|
|
!!test_bit(flag, &transparent_hugepage_flags));
|
|
}
|
|
|
|
ssize_t single_hugepage_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
unsigned long value;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 10, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (value > 1)
|
|
return -EINVAL;
|
|
|
|
if (value)
|
|
set_bit(flag, &transparent_hugepage_flags);
|
|
else
|
|
clear_bit(flag, &transparent_hugepage_flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
const char *output;
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "[always] defer defer+madvise madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always [defer] defer+madvise madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always defer [defer+madvise] madvise never";
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags))
|
|
output = "always defer defer+madvise [madvise] never";
|
|
else
|
|
output = "always defer defer+madvise madvise [never]";
|
|
|
|
return sysfs_emit(buf, "%s\n", output);
|
|
}
|
|
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
if (sysfs_streq(buf, "always")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "defer+madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "defer")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (sysfs_streq(buf, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
|
|
|
|
static ssize_t use_zero_page_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static ssize_t use_zero_page_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
|
|
|
|
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
|
|
}
|
|
static struct kobj_attribute hpage_pmd_size_attr =
|
|
__ATTR_RO(hpage_pmd_size);
|
|
|
|
static struct attribute *hugepage_attr[] = {
|
|
&enabled_attr.attr,
|
|
&defrag_attr.attr,
|
|
&use_zero_page_attr.attr,
|
|
&hpage_pmd_size_attr.attr,
|
|
#ifdef CONFIG_SHMEM
|
|
&shmem_enabled_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group hugepage_attr_group = {
|
|
.attrs = hugepage_attr,
|
|
};
|
|
|
|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
int err;
|
|
|
|
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
|
|
if (unlikely(!*hugepage_kobj)) {
|
|
pr_err("failed to create transparent hugepage kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto delete_obj;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto remove_hp_group;
|
|
}
|
|
|
|
return 0;
|
|
|
|
remove_hp_group:
|
|
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
|
|
delete_obj:
|
|
kobject_put(*hugepage_kobj);
|
|
return err;
|
|
}
|
|
|
|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
|
|
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
|
|
kobject_put(hugepage_kobj);
|
|
}
|
|
#else
|
|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static int __init hugepage_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *hugepage_kobj;
|
|
|
|
if (!has_transparent_hugepage()) {
|
|
transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* hugepages can't be allocated by the buddy allocator
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
|
|
/*
|
|
* we use page->mapping and page->index in second tail page
|
|
* as list_head: assuming THP order >= 2
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
|
|
|
|
err = hugepage_init_sysfs(&hugepage_kobj);
|
|
if (err)
|
|
goto err_sysfs;
|
|
|
|
err = khugepaged_init();
|
|
if (err)
|
|
goto err_slab;
|
|
|
|
err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
|
|
if (err)
|
|
goto err_hzp_shrinker;
|
|
err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
|
|
if (err)
|
|
goto err_split_shrinker;
|
|
|
|
/*
|
|
* By default disable transparent hugepages on smaller systems,
|
|
* where the extra memory used could hurt more than TLB overhead
|
|
* is likely to save. The admin can still enable it through /sys.
|
|
*/
|
|
if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
|
|
transparent_hugepage_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
err = start_stop_khugepaged();
|
|
if (err)
|
|
goto err_khugepaged;
|
|
|
|
return 0;
|
|
err_khugepaged:
|
|
unregister_shrinker(&deferred_split_shrinker);
|
|
err_split_shrinker:
|
|
unregister_shrinker(&huge_zero_page_shrinker);
|
|
err_hzp_shrinker:
|
|
khugepaged_destroy();
|
|
err_slab:
|
|
hugepage_exit_sysfs(hugepage_kobj);
|
|
err_sysfs:
|
|
return err;
|
|
}
|
|
subsys_initcall(hugepage_init);
|
|
|
|
static int __init setup_transparent_hugepage(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
if (!strcmp(str, "always")) {
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
pr_warn("transparent_hugepage= cannot parse, ignored\n");
|
|
return ret;
|
|
}
|
|
__setup("transparent_hugepage=", setup_transparent_hugepage);
|
|
|
|
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pmd = pmd_mkwrite(pmd);
|
|
return pmd;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
static inline
|
|
struct deferred_split *get_deferred_split_queue(struct folio *folio)
|
|
{
|
|
struct mem_cgroup *memcg = folio_memcg(folio);
|
|
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
|
|
|
|
if (memcg)
|
|
return &memcg->deferred_split_queue;
|
|
else
|
|
return &pgdat->deferred_split_queue;
|
|
}
|
|
#else
|
|
static inline
|
|
struct deferred_split *get_deferred_split_queue(struct folio *folio)
|
|
{
|
|
struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
|
|
|
|
return &pgdat->deferred_split_queue;
|
|
}
|
|
#endif
|
|
|
|
void prep_transhuge_page(struct page *page)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
|
|
INIT_LIST_HEAD(&folio->_deferred_list);
|
|
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
|
|
}
|
|
|
|
static inline bool is_transparent_hugepage(struct page *page)
|
|
{
|
|
struct folio *folio;
|
|
|
|
if (!PageCompound(page))
|
|
return false;
|
|
|
|
folio = page_folio(page);
|
|
return is_huge_zero_page(&folio->page) ||
|
|
folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
|
|
}
|
|
|
|
static unsigned long __thp_get_unmapped_area(struct file *filp,
|
|
unsigned long addr, unsigned long len,
|
|
loff_t off, unsigned long flags, unsigned long size)
|
|
{
|
|
loff_t off_end = off + len;
|
|
loff_t off_align = round_up(off, size);
|
|
unsigned long len_pad, ret;
|
|
|
|
if (off_end <= off_align || (off_end - off_align) < size)
|
|
return 0;
|
|
|
|
len_pad = len + size;
|
|
if (len_pad < len || (off + len_pad) < off)
|
|
return 0;
|
|
|
|
ret = current->mm->get_unmapped_area(filp, addr, len_pad,
|
|
off >> PAGE_SHIFT, flags);
|
|
|
|
/*
|
|
* The failure might be due to length padding. The caller will retry
|
|
* without the padding.
|
|
*/
|
|
if (IS_ERR_VALUE(ret))
|
|
return 0;
|
|
|
|
/*
|
|
* Do not try to align to THP boundary if allocation at the address
|
|
* hint succeeds.
|
|
*/
|
|
if (ret == addr)
|
|
return addr;
|
|
|
|
ret += (off - ret) & (size - 1);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
unsigned long ret;
|
|
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
|
|
|
|
ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
|
|
|
|
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
|
|
struct page *page, gfp_t gfp)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct folio *folio = page_folio(page);
|
|
pgtable_t pgtable;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
vm_fault_t ret = 0;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
|
|
folio_put(folio);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
count_vm_event(THP_FAULT_FALLBACK_CHARGE);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
folio_throttle_swaprate(folio, gfp);
|
|
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (unlikely(!pgtable)) {
|
|
ret = VM_FAULT_OOM;
|
|
goto release;
|
|
}
|
|
|
|
clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
|
|
/*
|
|
* The memory barrier inside __folio_mark_uptodate makes sure that
|
|
* clear_huge_page writes become visible before the set_pmd_at()
|
|
* write.
|
|
*/
|
|
__folio_mark_uptodate(folio);
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_none(*vmf->pmd))) {
|
|
goto unlock_release;
|
|
} else {
|
|
pmd_t entry;
|
|
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret)
|
|
goto unlock_release;
|
|
|
|
/* Deliver the page fault to userland */
|
|
if (userfaultfd_missing(vma)) {
|
|
spin_unlock(vmf->ptl);
|
|
folio_put(folio);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
ret = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
return ret;
|
|
}
|
|
|
|
entry = mk_huge_pmd(page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
folio_add_new_anon_rmap(folio, vma, haddr);
|
|
folio_add_lru_vma(folio, vma);
|
|
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(vma->vm_mm);
|
|
spin_unlock(vmf->ptl);
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
|
|
}
|
|
|
|
return 0;
|
|
unlock_release:
|
|
spin_unlock(vmf->ptl);
|
|
release:
|
|
if (pgtable)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
folio_put(folio);
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* always: directly stall for all thp allocations
|
|
* defer: wake kswapd and fail if not immediately available
|
|
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
|
|
* fail if not immediately available
|
|
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
|
|
* available
|
|
* never: never stall for any thp allocation
|
|
*/
|
|
gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
|
|
{
|
|
const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
|
|
|
|
/* Always do synchronous compaction */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
|
|
|
|
/* Kick kcompactd and fail quickly */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
|
|
|
|
/* Synchronous compaction if madvised, otherwise kick kcompactd */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT |
|
|
(vma_madvised ? __GFP_DIRECT_RECLAIM :
|
|
__GFP_KSWAPD_RECLAIM);
|
|
|
|
/* Only do synchronous compaction if madvised */
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT |
|
|
(vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
|
|
|
|
return GFP_TRANSHUGE_LIGHT;
|
|
}
|
|
|
|
/* Caller must hold page table lock. */
|
|
static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
|
|
struct page *zero_page)
|
|
{
|
|
pmd_t entry;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
entry = mk_pmd(zero_page, vma->vm_page_prot);
|
|
entry = pmd_mkhuge(entry);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
mm_inc_nr_ptes(mm);
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
gfp_t gfp;
|
|
struct folio *folio;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
|
|
if (!transhuge_vma_suitable(vma, haddr))
|
|
return VM_FAULT_FALLBACK;
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
return VM_FAULT_OOM;
|
|
khugepaged_enter_vma(vma, vma->vm_flags);
|
|
|
|
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
|
|
!mm_forbids_zeropage(vma->vm_mm) &&
|
|
transparent_hugepage_use_zero_page()) {
|
|
pgtable_t pgtable;
|
|
struct page *zero_page;
|
|
vm_fault_t ret;
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (unlikely(!pgtable))
|
|
return VM_FAULT_OOM;
|
|
zero_page = mm_get_huge_zero_page(vma->vm_mm);
|
|
if (unlikely(!zero_page)) {
|
|
pte_free(vma->vm_mm, pgtable);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
ret = 0;
|
|
if (pmd_none(*vmf->pmd)) {
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret) {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
} else if (userfaultfd_missing(vma)) {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
ret = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
} else {
|
|
set_huge_zero_page(pgtable, vma->vm_mm, vma,
|
|
haddr, vmf->pmd, zero_page);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
} else {
|
|
spin_unlock(vmf->ptl);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
}
|
|
return ret;
|
|
}
|
|
gfp = vma_thp_gfp_mask(vma);
|
|
folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
|
|
if (unlikely(!folio)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
|
|
}
|
|
|
|
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (!pmd_none(*pmd)) {
|
|
if (write) {
|
|
if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
|
|
WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
|
|
goto out_unlock;
|
|
}
|
|
entry = pmd_mkyoung(*pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pmd_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pmd_mkyoung(pmd_mkdirty(entry));
|
|
entry = maybe_pmd_mkwrite(entry, vma);
|
|
}
|
|
|
|
if (pgtable) {
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
mm_inc_nr_ptes(mm);
|
|
pgtable = NULL;
|
|
}
|
|
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
if (pgtable)
|
|
pte_free(mm, pgtable);
|
|
}
|
|
|
|
/**
|
|
* vmf_insert_pfn_pmd - insert a pmd size pfn
|
|
* @vmf: Structure describing the fault
|
|
* @pfn: pfn to insert
|
|
* @write: whether it's a write fault
|
|
*
|
|
* Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
|
|
*
|
|
* Return: vm_fault_t value.
