linux/mm/memory.c
Jiaxun Yang 8fa5070833 mm/memory: Use exception ip to search exception tables
On architectures with delay slot, instruction_pointer() may differ
from where exception was triggered.

Use exception_ip we just introduced to search exception tables to
get rid of the problem.

Fixes: 4bce37a68f ("mips/mm: Convert to using lock_mm_and_find_vma()")
Reported-by: Xi Ruoyao <xry111@xry111.site>
Link: https://lore.kernel.org/r/75e9fd7b08562ad9b456a5bdaacb7cc220311cc9.camel@xry111.site/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
2024-02-12 23:04:42 +01:00

6282 lines
170 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*/
/*
* demand-loading started 01.12.91 - seems it is high on the list of
* things wanted, and it should be easy to implement. - Linus
*/
/*
* Ok, demand-loading was easy, shared pages a little bit tricker. Shared
* pages started 02.12.91, seems to work. - Linus.
*
* Tested sharing by executing about 30 /bin/sh: under the old kernel it
* would have taken more than the 6M I have free, but it worked well as
* far as I could see.
*
* Also corrected some "invalidate()"s - I wasn't doing enough of them.
*/
/*
* Real VM (paging to/from disk) started 18.12.91. Much more work and
* thought has to go into this. Oh, well..
* 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
* Found it. Everything seems to work now.
* 20.12.91 - Ok, making the swap-device changeable like the root.
*/
/*
* 05.04.94 - Multi-page memory management added for v1.1.
* Idea by Alex Bligh (alex@cconcepts.co.uk)
*
* 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
* (Gerhard.Wichert@pdb.siemens.de)
*
* Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
*/
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/task.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/memremap.h>
#include <linux/kmsan.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/export.h>
#include <linux/delayacct.h>
#include <linux/init.h>
#include <linux/pfn_t.h>
#include <linux/writeback.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/swapops.h>
#include <linux/elf.h>
#include <linux/gfp.h>
#include <linux/migrate.h>
#include <linux/string.h>
#include <linux/memory-tiers.h>
#include <linux/debugfs.h>
#include <linux/userfaultfd_k.h>
#include <linux/dax.h>
#include <linux/oom.h>
#include <linux/numa.h>
#include <linux/perf_event.h>
#include <linux/ptrace.h>
#include <linux/vmalloc.h>
#include <linux/sched/sysctl.h>
#include <trace/events/kmem.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include "pgalloc-track.h"
#include "internal.h"
#include "swap.h"
#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
#endif
#ifndef CONFIG_NUMA
unsigned long max_mapnr;
EXPORT_SYMBOL(max_mapnr);
struct page *mem_map;
EXPORT_SYMBOL(mem_map);
#endif
static vm_fault_t do_fault(struct vm_fault *vmf);
static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
static bool vmf_pte_changed(struct vm_fault *vmf);
/*
* Return true if the original pte was a uffd-wp pte marker (so the pte was
* wr-protected).
*/
static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
{
if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
return false;
return pte_marker_uffd_wp(vmf->orig_pte);
}
/*
* A number of key systems in x86 including ioremap() rely on the assumption
* that high_memory defines the upper bound on direct map memory, then end
* of ZONE_NORMAL.
*/
void *high_memory;
EXPORT_SYMBOL(high_memory);
/*
* Randomize the address space (stacks, mmaps, brk, etc.).
*
* ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
* as ancient (libc5 based) binaries can segfault. )
*/
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
1;
#else
2;
#endif
#ifndef arch_wants_old_prefaulted_pte
static inline bool arch_wants_old_prefaulted_pte(void)
{
/*
* Transitioning a PTE from 'old' to 'young' can be expensive on
* some architectures, even if it's performed in hardware. By
* default, "false" means prefaulted entries will be 'young'.
*/
return false;
}
#endif
static int __init disable_randmaps(char *s)
{
randomize_va_space = 0;
return 1;
}
__setup("norandmaps", disable_randmaps);
unsigned long zero_pfn __read_mostly;
EXPORT_SYMBOL(zero_pfn);
unsigned long highest_memmap_pfn __read_mostly;
/*
* CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
*/
static int __init init_zero_pfn(void)
{
zero_pfn = page_to_pfn(ZERO_PAGE(0));
return 0;
}
early_initcall(init_zero_pfn);
void mm_trace_rss_stat(struct mm_struct *mm, int member)
{
trace_rss_stat(mm, member);
}
/*
* Note: this doesn't free the actual pages themselves. That
* has been handled earlier when unmapping all the memory regions.
*/
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
unsigned long addr)
{
pgtable_t token = pmd_pgtable(*pmd);
pmd_clear(pmd);
pte_free_tlb(tlb, token, addr);
mm_dec_nr_ptes(tlb->mm);
}
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pmd_t *pmd;
unsigned long next;
unsigned long start;
start = addr;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (pmd_none_or_clear_bad(pmd))
continue;
free_pte_range(tlb, pmd, addr);
} while (pmd++, addr = next, addr != end);
start &= PUD_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PUD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pmd = pmd_offset(pud, start);
pud_clear(pud);
pmd_free_tlb(tlb, pmd, start);
mm_dec_nr_pmds(tlb->mm);
}
static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pud_t *pud;
unsigned long next;
unsigned long start;
start = addr;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
free_pmd_range(tlb, pud, addr, next, floor, ceiling);
} while (pud++, addr = next, addr != end);
start &= P4D_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= P4D_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
pud = pud_offset(p4d, start);
p4d_clear(p4d);
pud_free_tlb(tlb, pud, start);
mm_dec_nr_puds(tlb->mm);
}
static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
p4d_t *p4d;
unsigned long next;
unsigned long start;
start = addr;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d))
continue;
free_pud_range(tlb, p4d, addr, next, floor, ceiling);
} while (p4d++, addr = next, addr != end);
start &= PGDIR_MASK;
if (start < floor)
return;
if (ceiling) {
ceiling &= PGDIR_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
return;
p4d = p4d_offset(pgd, start);
pgd_clear(pgd);
p4d_free_tlb(tlb, p4d, start);
}
/*
* This function frees user-level page tables of a process.
*/
void free_pgd_range(struct mmu_gather *tlb,
unsigned long addr, unsigned long end,
unsigned long floor, unsigned long ceiling)
{
pgd_t *pgd;
unsigned long next;
/*
* The next few lines have given us lots of grief...
*
* Why are we testing PMD* at this top level? Because often
* there will be no work to do at all, and we'd prefer not to
* go all the way down to the bottom just to discover that.
*
* Why all these "- 1"s? Because 0 represents both the bottom
* of the address space and the top of it (using -1 for the
* top wouldn't help much: the masks would do the wrong thing).
* The rule is that addr 0 and floor 0 refer to the bottom of
* the address space, but end 0 and ceiling 0 refer to the top
* Comparisons need to use "end - 1" and "ceiling - 1" (though
* that end 0 case should be mythical).
*
* Wherever addr is brought up or ceiling brought down, we must
* be careful to reject "the opposite 0" before it confuses the
* subsequent tests. But what about where end is brought down
* by PMD_SIZE below? no, end can't go down to 0 there.
*
* Whereas we round start (addr) and ceiling down, by different
* masks at different levels, in order to test whether a table
* now has no other vmas using it, so can be freed, we don't
* bother to round floor or end up - the tests don't need that.
*/
addr &= PMD_MASK;
if (addr < floor) {
addr += PMD_SIZE;
if (!addr)
return;
}
if (ceiling) {
ceiling &= PMD_MASK;
if (!ceiling)
return;
}
if (end - 1 > ceiling - 1)
end -= PMD_SIZE;
if (addr > end - 1)
return;
/*
* We add page table cache pages with PAGE_SIZE,
* (see pte_free_tlb()), flush the tlb if we need
*/
tlb_change_page_size(tlb, PAGE_SIZE);
pgd = pgd_offset(tlb->mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
} while (pgd++, addr = next, addr != end);
}
void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
struct vm_area_struct *vma, unsigned long floor,
unsigned long ceiling, bool mm_wr_locked)
{
do {
unsigned long addr = vma->vm_start;
struct vm_area_struct *next;
/*
* Note: USER_PGTABLES_CEILING may be passed as ceiling and may
* be 0. This will underflow and is okay.
*/
next = mas_find(mas, ceiling - 1);
if (unlikely(xa_is_zero(next)))
next = NULL;
/*
* Hide vma from rmap and truncate_pagecache before freeing
* pgtables
*/
if (mm_wr_locked)
vma_start_write(vma);
unlink_anon_vmas(vma);
unlink_file_vma(vma);
if (is_vm_hugetlb_page(vma)) {
hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
floor, next ? next->vm_start : ceiling);
} else {
/*
* Optimization: gather nearby vmas into one call down
*/
while (next && next->vm_start <= vma->vm_end + PMD_SIZE
&& !is_vm_hugetlb_page(next)) {
vma = next;
next = mas_find(mas, ceiling - 1);
if (unlikely(xa_is_zero(next)))
next = NULL;
if (mm_wr_locked)
vma_start_write(vma);
unlink_anon_vmas(vma);
unlink_file_vma(vma);
}
free_pgd_range(tlb, addr, vma->vm_end,
floor, next ? next->vm_start : ceiling);
}
vma = next;
} while (vma);
}
void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
{
spinlock_t *ptl = pmd_lock(mm, pmd);
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
mm_inc_nr_ptes(mm);
/*
* Ensure all pte setup (eg. pte page lock and page clearing) are
* visible before the pte is made visible to other CPUs by being
* put into page tables.
*
* The other side of the story is the pointer chasing in the page
* table walking code (when walking the page table without locking;
* ie. most of the time). Fortunately, these data accesses consist
* of a chain of data-dependent loads, meaning most CPUs (alpha
* being the notable exception) will already guarantee loads are
* seen in-order. See the alpha page table accessors for the
* smp_rmb() barriers in page table walking code.
*/
smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
pmd_populate(mm, pmd, *pte);
*pte = NULL;
}
spin_unlock(ptl);
}
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
{
pgtable_t new = pte_alloc_one(mm);
if (!new)
return -ENOMEM;
pmd_install(mm, pmd, &new);
if (new)
pte_free(mm, new);
return 0;
}
int __pte_alloc_kernel(pmd_t *pmd)
{
pte_t *new = pte_alloc_one_kernel(&init_mm);
if (!new)
return -ENOMEM;
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
smp_wmb(); /* See comment in pmd_install() */
pmd_populate_kernel(&init_mm, pmd, new);
new = NULL;
}
spin_unlock(&init_mm.page_table_lock);
if (new)
pte_free_kernel(&init_mm, new);
return 0;
}
static inline void init_rss_vec(int *rss)
{
memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}
static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
{
int i;
for (i = 0; i < NR_MM_COUNTERS; i++)
if (rss[i])
add_mm_counter(mm, i, rss[i]);
}
/*
* This function is called to print an error when a bad pte
* is found. For example, we might have a PFN-mapped pte in
* a region that doesn't allow it.
*
* The calling function must still handle the error.
*/
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
pte_t pte, struct page *page)
{
pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
p4d_t *p4d = p4d_offset(pgd, addr);
pud_t *pud = pud_offset(p4d, addr);
pmd_t *pmd = pmd_offset(pud, addr);
struct address_space *mapping;
pgoff_t index;
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
return;
}
if (nr_unshown) {
pr_alert("BUG: Bad page map: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
index = linear_page_index(vma, addr);
pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
current->comm,
(long long)pte_val(pte), (long long)pmd_val(*pmd));
if (page)
dump_page(page, "bad pte");
pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
vma->vm_file,
vma->vm_ops ? vma->vm_ops->fault : NULL,
vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
mapping ? mapping->a_ops->read_folio : NULL);
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
/*
* vm_normal_page -- This function gets the "struct page" associated with a pte.
*
* "Special" mappings do not wish to be associated with a "struct page" (either
* it doesn't exist, or it exists but they don't want to touch it). In this
* case, NULL is returned here. "Normal" mappings do have a struct page.
*
* There are 2 broad cases. Firstly, an architecture may define a pte_special()
* pte bit, in which case this function is trivial. Secondly, an architecture
* may not have a spare pte bit, which requires a more complicated scheme,
* described below.
*
* A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
* special mapping (even if there are underlying and valid "struct pages").
* COWed pages of a VM_PFNMAP are always normal.
*
* The way we recognize COWed pages within VM_PFNMAP mappings is through the
* rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
* set, and the vm_pgoff will point to the first PFN mapped: thus every special
* mapping will always honor the rule
*
* pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
*
* And for normal mappings this is false.
*
* This restricts such mappings to be a linear translation from virtual address
* to pfn. To get around this restriction, we allow arbitrary mappings so long
* as the vma is not a COW mapping; in that case, we know that all ptes are
* special (because none can have been COWed).
*
*
* In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
*
* VM_MIXEDMAP mappings can likewise contain memory with or without "struct
* page" backing, however the difference is that _all_ pages with a struct
* page (that is, those where pfn_valid is true) are refcounted and considered
* normal pages by the VM. The disadvantage is that pages are refcounted
* (which can be slower and simply not an option for some PFNMAP users). The
* advantage is that we don't have to follow the strict linearity rule of
* PFNMAP mappings in order to support COWable mappings.
*
*/
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
if (likely(!pte_special(pte)))
goto check_pfn;
if (vma->vm_ops && vma->vm_ops->find_special_page)
return vma->vm_ops->find_special_page(vma, addr);
if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
return NULL;
if (is_zero_pfn(pfn))
return NULL;
if (pte_devmap(pte))
/*
* NOTE: New users of ZONE_DEVICE will not set pte_devmap()
* and will have refcounts incremented on their struct pages
* when they are inserted into PTEs, thus they are safe to
* return here. Legacy ZONE_DEVICE pages that set pte_devmap()
* do not have refcounts. Example of legacy ZONE_DEVICE is
* MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
*/
return NULL;
print_bad_pte(vma, addr, pte, NULL);
return NULL;
}
/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
if (!pfn_valid(pfn))
return NULL;
goto out;
} else {
unsigned long off;
off = (addr - vma->vm_start) >> PAGE_SHIFT;
if (pfn == vma->vm_pgoff + off)
return NULL;
if (!is_cow_mapping(vma->vm_flags))
return NULL;
}
}
if (is_zero_pfn(pfn))
return NULL;
check_pfn:
if (unlikely(pfn > highest_memmap_pfn)) {
print_bad_pte(vma, addr, pte, NULL);
return NULL;
}
/*
* NOTE! We still have PageReserved() pages in the page tables.