|
|
*/
|
|
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
|
|
{
|
|
unsigned long addr = vmf->address & PMD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
pgtable_t pgtable = NULL;
|
|
|
|
/*
|
|
* If we had pmd_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
if (arch_needs_pgtable_deposit()) {
|
|
pgtable = pte_alloc_one(vma->vm_mm);
|
|
if (!pgtable)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pud = pud_mkwrite(pud);
|
|
return pud;
|
|
}
|
|
|
|
static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, pfn_t pfn, bool write)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgprot_t prot = vma->vm_page_prot;
|
|
pud_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(mm, pud);
|
|
if (!pud_none(*pud)) {
|
|
if (write) {
|
|
if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
|
|
WARN_ON_ONCE(!is_huge_zero_pud(*pud));
|
|
goto out_unlock;
|
|
}
|
|
entry = pud_mkyoung(*pud);
|
|
entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
|
|
if (pudp_set_access_flags(vma, addr, pud, entry, 1))
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
}
|
|
goto out_unlock;
|
|
}
|
|
|
|
entry = pud_mkhuge(pfn_t_pud(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pud_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pud_mkyoung(pud_mkdirty(entry));
|
|
entry = maybe_pud_mkwrite(entry, vma);
|
|
}
|
|
set_pud_at(mm, addr, pud, entry);
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
/**
|
|
* vmf_insert_pfn_pud - insert a pud size pfn
|
|
* @vmf: Structure describing the fault
|
|
* @pfn: pfn to insert
|
|
* @write: whether it's a write fault
|
|
*
|
|
* Insert a pud size pfn. See vmf_insert_pfn() for additional info.
|
|
*
|
|
* Return: vm_fault_t value.
|
|
*/
|
|
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
|
|
{
|
|
unsigned long addr = vmf->address & PUD_MASK;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
|
|
/*
|
|
* If we had pud_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, bool write)
|
|
{
|
|
pmd_t _pmd;
|
|
|
|
_pmd = pmd_mkyoung(*pmd);
|
|
if (write)
|
|
_pmd = pmd_mkdirty(_pmd);
|
|
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
|
|
pmd, _pmd, write))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
|
|
{
|
|
unsigned long pfn = pmd_pfn(*pmd);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
return NULL;
|
|
|
|
if (pmd_present(*pmd) && pmd_devmap(*pmd))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*/
|
|
if (!(flags & (FOLL_GET | FOLL_PIN)))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
|
|
*pgmap = get_dev_pagemap(pfn, *pgmap);
|
|
if (!*pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
ret = try_grab_page(page, flags);
|
|
if (ret)
|
|
page = ERR_PTR(ret);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
|
|
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
struct page *src_page;
|
|
pmd_t pmd;
|
|
pgtable_t pgtable = NULL;
|
|
int ret = -ENOMEM;
|
|
|
|
/* Skip if can be re-fill on fault */
|
|
if (!vma_is_anonymous(dst_vma))
|
|
return 0;
|
|
|
|
pgtable = pte_alloc_one(dst_mm);
|
|
if (unlikely(!pgtable))
|
|
goto out;
|
|
|
|
dst_ptl = pmd_lock(dst_mm, dst_pmd);
|
|
src_ptl = pmd_lockptr(src_mm, src_pmd);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pmd = *src_pmd;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (unlikely(is_swap_pmd(pmd))) {
|
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(pmd));
|
|
if (!is_readable_migration_entry(entry)) {
|
|
entry = make_readable_migration_entry(
|
|
swp_offset(entry));
|
|
pmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*src_pmd))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
if (pmd_swp_uffd_wp(*src_pmd))
|
|
pmd = pmd_swp_mkuffd_wp(pmd);
|
|
set_pmd_at(src_mm, addr, src_pmd, pmd);
|
|
}
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
if (!userfaultfd_wp(dst_vma))
|
|
pmd = pmd_swp_clear_uffd_wp(pmd);
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(!pmd_trans_huge(pmd))) {
|
|
pte_free(dst_mm, pgtable);
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* When page table lock is held, the huge zero pmd should not be
|
|
* under splitting since we don't split the page itself, only pmd to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pmd(pmd)) {
|
|
/*
|
|
* get_huge_zero_page() will never allocate a new page here,
|
|
* since we already have a zero page to copy. It just takes a
|
|
* reference.
|
|
*/
|
|
mm_get_huge_zero_page(dst_mm);
|
|
goto out_zero_page;
|
|
}
|
|
|
|
src_page = pmd_page(pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
|
|
|
|
get_page(src_page);
|
|
if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
|
|
/* Page maybe pinned: split and retry the fault on PTEs. */
|
|
put_page(src_page);
|
|
pte_free(dst_mm, pgtable);
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
|
|
return -EAGAIN;
|
|
}
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
out_zero_page:
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
pmdp_set_wrprotect(src_mm, addr, src_pmd);
|
|
if (!userfaultfd_wp(dst_vma))
|
|
pmd = pmd_clear_uffd_wp(pmd);
|
|
pmd = pmd_mkold(pmd_wrprotect(pmd));
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, bool write)
|
|
{
|
|
pud_t _pud;
|
|
|
|
_pud = pud_mkyoung(*pud);
|
|
if (write)
|
|
_pud = pud_mkdirty(_pud);
|
|
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
|
|
pud, _pud, write))
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
}
|
|
|
|
struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, int flags, struct dev_pagemap **pgmap)
|
|
{
|
|
unsigned long pfn = pud_pfn(*pud);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
assert_spin_locked(pud_lockptr(mm, pud));
|
|
|
|
if (flags & FOLL_WRITE && !pud_write(*pud))
|
|
return NULL;
|
|
|
|
if (pud_present(*pud) && pud_devmap(*pud))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pud(vma, addr, pud, flags & FOLL_WRITE);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*
|
|
* At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
|
|
*/
|
|
if (!(flags & (FOLL_GET | FOLL_PIN)))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
|
|
*pgmap = get_dev_pagemap(pfn, *pgmap);
|
|
if (!*pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
|
|
ret = try_grab_page(page, flags);
|
|
if (ret)
|
|
page = ERR_PTR(ret);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
pud_t pud;
|
|
int ret;
|
|
|
|
dst_ptl = pud_lock(dst_mm, dst_pud);
|
|
src_ptl = pud_lockptr(src_mm, src_pud);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pud = *src_pud;
|
|
if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* When page table lock is held, the huge zero pud should not be
|
|
* under splitting since we don't split the page itself, only pud to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pud(pud)) {
|
|
/* No huge zero pud yet */
|
|
}
|
|
|
|
/*
|
|
* TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
|
|
* and split if duplicating fails.