* eg. VDSO mappings can cause them to exist.
*/
out:
return pfn_to_page(pfn);
}
struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
pte_t pte)
{
struct page *page = vm_normal_page(vma, addr, pte);
if (page)
return page_folio(page);
return NULL;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd)
{
unsigned long pfn = pmd_pfn(pmd);
/*
* There is no pmd_special() but there may be special pmds, e.g.
* in a direct-access (dax) mapping, so let's just replicate the
* !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
*/
if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
if (vma->vm_flags & VM_MIXEDMAP) {
if (!pfn_valid(pfn))
return NULL;
goto out;
} else {
unsigned long off;
off = (addr - vma->vm_start) >> PAGE_SHIFT;
if (pfn == vma->vm_pgoff + off)
return NULL;
if (!is_cow_mapping(vma->vm_flags))
return NULL;
}
}
if (pmd_devmap(pmd))
return NULL;
if (is_huge_zero_pmd(pmd))
return NULL;
if (unlikely(pfn > highest_memmap_pfn))
return NULL;
/*
* NOTE! We still have PageReserved() pages in the page tables.
* eg. VDSO mappings can cause them to exist.
*/
out:
return pfn_to_page(pfn);
}
struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t pmd)
{
struct page *page = vm_normal_page_pmd(vma, addr, pmd);
if (page)
return page_folio(page);
return NULL;
}
#endif
static void restore_exclusive_pte(struct vm_area_struct *vma,
struct page *page, unsigned long address,
pte_t *ptep)
{
struct folio *folio = page_folio(page);
pte_t orig_pte;
pte_t pte;
swp_entry_t entry;
orig_pte = ptep_get(ptep);
pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
if (pte_swp_soft_dirty(orig_pte))
pte = pte_mksoft_dirty(pte);
entry = pte_to_swp_entry(orig_pte);
if (pte_swp_uffd_wp(orig_pte))
pte = pte_mkuffd_wp(pte);
else if (is_writable_device_exclusive_entry(entry))
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
PageAnonExclusive(page)), folio);
/*
* No need to take a page reference as one was already
* created when the swap entry was made.
*/
if (folio_test_anon(folio))
folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
else
/*
* Currently device exclusive access only supports anonymous
* memory so the entry shouldn't point to a filebacked page.
*/
WARN_ON_ONCE(1);
set_pte_at(vma->vm_mm, address, ptep, pte);
/*
* No need to invalidate - it was non-present before. However
* secondary CPUs may have mappings that need invalidating.
*/
update_mmu_cache(vma, address, ptep);
}
/*
* Tries to restore an exclusive pte if the page lock can be acquired without
* sleeping.
*/
static int
try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
unsigned long addr)
{
swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
struct page *page = pfn_swap_entry_to_page(entry);
if (trylock_page(page)) {
restore_exclusive_pte(vma, page, addr, src_pte);
unlock_page(page);
return 0;
}
return -EBUSY;
}
/*
* copy one vm_area from one task to the other. Assumes the page tables
* already present in the new task to be cleared in the whole range
* covered by this vma.
*/
static unsigned long
copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
struct vm_area_struct *src_vma, unsigned long addr, int *rss)
{
unsigned long vm_flags = dst_vma->vm_flags;
pte_t orig_pte = ptep_get(src_pte);
pte_t pte = orig_pte;
struct folio *folio;
struct page *page;
swp_entry_t entry = pte_to_swp_entry(orig_pte);
if (likely(!non_swap_entry(entry))) {
if (swap_duplicate(entry) < 0)
return -EIO;
/* make sure dst_mm is on swapoff's mmlist. */
if (unlikely(list_empty(&dst_mm->mmlist))) {
spin_lock(&mmlist_lock);
if (list_empty(&dst_mm->mmlist))
list_add(&dst_mm->mmlist,
&src_mm->mmlist);
spin_unlock(&mmlist_lock);
}
/* Mark the swap entry as shared. */
if (pte_swp_exclusive(orig_pte)) {
pte = pte_swp_clear_exclusive(orig_pte);
set_pte_at(src_mm, addr, src_pte, pte);
}
rss[MM_SWAPENTS]++;
} else if (is_migration_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
rss[mm_counter(page)]++;
if (!is_readable_migration_entry(entry) &&
is_cow_mapping(vm_flags)) {
/*
* COW mappings require pages in both parent and child
* to be set to read. A previously exclusive entry is
* now shared.
*/
entry = make_readable_migration_entry(
swp_offset(entry));
pte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(orig_pte))
pte = pte_swp_mksoft_dirty(pte);
if (pte_swp_uffd_wp(orig_pte))
pte = pte_swp_mkuffd_wp(pte);
set_pte_at(src_mm, addr, src_pte, pte);
}
} else if (is_device_private_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
folio = page_folio(page);
/*
* Update rss count even for unaddressable pages, as
* they should treated just like normal pages in this
* respect.
*
* We will likely want to have some new rss counters
* for unaddressable pages, at some point. But for now
* keep things as they are.
*/
folio_get(folio);
rss[mm_counter(page)]++;
/* Cannot fail as these pages cannot get pinned. */
folio_try_dup_anon_rmap_pte(folio, page, src_vma);
/*
* We do not preserve soft-dirty information, because so
* far, checkpoint/restore is the only feature that
* requires that. And checkpoint/restore does not work
* when a device driver is involved (you cannot easily
* save and restore device driver state).
*/
if (is_writable_device_private_entry(entry) &&
is_cow_mapping(vm_flags)) {
entry = make_readable_device_private_entry(
swp_offset(entry));
pte = swp_entry_to_pte(entry);
if (pte_swp_uffd_wp(orig_pte))
pte = pte_swp_mkuffd_wp(pte);
set_pte_at(src_mm, addr, src_pte, pte);
}
} else if (is_device_exclusive_entry(entry)) {
/*
* Make device exclusive entries present by restoring the
* original entry then copying as for a present pte. Device
* exclusive entries currently only support private writable
* (ie. COW) mappings.
*/
VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
if (try_restore_exclusive_pte(src_pte, src_vma, addr))
return -EBUSY;
return -ENOENT;
} else if (is_pte_marker_entry(entry)) {
pte_marker marker = copy_pte_marker(entry, dst_vma);
if (marker)
set_pte_at(dst_mm, addr, dst_pte,
make_pte_marker(marker));
return 0;
}
if (!userfaultfd_wp(dst_vma))
pte = pte_swp_clear_uffd_wp(pte);
set_pte_at(dst_mm, addr, dst_pte, pte);
return 0;
}
/*
* Copy a present and normal page.
*
* NOTE! The usual case is that this isn't required;
* instead, the caller can just increase the page refcount
* and re-use the pte the traditional way.
*
* And if we need a pre-allocated page but don't yet have
* one, return a negative error to let the preallocation
* code know so that it can do so outside the page table
* lock.
*/
static inline int
copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
struct folio **prealloc, struct page *page)
{
struct folio *new_folio;
pte_t pte;
new_folio = *prealloc;
if (!new_folio)
return -EAGAIN;
/*
* We have a prealloc page, all good! Take it
* over and copy the page & arm it.
*/
*prealloc = NULL;
copy_user_highpage(&new_folio->page, page, addr, src_vma);
__folio_mark_uptodate(new_folio);
folio_add_new_anon_rmap(new_folio, dst_vma, addr);
folio_add_lru_vma(new_folio, dst_vma);
rss[MM_ANONPAGES]++;
/* All done, just insert the new page copy in the child */
pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
/* Uffd-wp needs to be delivered to dest pte as well */
pte = pte_mkuffd_wp(pte);
set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
return 0;
}
/*
* Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
* is required to copy this pte.
*/
static inline int
copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
struct folio **prealloc)
{
struct mm_struct *src_mm = src_vma->vm_mm;
unsigned long vm_flags = src_vma->vm_flags;
pte_t pte = ptep_get(src_pte);
struct page *page;
struct folio *folio;
page = vm_normal_page(src_vma, addr, pte);
if (page)
folio = page_folio(page);
if (page && folio_test_anon(folio)) {
/*
* If this page may have been pinned by the parent process,
* copy the page immediately for the child so that we'll always
* guarantee the pinned page won't be randomly replaced in the
* future.
*/
folio_get(folio);
if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
/* Page may be pinned, we have to copy. */
folio_put(folio);
return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
addr, rss, prealloc, page);
}
rss[MM_ANONPAGES]++;
} else if (page) {
folio_get(folio);
folio_dup_file_rmap_pte(folio, page);
rss[mm_counter_file(page)]++;
}
/*
* If it's a COW mapping, write protect it both
* in the parent and the child
*/
if (is_cow_mapping(vm_flags) && pte_write(pte)) {
ptep_set_wrprotect(src_mm, addr, src_pte);
pte = pte_wrprotect(pte);
}
VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
/*
* If it's a shared mapping, mark it clean in
* the child
*/
if (vm_flags & VM_SHARED)
pte = pte_mkclean(pte);
pte = pte_mkold(pte);
if (!userfaultfd_wp(dst_vma))
pte = pte_clear_uffd_wp(pte);
set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
return 0;
}
static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
struct vm_area_struct *vma, unsigned long addr, bool need_zero)
{
struct folio *new_folio;
if (need_zero)
new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
else
new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
addr, false);
if (!new_folio)
return NULL;
if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
folio_put(new_folio);
return NULL;
}
folio_throttle_swaprate(new_folio, GFP_KERNEL);
return new_folio;
}
static int
copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
unsigned long end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
pte_t *orig_src_pte, *orig_dst_pte;
pte_t *src_pte, *dst_pte;
pte_t ptent;
spinlock_t *src_ptl, *dst_ptl;
int progress, ret = 0;
int rss[NR_MM_COUNTERS];
swp_entry_t entry = (swp_entry_t){0};
struct folio *prealloc = NULL;
again:
progress = 0;
init_rss_vec(rss);
/*
* copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
* error handling here, assume that exclusive mmap_lock on dst and src
* protects anon from unexpected THP transitions; with shmem and file
* protected by mmap_lock-less collapse skipping areas with anon_vma
* (whereas vma_needs_copy() skips areas without anon_vma). A rework
* can remove such assumptions later, but this is good enough for now.
*/
dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
if (!dst_pte) {
ret = -ENOMEM;
goto out;
}
src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
if (!src_pte) {
pte_unmap_unlock(dst_pte, dst_ptl);
/* ret == 0 */
goto out;
}
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
orig_src_pte = src_pte;
orig_dst_pte = dst_pte;
arch_enter_lazy_mmu_mode();
do {
/*
* We are holding two locks at this point - either of them
* could generate latencies in another task on another CPU.
*/
if (progress >= 32) {
progress = 0;
if (need_resched() ||
spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
break;
}
ptent = ptep_get(src_pte);
if (pte_none(ptent)) {
progress++;
continue;
}
if (unlikely(!pte_present(ptent))) {
ret = copy_nonpresent_pte(dst_mm, src_mm,
dst_pte, src_pte,
dst_vma, src_vma,
addr, rss);
if (ret == -EIO) {
entry = pte_to_swp_entry(ptep_get(src_pte));
break;
} else if (ret == -EBUSY) {
break;
} else if (!ret) {
progress += 8;
continue;
}
/*
* Device exclusive entry restored, continue by copying
* the now present pte.
*/
WARN_ON_ONCE(ret != -ENOENT);
}
/* copy_present_pte() will clear `*prealloc' if consumed */
ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
addr, rss, &prealloc);
/*
* If we need a pre-allocated page for this pte, drop the
* locks, allocate, and try again.
*/
if (unlikely(ret == -EAGAIN))
break;
if (unlikely(prealloc)) {
/*
* pre-alloc page cannot be reused by next time so as
* to strictly follow mempolicy (e.g., alloc_page_vma()
* will allocate page according to address). This
* could only happen if one pinned pte changed.
*/
folio_put(prealloc);
prealloc = NULL;
}
progress += 8;
} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(orig_src_pte, src_ptl);
add_mm_rss_vec(dst_mm, rss);
pte_unmap_unlock(orig_dst_pte, dst_ptl);
cond_resched();
if (ret == -EIO) {
VM_WARN_ON_ONCE(!entry.val);
if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
ret = -ENOMEM;
goto out;
}
entry.val = 0;
} else if (ret == -EBUSY) {
goto out;
} else if (ret == -EAGAIN) {
prealloc = folio_prealloc(src_mm, src_vma, addr, false);
if (!prealloc)
return -ENOMEM;
} else if (ret) {
VM_WARN_ON_ONCE(1);
}
/* We've captured and resolved the error. Reset, try again. */
ret = 0;
if (addr != end)
goto again;
out:
if (unlikely(prealloc))
folio_put(prealloc);
return ret;
}
static inline int
copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
unsigned long end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
pmd_t *src_pmd, *dst_pmd;
unsigned long next;
dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
if (!dst_pmd)
return -ENOMEM;
src_pmd = pmd_offset(src_pud, addr);
do {
next = pmd_addr_end(addr, end);
if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
|| pmd_devmap(*src_pmd)) {
int err;
VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
addr, dst_vma, src_vma);
if (err == -ENOMEM)
return -ENOMEM;
if (!err)
continue;
/* fall through */
}
if (pmd_none_or_clear_bad(src_pmd))
continue;
if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
addr, next))
return -ENOMEM;
} while (dst_pmd++, src_pmd++, addr = next, addr != end);
return 0;
}
static inline int
copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
unsigned long end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
pud_t *src_pud, *dst_pud;
unsigned long next;
dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
if (!dst_pud)
return -ENOMEM;
src_pud = pud_offset(src_p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
int err;
VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
err = copy_huge_pud(dst_mm, src_mm,
dst_pud, src_pud, addr, src_vma);
if (err == -ENOMEM)
return -ENOMEM;
if (!err)
continue;
/* fall through */
}
if (pud_none_or_clear_bad(src_pud))
continue;
if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
addr, next))
return -ENOMEM;
} while (dst_pud++, src_pud++, addr = next, addr != end);
return 0;
}
static inline int
copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
unsigned long end)
{
struct mm_struct *dst_mm = dst_vma->vm_mm;
p4d_t *src_p4d, *dst_p4d;
unsigned long next;
dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
if (!dst_p4d)
return -ENOMEM;
src_p4d = p4d_offset(src_pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(src_p4d))
continue;
if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
addr, next))
return -ENOMEM;
} while (dst_p4d++, src_p4d++, addr = next, addr != end);
return 0;
}
/*
* Return true if the vma needs to copy the pgtable during this fork(). Return
* false when we can speed up fork() by allowing lazy page faults later until
* when the child accesses the memory range.