|
|
*/
|
|
pudp_set_wrprotect(src_mm, addr, src_pud);
|
|
pud = pud_mkold(pud_wrprotect(pud));
|
|
set_pud_at(dst_mm, addr, dst_pud, pud);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
return ret;
|
|
}
|
|
|
|
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
|
|
{
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
|
|
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
|
|
goto unlock;
|
|
|
|
touch_pud(vmf->vma, vmf->address, vmf->pud, write);
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
void huge_pmd_set_accessed(struct vm_fault *vmf)
|
|
{
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
|
|
goto unlock;
|
|
|
|
touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
|
|
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
|
|
{
|
|
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct folio *folio;
|
|
struct page *page;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
pmd_t orig_pmd = vmf->orig_pmd;
|
|
|
|
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
|
|
VM_BUG_ON_VMA(!vma->anon_vma, vma);
|
|
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto fallback;
|
|
|
|
spin_lock(vmf->ptl);
|
|
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
|
|
page = pmd_page(orig_pmd);
|
|
folio = page_folio(page);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
/* Early check when only holding the PT lock. */
|
|
if (PageAnonExclusive(page))
|
|
goto reuse;
|
|
|
|
if (!folio_trylock(folio)) {
|
|
folio_get(folio);
|
|
spin_unlock(vmf->ptl);
|
|
folio_lock(folio);
|
|
spin_lock(vmf->ptl);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
return 0;
|
|
}
|
|
folio_put(folio);
|
|
}
|
|
|
|
/* Recheck after temporarily dropping the PT lock. */
|
|
if (PageAnonExclusive(page)) {
|
|
folio_unlock(folio);
|
|
goto reuse;
|
|
}
|
|
|
|
/*
|
|
* See do_wp_page(): we can only reuse the folio exclusively if
|
|
* there are no additional references. Note that we always drain
|
|
* the LRU pagevecs immediately after adding a THP.
|
|
*/
|
|
if (folio_ref_count(folio) >
|
|
1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
|
|
goto unlock_fallback;
|
|
if (folio_test_swapcache(folio))
|
|
folio_free_swap(folio);
|
|
if (folio_ref_count(folio) == 1) {
|
|
pmd_t entry;
|
|
|
|
page_move_anon_rmap(page, vma);
|
|
folio_unlock(folio);
|
|
reuse:
|
|
if (unlikely(unshare)) {
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
return 0;
|
|
}
|
|
|
|
unlock_fallback:
|
|
folio_unlock(folio);
|
|
spin_unlock(vmf->ptl);
|
|
fallback:
|
|
__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
|
|
static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
|
|
return false;
|
|
|
|
/* Don't touch entries that are not even readable (NUMA hinting). */
|
|
if (pmd_protnone(pmd))
|
|
return false;
|
|
|
|
/* Do we need write faults for softdirty tracking? */
|
|
if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
|
|
return false;
|
|
|
|
/* Do we need write faults for uffd-wp tracking? */
|
|
if (userfaultfd_huge_pmd_wp(vma, pmd))
|
|
return false;
|
|
|
|
if (!(vma->vm_flags & VM_SHARED)) {
|
|
/* See can_change_pte_writable(). */
|
|
page = vm_normal_page_pmd(vma, addr, pmd);
|
|
return page && PageAnon(page) && PageAnonExclusive(page);
|
|
}
|
|
|
|
/* See can_change_pte_writable(). */
|
|
return pmd_dirty(pmd);
|
|
}
|
|
|
|
/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
|
|
static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned int flags)
|
|
{
|
|
/* If the pmd is writable, we can write to the page. */
|
|
if (pmd_write(pmd))
|
|
return true;
|
|
|
|
/* Maybe FOLL_FORCE is set to override it? */
|
|
if (!(flags & FOLL_FORCE))
|
|
return false;
|
|
|
|
/* But FOLL_FORCE has no effect on shared mappings */
|
|
if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
|
|
return false;
|
|
|
|
/* ... or read-only private ones */
|
|
if (!(vma->vm_flags & VM_MAYWRITE))
|
|
return false;
|
|
|
|
/* ... or already writable ones that just need to take a write fault */
|
|
if (vma->vm_flags & VM_WRITE)
|
|
return false;
|
|
|
|
/*
|
|
* See can_change_pte_writable(): we broke COW and could map the page
|
|
* writable if we have an exclusive anonymous page ...
|
|
*/
|
|
if (!page || !PageAnon(page) || !PageAnonExclusive(page))
|
|
return false;
|
|
|
|
/* ... and a write-fault isn't required for other reasons. */
|
|
if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
|
|
return false;
|
|
return !userfaultfd_huge_pmd_wp(vma, pmd);
|
|
}
|
|
|
|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
|
|
|
|
if ((flags & FOLL_WRITE) &&
|
|
!can_follow_write_pmd(*pmd, page, vma, flags))
|
|
return NULL;
|
|
|
|
/* Avoid dumping huge zero page */
|
|
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
/* Full NUMA hinting faults to serialise migration in fault paths */
|
|
if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
|
|
return NULL;
|
|
|
|
if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
|
|
return ERR_PTR(-EMLINK);
|
|
|
|
VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
|
|
!PageAnonExclusive(page), page);
|
|
|
|
ret = try_grab_page(page, flags);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
|
|
|
|
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
|
|
VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
|
|
|
|
return page;
|
|
}
|
|
|
|
/* NUMA hinting page fault entry point for trans huge pmds */
|
|
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
pmd_t oldpmd = vmf->orig_pmd;
|
|
pmd_t pmd;
|
|
struct page *page;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
int page_nid = NUMA_NO_NODE;
|
|
int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
|
|
bool migrated = false, writable = false;
|
|
int flags = 0;
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
|
|
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
|
|
|
|
/*
|
|
* Detect now whether the PMD could be writable; this information
|
|
* is only valid while holding the PT lock.
|
|
*/
|
|
writable = pmd_write(pmd);
|
|
if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
|
|
can_change_pmd_writable(vma, vmf->address, pmd))
|
|
writable = true;
|
|
|
|
page = vm_normal_page_pmd(vma, haddr, pmd);
|
|
if (!page)
|
|
goto out_map;
|
|
|
|
/* See similar comment in do_numa_page for explanation */
|
|
if (!writable)
|
|
flags |= TNF_NO_GROUP;
|
|
|
|
page_nid = page_to_nid(page);
|
|
/*
|
|
* For memory tiering mode, cpupid of slow memory page is used
|
|
* to record page access time. So use default value.
|
|
*/
|
|
if (node_is_toptier(page_nid))
|
|
last_cpupid = page_cpupid_last(page);
|
|
target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
|
|
&flags);
|
|
|
|
if (target_nid == NUMA_NO_NODE) {
|
|
put_page(page);
|
|
goto out_map;
|
|
}
|
|
|
|
spin_unlock(vmf->ptl);
|
|
writable = false;
|
|
|
|
migrated = migrate_misplaced_page(page, vma, target_nid);
|
|
if (migrated) {
|
|
flags |= TNF_MIGRATED;
|
|
page_nid = target_nid;
|
|
} else {
|
|
flags |= TNF_MIGRATE_FAIL;
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
goto out_map;
|
|
}
|
|
|
|
out:
|
|
if (page_nid != NUMA_NO_NODE)
|
|
task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
|
|
flags);
|
|
|
|
return 0;
|
|
|
|
out_map:
|
|
/* Restore the PMD */
|
|
pmd = pmd_modify(oldpmd, vma->vm_page_prot);
|
|
pmd = pmd_mkyoung(pmd);
|
|
if (writable)
|
|
pmd = pmd_mkwrite(pmd);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
spin_unlock(vmf->ptl);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Return true if we do MADV_FREE successfully on entire pmd page.
|
|
* Otherwise, return false.
|
|
*/
|
|
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, unsigned long next)
|
|
{
|
|
spinlock_t *ptl;
|
|
pmd_t orig_pmd;
|
|
struct folio *folio;
|
|
struct mm_struct *mm = tlb->mm;
|
|
bool ret = false;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
goto out_unlocked;
|
|
|
|
orig_pmd = *pmd;
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto out;
|
|
|
|
if (unlikely(!pmd_present(orig_pmd))) {
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
!is_pmd_migration_entry(orig_pmd));
|
|
goto out;
|
|
}
|
|
|
|
folio = pfn_folio(pmd_pfn(orig_pmd));
|
|
/*
|
|
* If other processes are mapping this folio, we couldn't discard
|
|
* the folio unless they all do MADV_FREE so let's skip the folio.
|
|
*/
|
|
if (folio_mapcount(folio) != 1)
|
|
goto out;
|
|
|
|
if (!folio_trylock(folio))
|
|
goto out;
|
|
|
|
/*
|
|
* If user want to discard part-pages of THP, split it so MADV_FREE
|
|
* will deactivate only them.
|
|
*/
|
|
if (next - addr != HPAGE_PMD_SIZE) {
|
|
folio_get(folio);
|
|
spin_unlock(ptl);
|
|
split_folio(folio);
|
|
folio_unlock(folio);
|
|
folio_put(folio);
|
|
goto out_unlocked;
|
|
}
|
|
|
|
if (folio_test_dirty(folio))
|
|
folio_clear_dirty(folio);
|
|
folio_unlock(folio);
|
|
|
|
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
|
|
pmdp_invalidate(vma, addr, pmd);
|
|
orig_pmd = pmd_mkold(orig_pmd);
|
|
orig_pmd = pmd_mkclean(orig_pmd);
|
|
|
|
set_pmd_at(mm, addr, pmd, orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
}
|
|
|
|
folio_mark_lazyfree(folio);
|
|
ret = true;
|
|
out:
|
|
spin_unlock(ptl);
|
|
out_unlocked:
|
|
return ret;
|
|
}
|
|
|
|
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
pgtable_t pgtable;
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pte_free(mm, pgtable);
|
|
mm_dec_nr_ptes(mm);
|
|
}
|
|
|
|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pmd_t orig_pmd;
|
|
spinlock_t *ptl;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
/*
|
|
* For architectures like ppc64 we look at deposited pgtable
|
|
* when calling pmdp_huge_get_and_clear. So do the
|
|
* pgtable_trans_huge_withdraw after finishing pmdp related
|
|
* operations.