*/
static bool
vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
{
/*
* Always copy pgtables when dst_vma has uffd-wp enabled even if it's
* file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
* contains uffd-wp protection information, that's something we can't
* retrieve from page cache, and skip copying will lose those info.
*/
if (userfaultfd_wp(dst_vma))
return true;
if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
return true;
if (src_vma->anon_vma)
return true;
/*
* Don't copy ptes where a page fault will fill them correctly. Fork
* becomes much lighter when there are big shared or private readonly
* mappings. The tradeoff is that copy_page_range is more efficient
* than faulting.
*/
return false;
}
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
{
pgd_t *src_pgd, *dst_pgd;
unsigned long next;
unsigned long addr = src_vma->vm_start;
unsigned long end = src_vma->vm_end;
struct mm_struct *dst_mm = dst_vma->vm_mm;
struct mm_struct *src_mm = src_vma->vm_mm;
struct mmu_notifier_range range;
bool is_cow;
int ret;
if (!vma_needs_copy(dst_vma, src_vma))
return 0;
if (is_vm_hugetlb_page(src_vma))
return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
/*
* We do not free on error cases below as remove_vma
* gets called on error from higher level routine
*/
ret = track_pfn_copy(src_vma);
if (ret)
return ret;
}
/*
* We need to invalidate the secondary MMU mappings only when
* there could be a permission downgrade on the ptes of the
* parent mm. And a permission downgrade will only happen if
* is_cow_mapping() returns true.
*/
is_cow = is_cow_mapping(src_vma->vm_flags);
if (is_cow) {
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
0, src_mm, addr, end);
mmu_notifier_invalidate_range_start(&range);
/*
* Disabling preemption is not needed for the write side, as
* the read side doesn't spin, but goes to the mmap_lock.
*
* Use the raw variant of the seqcount_t write API to avoid
* lockdep complaining about preemptibility.
*/
vma_assert_write_locked(src_vma);
raw_write_seqcount_begin(&src_mm->write_protect_seq);
}
ret = 0;
dst_pgd = pgd_offset(dst_mm, addr);
src_pgd = pgd_offset(src_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
addr, next))) {
untrack_pfn_clear(dst_vma);
ret = -ENOMEM;
break;
}
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
if (is_cow) {
raw_write_seqcount_end(&src_mm->write_protect_seq);
mmu_notifier_invalidate_range_end(&range);
}
return ret;
}
/* Whether we should zap all COWed (private) pages too */
static inline bool should_zap_cows(struct zap_details *details)
{
/* By default, zap all pages */
if (!details)
return true;
/* Or, we zap COWed pages only if the caller wants to */
return details->even_cows;
}
/* Decides whether we should zap this page with the page pointer specified */
static inline bool should_zap_page(struct zap_details *details, struct page *page)
{
/* If we can make a decision without *page.. */
if (should_zap_cows(details))
return true;
/* E.g. the caller passes NULL for the case of a zero page */
if (!page)
return true;
/* Otherwise we should only zap non-anon pages */
return !PageAnon(page);
}
static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
{
if (!details)
return false;
return details->zap_flags & ZAP_FLAG_DROP_MARKER;
}
/*
* This function makes sure that we'll replace the none pte with an uffd-wp
* swap special pte marker when necessary. Must be with the pgtable lock held.
*/
static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte,
struct zap_details *details, pte_t pteval)
{
/* Zap on anonymous always means dropping everything */
if (vma_is_anonymous(vma))
return;
if (zap_drop_file_uffd_wp(details))
return;
pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
}
static unsigned long zap_pte_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
struct mm_struct *mm = tlb->mm;
int force_flush = 0;
int rss[NR_MM_COUNTERS];
spinlock_t *ptl;
pte_t *start_pte;
pte_t *pte;
swp_entry_t entry;
tlb_change_page_size(tlb, PAGE_SIZE);
init_rss_vec(rss);
start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return addr;
flush_tlb_batched_pending(mm);
arch_enter_lazy_mmu_mode();
do {
pte_t ptent = ptep_get(pte);
struct folio *folio;
struct page *page;
if (pte_none(ptent))
continue;
if (need_resched())
break;
if (pte_present(ptent)) {
unsigned int delay_rmap;
page = vm_normal_page(vma, addr, ptent);
if (unlikely(!should_zap_page(details, page)))
continue;
ptent = ptep_get_and_clear_full(mm, addr, pte,
tlb->fullmm);
arch_check_zapped_pte(vma, ptent);
tlb_remove_tlb_entry(tlb, pte, addr);
zap_install_uffd_wp_if_needed(vma, addr, pte, details,
ptent);
if (unlikely(!page)) {
ksm_might_unmap_zero_page(mm, ptent);
continue;
}
folio = page_folio(page);
delay_rmap = 0;
if (!folio_test_anon(folio)) {
if (pte_dirty(ptent)) {
folio_mark_dirty(folio);
if (tlb_delay_rmap(tlb)) {
delay_rmap = 1;
force_flush = 1;
}
}
if (pte_young(ptent) && likely(vma_has_recency(vma)))
folio_mark_accessed(folio);
}
rss[mm_counter(page)]--;
if (!delay_rmap) {
folio_remove_rmap_pte(folio, page, vma);
if (unlikely(page_mapcount(page) < 0))
print_bad_pte(vma, addr, ptent, page);
}
if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
force_flush = 1;
addr += PAGE_SIZE;
break;
}
continue;
}
entry = pte_to_swp_entry(ptent);
if (is_device_private_entry(entry) ||
is_device_exclusive_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
folio = page_folio(page);
if (unlikely(!should_zap_page(details, page)))
continue;
/*
* Both device private/exclusive mappings should only
* work with anonymous page so far, so we don't need to
* consider uffd-wp bit when zap. For more information,
* see zap_install_uffd_wp_if_needed().
*/
WARN_ON_ONCE(!vma_is_anonymous(vma));
rss[mm_counter(page)]--;
if (is_device_private_entry(entry))
folio_remove_rmap_pte(folio, page, vma);
folio_put(folio);
} else if (!non_swap_entry(entry)) {
/* Genuine swap entry, hence a private anon page */
if (!should_zap_cows(details))
continue;
rss[MM_SWAPENTS]--;
if (unlikely(!free_swap_and_cache(entry)))
print_bad_pte(vma, addr, ptent, NULL);
} else if (is_migration_entry(entry)) {
page = pfn_swap_entry_to_page(entry);
if (!should_zap_page(details, page))
continue;
rss[mm_counter(page)]--;
} else if (pte_marker_entry_uffd_wp(entry)) {
/*
* For anon: always drop the marker; for file: only
* drop the marker if explicitly requested.
*/
if (!vma_is_anonymous(vma) &&
!zap_drop_file_uffd_wp(details))
continue;
} else if (is_hwpoison_entry(entry) ||
is_poisoned_swp_entry(entry)) {
if (!should_zap_cows(details))
continue;
} else {
/* We should have covered all the swap entry types */
pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
WARN_ON_ONCE(1);
}
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
} while (pte++, addr += PAGE_SIZE, addr != end);
add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
/* Do the actual TLB flush before dropping ptl */
if (force_flush) {
tlb_flush_mmu_tlbonly(tlb);
tlb_flush_rmaps(tlb, vma);
}
pte_unmap_unlock(start_pte, ptl);
/*
* If we forced a TLB flush (either due to running out of
* batch buffers or because we needed to flush dirty TLB
* entries before releasing the ptl), free the batched
* memory too. Come back again if we didn't do everything.
*/
if (force_flush)
tlb_flush_mmu(tlb);
return addr;
}
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, pud_t *pud,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
if (next - addr != HPAGE_PMD_SIZE)
__split_huge_pmd(vma, pmd, addr, false, NULL);
else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
addr = next;
continue;
}
/* fall through */
} else if (details && details->single_folio &&
folio_test_pmd_mappable(details->single_folio) &&
next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
/*
* Take and drop THP pmd lock so that we cannot return
* prematurely, while zap_huge_pmd() has cleared *pmd,
* but not yet decremented compound_mapcount().
*/
spin_unlock(ptl);
}
if (pmd_none(*pmd)) {
addr = next;
continue;
}
addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
if (addr != next)
pmd--;
} while (pmd++, cond_resched(), addr != end);
return addr;
}
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, p4d_t *p4d,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
if (next - addr != HPAGE_PUD_SIZE) {
mmap_assert_locked(tlb->mm);
split_huge_pud(vma, pud, addr);
} else if (zap_huge_pud(tlb, vma, pud, addr))
goto next;
/* fall through */
}
if (pud_none_or_clear_bad(pud))
continue;
next = zap_pmd_range(tlb, vma, pud, addr, next, details);
next:
cond_resched();
} while (pud++, addr = next, addr != end);
return addr;
}
static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, pgd_t *pgd,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d))
continue;
next = zap_pud_range(tlb, vma, p4d, addr, next, details);
} while (p4d++, addr = next, addr != end);
return addr;
}
void unmap_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end,
struct zap_details *details)
{
pgd_t *pgd;
unsigned long next;
BUG_ON(addr >= end);
tlb_start_vma(tlb, vma);
pgd = pgd_offset(vma->vm_mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
} while (pgd++, addr = next, addr != end);
tlb_end_vma(tlb, vma);
}
static void unmap_single_vma(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start_addr,
unsigned long end_addr,
struct zap_details *details, bool mm_wr_locked)
{
unsigned long start = max(vma->vm_start, start_addr);
unsigned long end;
if (start >= vma->vm_end)
return;
end = min(vma->vm_end, end_addr);
if (end <= vma->vm_start)
return;
if (vma->vm_file)
uprobe_munmap(vma, start, end);
if (unlikely(vma->vm_flags & VM_PFNMAP))
untrack_pfn(vma, 0, 0, mm_wr_locked);
if (start != end) {
if (unlikely(is_vm_hugetlb_page(vma))) {
/*
* It is undesirable to test vma->vm_file as it
* should be non-null for valid hugetlb area.
* However, vm_file will be NULL in the error
* cleanup path of mmap_region. When
* hugetlbfs ->mmap method fails,
* mmap_region() nullifies vma->vm_file
* before calling this function to clean up.
* Since no pte has actually been setup, it is
* safe to do nothing in this case.
*/
if (vma->vm_file) {
zap_flags_t zap_flags = details ?
details->zap_flags : 0;
__unmap_hugepage_range(tlb, vma, start, end,
NULL, zap_flags);
}
} else
unmap_page_range(tlb, vma, start, end, details);
}
}
/**
* unmap_vmas - unmap a range of memory covered by a list of vma's
* @tlb: address of the caller's struct mmu_gather
* @mas: the maple state
* @vma: the starting vma
* @start_addr: virtual address at which to start unmapping
* @end_addr: virtual address at which to end unmapping
* @tree_end: The maximum index to check
* @mm_wr_locked: lock flag
*
* Unmap all pages in the vma list.
*
* Only addresses between `start' and `end' will be unmapped.
*
* The VMA list must be sorted in ascending virtual address order.
*
* unmap_vmas() assumes that the caller will flush the whole unmapped address
* range after unmap_vmas() returns. So the only responsibility here is to
* ensure that any thus-far unmapped pages are flushed before unmap_vmas()
* drops the lock and schedules.
*/
void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
struct vm_area_struct *vma, unsigned long start_addr,
unsigned long end_addr, unsigned long tree_end,
bool mm_wr_locked)
{
struct mmu_notifier_range range;
struct zap_details details = {
.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
/* Careful - we need to zap private pages too! */
.even_cows = true,
};
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
start_addr, end_addr);
mmu_notifier_invalidate_range_start(&range);
do {
unsigned long start = start_addr;
unsigned long end = end_addr;
hugetlb_zap_begin(vma, &start, &end);
unmap_single_vma(tlb, vma, start, end, &details,
mm_wr_locked);
hugetlb_zap_end(vma, &details);
vma = mas_find(mas, tree_end - 1);
} while (vma && likely(!xa_is_zero(vma)));
mmu_notifier_invalidate_range_end(&range);
}
/**
* zap_page_range_single - remove user pages in a given range
* @vma: vm_area_struct holding the applicable pages
* @address: starting address of pages to zap
* @size: number of bytes to zap
* @details: details of shared cache invalidation
*
* The range must fit into one VMA.
*/
void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *details)
{
const unsigned long end = address + size;
struct mmu_notifier_range range;
struct mmu_gather tlb;
lru_add_drain();
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
address, end);
hugetlb_zap_begin(vma, &range.start, &range.end);
tlb_gather_mmu(&tlb, vma->vm_mm);
update_hiwater_rss(vma->vm_mm);
mmu_notifier_invalidate_range_start(&range);
/*
* unmap 'address-end' not 'range.start-range.end' as range
* could have been expanded for hugetlb pmd sharing.
*/
unmap_single_vma(&tlb, vma, address, end, details, false);
mmu_notifier_invalidate_range_end(&range);
tlb_finish_mmu(&tlb);
hugetlb_zap_end(vma, details);
}
/**
* zap_vma_ptes - remove ptes mapping the vma
* @vma: vm_area_struct holding ptes to be zapped
* @address: starting address of pages to zap
* @size: number of bytes to zap
*
* This function only unmaps ptes assigned to VM_PFNMAP vmas.
*
* The entire address range must be fully contained within the vma.
*
*/
void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size)
{
if (!range_in_vma(vma, address, address + size) ||
!(vma->vm_flags & VM_PFNMAP))
return;
zap_page_range_single(vma, address, size, NULL);
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);
static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
pud = pud_alloc(mm, p4d, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
pmd_t *pmd = walk_to_pmd(mm, addr);
if (!pmd)
return NULL;
return pte_alloc_map_lock(mm, pmd, addr, ptl);
}
static int validate_page_before_insert(struct page *page)
{
struct folio *folio = page_folio(page);
if (folio_test_anon(folio) || folio_test_slab(folio) ||
page_has_type(page))
return -EINVAL;
flush_dcache_folio(folio);
return 0;
}
static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
unsigned long addr, struct page *page, pgprot_t prot)
{
struct folio *folio = page_folio(page);
if (!pte_none(ptep_get(pte)))
return -EBUSY;
/* Ok, finally just insert the thing.. */
folio_get(folio);
inc_mm_counter(vma->vm_mm, mm_counter_file(page));
folio_add_file_rmap_pte(folio, page, vma);
set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
return 0;
}
/*
* This is the old fallback for page remapping.
*
* For historical reasons, it only allows reserved pages. Only
* old drivers should use this, and they needed to mark their
* pages reserved for the old functions anyway.
*/
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page, pgprot_t prot)
{
int retval;
pte_t *pte;
spinlock_t *ptl;
retval = validate_page_before_insert(page);
if (retval)
goto out;
retval = -ENOMEM;
pte = get_locked_pte(vma->vm_mm, addr, &ptl);
if (!pte)
goto out;
retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
pte_unmap_unlock(pte, ptl);
out:
return retval;
}
static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
unsigned long addr, struct page *page, pgprot_t prot)
{
int err;
if (!page_count(page))
return -EINVAL;
err = validate_page_before_insert(page);
if (err)
return err;
return insert_page_into_pte_locked(vma, pte, addr, page, prot);
}
/* insert_pages() amortizes the cost of spinlock operations
* when inserting pages in a loop.
*/
static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
struct page **pages, unsigned long *num, pgprot_t prot)
{
pmd_t *pmd = NULL;
pte_t *start_pte, *pte;
spinlock_t *pte_lock;
struct mm_struct *const mm = vma->vm_mm;
unsigned long curr_page_idx = 0;
unsigned long remaining_pages_total = *num;
unsigned long pages_to_write_in_pmd;
int ret;
more:
ret = -EFAULT;
pmd = walk_to_pmd(mm, addr);
if (!pmd)
goto out;
pages_to_write_in_pmd = min_t(unsigned long,
remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
/* Allocate the PTE if necessary; takes PMD lock once only. */
ret = -ENOMEM;
if (pte_alloc(mm, pmd))
goto out;
while (pages_to_write_in_pmd) {
int pte_idx = 0;
const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
if (!start_pte) {
ret = -EFAULT;
goto out;
}
for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
int err = insert_page_in_batch_locked(vma, pte,
addr, pages[curr_page_idx], prot);
if (unlikely(err)) {
pte_unmap_unlock(start_pte, pte_lock);
ret = err;
remaining_pages_total -= pte_idx;
goto out;
}
addr += PAGE_SIZE;
++curr_page_idx;
}
pte_unmap_unlock(start_pte, pte_lock);
pages_to_write_in_pmd -= batch_size;
remaining_pages_total -= batch_size;
}
if (remaining_pages_total)
goto more;
ret = 0;
out:
*num = remaining_pages_total;
return ret;
}
/**
* vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
* @vma: user vma to map to
* @addr: target start user address of these pages
* @pages: source kernel pages
* @num: in: number of pages to map. out: number of pages that were *not*
* mapped. (0 means all pages were successfully mapped).
*
* Preferred over vm_insert_page() when inserting multiple pages.
*
* In case of error, we may have mapped a subset of the provided
* pages. It is the caller's responsibility to account for this case.
*
* The same restrictions apply as in vm_insert_page().
*/
int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
struct page **pages, unsigned long *num)
{
const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
if (addr < vma->vm_start || end_addr >= vma->vm_end)
return -EFAULT;
if (!(vma->vm_flags & VM_MIXEDMAP)) {
BUG_ON(mmap_read_trylock(vma->vm_mm));
BUG_ON(vma->vm_flags & VM_PFNMAP);
vm_flags_set(vma, VM_MIXEDMAP);
}
/* Defer page refcount checking till we're about to map that page. */
return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_pages);
/**
* vm_insert_page - insert single page into user vma
* @vma: user vma to map to
* @addr: target user address of this page
* @page: source kernel page
*
* This allows drivers to insert individual pages they've allocated
* into a user vma.
*
* The page has to be a nice clean _individual_ kernel allocation.
* If you allocate a compound page, you need to have marked it as
* such (__GFP_COMP), or manually just split the page up yourself
* (see split_page()).
*
* NOTE! Traditionally this was done with "remap_pfn_range()" which
* took an arbitrary page protection parameter. This doesn't allow
* that. Your vma protection will have to be set up correctly, which
* means that if you want a shared writable mapping, you'd better
* ask for a shared writable mapping!
*
* The page does not need to be reserved.
*
* Usually this function is called from f_op->mmap() handler
* under mm->mmap_lock write-lock, so it can change vma->vm_flags.
* Caller must set VM_MIXEDMAP on vma if it wants to call this
* function from other places, for example from page-fault handler.
*
* Return: %0 on success, negative error code otherwise.
*/
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
struct page *page)
{
if (addr < vma->vm_start || addr >= vma->vm_end)
return -EFAULT;
if (!page_count(page))
return -EINVAL;
if (!(vma->vm_flags & VM_MIXEDMAP)) {
BUG_ON(mmap_read_trylock(vma->vm_mm));
BUG_ON(vma->vm_flags & VM_PFNMAP);
vm_flags_set(vma, VM_MIXEDMAP);
}
return insert_page(vma, addr, page, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_page);
/*
* __vm_map_pages - maps range of kernel pages into user vma
* @vma: user vma to map to
* @pages: pointer to array of source kernel pages
* @num: number of pages in page array
* @offset: user's requested vm_pgoff
*
* This allows drivers to map range of kernel pages into a user vma.
*
* Return: 0 on success and error code otherwise.
*/
static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num, unsigned long offset)
{
unsigned long count = vma_pages(vma);
unsigned long uaddr = vma->vm_start;
int ret, i;
/* Fail if the user requested offset is beyond the end of the object */
if (offset >= num)
return -ENXIO;
/* Fail if the user requested size exceeds available object size */
if (count > num - offset)
return -ENXIO;
for (i = 0; i < count; i++) {
ret = vm_insert_page(vma, uaddr, pages[offset + i]);
if (ret < 0)
return ret;
uaddr += PAGE_SIZE;
}
return 0;
}
/**
* vm_map_pages - maps range of kernel pages starts with non zero offset
* @vma: user vma to map to
* @pages: pointer to array of source kernel pages
* @num: number of pages in page array
*
* Maps an object consisting of @num pages, catering for the user's
* requested vm_pgoff
*
* If we fail to insert any page into the vma, the function will return
* immediately leaving any previously inserted pages present. Callers
* from the mmap handler may immediately return the error as their caller
* will destroy the vma, removing any successfully inserted pages. Other
* callers should make their own arrangements for calling unmap_region().
*
* Context: Process context. Called by mmap handlers.
* Return: 0 on success and error code otherwise.
*/
int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
unsigned long num)
{
return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
}
EXPORT_SYMBOL(vm_map_pages);
/**
* vm_map_pages_zero - map range of kernel pages starts with zero offset
* @vma: user vma to map to
* @pages: pointer to array of source kernel pages
* @num: number of pages in page array
*
* Similar to vm_map_pages(), except that it explicitly sets the offset
* to 0. This function is intended for the drivers that did not consider
* vm_pgoff.
*
* Context: Process context. Called by mmap handlers.
* Return: 0 on success and error code otherwise.
*/
int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
unsigned long num)
{
return __vm_map_pages(vma, pages, num, 0);
}
EXPORT_SYMBOL(vm_map_pages_zero);
static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn, pgprot_t prot, bool mkwrite)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte, entry;
spinlock_t *ptl;
pte = get_locked_pte(mm, addr, &ptl);
if (!pte)
return VM_FAULT_OOM;
entry = ptep_get(pte);
if (!pte_none(entry)) {
if (mkwrite) {
/*
* For read faults on private mappings the PFN passed
* in may not match the PFN we have mapped if the
* mapped PFN is a writeable COW page. In the mkwrite
* case we are creating a writable PTE for a shared
* mapping and we expect the PFNs to match. If they
* don't match, we are likely racing with block
* allocation and mapping invalidation so just skip the
* update.
*/
if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
goto out_unlock;
}
entry = pte_mkyoung(entry);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (ptep_set_access_flags(vma, addr, pte, entry, 1))
update_mmu_cache(vma, addr, pte);
}
goto out_unlock;
}
/* Ok, finally just insert the thing.. */
if (pfn_t_devmap(pfn))
entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
else
entry = pte_mkspecial(pfn_t_pte(pfn, prot));
if (mkwrite) {
entry = pte_mkyoung(entry);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
}
set_pte_at(mm, addr, pte, entry);
update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
out_unlock:
pte_unmap_unlock(pte, ptl);
return VM_FAULT_NOPAGE;
}
/**
* vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
* @vma: user vma to map to
* @addr: target user address of this page
* @pfn: source kernel pfn
* @pgprot: pgprot flags for the inserted page
*
* This is exactly like vmf_insert_pfn(), except that it allows drivers
* to override pgprot on a per-page basis.
*
* This only makes sense for IO mappings, and it makes no sense for
* COW mappings. In general, using multiple vmas is preferable;
* vmf_insert_pfn_prot should only be used if using multiple VMAs is
* impractical.
*
* pgprot typically only differs from @vma->vm_page_prot when drivers set
* caching- and encryption bits different than those of @vma->vm_page_prot,
* because the caching- or encryption mode may not be known at mmap() time.
*
* This is ok as long as @vma->vm_page_prot is not used by the core vm
* to set caching and encryption bits for those vmas (except for COW pages).
* This is ensured by core vm only modifying these page table entries using
* functions that don't touch caching- or encryption bits, using pte_modify()
* if needed. (See for example mprotect()).
*
* Also when new page-table entries are created, this is only done using the
* fault() callback, and never using the value of vma->vm_page_prot,
* except for page-table entries that point to anonymous pages as the result
* of COW.
*
* Context: Process context. May allocate using %GFP_KERNEL.
* Return: vm_fault_t value.
*/
vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t pgprot)
{
/*
* Technically, architectures with pte_special can avoid all these
* restrictions (same for remap_pfn_range). However we would like
* consistency in testing and feature parity among all, so we should
* try to keep these invariants in place for everybody.
*/
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
(VM_PFNMAP|VM_MIXEDMAP));
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
if (!pfn_modify_allowed(pfn, pgprot))
return VM_FAULT_SIGBUS;
track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
false);
}
EXPORT_SYMBOL(vmf_insert_pfn_prot);
/**
* vmf_insert_pfn - insert single pfn into user vma
* @vma: user vma to map to
* @addr: target user address of this page
* @pfn: source kernel pfn
*
* Similar to vm_insert_page, this allows drivers to insert individual pages
* they've allocated into a user vma. Same comments apply.
*
* This function should only be called from a vm_ops->fault handler, and
* in that case the handler should return the result of this function.
*
* vma cannot be a COW mapping.
*
* As this is called only for pages that do not currently exist, we
* do not need to flush old virtual caches or the TLB.
*
* Context: Process context. May allocate using %GFP_KERNEL.
* Return: vm_fault_t value.
*/
vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vmf_insert_pfn);
static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
{
/* these checks mirror the abort conditions in vm_normal_page */
if (vma->vm_flags & VM_MIXEDMAP)
return true;
if (pfn_t_devmap(pfn))
return true;
if (pfn_t_special(pfn))
return true;
if (is_zero_pfn(pfn_t_to_pfn(pfn)))
return true;
return false;
}
static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
unsigned long addr, pfn_t pfn, bool mkwrite)
{
pgprot_t pgprot = vma->vm_page_prot;
int err;
BUG_ON(!vm_mixed_ok(vma, pfn));
if (addr < vma->vm_start || addr >= vma->vm_end)
return VM_FAULT_SIGBUS;
track_pfn_insert(vma, &pgprot, pfn);
if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
return VM_FAULT_SIGBUS;
/*
* If we don't have pte special, then we have to use the pfn_valid()
* based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
* refcount the page if pfn_valid is true (hence insert_page rather
* than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
* without pte special, it would there be refcounted as a normal page.
*/
if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
!pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
struct page *page;
/*
* At this point we are committed to insert_page()
* regardless of whether the caller specified flags that
* result in pfn_t_has_page() == false.
*/
page = pfn_to_page(pfn_t_to_pfn(pfn));
err = insert_page(vma, addr, page, pgprot);
} else {
return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
}
if (err == -ENOMEM)
return VM_FAULT_OOM;
if (err < 0 && err != -EBUSY)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn)
{
return __vm_insert_mixed(vma, addr, pfn, false);
}
EXPORT_SYMBOL(vmf_insert_mixed);
/*
* If the insertion of PTE failed because someone else already added a
* different entry in the mean time, we treat that as success as we assume
* the same entry was actually inserted.
*/
vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
unsigned long addr, pfn_t pfn)
{
return __vm_insert_mixed(vma, addr, pfn, true);
}
EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
/*
* maps a range of physical memory into the requested pages. the old
* mappings are removed. any references to nonexistent pages results
* in null mappings (currently treated as "copy-on-access")
*/
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pte_t *pte, *mapped_pte;
spinlock_t *ptl;
int err = 0;
mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
arch_enter_lazy_mmu_mode();
do {
BUG_ON(!pte_none(ptep_get(pte)));
if (!pfn_modify_allowed(pfn, prot)) {
err = -EACCES;
break;
}
set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
pfn++;
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(mapped_pte, ptl);
return err;
}
static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pmd_t *pmd;
unsigned long next;
int err;
pfn -= addr >> PAGE_SHIFT;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return -ENOMEM;
VM_BUG_ON(pmd_trans_huge(*pmd));
do {
next = pmd_addr_end(addr, end);
err = remap_pte_range(mm, pmd, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
return err;
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
pud_t *pud;
unsigned long next;
int err;
pfn -= addr >> PAGE_SHIFT;
pud = pud_alloc(mm, p4d, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
err = remap_pmd_range(mm, pud, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
return err;
} while (pud++, addr = next, addr != end);
return 0;
}
static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end,
unsigned long pfn, pgprot_t prot)
{
p4d_t *p4d;
unsigned long next;
int err;
pfn -= addr >> PAGE_SHIFT;
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return -ENOMEM;
do {
next = p4d_addr_end(addr, end);
err = remap_pud_range(mm, p4d, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
return err;
} while (p4d++, addr = next, addr != end);
return 0;
}
/*
* Variant of remap_pfn_range that does not call track_pfn_remap. The caller
* must have pre-validated the caching bits of the pgprot_t.