|
|
*/
|
|
orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
|
|
tlb->fullmm);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
if (vma_is_special_huge(vma)) {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
} else if (is_huge_zero_pmd(orig_pmd)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
} else {
|
|
struct page *page = NULL;
|
|
int flush_needed = 1;
|
|
|
|
if (pmd_present(orig_pmd)) {
|
|
page = pmd_page(orig_pmd);
|
|
page_remove_rmap(page, vma, true);
|
|
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
} else if (thp_migration_supported()) {
|
|
swp_entry_t entry;
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
|
|
entry = pmd_to_swp_entry(orig_pmd);
|
|
page = pfn_swap_entry_to_page(entry);
|
|
flush_needed = 0;
|
|
} else
|
|
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
|
|
|
|
if (PageAnon(page)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
} else {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
if (flush_needed)
|
|
tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef pmd_move_must_withdraw
|
|
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
|
|
spinlock_t *old_pmd_ptl,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* With split pmd lock we also need to move preallocated
|
|
* PTE page table if new_pmd is on different PMD page table.
|
|
*
|
|
* We also don't deposit and withdraw tables for file pages.
|
|
*/
|
|
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
|
|
}
|
|
#endif
|
|
|
|
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
if (unlikely(is_pmd_migration_entry(pmd)))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
else if (pmd_present(pmd))
|
|
pmd = pmd_mksoft_dirty(pmd);
|
|
#endif
|
|
return pmd;
|
|
}
|
|
|
|
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
|
|
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
pmd_t pmd;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
bool force_flush = false;
|
|
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have release it.
|
|
*/
|
|
if (WARN_ON(!pmd_none(*new_pmd))) {
|
|
VM_BUG_ON(pmd_trans_huge(*new_pmd));
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_lock prevents deadlock.
|
|
*/
|
|
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
|
|
if (old_ptl) {
|
|
new_ptl = pmd_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
|
|
if (pmd_present(pmd))
|
|
force_flush = true;
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
|
|
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
|
|
pgtable_t pgtable;
|
|
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
|
|
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
|
|
}
|
|
pmd = move_soft_dirty_pmd(pmd);
|
|
set_pmd_at(mm, new_addr, new_pmd, pmd);
|
|
if (force_flush)
|
|
flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns
|
|
* - 0 if PMD could not be locked
|
|
* - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
|
|
* or if prot_numa but THP migration is not supported
|
|
* - HPAGE_PMD_NR if protections changed and TLB flush necessary
|
|
*/
|
|
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, pgprot_t newprot,
|
|
unsigned long cp_flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
spinlock_t *ptl;
|
|
pmd_t oldpmd, entry;
|
|
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
|
|
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
|
|
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
|
|
int ret = 1;
|
|
|
|
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
|
|
|
|
if (prot_numa && !thp_migration_supported())
|
|
return 1;
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (is_swap_pmd(*pmd)) {
|
|
swp_entry_t entry = pmd_to_swp_entry(*pmd);
|
|
struct page *page = pfn_swap_entry_to_page(entry);
|
|
pmd_t newpmd;
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
|
|
if (is_writable_migration_entry(entry)) {
|
|
/*
|
|
* A protection check is difficult so
|
|
* just be safe and disable write
|
|
*/
|
|
if (PageAnon(page))
|
|
entry = make_readable_exclusive_migration_entry(swp_offset(entry));
|
|
else
|
|
entry = make_readable_migration_entry(swp_offset(entry));
|
|
newpmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*pmd))
|
|
newpmd = pmd_swp_mksoft_dirty(newpmd);
|
|
} else {
|
|
newpmd = *pmd;
|
|
}
|
|
|
|
if (uffd_wp)
|
|
newpmd = pmd_swp_mkuffd_wp(newpmd);
|
|
else if (uffd_wp_resolve)
|
|
newpmd = pmd_swp_clear_uffd_wp(newpmd);
|
|
if (!pmd_same(*pmd, newpmd))
|
|
set_pmd_at(mm, addr, pmd, newpmd);
|
|
goto unlock;
|
|
}
|
|
#endif
|
|
|
|
if (prot_numa) {
|
|
struct page *page;
|
|
bool toptier;
|
|
/*
|
|
* Avoid trapping faults against the zero page. The read-only
|
|
* data is likely to be read-cached on the local CPU and
|
|
* local/remote hits to the zero page are not interesting.
|
|
*/
|
|
if (is_huge_zero_pmd(*pmd))
|
|
goto unlock;
|
|
|
|
if (pmd_protnone(*pmd))
|
|
goto unlock;
|
|
|
|
page = pmd_page(*pmd);
|
|
toptier = node_is_toptier(page_to_nid(page));
|
|
/*
|
|
* Skip scanning top tier node if normal numa
|
|
* balancing is disabled
|
|
*/
|
|
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
|
|
toptier)
|
|
goto unlock;
|
|
|
|
if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
|
|
!toptier)
|
|
xchg_page_access_time(page, jiffies_to_msecs(jiffies));
|
|
}
|
|
/*
|
|
* In case prot_numa, we are under mmap_read_lock(mm). It's critical
|
|
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
|
|
* which is also under mmap_read_lock(mm):
|
|
*
|
|
* CPU0: CPU1:
|
|
* change_huge_pmd(prot_numa=1)
|
|
* pmdp_huge_get_and_clear_notify()
|
|
* madvise_dontneed()
|
|
* zap_pmd_range()
|
|
* pmd_trans_huge(*pmd) == 0 (without ptl)
|
|
* // skip the pmd
|
|
* set_pmd_at();
|
|
* // pmd is re-established
|
|
*
|
|
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
|
|
* which may break userspace.
|
|
*
|
|
* pmdp_invalidate_ad() is required to make sure we don't miss
|
|
* dirty/young flags set by hardware.
|
|
*/
|
|
oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
|
|
|
|
entry = pmd_modify(oldpmd, newprot);
|
|
if (uffd_wp)
|
|
entry = pmd_mkuffd_wp(entry);
|
|
else if (uffd_wp_resolve)
|
|
/*
|
|
* Leave the write bit to be handled by PF interrupt
|
|
* handler, then things like COW could be properly
|
|
* handled.
|
|
*/
|
|
entry = pmd_clear_uffd_wp(entry);
|
|
|
|
/* See change_pte_range(). */
|
|
if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
|
|
can_change_pmd_writable(vma, addr, entry))
|
|
entry = pmd_mkwrite(entry);
|
|
|
|
ret = HPAGE_PMD_NR;
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
|
|
if (huge_pmd_needs_flush(oldpmd, entry))
|
|
tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
|
|
*
|
|
* Note that if it returns page table lock pointer, this routine returns without
|
|
* unlocking page table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
|
|
pmd_devmap(*pmd)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
|
|
*
|
|
* Note that if it returns page table lock pointer, this routine returns without
|
|
* unlocking page table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(vma->vm_mm, pud);
|
|
if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pud_t *pud, unsigned long addr)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = __pud_trans_huge_lock(pud, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
|
|
tlb_remove_pud_tlb_entry(tlb, pud, addr);
|
|
if (vma_is_special_huge(vma)) {
|
|
spin_unlock(ptl);
|
|
/* No zero page support yet */
|
|
} else {
|
|
/* No support for anonymous PUD pages yet */
|
|
BUG();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long haddr)
|
|
{
|
|
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
|
|
VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
|
|
|
|
count_vm_event(THP_SPLIT_PUD);
|
|
|
|
pudp_huge_clear_flush_notify(vma, haddr, pud);
|
|
}
|
|
|
|
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mmu_notifier_range range;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
|
|
address & HPAGE_PUD_MASK,
|
|
(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
ptl = pud_lock(vma->vm_mm, pud);
|
|
if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
|
|
goto out;
|
|
__split_huge_pud_locked(vma, pud, range.start);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above pudp_huge_clear_flush_notify() did already call it.
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(&range);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd, old_pmd;
|
|
int i;
|
|
|
|
/*
|
|
* Leave pmd empty until pte is filled note that it is fine to delay
|
|
* notification until mmu_notifier_invalidate_range_end() as we are
|
|
* replacing a zero pmd write protected page with a zero pte write
|
|
* protected page.
|
|
*
|
|
* See Documentation/mm/mmu_notifier.rst
|
|
*/
|
|
old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
|
|
entry = pte_mkspecial(entry);
|
|
if (pmd_uffd_wp(old_pmd))
|
|
entry = pte_mkuffd_wp(entry);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
}
|
|
|
|
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long haddr, bool freeze)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
pgtable_t pgtable;
|
|
pmd_t old_pmd, _pmd;
|
|
bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
|
|
bool anon_exclusive = false, dirty = false;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
|
|
&& !pmd_devmap(*pmd));
|
|
|
|
count_vm_event(THP_SPLIT_PMD);
|
|
|
|
if (!vma_is_anonymous(vma)) {
|
|
old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
/*
|
|
* We are going to unmap this huge page. So
|
|
* just go ahead and zap it
|
|
*/
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(mm, pmd);
|
|
if (vma_is_special_huge(vma))
|
|
return;
|
|
if (unlikely(is_pmd_migration_entry(old_pmd))) {
|
|
swp_entry_t entry;
|
|
|
|
entry = pmd_to_swp_entry(old_pmd);
|
|
page = pfn_swap_entry_to_page(entry);
|
|
} else {
|
|
page = pmd_page(old_pmd);
|
|
if (!PageDirty(page) && pmd_dirty(old_pmd))
|
|
set_page_dirty(page);
|
|
if (!PageReferenced(page) && pmd_young(old_pmd))
|
|
SetPageReferenced(page);
|
|
page_remove_rmap(page, vma, true);
|
|
put_page(page);
|
|
}
|
|
add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
|
|
return;
|
|
}
|
|
|
|
if (is_huge_zero_pmd(*pmd)) {
|
|
/*
|
|
* FIXME: Do we want to invalidate secondary mmu by calling
|
|
* mmu_notifier_invalidate_range() see comments below inside
|
|
* __split_huge_pmd() ?
|
|
*
|
|
* We are going from a zero huge page write protected to zero
|
|
* small page also write protected so it does not seems useful
|
|
* to invalidate secondary mmu at this time.
|
|
*/
|
|
return __split_huge_zero_page_pmd(vma, haddr, pmd);
|
|
}
|
|
|
|
/*
|
|
* Up to this point the pmd is present and huge and userland has the
|
|
* whole access to the hugepage during the split (which happens in
|
|
* place). If we overwrite the pmd with the not-huge version pointing
|
|
* to the pte here (which of course we could if all CPUs were bug
|
|
* free), userland could trigger a small page size TLB miss on the
|
|
* small sized TLB while the hugepage TLB entry is still established in
|
|
* the huge TLB. Some CPU doesn't like that.
|
|
* See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
|
|
* 383 on page 105. Intel should be safe but is also warns that it's
|
|
* only safe if the permission and cache attributes of the two entries
|
|
* loaded in the two TLB is identical (which should be the case here).
|
|
* But it is generally safer to never allow small and huge TLB entries
|
|
* for the same virtual address to be loaded simultaneously. So instead
|
|
* of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
|
|
* current pmd notpresent (atomically because here the pmd_trans_huge
|
|
* must remain set at all times on the pmd until the split is complete
|
|
* for this pmd), then we flush the SMP TLB and finally we write the
|
|
* non-huge version of the pmd entry with pmd_populate.
|
|
*/
|
|
old_pmd = pmdp_invalidate(vma, haddr, pmd);
|
|
|
|
pmd_migration = is_pmd_migration_entry(old_pmd);
|
|
if (unlikely(pmd_migration)) {
|
|
swp_entry_t entry;
|
|
|
|
entry = pmd_to_swp_entry(old_pmd);
|
|
page = pfn_swap_entry_to_page(entry);
|
|
write = is_writable_migration_entry(entry);
|
|
if (PageAnon(page))
|
|
anon_exclusive = is_readable_exclusive_migration_entry(entry);
|
|
young = is_migration_entry_young(entry);
|
|
dirty = is_migration_entry_dirty(entry);
|
|
soft_dirty = pmd_swp_soft_dirty(old_pmd);
|
|
uffd_wp = pmd_swp_uffd_wp(old_pmd);
|
|
} else {
|
|
page = pmd_page(old_pmd);
|
|
if (pmd_dirty(old_pmd)) {
|
|
dirty = true;
|
|
SetPageDirty(page);
|
|
}
|
|
write = pmd_write(old_pmd);
|
|
young = pmd_young(old_pmd);
|
|
soft_dirty = pmd_soft_dirty(old_pmd);
|
|
uffd_wp = pmd_uffd_wp(old_pmd);
|
|
|
|
VM_BUG_ON_PAGE(!page_count(page), page);
|
|
|
|
/*
|
|
* Without "freeze", we'll simply split the PMD, propagating the
|
|
* PageAnonExclusive() flag for each PTE by setting it for
|
|
* each subpage -- no need to (temporarily) clear.
|
|
*
|
|
* With "freeze" we want to replace mapped pages by
|
|
* migration entries right away. This is only possible if we
|
|
* managed to clear PageAnonExclusive() -- see
|
|
* set_pmd_migration_entry().
|
|
*
|
|
* In case we cannot clear PageAnonExclusive(), split the PMD
|
|
* only and let try_to_migrate_one() fail later.
|
|
*
|
|
* See page_try_share_anon_rmap(): invalidate PMD first.
|
|
*/
|
|
anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
|
|
if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
|
|
freeze = false;
|
|
if (!freeze)
|
|
page_ref_add(page, HPAGE_PMD_NR - 1);
|
|
}
|
|
|
|
/*
|
|
* Withdraw the table only after we mark the pmd entry invalid.
|
|
* This's critical for some architectures (Power).
|
|
*/
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
|
|
pte_t entry, *pte;
|
|
/*
|
|
* Note that NUMA hinting access restrictions are not
|
|
* transferred to avoid any possibility of altering
|
|
* permissions across VMAs.
|
|
*/
|
|
if (freeze || pmd_migration) {
|
|
swp_entry_t swp_entry;
|
|
if (write)
|
|
swp_entry = make_writable_migration_entry(
|
|
page_to_pfn(page + i));
|
|
else if (anon_exclusive)
|
|
swp_entry = make_readable_exclusive_migration_entry(
|
|
page_to_pfn(page + i));
|
|
else
|
|
swp_entry = make_readable_migration_entry(
|
|
page_to_pfn(page + i));
|
|
if (young)
|
|
swp_entry = make_migration_entry_young(swp_entry);
|
|
if (dirty)
|
|
swp_entry = make_migration_entry_dirty(swp_entry);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
if (soft_dirty)
|
|
entry = pte_swp_mksoft_dirty(entry);
|
|
if (uffd_wp)
|
|
entry = pte_swp_mkuffd_wp(entry);
|
|
} else {
|
|
entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
|
|
if (write)
|
|
entry = pte_mkwrite(entry);
|
|
if (anon_exclusive)
|
|
SetPageAnonExclusive(page + i);
|
|
if (!young)
|
|
entry = pte_mkold(entry);
|
|
/* NOTE: this may set soft-dirty too on some archs */
|
|
if (dirty)
|
|
entry = pte_mkdirty(entry);
|
|
if (soft_dirty)
|
|
entry = pte_mksoft_dirty(entry);
|
|
if (uffd_wp)
|
|
entry = pte_mkuffd_wp(entry);
|
|
page_add_anon_rmap(page + i, vma, addr, false);
|
|
}
|
|
pte = pte_offset_map(&_pmd, addr);
|
|
BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, addr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
|
|
if (!pmd_migration)
|
|
page_remove_rmap(page, vma, true);
|
|
if (freeze)
|
|
put_page(page);
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
}
|
|
|
|
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long address, bool freeze, struct folio *folio)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mmu_notifier_range range;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
|
|
address & HPAGE_PMD_MASK,
|
|
(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
|
|
mmu_notifier_invalidate_range_start(&range);
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
|
|
/*
|
|
* If caller asks to setup a migration entry, we need a folio to check
|
|
* pmd against. Otherwise we can end up replacing wrong folio.
|
|
*/
|
|
VM_BUG_ON(freeze && !folio);
|
|
VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
|
|
|
|
if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
|
|
is_pmd_migration_entry(*pmd)) {
|
|
/*
|
|
* It's safe to call pmd_page when folio is set because it's
|
|
* guaranteed that pmd is present.
|
|
*/
|
|
if (folio && folio != page_folio(pmd_page(*pmd)))
|
|
goto out;
|
|
__split_huge_pmd_locked(vma, pmd, range.start, freeze);
|
|
}
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback.
|
|
* They are 3 cases to consider inside __split_huge_pmd_locked():
|
|
* 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
|
|
* 2) __split_huge_zero_page_pmd() read only zero page and any write
|
|
* fault will trigger a flush_notify before pointing to a new page
|
|
* (it is fine if the secondary mmu keeps pointing to the old zero
|
|
* page in the meantime)
|
|
* 3) Split a huge pmd into pte pointing to the same page. No need
|
|
* to invalidate secondary tlb entry they are all still valid.
|
|
* any further changes to individual pte will notify. So no need
|
|
* to call mmu_notifier->invalidate_range()
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(&range);
|
|
}
|
|
|
|
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
|
|
bool freeze, struct folio *folio)
|
|
{
|
|
pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
|
|
|
|
if (!pmd)
|
|
return;
|
|
|
|
__split_huge_pmd(vma, pmd, address, freeze, folio);
|
|
}
|
|
|
|
static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
/*
|
|
* If the new address isn't hpage aligned and it could previously
|
|
* contain an hugepage: check if we need to split an huge pmd.
|
|
*/
|
|
if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
|
|
range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
|
|
ALIGN(address, HPAGE_PMD_SIZE)))
|
|
split_huge_pmd_address(vma, address, false, NULL);
|
|
}
|
|
|
|
void vma_adjust_trans_huge(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
long adjust_next)
|
|
{
|
|
/* Check if we need to split start first. */
|
|
split_huge_pmd_if_needed(vma, start);
|
|
|
|
/* Check if we need to split end next. */
|
|
split_huge_pmd_if_needed(vma, end);
|
|
|
|
/*
|
|
* If we're also updating the next vma vm_start,
|
|
* check if we need to split it.