*/
int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
pgd_t *pgd;
unsigned long next;
unsigned long end = addr + PAGE_ALIGN(size);
struct mm_struct *mm = vma->vm_mm;
int err;
if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
return -EINVAL;
/*
* Physically remapped pages are special. Tell the
* rest of the world about it:
* VM_IO tells people not to look at these pages
* (accesses can have side effects).
* VM_PFNMAP tells the core MM that the base pages are just
* raw PFN mappings, and do not have a "struct page" associated
* with them.
* VM_DONTEXPAND
* Disable vma merging and expanding with mremap().
* VM_DONTDUMP
* Omit vma from core dump, even when VM_IO turned off.
*
* There's a horrible special case to handle copy-on-write
* behaviour that some programs depend on. We mark the "original"
* un-COW'ed pages by matching them up with "vma->vm_pgoff".
* See vm_normal_page() for details.
*/
if (is_cow_mapping(vma->vm_flags)) {
if (addr != vma->vm_start || end != vma->vm_end)
return -EINVAL;
vma->vm_pgoff = pfn;
}
vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
BUG_ON(addr >= end);
pfn -= addr >> PAGE_SHIFT;
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
do {
next = pgd_addr_end(addr, end);
err = remap_p4d_range(mm, pgd, addr, next,
pfn + (addr >> PAGE_SHIFT), prot);
if (err)
return err;
} while (pgd++, addr = next, addr != end);
return 0;
}
/**
* remap_pfn_range - remap kernel memory to userspace
* @vma: user vma to map to
* @addr: target page aligned user address to start at
* @pfn: page frame number of kernel physical memory address
* @size: size of mapping area
* @prot: page protection flags for this mapping
*
* Note: this is only safe if the mm semaphore is held when called.
*
* Return: %0 on success, negative error code otherwise.
*/
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t prot)
{
int err;
err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
if (err)
return -EINVAL;
err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
if (err)
untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
return err;
}
EXPORT_SYMBOL(remap_pfn_range);
/**
* vm_iomap_memory - remap memory to userspace
* @vma: user vma to map to
* @start: start of the physical memory to be mapped
* @len: size of area
*
* This is a simplified io_remap_pfn_range() for common driver use. The
* driver just needs to give us the physical memory range to be mapped,
* we'll figure out the rest from the vma information.
*
* NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
* whatever write-combining details or similar.
*
* Return: %0 on success, negative error code otherwise.
*/
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
unsigned long vm_len, pfn, pages;
/* Check that the physical memory area passed in looks valid */
if (start + len < start)
return -EINVAL;
/*
* You *really* shouldn't map things that aren't page-aligned,
* but we've historically allowed it because IO memory might
* just have smaller alignment.
*/
len += start & ~PAGE_MASK;
pfn = start >> PAGE_SHIFT;
pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
if (pfn + pages < pfn)
return -EINVAL;
/* We start the mapping 'vm_pgoff' pages into the area */
if (vma->vm_pgoff > pages)
return -EINVAL;
pfn += vma->vm_pgoff;
pages -= vma->vm_pgoff;
/* Can we fit all of the mapping? */
vm_len = vma->vm_end - vma->vm_start;
if (vm_len >> PAGE_SHIFT > pages)
return -EINVAL;
/* Ok, let it rip */
return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data, bool create,
pgtbl_mod_mask *mask)
{
pte_t *pte, *mapped_pte;
int err = 0;
spinlock_t *ptl;
if (create) {
mapped_pte = pte = (mm == &init_mm) ?
pte_alloc_kernel_track(pmd, addr, mask) :
pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
} else {
mapped_pte = pte = (mm == &init_mm) ?
pte_offset_kernel(pmd, addr) :
pte_offset_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -EINVAL;
}
arch_enter_lazy_mmu_mode();
if (fn) {
do {
if (create || !pte_none(ptep_get(pte))) {
err = fn(pte++, addr, data);
if (err)
break;
}
} while (addr += PAGE_SIZE, addr != end);
}
*mask |= PGTBL_PTE_MODIFIED;
arch_leave_lazy_mmu_mode();
if (mm != &init_mm)
pte_unmap_unlock(mapped_pte, ptl);
return err;
}
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data, bool create,
pgtbl_mod_mask *mask)
{
pmd_t *pmd;
unsigned long next;
int err = 0;
BUG_ON(pud_huge(*pud));
if (create) {
pmd = pmd_alloc_track(mm, pud, addr, mask);
if (!pmd)
return -ENOMEM;
} else {
pmd = pmd_offset(pud, addr);
}
do {
next = pmd_addr_end(addr, end);
if (pmd_none(*pmd) && !create)
continue;
if (WARN_ON_ONCE(pmd_leaf(*pmd)))
return -EINVAL;
if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
if (!create)
continue;
pmd_clear_bad(pmd);
}
err = apply_to_pte_range(mm, pmd, addr, next,
fn, data, create, mask);
if (err)
break;
} while (pmd++, addr = next, addr != end);
return err;
}
static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data, bool create,
pgtbl_mod_mask *mask)
{
pud_t *pud;
unsigned long next;
int err = 0;
if (create) {
pud = pud_alloc_track(mm, p4d, addr, mask);
if (!pud)
return -ENOMEM;
} else {
pud = pud_offset(p4d, addr);
}
do {
next = pud_addr_end(addr, end);
if (pud_none(*pud) && !create)
continue;
if (WARN_ON_ONCE(pud_leaf(*pud)))
return -EINVAL;
if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
if (!create)
continue;
pud_clear_bad(pud);
}
err = apply_to_pmd_range(mm, pud, addr, next,
fn, data, create, mask);
if (err)
break;
} while (pud++, addr = next, addr != end);
return err;
}
static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end,
pte_fn_t fn, void *data, bool create,
pgtbl_mod_mask *mask)
{
p4d_t *p4d;
unsigned long next;
int err = 0;
if (create) {
p4d = p4d_alloc_track(mm, pgd, addr, mask);
if (!p4d)
return -ENOMEM;
} else {
p4d = p4d_offset(pgd, addr);
}
do {
next = p4d_addr_end(addr, end);
if (p4d_none(*p4d) && !create)
continue;
if (WARN_ON_ONCE(p4d_leaf(*p4d)))
return -EINVAL;
if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
if (!create)
continue;
p4d_clear_bad(p4d);
}
err = apply_to_pud_range(mm, p4d, addr, next,
fn, data, create, mask);
if (err)
break;
} while (p4d++, addr = next, addr != end);
return err;
}
static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
unsigned long size, pte_fn_t fn,
void *data, bool create)
{
pgd_t *pgd;
unsigned long start = addr, next;
unsigned long end = addr + size;
pgtbl_mod_mask mask = 0;
int err = 0;
if (WARN_ON(addr >= end))
return -EINVAL;
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
if (pgd_none(*pgd) && !create)
continue;
if (WARN_ON_ONCE(pgd_leaf(*pgd)))
return -EINVAL;
if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
if (!create)
continue;
pgd_clear_bad(pgd);
}
err = apply_to_p4d_range(mm, pgd, addr, next,
fn, data, create, &mask);
if (err)
break;
} while (pgd++, addr = next, addr != end);
if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
arch_sync_kernel_mappings(start, start + size);
return err;
}
/*
* Scan a region of virtual memory, filling in page tables as necessary
* and calling a provided function on each leaf page table.
*/
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
unsigned long size, pte_fn_t fn, void *data)
{
return __apply_to_page_range(mm, addr, size, fn, data, true);
}
EXPORT_SYMBOL_GPL(apply_to_page_range);
/*
* Scan a region of virtual memory, calling a provided function on
* each leaf page table where it exists.
*
* Unlike apply_to_page_range, this does _not_ fill in page tables
* where they are absent.
*/
int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
unsigned long size, pte_fn_t fn, void *data)
{
return __apply_to_page_range(mm, addr, size, fn, data, false);
}
EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
/*
* handle_pte_fault chooses page fault handler according to an entry which was
* read non-atomically. Before making any commitment, on those architectures
* or configurations (e.g. i386 with PAE) which might give a mix of unmatched
* parts, do_swap_page must check under lock before unmapping the pte and
* proceeding (but do_wp_page is only called after already making such a check;
* and do_anonymous_page can safely check later on).
*/
static inline int pte_unmap_same(struct vm_fault *vmf)
{
int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
if (sizeof(pte_t) > sizeof(unsigned long)) {
spin_lock(vmf->ptl);
same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
spin_unlock(vmf->ptl);
}
#endif
pte_unmap(vmf->pte);
vmf->pte = NULL;
return same;
}
/*
* Return:
* 0: copied succeeded
* -EHWPOISON: copy failed due to hwpoison in source page
* -EAGAIN: copied failed (some other reason)
*/
static inline int __wp_page_copy_user(struct page *dst, struct page *src,
struct vm_fault *vmf)
{
int ret;
void *kaddr;
void __user *uaddr;
struct vm_area_struct *vma = vmf->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = vmf->address;
if (likely(src)) {
if (copy_mc_user_highpage(dst, src, addr, vma)) {
memory_failure_queue(page_to_pfn(src), 0);
return -EHWPOISON;
}
return 0;
}
/*
* If the source page was a PFN mapping, we don't have
* a "struct page" for it. We do a best-effort copy by
* just copying from the original user address. If that
* fails, we just zero-fill it. Live with it.
*/
kaddr = kmap_local_page(dst);
pagefault_disable();
uaddr = (void __user *)(addr & PAGE_MASK);
/*
* On architectures with software "accessed" bits, we would
* take a double page fault, so mark it accessed here.
*/
vmf->pte = NULL;
if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
pte_t entry;
vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
/*
* Other thread has already handled the fault
* and update local tlb only
*/
if (vmf->pte)
update_mmu_tlb(vma, addr, vmf->pte);
ret = -EAGAIN;
goto pte_unlock;
}
entry = pte_mkyoung(vmf->orig_pte);
if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
}
/*
* This really shouldn't fail, because the page is there
* in the page tables. But it might just be unreadable,
* in which case we just give up and fill the result with
* zeroes.
*/
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
if (vmf->pte)
goto warn;
/* Re-validate under PTL if the page is still mapped */
vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
/* The PTE changed under us, update local tlb */
if (vmf->pte)
update_mmu_tlb(vma, addr, vmf->pte);
ret = -EAGAIN;
goto pte_unlock;
}
/*
* The same page can be mapped back since last copy attempt.
* Try to copy again under PTL.
*/
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
/*
* Give a warn in case there can be some obscure
* use-case
*/
warn:
WARN_ON_ONCE(1);
clear_page(kaddr);
}
}
ret = 0;
pte_unlock:
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
pagefault_enable();
kunmap_local(kaddr);
flush_dcache_page(dst);
return ret;
}
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
struct file *vm_file = vma->vm_file;
if (vm_file)
return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
/*
* Special mappings (e.g. VDSO) do not have any file so fake
* a default GFP_KERNEL for them.
*/
return GFP_KERNEL;
}
/*
* Notify the address space that the page is about to become writable so that
* it can prohibit this or wait for the page to get into an appropriate state.
*
* We do this without the lock held, so that it can sleep if it needs to.
*/
static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
{
vm_fault_t ret;
unsigned int old_flags = vmf->flags;
vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
if (vmf->vma->vm_file &&
IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
return VM_FAULT_SIGBUS;
ret = vmf->vma->vm_ops->page_mkwrite(vmf);
/* Restore original flags so that caller is not surprised */
vmf->flags = old_flags;
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
return ret;
if (unlikely(!(ret & VM_FAULT_LOCKED))) {
folio_lock(folio);
if (!folio->mapping) {
folio_unlock(folio);
return 0; /* retry */
}
ret |= VM_FAULT_LOCKED;
} else
VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
return ret;
}
/*
* Handle dirtying of a page in shared file mapping on a write fault.
*
* The function expects the page to be locked and unlocks it.
*/
static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct address_space *mapping;
struct folio *folio = page_folio(vmf->page);
bool dirtied;
bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
dirtied = folio_mark_dirty(folio);
VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
/*
* Take a local copy of the address_space - folio.mapping may be zeroed
* by truncate after folio_unlock(). The address_space itself remains
* pinned by vma->vm_file's reference. We rely on folio_unlock()'s
* release semantics to prevent the compiler from undoing this copying.
*/
mapping = folio_raw_mapping(folio);
folio_unlock(folio);
if (!page_mkwrite)
file_update_time(vma->vm_file);
/*
* Throttle page dirtying rate down to writeback speed.
*
* mapping may be NULL here because some device drivers do not
* set page.mapping but still dirty their pages
*
* Drop the mmap_lock before waiting on IO, if we can. The file
* is pinning the mapping, as per above.
*/
if ((dirtied || page_mkwrite) && mapping) {
struct file *fpin;
fpin = maybe_unlock_mmap_for_io(vmf, NULL);
balance_dirty_pages_ratelimited(mapping);
if (fpin) {
fput(fpin);
return VM_FAULT_COMPLETED;
}
}
return 0;
}
/*
* Handle write page faults for pages that can be reused in the current vma
*
* This can happen either due to the mapping being with the VM_SHARED flag,
* or due to us being the last reference standing to the page. In either
* case, all we need to do here is to mark the page as writable and update
* any related book-keeping.
*/
static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
__releases(vmf->ptl)
{
struct vm_area_struct *vma = vmf->vma;
pte_t entry;
VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
if (folio) {
VM_BUG_ON(folio_test_anon(folio) &&
!PageAnonExclusive(vmf->page));
/*
* Clear the folio's cpupid information as the existing
* information potentially belongs to a now completely
* unrelated process.
*/
folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
}
flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
entry = pte_mkyoung(vmf->orig_pte);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
pte_unmap_unlock(vmf->pte, vmf->ptl);
count_vm_event(PGREUSE);
}
/*
* We could add a bitflag somewhere, but for now, we know that all
* vm_ops that have a ->map_pages have been audited and don't need
* the mmap_lock to be held.
*/
static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
return 0;
vma_end_read(vma);
return VM_FAULT_RETRY;
}
static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
if (likely(vma->anon_vma))
return 0;
if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
vma_end_read(vma);
return VM_FAULT_RETRY;
}
if (__anon_vma_prepare(vma))
return VM_FAULT_OOM;
return 0;
}
/*
* Handle the case of a page which we actually need to copy to a new page,
* either due to COW or unsharing.