|
|
*/
|
|
if (adjust_next > 0) {
|
|
struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
|
|
unsigned long nstart = next->vm_start;
|
|
nstart += adjust_next;
|
|
split_huge_pmd_if_needed(next, nstart);
|
|
}
|
|
}
|
|
|
|
static void unmap_folio(struct folio *folio)
|
|
{
|
|
enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
|
|
TTU_SYNC;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
/*
|
|
* Anon pages need migration entries to preserve them, but file
|
|
* pages can simply be left unmapped, then faulted back on demand.
|
|
* If that is ever changed (perhaps for mlock), update remap_page().
|
|
*/
|
|
if (folio_test_anon(folio))
|
|
try_to_migrate(folio, ttu_flags);
|
|
else
|
|
try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
|
|
}
|
|
|
|
static void remap_page(struct folio *folio, unsigned long nr)
|
|
{
|
|
int i = 0;
|
|
|
|
/* If unmap_folio() uses try_to_migrate() on file, remove this check */
|
|
if (!folio_test_anon(folio))
|
|
return;
|
|
for (;;) {
|
|
remove_migration_ptes(folio, folio, true);
|
|
i += folio_nr_pages(folio);
|
|
if (i >= nr)
|
|
break;
|
|
folio = folio_next(folio);
|
|
}
|
|
}
|
|
|
|
static void lru_add_page_tail(struct page *head, struct page *tail,
|
|
struct lruvec *lruvec, struct list_head *list)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageHead(head), head);
|
|
VM_BUG_ON_PAGE(PageCompound(tail), head);
|
|
VM_BUG_ON_PAGE(PageLRU(tail), head);
|
|
lockdep_assert_held(&lruvec->lru_lock);
|
|
|
|
if (list) {
|
|
/* page reclaim is reclaiming a huge page */
|
|
VM_WARN_ON(PageLRU(head));
|
|
get_page(tail);
|
|
list_add_tail(&tail->lru, list);
|
|
} else {
|
|
/* head is still on lru (and we have it frozen) */
|
|
VM_WARN_ON(!PageLRU(head));
|
|
if (PageUnevictable(tail))
|
|
tail->mlock_count = 0;
|
|
else
|
|
list_add_tail(&tail->lru, &head->lru);
|
|
SetPageLRU(tail);
|
|
}
|
|
}
|
|
|
|
static void __split_huge_page_tail(struct page *head, int tail,
|
|
struct lruvec *lruvec, struct list_head *list)
|
|
{
|
|
struct page *page_tail = head + tail;
|
|
|
|
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
|
|
|
|
/*
|
|
* Clone page flags before unfreezing refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow flags change,
|
|
* for example lock_page() which set PG_waiters.
|
|
*
|
|
* Note that for mapped sub-pages of an anonymous THP,
|
|
* PG_anon_exclusive has been cleared in unmap_folio() and is stored in
|
|
* the migration entry instead from where remap_page() will restore it.
|
|
* We can still have PG_anon_exclusive set on effectively unmapped and
|
|
* unreferenced sub-pages of an anonymous THP: we can simply drop
|
|
* PG_anon_exclusive (-> PG_mappedtodisk) for these here.
|
|
*/
|
|
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
page_tail->flags |= (head->flags &
|
|
((1L << PG_referenced) |
|
|
(1L << PG_swapbacked) |
|
|
(1L << PG_swapcache) |
|
|
(1L << PG_mlocked) |
|
|
(1L << PG_uptodate) |
|
|
(1L << PG_active) |
|
|
(1L << PG_workingset) |
|
|
(1L << PG_locked) |
|
|
(1L << PG_unevictable) |
|
|
#ifdef CONFIG_ARCH_USES_PG_ARCH_X
|
|
(1L << PG_arch_2) |
|
|
(1L << PG_arch_3) |
|
|
#endif
|
|
(1L << PG_dirty) |
|
|
LRU_GEN_MASK | LRU_REFS_MASK));
|
|
|
|
/* ->mapping in first and second tail page is replaced by other uses */
|
|
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
|
|
page_tail);
|
|
page_tail->mapping = head->mapping;
|
|
page_tail->index = head->index + tail;
|
|
|
|
/*
|
|
* page->private should not be set in tail pages with the exception
|
|
* of swap cache pages that store the swp_entry_t in tail pages.
|
|
* Fix up and warn once if private is unexpectedly set.
|
|
*
|
|
* What of 32-bit systems, on which folio->_pincount overlays
|
|
* head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and
|
|
* pincount must be 0 for folio_ref_freeze() to have succeeded.
|
|
*/
|
|
if (!folio_test_swapcache(page_folio(head))) {
|
|
VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
|
|
page_tail->private = 0;
|
|
}
|
|
|
|
/* Page flags must be visible before we make the page non-compound. */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Clear PageTail before unfreezing page refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow put_page()
|
|
* which needs correct compound_head().
|
|
*/
|
|
clear_compound_head(page_tail);
|
|
|
|
/* Finally unfreeze refcount. Additional reference from page cache. */
|
|
page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
|
|
PageSwapCache(head)));
|
|
|
|
if (page_is_young(head))
|
|
set_page_young(page_tail);
|
|
if (page_is_idle(head))
|
|
set_page_idle(page_tail);
|
|
|
|
page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
|
|
|
|
/*
|
|
* always add to the tail because some iterators expect new
|
|
* pages to show after the currently processed elements - e.g.
|
|
* migrate_pages
|
|
*/
|
|
lru_add_page_tail(head, page_tail, lruvec, list);
|
|
}
|
|
|
|
static void __split_huge_page(struct page *page, struct list_head *list,
|
|
pgoff_t end)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct page *head = &folio->page;
|
|
struct lruvec *lruvec;
|
|
struct address_space *swap_cache = NULL;
|
|
unsigned long offset = 0;
|
|
unsigned int nr = thp_nr_pages(head);
|
|
int i;
|
|
|
|
/* complete memcg works before add pages to LRU */
|
|
split_page_memcg(head, nr);
|
|
|
|
if (PageAnon(head) && PageSwapCache(head)) {
|
|
swp_entry_t entry = { .val = page_private(head) };
|
|
|
|
offset = swp_offset(entry);
|
|
swap_cache = swap_address_space(entry);
|
|
xa_lock(&swap_cache->i_pages);
|
|
}
|
|
|
|
/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
|
|
lruvec = folio_lruvec_lock(folio);
|
|
|
|
ClearPageHasHWPoisoned(head);
|
|
|
|
for (i = nr - 1; i >= 1; i--) {
|
|
__split_huge_page_tail(head, i, lruvec, list);
|
|
/* Some pages can be beyond EOF: drop them from page cache */
|
|
if (head[i].index >= end) {
|
|
struct folio *tail = page_folio(head + i);
|
|
|
|
if (shmem_mapping(head->mapping))
|
|
shmem_uncharge(head->mapping->host, 1);
|
|
else if (folio_test_clear_dirty(tail))
|
|
folio_account_cleaned(tail,
|
|
inode_to_wb(folio->mapping->host));
|
|
__filemap_remove_folio(tail, NULL);
|
|
folio_put(tail);
|
|
} else if (!PageAnon(page)) {
|
|
__xa_store(&head->mapping->i_pages, head[i].index,
|
|
head + i, 0);
|
|
} else if (swap_cache) {
|
|
__xa_store(&swap_cache->i_pages, offset + i,
|
|
head + i, 0);
|
|
}
|
|
}
|
|
|
|
ClearPageCompound(head);
|
|
unlock_page_lruvec(lruvec);
|
|
/* Caller disabled irqs, so they are still disabled here */
|
|
|
|
split_page_owner(head, nr);
|
|
|
|
/* See comment in __split_huge_page_tail() */
|
|
if (PageAnon(head)) {
|
|
/* Additional pin to swap cache */
|
|
if (PageSwapCache(head)) {
|
|
page_ref_add(head, 2);
|
|
xa_unlock(&swap_cache->i_pages);
|
|
} else {
|
|
page_ref_inc(head);
|
|
}
|
|
} else {
|
|
/* Additional pin to page cache */
|
|
page_ref_add(head, 2);
|
|
xa_unlock(&head->mapping->i_pages);
|
|
}
|
|
local_irq_enable();
|
|
|
|
remap_page(folio, nr);
|
|
|
|
if (PageSwapCache(head)) {
|
|
swp_entry_t entry = { .val = page_private(head) };
|
|
|
|
split_swap_cluster(entry);
|
|
}
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct page *subpage = head + i;
|
|
if (subpage == page)
|
|
continue;
|
|
unlock_page(subpage);
|
|
|
|
/*
|
|
* Subpages may be freed if there wasn't any mapping
|
|
* like if add_to_swap() is running on a lru page that
|
|
* had its mapping zapped. And freeing these pages
|
|
* requires taking the lru_lock so we do the put_page
|
|
* of the tail pages after the split is complete.
|
|
*/
|
|
free_page_and_swap_cache(subpage);
|
|
}
|
|
}
|
|
|
|
/* Racy check whether the huge page can be split */
|
|
bool can_split_folio(struct folio *folio, int *pextra_pins)
|
|
{
|
|
int extra_pins;
|
|
|
|
/* Additional pins from page cache */
|
|
if (folio_test_anon(folio))
|
|
extra_pins = folio_test_swapcache(folio) ?
|
|
folio_nr_pages(folio) : 0;
|
|
else
|
|
extra_pins = folio_nr_pages(folio);
|
|
if (pextra_pins)
|
|
*pextra_pins = extra_pins;
|
|
return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
|
|
}
|
|
|
|
/*
|
|
* This function splits huge page into normal pages. @page can point to any
|
|
* subpage of huge page to split. Split doesn't change the position of @page.
|
|
*
|
|
* Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
|
|
* The huge page must be locked.
|
|
*
|
|
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
|
|
*
|
|
* Both head page and tail pages will inherit mapping, flags, and so on from
|
|
* the hugepage.
|
|
*
|
|
* GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
|
|
* they are not mapped.
|
|
*
|
|
* Returns 0 if the hugepage is split successfully.
|
|
* Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
|
|
* us.
|
|
*/
|
|
int split_huge_page_to_list(struct page *page, struct list_head *list)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
|
|
XA_STATE(xas, &folio->mapping->i_pages, folio->index);
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct address_space *mapping = NULL;
|
|
int extra_pins, ret;
|
|
pgoff_t end;
|
|
bool is_hzp;
|
|
|
|
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
|
|
VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
|
|
|
|
is_hzp = is_huge_zero_page(&folio->page);
|
|
if (is_hzp) {
|
|
pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (folio_test_writeback(folio))
|
|
return -EBUSY;
|
|
|
|
if (folio_test_anon(folio)) {
|
|
/*
|
|
* The caller does not necessarily hold an mmap_lock that would
|
|
* prevent the anon_vma disappearing so we first we take a
|
|
* reference to it and then lock the anon_vma for write. This
|
|
* is similar to folio_lock_anon_vma_read except the write lock
|
|
* is taken to serialise against parallel split or collapse
|
|
* operations.
|
|
*/
|
|
anon_vma = folio_get_anon_vma(folio);
|
|
if (!anon_vma) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
end = -1;
|
|
mapping = NULL;
|
|
anon_vma_lock_write(anon_vma);
|
|
} else {
|
|
gfp_t gfp;
|
|
|
|
mapping = folio->mapping;
|
|
|
|
/* Truncated ? */
|
|
if (!mapping) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
gfp = current_gfp_context(mapping_gfp_mask(mapping) &
|
|
GFP_RECLAIM_MASK);
|
|
|
|
if (folio_test_private(folio) &&
|
|
!filemap_release_folio(folio, gfp)) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
xas_split_alloc(&xas, folio, folio_order(folio), gfp);
|
|
if (xas_error(&xas)) {
|
|
ret = xas_error(&xas);
|
|
goto out;
|
|
}
|
|
|
|
anon_vma = NULL;
|
|
i_mmap_lock_read(mapping);
|
|
|
|
/*
|
|
*__split_huge_page() may need to trim off pages beyond EOF:
|
|
* but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
|
|
* which cannot be nested inside the page tree lock. So note
|
|
* end now: i_size itself may be changed at any moment, but
|
|
* folio lock is good enough to serialize the trimming.
|
|
*/
|
|
end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
|
|
if (shmem_mapping(mapping))
|
|
end = shmem_fallocend(mapping->host, end);
|
|
}
|
|
|
|
/*
|
|
* Racy check if we can split the page, before unmap_folio() will
|
|
* split PMDs
|
|
*/
|
|
if (!can_split_folio(folio, &extra_pins)) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
unmap_folio(folio);
|
|
|
|
/* block interrupt reentry in xa_lock and spinlock */
|
|
local_irq_disable();
|
|
if (mapping) {
|
|
/*
|
|
* Check if the folio is present in page cache.
|
|
* We assume all tail are present too, if folio is there.
|
|
*/
|
|
xas_lock(&xas);
|
|
xas_reset(&xas);
|
|
if (xas_load(&xas) != folio)
|
|
goto fail;
|
|
}
|
|
|
|
/* Prevent deferred_split_scan() touching ->_refcount */
|
|
spin_lock(&ds_queue->split_queue_lock);
|
|
if (folio_ref_freeze(folio, 1 + extra_pins)) {
|
|
if (!list_empty(&folio->_deferred_list)) {
|
|
ds_queue->split_queue_len--;
|
|
list_del(&folio->_deferred_list);
|
|
}
|
|
spin_unlock(&ds_queue->split_queue_lock);
|
|
if (mapping) {
|
|
int nr = folio_nr_pages(folio);
|
|
|
|
xas_split(&xas, folio, folio_order(folio));
|
|
if (folio_test_swapbacked(folio)) {
|
|
__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
|
|
-nr);
|
|
} else {
|
|
__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
|
|
-nr);
|
|
filemap_nr_thps_dec(mapping);
|
|
}
|
|
}
|
|
|
|
__split_huge_page(page, list, end);
|
|
ret = 0;
|
|
} else {
|
|
spin_unlock(&ds_queue->split_queue_lock);
|
|
fail:
|
|
if (mapping)
|
|
xas_unlock(&xas);
|
|
local_irq_enable();
|
|
remap_page(folio, folio_nr_pages(folio));
|
|
ret = -EAGAIN;
|
|
}
|
|
|
|
out_unlock:
|
|
if (anon_vma) {
|
|
anon_vma_unlock_write(anon_vma);
|
|
put_anon_vma(anon_vma);
|
|
}
|
|
if (mapping)
|
|
i_mmap_unlock_read(mapping);
|
|
out:
|
|
xas_destroy(&xas);
|
|
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
|
|
return ret;
|
|
}
|
|
|
|
void free_transhuge_page(struct page *page)
|
|
{
|
|
struct folio *folio = (struct folio *)page;
|
|
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
if (!list_empty(&folio->_deferred_list)) {
|
|
ds_queue->split_queue_len--;
|
|
list_del(&folio->_deferred_list);
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
free_compound_page(page);
|
|
}
|
|
|
|
void deferred_split_folio(struct folio *folio)
|
|
{
|
|
struct deferred_split *ds_queue = get_deferred_split_queue(folio);
|
|
#ifdef CONFIG_MEMCG
|
|
struct mem_cgroup *memcg = folio_memcg(folio);
|
|
#endif
|
|
unsigned long flags;
|
|
|
|
VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
|
|
|
|
/*
|
|
* The try_to_unmap() in page reclaim path might reach here too,
|
|
* this may cause a race condition to corrupt deferred split queue.
|
|
* And, if page reclaim is already handling the same folio, it is
|
|
* unnecessary to handle it again in shrinker.
|
|
*
|
|
* Check the swapcache flag to determine if the folio is being
|
|
* handled by page reclaim since THP swap would add the folio into
|
|
* swap cache before calling try_to_unmap().
|
|
*/
|
|
if (folio_test_swapcache(folio))
|
|
return;
|
|
|
|
if (!list_empty(&folio->_deferred_list))
|
|
return;
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
if (list_empty(&folio->_deferred_list)) {
|
|
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
|
|
list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
|
|
ds_queue->split_queue_len++;
|
|
#ifdef CONFIG_MEMCG
|
|
if (memcg)
|
|
set_shrinker_bit(memcg, folio_nid(folio),
|
|
deferred_split_shrinker.id);
|
|
#endif
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
}
|
|
|
|
static unsigned long deferred_split_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
if (sc->memcg)
|
|
ds_queue = &sc->memcg->deferred_split_queue;
|
|
#endif
|
|
return READ_ONCE(ds_queue->split_queue_len);
|
|
}
|
|
|
|
static unsigned long deferred_split_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
|
|
unsigned long flags;
|
|
LIST_HEAD(list);
|
|
struct folio *folio, *next;
|
|
int split = 0;
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
if (sc->memcg)
|
|
ds_queue = &sc->memcg->deferred_split_queue;
|
|
#endif
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
/* Take pin on all head pages to avoid freeing them under us */
|
|
list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
|
|
_deferred_list) {
|
|
if (folio_try_get(folio)) {
|
|
list_move(&folio->_deferred_list, &list);
|
|
} else {
|
|
/* We lost race with folio_put() */
|
|
list_del_init(&folio->_deferred_list);
|
|
ds_queue->split_queue_len--;
|
|
}
|
|
if (!--sc->nr_to_scan)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
|
|
list_for_each_entry_safe(folio, next, &list, _deferred_list) {
|
|
if (!folio_trylock(folio))
|
|
goto next;
|
|
/* split_huge_page() removes page from list on success */
|
|
if (!split_folio(folio))
|
|
split++;
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
}
|
|
|
|
spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
|
|
list_splice_tail(&list, &ds_queue->split_queue);
|
|
spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
|
|
|
|
/*
|
|
* Stop shrinker if we didn't split any page, but the queue is empty.
|
|
* This can happen if pages were freed under us.