*
* Called with mmap_lock locked and the old page referenced, but
* without the ptl held.
*
* High level logic flow:
*
* - Allocate a page, copy the content of the old page to the new one.
* - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
* - Take the PTL. If the pte changed, bail out and release the allocated page
* - If the pte is still the way we remember it, update the page table and all
* relevant references. This includes dropping the reference the page-table
* held to the old page, as well as updating the rmap.
* - In any case, unlock the PTL and drop the reference we took to the old page.
*/
static vm_fault_t wp_page_copy(struct vm_fault *vmf)
{
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
struct vm_area_struct *vma = vmf->vma;
struct mm_struct *mm = vma->vm_mm;
struct folio *old_folio = NULL;
struct folio *new_folio = NULL;
pte_t entry;
int page_copied = 0;
struct mmu_notifier_range range;
vm_fault_t ret;
bool pfn_is_zero;
delayacct_wpcopy_start();
if (vmf->page)
old_folio = page_folio(vmf->page);
ret = vmf_anon_prepare(vmf);
if (unlikely(ret))
goto out;
pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
if (!new_folio)
goto oom;
if (!pfn_is_zero) {
int err;
err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
if (err) {
/*
* COW failed, if the fault was solved by other,
* it's fine. If not, userspace would re-fault on
* the same address and we will handle the fault
* from the second attempt.
* The -EHWPOISON case will not be retried.
*/
folio_put(new_folio);
if (old_folio)
folio_put(old_folio);
delayacct_wpcopy_end();
return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
}
kmsan_copy_page_meta(&new_folio->page, vmf->page);
}
__folio_mark_uptodate(new_folio);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
vmf->address & PAGE_MASK,
(vmf->address & PAGE_MASK) + PAGE_SIZE);
mmu_notifier_invalidate_range_start(&range);
/*
* Re-check the pte - we dropped the lock
*/
vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
if (old_folio) {
if (!folio_test_anon(old_folio)) {
dec_mm_counter(mm, mm_counter_file(&old_folio->page));
inc_mm_counter(mm, MM_ANONPAGES);
}
} else {
ksm_might_unmap_zero_page(mm, vmf->orig_pte);
inc_mm_counter(mm, MM_ANONPAGES);
}
flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
entry = mk_pte(&new_folio->page, vma->vm_page_prot);
entry = pte_sw_mkyoung(entry);
if (unlikely(unshare)) {
if (pte_soft_dirty(vmf->orig_pte))
entry = pte_mksoft_dirty(entry);
if (pte_uffd_wp(vmf->orig_pte))
entry = pte_mkuffd_wp(entry);
} else {
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
}
/*
* Clear the pte entry and flush it first, before updating the
* pte with the new entry, to keep TLBs on different CPUs in
* sync. This code used to set the new PTE then flush TLBs, but
* that left a window where the new PTE could be loaded into
* some TLBs while the old PTE remains in others.
*/
ptep_clear_flush(vma, vmf->address, vmf->pte);
folio_add_new_anon_rmap(new_folio, vma, vmf->address);
folio_add_lru_vma(new_folio, vma);
/*
* We call the notify macro here because, when using secondary
* mmu page tables (such as kvm shadow page tables), we want the
* new page to be mapped directly into the secondary page table.
*/
BUG_ON(unshare && pte_write(entry));
set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
if (old_folio) {
/*
* Only after switching the pte to the new page may
* we remove the mapcount here. Otherwise another
* process may come and find the rmap count decremented
* before the pte is switched to the new page, and
* "reuse" the old page writing into it while our pte
* here still points into it and can be read by other
* threads.
*
* The critical issue is to order this
* folio_remove_rmap_pte() with the ptp_clear_flush
* above. Those stores are ordered by (if nothing else,)
* the barrier present in the atomic_add_negative
* in folio_remove_rmap_pte();
*
* Then the TLB flush in ptep_clear_flush ensures that
* no process can access the old page before the
* decremented mapcount is visible. And the old page
* cannot be reused until after the decremented
* mapcount is visible. So transitively, TLBs to
* old page will be flushed before it can be reused.
*/
folio_remove_rmap_pte(old_folio, vmf->page, vma);
}
/* Free the old page.. */
new_folio = old_folio;
page_copied = 1;
pte_unmap_unlock(vmf->pte, vmf->ptl);
} else if (vmf->pte) {
update_mmu_tlb(vma, vmf->address, vmf->pte);
pte_unmap_unlock(vmf->pte, vmf->ptl);
}
mmu_notifier_invalidate_range_end(&range);
if (new_folio)
folio_put(new_folio);
if (old_folio) {
if (page_copied)
free_swap_cache(&old_folio->page);
folio_put(old_folio);
}
delayacct_wpcopy_end();
return 0;
oom:
ret = VM_FAULT_OOM;
out:
if (old_folio)
folio_put(old_folio);
delayacct_wpcopy_end();
return ret;
}
/**
* finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
* writeable once the page is prepared
*
* @vmf: structure describing the fault
* @folio: the folio of vmf->page
*
* This function handles all that is needed to finish a write page fault in a
* shared mapping due to PTE being read-only once the mapped page is prepared.
* It handles locking of PTE and modifying it.
*
* The function expects the page to be locked or other protection against
* concurrent faults / writeback (such as DAX radix tree locks).
*
* Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
* we acquired PTE lock.
*/
static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
{
WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
&vmf->ptl);
if (!vmf->pte)
return VM_FAULT_NOPAGE;
/*
* We might have raced with another page fault while we released the
* pte_offset_map_lock.
*/
if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
pte_unmap_unlock(vmf->pte, vmf->ptl);
return VM_FAULT_NOPAGE;
}
wp_page_reuse(vmf, folio);
return 0;
}
/*
* Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
* mapping
*/
static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
vm_fault_t ret;
pte_unmap_unlock(vmf->pte, vmf->ptl);
ret = vmf_can_call_fault(vmf);
if (ret)
return ret;
vmf->flags |= FAULT_FLAG_MKWRITE;
ret = vma->vm_ops->pfn_mkwrite(vmf);
if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
return ret;
return finish_mkwrite_fault(vmf, NULL);
}
wp_page_reuse(vmf, NULL);
return 0;
}
static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
__releases(vmf->ptl)
{
struct vm_area_struct *vma = vmf->vma;
vm_fault_t ret = 0;
folio_get(folio);
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
vm_fault_t tmp;
pte_unmap_unlock(vmf->pte, vmf->ptl);
tmp = vmf_can_call_fault(vmf);
if (tmp) {
folio_put(folio);
return tmp;
}
tmp = do_page_mkwrite(vmf, folio);
if (unlikely(!tmp || (tmp &
(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
folio_put(folio);
return tmp;
}
tmp = finish_mkwrite_fault(vmf, folio);
if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
folio_unlock(folio);
folio_put(folio);
return tmp;
}
} else {
wp_page_reuse(vmf, folio);
folio_lock(folio);
}
ret |= fault_dirty_shared_page(vmf);
folio_put(folio);
return ret;
}
static bool wp_can_reuse_anon_folio(struct folio *folio,
struct vm_area_struct *vma)
{
/*
* We have to verify under folio lock: these early checks are
* just an optimization to avoid locking the folio and freeing
* the swapcache if there is little hope that we can reuse.
*
* KSM doesn't necessarily raise the folio refcount.
*/
if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
return false;
if (!folio_test_lru(folio))
/*
* We cannot easily detect+handle references from
* remote LRU caches or references to LRU folios.
*/
lru_add_drain();
if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
return false;
if (!folio_trylock(folio))
return false;
if (folio_test_swapcache(folio))
folio_free_swap(folio);
if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
folio_unlock(folio);
return false;
}
/*
* Ok, we've got the only folio reference from our mapping
* and the folio is locked, it's dark out, and we're wearing
* sunglasses. Hit it.
*/
folio_move_anon_rmap(folio, vma);
folio_unlock(folio);
return true;
}
/*
* This routine handles present pages, when
* * users try to write to a shared page (FAULT_FLAG_WRITE)
* * GUP wants to take a R/O pin on a possibly shared anonymous page
* (FAULT_FLAG_UNSHARE)
*
* It is done by copying the page to a new address and decrementing the
* shared-page counter for the old page.
*
* Note that this routine assumes that the protection checks have been
* done by the caller (the low-level page fault routine in most cases).
* Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
* done any necessary COW.
*
* In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
* though the page will change only once the write actually happens. This
* avoids a few races, and potentially makes it more efficient.
*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), with pte both mapped and locked.
* We return with mmap_lock still held, but pte unmapped and unlocked.
*/
static vm_fault_t do_wp_page(struct vm_fault *vmf)
__releases(vmf->ptl)
{
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
struct vm_area_struct *vma = vmf->vma;
struct folio *folio = NULL;
pte_t pte;
if (likely(!unshare)) {
if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
if (!userfaultfd_wp_async(vma)) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
return handle_userfault(vmf, VM_UFFD_WP);
}
/*
* Nothing needed (cache flush, TLB invalidations,
* etc.) because we're only removing the uffd-wp bit,
* which is completely invisible to the user.
*/
pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
/*
* Update this to be prepared for following up CoW
* handling
*/
vmf->orig_pte = pte;
}
/*
* Userfaultfd write-protect can defer flushes. Ensure the TLB
* is flushed in this case before copying.
*/
if (unlikely(userfaultfd_wp(vmf->vma) &&
mm_tlb_flush_pending(vmf->vma->vm_mm)))
flush_tlb_page(vmf->vma, vmf->address);
}
vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
if (vmf->page)
folio = page_folio(vmf->page);
/*
* Shared mapping: we are guaranteed to have VM_WRITE and
* FAULT_FLAG_WRITE set at this point.
*/
if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
/*
* VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
* VM_PFNMAP VMA.
*
* We should not cow pages in a shared writeable mapping.
* Just mark the pages writable and/or call ops->pfn_mkwrite.
*/
if (!vmf->page)
return wp_pfn_shared(vmf);
return wp_page_shared(vmf, folio);
}
/*
* Private mapping: create an exclusive anonymous page copy if reuse
* is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
*
* If we encounter a page that is marked exclusive, we must reuse
* the page without further checks.
*/
if (folio && folio_test_anon(folio) &&
(PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
if (!PageAnonExclusive(vmf->page))
SetPageAnonExclusive(vmf->page);
if (unlikely(unshare)) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
return 0;
}
wp_page_reuse(vmf, folio);
return 0;
}
/*
* Ok, we need to copy. Oh, well..
*/
if (folio)
folio_get(folio);
pte_unmap_unlock(vmf->pte, vmf->ptl);
#ifdef CONFIG_KSM
if (folio && folio_test_ksm(folio))
count_vm_event(COW_KSM);
#endif
return wp_page_copy(vmf);
}
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
unsigned long start_addr, unsigned long end_addr,
struct zap_details *details)
{
zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
}
static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
pgoff_t first_index,
pgoff_t last_index,
struct zap_details *details)
{
struct vm_area_struct *vma;
pgoff_t vba, vea, zba, zea;
vma_interval_tree_foreach(vma, root, first_index, last_index) {
vba = vma->vm_pgoff;
vea = vba + vma_pages(vma) - 1;
zba = max(first_index, vba);
zea = min(last_index, vea);
unmap_mapping_range_vma(vma,
((zba - vba) << PAGE_SHIFT) + vma->vm_start,
((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
details);
}
}
/**
* unmap_mapping_folio() - Unmap single folio from processes.
* @folio: The locked folio to be unmapped.
*
* Unmap this folio from any userspace process which still has it mmaped.
* Typically, for efficiency, the range of nearby pages has already been
* unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
* truncation or invalidation holds the lock on a folio, it may find that
* the page has been remapped again: and then uses unmap_mapping_folio()
* to unmap it finally.
*/
void unmap_mapping_folio(struct folio *folio)
{
struct address_space *mapping = folio->mapping;
struct zap_details details = { };
pgoff_t first_index;
pgoff_t last_index;
VM_BUG_ON(!folio_test_locked(folio));
first_index = folio->index;
last_index = folio_next_index(folio) - 1;
details.even_cows = false;
details.single_folio = folio;
details.zap_flags = ZAP_FLAG_DROP_MARKER;
i_mmap_lock_read(mapping);
if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
unmap_mapping_range_tree(&mapping->i_mmap, first_index,
last_index, &details);
i_mmap_unlock_read(mapping);
}
/**
* unmap_mapping_pages() - Unmap pages from processes.
* @mapping: The address space containing pages to be unmapped.
* @start: Index of first page to be unmapped.
* @nr: Number of pages to be unmapped. 0 to unmap to end of file.
* @even_cows: Whether to unmap even private COWed pages.
*
* Unmap the pages in this address space from any userspace process which
* has them mmaped. Generally, you want to remove COWed pages as well when
* a file is being truncated, but not when invalidating pages from the page
* cache.
*/
void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
pgoff_t nr, bool even_cows)
{
struct zap_details details = { };
pgoff_t first_index = start;
pgoff_t last_index = start + nr - 1;
details.even_cows = even_cows;
if (last_index < first_index)
last_index = ULONG_MAX;
i_mmap_lock_read(mapping);
if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
unmap_mapping_range_tree(&mapping->i_mmap, first_index,
last_index, &details);
i_mmap_unlock_read(mapping);
}
EXPORT_SYMBOL_GPL(unmap_mapping_pages);
/**
* unmap_mapping_range - unmap the portion of all mmaps in the specified
* address_space corresponding to the specified byte range in the underlying
* file.
*
* @mapping: the address space containing mmaps to be unmapped.
* @holebegin: byte in first page to unmap, relative to the start of
* the underlying file. This will be rounded down to a PAGE_SIZE
* boundary. Note that this is different from truncate_pagecache(), which
* must keep the partial page. In contrast, we must get rid of
* partial pages.
* @holelen: size of prospective hole in bytes. This will be rounded
* up to a PAGE_SIZE boundary. A holelen of zero truncates to the
* end of the file.
* @even_cows: 1 when truncating a file, unmap even private COWed pages;
* but 0 when invalidating pagecache, don't throw away private data.
*/
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows)
{
pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* Check for overflow. */
if (sizeof(holelen) > sizeof(hlen)) {
long long holeend =
(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (holeend & ~(long long)ULONG_MAX)
hlen = ULONG_MAX - hba + 1;
}
unmap_mapping_pages(mapping, hba, hlen, even_cows);
}
EXPORT_SYMBOL(unmap_mapping_range);
/*
* Restore a potential device exclusive pte to a working pte entry
*/
static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
{
struct folio *folio = page_folio(vmf->page);
struct vm_area_struct *vma = vmf->vma;
struct mmu_notifier_range range;
vm_fault_t ret;
/*
* We need a reference to lock the folio because we don't hold
* the PTL so a racing thread can remove the device-exclusive
* entry and unmap it. If the folio is free the entry must
* have been removed already. If it happens to have already
* been re-allocated after being freed all we do is lock and
* unlock it.
*/
if (!folio_try_get(folio))
return 0;
ret = folio_lock_or_retry(folio, vmf);
if (ret) {
folio_put(folio);
return ret;
}
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
vma->vm_mm, vmf->address & PAGE_MASK,
(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
mmu_notifier_invalidate_range_start(&range);
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
&vmf->ptl);
if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
folio_unlock(folio);
folio_put(folio);
mmu_notifier_invalidate_range_end(&range);
return 0;
}
static inline bool should_try_to_free_swap(struct folio *folio,
struct vm_area_struct *vma,
unsigned int fault_flags)
{
if (!folio_test_swapcache(folio))
return false;
if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
folio_test_mlocked(folio))
return true;
/*
* If we want to map a page that's in the swapcache writable, we
* have to detect via the refcount if we're really the exclusive
* user. Try freeing the swapcache to get rid of the swapcache
* reference only in case it's likely that we'll be the exlusive user.
*/
return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
folio_ref_count(folio) == 2;
}
static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
{
vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (!vmf->pte)
return 0;
/*
* Be careful so that we will only recover a special uffd-wp pte into a
* none pte. Otherwise it means the pte could have changed, so retry.
*
* This should also cover the case where e.g. the pte changed
* quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
* So is_pte_marker() check is not enough to safely drop the pte.
*/
if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
pte_unmap_unlock(vmf->pte, vmf->ptl);
return 0;
}
static vm_fault_t do_pte_missing(struct vm_fault *vmf)
{
if (vma_is_anonymous(vmf->vma))
return do_anonymous_page(vmf);
else
return do_fault(vmf);
}
/*
* This is actually a page-missing access, but with uffd-wp special pte
* installed. It means this pte was wr-protected before being unmapped.
*/
static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
{
/*
* Just in case there're leftover special ptes even after the region
* got unregistered - we can simply clear them.
*/
if (unlikely(!userfaultfd_wp(vmf->vma)))
return pte_marker_clear(vmf);
return do_pte_missing(vmf);
}
static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
{
swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
unsigned long marker = pte_marker_get(entry);
/*
* PTE markers should never be empty. If anything weird happened,
* the best thing to do is to kill the process along with its mm.
*/
if (WARN_ON_ONCE(!marker))
return VM_FAULT_SIGBUS;
/* Higher priority than uffd-wp when data corrupted */
if (marker & PTE_MARKER_POISONED)
return VM_FAULT_HWPOISON;
if (pte_marker_entry_uffd_wp(entry))
return pte_marker_handle_uffd_wp(vmf);
/* This is an unknown pte marker */
return VM_FAULT_SIGBUS;
}
/*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with pte unmapped and unlocked.
*
* We return with the mmap_lock locked or unlocked in the same cases
* as does filemap_fault().
*/
vm_fault_t do_swap_page(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct folio *swapcache, *folio = NULL;
struct page *page;
struct swap_info_struct *si = NULL;
rmap_t rmap_flags = RMAP_NONE;
bool exclusive = false;
swp_entry_t entry;
pte_t pte;
vm_fault_t ret = 0;
void *shadow = NULL;
if (!pte_unmap_same(vmf))
goto out;
entry = pte_to_swp_entry(vmf->orig_pte);
if (unlikely(non_swap_entry(entry))) {
if (is_migration_entry(entry)) {
migration_entry_wait(vma->vm_mm, vmf->pmd,
vmf->address);
} else if (is_device_exclusive_entry(entry)) {
vmf->page = pfn_swap_entry_to_page(entry);
ret = remove_device_exclusive_entry(vmf);
} else if (is_device_private_entry(entry)) {
if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
/*
* migrate_to_ram is not yet ready to operate
* under VMA lock.
*/
vma_end_read(vma);
ret = VM_FAULT_RETRY;
goto out;
}
vmf->page = pfn_swap_entry_to_page(entry);
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (unlikely(!vmf->pte ||
!pte_same(ptep_get(vmf->pte),
vmf->orig_pte)))
goto unlock;
/*
* Get a page reference while we know the page can't be
* freed.
*/
get_page(vmf->page);
pte_unmap_unlock(vmf->pte, vmf->ptl);
ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
put_page(vmf->page);
} else if (is_hwpoison_entry(entry)) {
ret = VM_FAULT_HWPOISON;
} else if (is_pte_marker_entry(entry)) {
ret = handle_pte_marker(vmf);
} else {
print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
ret = VM_FAULT_SIGBUS;
}
goto out;
}
/* Prevent swapoff from happening to us. */
si = get_swap_device(entry);
if (unlikely(!si))
goto out;
folio = swap_cache_get_folio(entry, vma, vmf->address);
if (folio)
page = folio_file_page(folio, swp_offset(entry));
swapcache = folio;
if (!folio) {
if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
__swap_count(entry) == 1) {
/* skip swapcache */
folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
vma, vmf->address, false);
page = &folio->page;
if (folio) {
__folio_set_locked(folio);
__folio_set_swapbacked(folio);
if (mem_cgroup_swapin_charge_folio(folio,
vma->vm_mm, GFP_KERNEL,
entry)) {
ret = VM_FAULT_OOM;
goto out_page;
}
mem_cgroup_swapin_uncharge_swap(entry);
shadow = get_shadow_from_swap_cache(entry);
if (shadow)
workingset_refault(folio, shadow);
folio_add_lru(folio);
/* To provide entry to swap_read_folio() */
folio->swap = entry;
swap_read_folio(folio, true, NULL);
folio->private = NULL;
}
} else {
page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
vmf);
if (page)
folio = page_folio(page);
swapcache = folio;
}
if (!folio) {
/*
* Back out if somebody else faulted in this pte
* while we released the pte lock.
*/
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (likely(vmf->pte &&
pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
ret = VM_FAULT_OOM;
goto unlock;
}
/* Had to read the page from swap area: Major fault */
ret = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
} else if (PageHWPoison(page)) {
/*
* hwpoisoned dirty swapcache pages are kept for killing
* owner processes (which may be unknown at hwpoison time)
*/
ret = VM_FAULT_HWPOISON;
goto out_release;
}
ret |= folio_lock_or_retry(folio, vmf);
if (ret & VM_FAULT_RETRY)
goto out_release;
if (swapcache) {
/*
* Make sure folio_free_swap() or swapoff did not release the
* swapcache from under us. The page pin, and pte_same test
* below, are not enough to exclude that. Even if it is still
* swapcache, we need to check that the page's swap has not
* changed.
*/
if (unlikely(!folio_test_swapcache(folio) ||
page_swap_entry(page).val != entry.val))
goto out_page;
/*
* KSM sometimes has to copy on read faults, for example, if
* page->index of !PageKSM() pages would be nonlinear inside the
* anon VMA -- PageKSM() is lost on actual swapout.
*/
folio = ksm_might_need_to_copy(folio, vma, vmf->address);
if (unlikely(!folio)) {
ret = VM_FAULT_OOM;
folio = swapcache;
goto out_page;
} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
ret = VM_FAULT_HWPOISON;
folio = swapcache;
goto out_page;
}
if (folio != swapcache)
page = folio_page(folio, 0);
/*
* If we want to map a page that's in the swapcache writable, we
* have to detect via the refcount if we're really the exclusive
* owner. Try removing the extra reference from the local LRU
* caches if required.
*/
if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
!folio_test_ksm(folio) && !folio_test_lru(folio))
lru_add_drain();
}
folio_throttle_swaprate(folio, GFP_KERNEL);
/*
* Back out if somebody else already faulted in this pte.
*/
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
&vmf->ptl);
if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
goto out_nomap;
if (unlikely(!folio_test_uptodate(folio))) {
ret = VM_FAULT_SIGBUS;
goto out_nomap;
}
/*
* PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
* must never point at an anonymous page in the swapcache that is
* PG_anon_exclusive. Sanity check that this holds and especially, that
* no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
* check after taking the PT lock and making sure that nobody
* concurrently faulted in this page and set PG_anon_exclusive.
*/
BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
/*
* Check under PT lock (to protect against concurrent fork() sharing
* the swap entry concurrently) for certainly exclusive pages.
*/
if (!folio_test_ksm(folio)) {
exclusive = pte_swp_exclusive(vmf->orig_pte);
if (folio != swapcache) {
/*
* We have a fresh page that is not exposed to the
* swapcache -> certainly exclusive.
*/
exclusive = true;
} else if (exclusive && folio_test_writeback(folio) &&
data_race(si->flags & SWP_STABLE_WRITES)) {
/*
* This is tricky: not all swap backends support
* concurrent page modifications while under writeback.
*
* So if we stumble over such a page in the swapcache
* we must not set the page exclusive, otherwise we can
* map it writable without further checks and modify it
* while still under writeback.
*
* For these problematic swap backends, simply drop the
* exclusive marker: this is perfectly fine as we start
* writeback only if we fully unmapped the page and
* there are no unexpected references on the page after
* unmapping succeeded. After fully unmapped, no
* further GUP references (FOLL_GET and FOLL_PIN) can
* appear, so dropping the exclusive marker and mapping
* it only R/O is fine.
*/
exclusive = false;
}
}
/*
* Some architectures may have to restore extra metadata to the page
* when reading from swap. This metadata may be indexed by swap entry
* so this must be called before swap_free().
*/
arch_swap_restore(entry, folio);
/*
* Remove the swap entry and conditionally try to free up the swapcache.
* We're already holding a reference on the page but haven't mapped it
* yet.
*/
swap_free(entry);
if (should_try_to_free_swap(folio, vma, vmf->flags))
folio_free_swap(folio);
inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
pte = mk_pte(page, vma->vm_page_prot);
/*
* Same logic as in do_wp_page(); however, optimize for pages that are
* certainly not shared either because we just allocated them without
* exposing them to the swapcache or because the swap entry indicates
* exclusivity.
*/
if (!folio_test_ksm(folio) &&
(exclusive || folio_ref_count(folio) == 1)) {
if (vmf->flags & FAULT_FLAG_WRITE) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
vmf->flags &= ~FAULT_FLAG_WRITE;
}
rmap_flags |= RMAP_EXCLUSIVE;
}
flush_icache_page(vma, page);
if (pte_swp_soft_dirty(vmf->orig_pte))
pte = pte_mksoft_dirty(pte);
if (pte_swp_uffd_wp(vmf->orig_pte))
pte = pte_mkuffd_wp(pte);
vmf->orig_pte = pte;
/* ksm created a completely new copy */
if (unlikely(folio != swapcache && swapcache)) {
folio_add_new_anon_rmap(folio, vma, vmf->address);
folio_add_lru_vma(folio, vma);
} else {
folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
rmap_flags);
}
VM_BUG_ON(!folio_test_anon(folio) ||
(pte_write(pte) && !PageAnonExclusive(page)));
set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
folio_unlock(folio);
if (folio != swapcache && swapcache) {
/*
* Hold the lock to avoid the swap entry to be reused
* until we take the PT lock for the pte_same() check
* (to avoid false positives from pte_same). For
* further safety release the lock after the swap_free
* so that the swap count won't change under a
* parallel locked swapcache.
*/
folio_unlock(swapcache);
folio_put(swapcache);
}
if (vmf->flags & FAULT_FLAG_WRITE) {
ret |= do_wp_page(vmf);
if (ret & VM_FAULT_ERROR)
ret &= VM_FAULT_ERROR;
goto out;
}
/* No need to invalidate - it was non-present before */
update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
unlock:
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
out:
if (si)
put_swap_device(si);
return ret;
out_nomap:
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
out_page:
folio_unlock(folio);
out_release:
folio_put(folio);
if (folio != swapcache && swapcache) {
folio_unlock(swapcache);
folio_put(swapcache);
}
if (si)
put_swap_device(si);
return ret;
}
static bool pte_range_none(pte_t *pte, int nr_pages)
{
int i;
for (i = 0; i < nr_pages; i++) {
if (!pte_none(ptep_get_lockless(pte + i)))
return false;
}
return true;
}
static struct folio *alloc_anon_folio(struct vm_fault *vmf)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
struct vm_area_struct *vma = vmf->vma;
unsigned long orders;
struct folio *folio;
unsigned long addr;
pte_t *pte;
gfp_t gfp;
int order;
/*
* If uffd is active for the vma we need per-page fault fidelity to
* maintain the uffd semantics.
*/
if (unlikely(userfaultfd_armed(vma)))
goto fallback;
/*
* Get a list of all the (large) orders below PMD_ORDER that are enabled
* for this vma. Then filter out the orders that can't be allocated over
* the faulting address and still be fully contained in the vma.
*/
orders = thp_vma_allowable_orders(vma, vma->vm_flags, false, true, true,
BIT(PMD_ORDER) - 1);
orders = thp_vma_suitable_orders(vma, vmf->address, orders);
if (!orders)
goto fallback;
pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
if (!pte)
return ERR_PTR(-EAGAIN);
/*
* Find the highest order where the aligned range is completely
* pte_none(). Note that all remaining orders will be completely
* pte_none().
*/
order = highest_order(orders);
while (orders) {
addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
if (pte_range_none(pte + pte_index(addr), 1 << order))
break;
order = next_order(&orders, order);
}
pte_unmap(pte);
/* Try allocating the highest of the remaining orders. */
gfp = vma_thp_gfp_mask(vma);
while (orders) {
addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
folio = vma_alloc_folio(gfp, order, vma, addr, true);
if (folio) {
clear_huge_page(&folio->page, vmf->address, 1 << order);
return folio;
}
order = next_order(&orders, order);
}
fallback:
#endif
return vma_alloc_zeroed_movable_folio(vmf->vma, vmf->address);
}
/*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults), and pte mapped but not yet locked.
* We return with mmap_lock still held, but pte unmapped and unlocked.