|
|
*/
|
|
if (!split && list_empty(&ds_queue->split_queue))
|
|
return SHRINK_STOP;
|
|
return split;
|
|
}
|
|
|
|
static struct shrinker deferred_split_shrinker = {
|
|
.count_objects = deferred_split_count,
|
|
.scan_objects = deferred_split_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
|
|
SHRINKER_NONSLAB,
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void split_huge_pages_all(void)
|
|
{
|
|
struct zone *zone;
|
|
struct page *page;
|
|
struct folio *folio;
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
pr_debug("Split all THPs\n");
|
|
for_each_zone(zone) {
|
|
if (!managed_zone(zone))
|
|
continue;
|
|
max_zone_pfn = zone_end_pfn(zone);
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
|
|
int nr_pages;
|
|
|
|
page = pfn_to_online_page(pfn);
|
|
if (!page || PageTail(page))
|
|
continue;
|
|
folio = page_folio(page);
|
|
if (!folio_try_get(folio))
|
|
continue;
|
|
|
|
if (unlikely(page_folio(page) != folio))
|
|
goto next;
|
|
|
|
if (zone != folio_zone(folio))
|
|
goto next;
|
|
|
|
if (!folio_test_large(folio)
|
|
|| folio_test_hugetlb(folio)
|
|
|| !folio_test_lru(folio))
|
|
goto next;
|
|
|
|
total++;
|
|
folio_lock(folio);
|
|
nr_pages = folio_nr_pages(folio);
|
|
if (!split_folio(folio))
|
|
split++;
|
|
pfn += nr_pages - 1;
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
pr_debug("%lu of %lu THP split\n", split, total);
|
|
}
|
|
|
|
static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
|
|
{
|
|
return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
|
|
is_vm_hugetlb_page(vma);
|
|
}
|
|
|
|
static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
|
|
unsigned long vaddr_end)
|
|
{
|
|
int ret = 0;
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
unsigned long total = 0, split = 0;
|
|
unsigned long addr;
|
|
|
|
vaddr_start &= PAGE_MASK;
|
|
vaddr_end &= PAGE_MASK;
|
|
|
|
/* Find the task_struct from pid */
|
|
rcu_read_lock();
|
|
task = find_task_by_vpid(pid);
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
/* Find the mm_struct */
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
|
|
if (!mm) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
|
|
pid, vaddr_start, vaddr_end);
|
|
|
|
mmap_read_lock(mm);
|
|
/*
|
|
* always increase addr by PAGE_SIZE, since we could have a PTE page
|
|
* table filled with PTE-mapped THPs, each of which is distinct.
|
|
*/
|
|
for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
|
|
struct vm_area_struct *vma = vma_lookup(mm, addr);
|
|
struct page *page;
|
|
|
|
if (!vma)
|
|
break;
|
|
|
|
/* skip special VMA and hugetlb VMA */
|
|
if (vma_not_suitable_for_thp_split(vma)) {
|
|
addr = vma->vm_end;
|
|
continue;
|
|
}
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
|
|
|
|
if (IS_ERR_OR_NULL(page))
|
|
continue;
|
|
|
|
if (!is_transparent_hugepage(page))
|
|
goto next;
|
|
|
|
total++;
|
|
if (!can_split_folio(page_folio(page), NULL))
|
|
goto next;
|
|
|
|
if (!trylock_page(page))
|
|
goto next;
|
|
|
|
if (!split_huge_page(page))
|
|
split++;
|
|
|
|
unlock_page(page);
|
|
next:
|
|
put_page(page);
|
|
cond_resched();
|
|
}
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
|
|
pr_debug("%lu of %lu THP split\n", split, total);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
|
|
pgoff_t off_end)
|
|
{
|
|
struct filename *file;
|
|
struct file *candidate;
|
|
struct address_space *mapping;
|
|
int ret = -EINVAL;
|
|
pgoff_t index;
|
|
int nr_pages = 1;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
file = getname_kernel(file_path);
|
|
if (IS_ERR(file))
|
|
return ret;
|
|
|
|
candidate = file_open_name(file, O_RDONLY, 0);
|
|
if (IS_ERR(candidate))
|
|
goto out;
|
|
|
|
pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
|
|
file_path, off_start, off_end);
|
|
|
|
mapping = candidate->f_mapping;
|
|
|
|
for (index = off_start; index < off_end; index += nr_pages) {
|
|
struct folio *folio = filemap_get_folio(mapping, index);
|
|
|
|
nr_pages = 1;
|
|
if (IS_ERR(folio))
|
|
continue;
|
|
|
|
if (!folio_test_large(folio))
|
|
goto next;
|
|
|
|
total++;
|
|
nr_pages = folio_nr_pages(folio);
|
|
|
|
if (!folio_trylock(folio))
|
|
goto next;
|
|
|
|
if (!split_folio(folio))
|
|
split++;
|
|
|
|
folio_unlock(folio);
|
|
next:
|
|
folio_put(folio);
|
|
cond_resched();
|
|
}
|
|
|
|
filp_close(candidate, NULL);
|
|
ret = 0;
|
|
|
|
pr_debug("%lu of %lu file-backed THP split\n", split, total);
|
|
out:
|
|
putname(file);
|
|
return ret;
|
|
}
|
|
|
|
#define MAX_INPUT_BUF_SZ 255
|
|
|
|
static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppops)
|
|
{
|
|
static DEFINE_MUTEX(split_debug_mutex);
|
|
ssize_t ret;
|
|
/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
|
|
char input_buf[MAX_INPUT_BUF_SZ];
|
|
int pid;
|
|
unsigned long vaddr_start, vaddr_end;
|
|
|
|
ret = mutex_lock_interruptible(&split_debug_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = -EFAULT;
|
|
|
|
memset(input_buf, 0, MAX_INPUT_BUF_SZ);
|
|
if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
|
|
goto out;
|
|
|
|
input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
|
|
|
|
if (input_buf[0] == '/') {
|
|
char *tok;
|
|
char *buf = input_buf;
|
|
char file_path[MAX_INPUT_BUF_SZ];
|
|
pgoff_t off_start = 0, off_end = 0;
|
|
size_t input_len = strlen(input_buf);
|
|
|
|
tok = strsep(&buf, ",");
|
|
if (tok) {
|
|
strcpy(file_path, tok);
|
|
} else {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
|
|
if (ret != 2) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
ret = split_huge_pages_in_file(file_path, off_start, off_end);
|
|
if (!ret)
|
|
ret = input_len;
|
|
|
|
goto out;
|
|
}
|
|
|
|
ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
|
|
if (ret == 1 && pid == 1) {
|
|
split_huge_pages_all();
|
|
ret = strlen(input_buf);
|
|
goto out;
|
|
} else if (ret != 3) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
|
|
if (!ret)
|
|
ret = strlen(input_buf);
|
|
out:
|
|
mutex_unlock(&split_debug_mutex);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static const struct file_operations split_huge_pages_fops = {
|
|
.owner = THIS_MODULE,
|
|
.write = split_huge_pages_write,
|
|
.llseek = no_llseek,
|
|
};
|
|
|
|
static int __init split_huge_pages_debugfs(void)
|
|
{
|
|
debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
|
|
&split_huge_pages_fops);
|
|
return 0;
|
|
}
|
|
late_initcall(split_huge_pages_debugfs);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
|
|
struct page *page)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
bool anon_exclusive;
|
|
pmd_t pmdval;
|
|
swp_entry_t entry;
|
|
pmd_t pmdswp;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return 0;
|
|
|
|
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
|
|
|
|
/* See page_try_share_anon_rmap(): invalidate PMD first. */
|
|
anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
|
|
if (anon_exclusive && page_try_share_anon_rmap(page)) {
|
|
set_pmd_at(mm, address, pvmw->pmd, pmdval);
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (pmd_dirty(pmdval))
|
|
set_page_dirty(page);
|
|
if (pmd_write(pmdval))
|
|
entry = make_writable_migration_entry(page_to_pfn(page));
|
|
else if (anon_exclusive)
|
|
entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
|
|
else
|
|
entry = make_readable_migration_entry(page_to_pfn(page));
|
|
if (pmd_young(pmdval))
|
|
entry = make_migration_entry_young(entry);
|
|
if (pmd_dirty(pmdval))
|
|
entry = make_migration_entry_dirty(entry);
|
|
pmdswp = swp_entry_to_pmd(entry);
|
|
if (pmd_soft_dirty(pmdval))
|
|
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
|
|
if (pmd_uffd_wp(pmdval))
|
|
pmdswp = pmd_swp_mkuffd_wp(pmdswp);
|
|
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
|
|
page_remove_rmap(page, vma, true);
|
|
put_page(page);
|
|
trace_set_migration_pmd(address, pmd_val(pmdswp));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
pmd_t pmde;
|
|
swp_entry_t entry;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return;
|
|
|
|
entry = pmd_to_swp_entry(*pvmw->pmd);
|
|
get_page(new);
|
|
pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
|
|
if (pmd_swp_soft_dirty(*pvmw->pmd))
|
|
pmde = pmd_mksoft_dirty(pmde);
|
|
if (is_writable_migration_entry(entry))
|
|
pmde = pmd_mkwrite(pmde);
|
|
if (pmd_swp_uffd_wp(*pvmw->pmd))
|
|
pmde = pmd_mkuffd_wp(pmde);
|
|
if (!is_migration_entry_young(entry))
|
|
pmde = pmd_mkold(pmde);
|
|
/* NOTE: this may contain setting soft-dirty on some archs */
|
|
if (PageDirty(new) && is_migration_entry_dirty(entry))
|
|
pmde = pmd_mkdirty(pmde);
|
|
|
|
if (PageAnon(new)) {
|
|
rmap_t rmap_flags = RMAP_COMPOUND;
|
|
|
|
if (!is_readable_migration_entry(entry))
|
|
rmap_flags |= RMAP_EXCLUSIVE;
|
|
|
|
page_add_anon_rmap(new, vma, haddr, rmap_flags);
|
|
} else {
|
|
page_add_file_rmap(new, vma, true);
|
|
}
|
|
VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
|
|
set_pmd_at(mm, haddr, pvmw->pmd, pmde);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache_pmd(vma, address, pvmw->pmd);
|
|
trace_remove_migration_pmd(address, pmd_val(pmde));
|
|
}
|
|
#endif
|