*/
static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
{
bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
struct vm_area_struct *vma = vmf->vma;
unsigned long addr = vmf->address;
struct folio *folio;
vm_fault_t ret = 0;
int nr_pages = 1;
pte_t entry;
int i;
/* File mapping without ->vm_ops ? */
if (vma->vm_flags & VM_SHARED)
return VM_FAULT_SIGBUS;
/*
* Use pte_alloc() instead of pte_alloc_map(), so that OOM can
* be distinguished from a transient failure of pte_offset_map().
*/
if (pte_alloc(vma->vm_mm, vmf->pmd))
return VM_FAULT_OOM;
/* Use the zero-page for reads */
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
!mm_forbids_zeropage(vma->vm_mm)) {
entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
vma->vm_page_prot));
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (!vmf->pte)
goto unlock;
if (vmf_pte_changed(vmf)) {
update_mmu_tlb(vma, vmf->address, vmf->pte);
goto unlock;
}
ret = check_stable_address_space(vma->vm_mm);
if (ret)
goto unlock;
/* Deliver the page fault to userland, check inside PT lock */
if (userfaultfd_missing(vma)) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
return handle_userfault(vmf, VM_UFFD_MISSING);
}
goto setpte;
}
/* Allocate our own private page. */
if (unlikely(anon_vma_prepare(vma)))
goto oom;
/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
folio = alloc_anon_folio(vmf);
if (IS_ERR(folio))
return 0;
if (!folio)
goto oom;
nr_pages = folio_nr_pages(folio);
addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
goto oom_free_page;
folio_throttle_swaprate(folio, GFP_KERNEL);
/*
* The memory barrier inside __folio_mark_uptodate makes sure that
* preceding stores to the page contents become visible before
* the set_pte_at() write.
*/
__folio_mark_uptodate(folio);
entry = mk_pte(&folio->page, vma->vm_page_prot);
entry = pte_sw_mkyoung(entry);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry), vma);
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
if (!vmf->pte)
goto release;
if (nr_pages == 1 && vmf_pte_changed(vmf)) {
update_mmu_tlb(vma, addr, vmf->pte);
goto release;
} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
for (i = 0; i < nr_pages; i++)
update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
goto release;
}
ret = check_stable_address_space(vma->vm_mm);
if (ret)
goto release;
/* Deliver the page fault to userland, check inside PT lock */
if (userfaultfd_missing(vma)) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
folio_put(folio);
return handle_userfault(vmf, VM_UFFD_MISSING);
}
folio_ref_add(folio, nr_pages - 1);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
folio_add_new_anon_rmap(folio, vma, addr);
folio_add_lru_vma(folio, vma);
setpte:
if (uffd_wp)
entry = pte_mkuffd_wp(entry);
set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
/* No need to invalidate - it was non-present before */
update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
unlock:
if (vmf->pte)
pte_unmap_unlock(vmf->pte, vmf->ptl);
return ret;
release:
folio_put(folio);
goto unlock;
oom_free_page:
folio_put(folio);
oom:
return VM_FAULT_OOM;
}
/*
* The mmap_lock must have been held on entry, and may have been
* released depending on flags and vma->vm_ops->fault() return value.
* See filemap_fault() and __lock_page_retry().
*/
static vm_fault_t __do_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct folio *folio;
vm_fault_t ret;
/*
* Preallocate pte before we take page_lock because this might lead to
* deadlocks for memcg reclaim which waits for pages under writeback:
* lock_page(A)
* SetPageWriteback(A)
* unlock_page(A)
* lock_page(B)
* lock_page(B)
* pte_alloc_one
* shrink_page_list
* wait_on_page_writeback(A)
* SetPageWriteback(B)
* unlock_page(B)
* # flush A, B to clear the writeback
*/
if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
if (!vmf->prealloc_pte)
return VM_FAULT_OOM;
}
ret = vma->vm_ops->fault(vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
VM_FAULT_DONE_COW)))
return ret;
folio = page_folio(vmf->page);
if (unlikely(PageHWPoison(vmf->page))) {
vm_fault_t poisonret = VM_FAULT_HWPOISON;
if (ret & VM_FAULT_LOCKED) {
if (page_mapped(vmf->page))
unmap_mapping_folio(folio);
/* Retry if a clean folio was removed from the cache. */
if (mapping_evict_folio(folio->mapping, folio))
poisonret = VM_FAULT_NOPAGE;
folio_unlock(folio);
}
folio_put(folio);
vmf->page = NULL;
return poisonret;
}
if (unlikely(!(ret & VM_FAULT_LOCKED)))
folio_lock(folio);
else
VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
return ret;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void deposit_prealloc_pte(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
/*
* We are going to consume the prealloc table,
* count that as nr_ptes.
*/
mm_inc_nr_ptes(vma->vm_mm);
vmf->prealloc_pte = NULL;
}
vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
{
struct folio *folio = page_folio(page);
struct vm_area_struct *vma = vmf->vma;
bool write = vmf->flags & FAULT_FLAG_WRITE;
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
pmd_t entry;
vm_fault_t ret = VM_FAULT_FALLBACK;
if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
return ret;
if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
return ret;
/*
* Just backoff if any subpage of a THP is corrupted otherwise
* the corrupted page may mapped by PMD silently to escape the
* check. This kind of THP just can be PTE mapped. Access to
* the corrupted subpage should trigger SIGBUS as expected.
*/
if (unlikely(folio_test_has_hwpoisoned(folio)))
return ret;
/*
* Archs like ppc64 need additional space to store information
* related to pte entry. Use the preallocated table for that.
*/
if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
if (!vmf->prealloc_pte)
return VM_FAULT_OOM;
}
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
if (unlikely(!pmd_none(*vmf->pmd)))
goto out;
flush_icache_pages(vma, page, HPAGE_PMD_NR);
entry = mk_huge_pmd(page, vma->vm_page_prot);
if (write)
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
folio_add_file_rmap_pmd(folio, page, vma);
/*
* deposit and withdraw with pmd lock held
*/
if (arch_needs_pgtable_deposit())
deposit_prealloc_pte(vmf);
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
update_mmu_cache_pmd(vma, haddr, vmf->pmd);
/* fault is handled */
ret = 0;
count_vm_event(THP_FILE_MAPPED);
out:
spin_unlock(vmf->ptl);
return ret;
}
#else
vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
{
return VM_FAULT_FALLBACK;
}
#endif
/**
* set_pte_range - Set a range of PTEs to point to pages in a folio.
* @vmf: Fault decription.
* @folio: The folio that contains @page.
* @page: The first page to create a PTE for.
* @nr: The number of PTEs to create.
* @addr: The first address to create a PTE for.
*/
void set_pte_range(struct vm_fault *vmf, struct folio *folio,
struct page *page, unsigned int nr, unsigned long addr)
{
struct vm_area_struct *vma = vmf->vma;
bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
bool write = vmf->flags & FAULT_FLAG_WRITE;
bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
pte_t entry;
flush_icache_pages(vma, page, nr);
entry = mk_pte(page, vma->vm_page_prot);
if (prefault && arch_wants_old_prefaulted_pte())
entry = pte_mkold(entry);
else
entry = pte_sw_mkyoung(entry);
if (write)
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (unlikely(uffd_wp))
entry = pte_mkuffd_wp(entry);
/* copy-on-write page */
if (write && !(vma->vm_flags & VM_SHARED)) {
add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
VM_BUG_ON_FOLIO(nr != 1, folio);
folio_add_new_anon_rmap(folio, vma, addr);
folio_add_lru_vma(folio, vma);
} else {
add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
folio_add_file_rmap_ptes(folio, page, nr, vma);
}
set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
/* no need to invalidate: a not-present page won't be cached */
update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
}
static bool vmf_pte_changed(struct vm_fault *vmf)
{
if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
return !pte_none(ptep_get(vmf->pte));
}
/**
* finish_fault - finish page fault once we have prepared the page to fault
*
* @vmf: structure describing the fault
*
* This function handles all that is needed to finish a page fault once the
* page to fault in is prepared. It handles locking of PTEs, inserts PTE for
* given page, adds reverse page mapping, handles memcg charges and LRU
* addition.
*
* The function expects the page to be locked and on success it consumes a
* reference of a page being mapped (for the PTE which maps it).
*
* Return: %0 on success, %VM_FAULT_ code in case of error.
*/
vm_fault_t finish_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct page *page;
vm_fault_t ret;
/* Did we COW the page? */
if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
page = vmf->cow_page;
else
page = vmf->page;
/*
* check even for read faults because we might have lost our CoWed
* page
*/
if (!(vma->vm_flags & VM_SHARED)) {
ret = check_stable_address_space(vma->vm_mm);
if (ret)
return ret;
}
if (pmd_none(*vmf->pmd)) {
if (PageTransCompound(page)) {
ret = do_set_pmd(vmf, page);
if (ret != VM_FAULT_FALLBACK)
return ret;
}
if (vmf->prealloc_pte)
pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
return VM_FAULT_OOM;
}
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (!vmf->pte)
return VM_FAULT_NOPAGE;
/* Re-check under ptl */
if (likely(!vmf_pte_changed(vmf))) {
struct folio *folio = page_folio(page);
set_pte_range(vmf, folio, page, 1, vmf->address);
ret = 0;
} else {
update_mmu_tlb(vma, vmf->address, vmf->pte);
ret = VM_FAULT_NOPAGE;
}
pte_unmap_unlock(vmf->pte, vmf->ptl);
return ret;
}
static unsigned long fault_around_pages __read_mostly =
65536 >> PAGE_SHIFT;
#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
{
*val = fault_around_pages << PAGE_SHIFT;
return 0;
}
/*
* fault_around_bytes must be rounded down to the nearest page order as it's
* what do_fault_around() expects to see.
*/
static int fault_around_bytes_set(void *data, u64 val)
{
if (val / PAGE_SIZE > PTRS_PER_PTE)
return -EINVAL;
/*
* The minimum value is 1 page, however this results in no fault-around
* at all. See should_fault_around().
*/
fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
static int __init fault_around_debugfs(void)
{
debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
&fault_around_bytes_fops);
return 0;
}
late_initcall(fault_around_debugfs);
#endif
/*
* do_fault_around() tries to map few pages around the fault address. The hope
* is that the pages will be needed soon and this will lower the number of
* faults to handle.
*
* It uses vm_ops->map_pages() to map the pages, which skips the page if it's
* not ready to be mapped: not up-to-date, locked, etc.
*
* This function doesn't cross VMA or page table boundaries, in order to call
* map_pages() and acquire a PTE lock only once.
*
* fault_around_pages defines how many pages we'll try to map.
* do_fault_around() expects it to be set to a power of two less than or equal
* to PTRS_PER_PTE.
*
* The virtual address of the area that we map is naturally aligned to
* fault_around_pages * PAGE_SIZE rounded down to the machine page size
* (and therefore to page order). This way it's easier to guarantee
* that we don't cross page table boundaries.
*/
static vm_fault_t do_fault_around(struct vm_fault *vmf)
{
pgoff_t nr_pages = READ_ONCE(fault_around_pages);
pgoff_t pte_off = pte_index(vmf->address);
/* The page offset of vmf->address within the VMA. */
pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
pgoff_t from_pte, to_pte;
vm_fault_t ret;
/* The PTE offset of the start address, clamped to the VMA. */
from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
pte_off - min(pte_off, vma_off));
/* The PTE offset of the end address, clamped to the VMA and PTE. */
to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
pte_off + vma_pages(vmf->vma) - vma_off) - 1;
if (pmd_none(*vmf->pmd)) {
vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
if (!vmf->prealloc_pte)
return VM_FAULT_OOM;
}
rcu_read_lock();
ret = vmf->vma->vm_ops->map_pages(vmf,
vmf->pgoff + from_pte - pte_off,
vmf->pgoff + to_pte - pte_off);
rcu_read_unlock();
return ret;
}
/* Return true if we should do read fault-around, false otherwise */
static inline bool should_fault_around(struct vm_fault *vmf)
{
/* No ->map_pages? No way to fault around... */
if (!vmf->vma->vm_ops->map_pages)
return false;
if (uffd_disable_fault_around(vmf->vma))
return false;
/* A single page implies no faulting 'around' at all. */
return fault_around_pages > 1;
}
static vm_fault_t do_read_fault(struct vm_fault *vmf)
{
vm_fault_t ret = 0;
struct folio *folio;
/*
* Let's call ->map_pages() first and use ->fault() as fallback
* if page by the offset is not ready to be mapped (cold cache or
* something).
*/
if (should_fault_around(vmf)) {
ret = do_fault_around(vmf);
if (ret)
return ret;
}
ret = vmf_can_call_fault(vmf);
if (ret)
return ret;
ret = __do_fault(vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
return ret;
ret |= finish_fault(vmf);
folio = page_folio(vmf->page);
folio_unlock(folio);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
folio_put(folio);
return ret;
}
static vm_fault_t do_cow_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct folio *folio;
vm_fault_t ret;
ret = vmf_can_call_fault(vmf);
if (!ret)
ret = vmf_anon_prepare(vmf);
if (ret)
return ret;
folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
if (!folio)
return VM_FAULT_OOM;
vmf->cow_page = &folio->page;
ret = __do_fault(vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
goto uncharge_out;
if (ret & VM_FAULT_DONE_COW)
return ret;
copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
__folio_mark_uptodate(folio);
ret |= finish_fault(vmf);
unlock_page(vmf->page);
put_page(vmf->page);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
goto uncharge_out;
return ret;
uncharge_out:
folio_put(folio);
return ret;
}
static vm_fault_t do_shared_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
vm_fault_t ret, tmp;
struct folio *folio;
ret = vmf_can_call_fault(vmf);
if (ret)
return ret;
ret = __do_fault(vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
return ret;
folio = page_folio(vmf->page);
/*
* Check if the backing address space wants to know that the page is
* about to become writable
*/
if (vma->vm_ops->page_mkwrite) {
folio_unlock(folio);
tmp = do_page_mkwrite(vmf, folio);
if (unlikely(!tmp ||
(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
folio_put(folio);
return tmp;
}
}
ret |= finish_fault(vmf);
if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
VM_FAULT_RETRY))) {
folio_unlock(folio);
folio_put(folio);
return ret;
}
ret |= fault_dirty_shared_page(vmf);
return ret;
}
/*
* We enter with non-exclusive mmap_lock (to exclude vma changes,
* but allow concurrent faults).
* The mmap_lock may have been released depending on flags and our
* return value. See filemap_fault() and __folio_lock_or_retry().
* If mmap_lock is released, vma may become invalid (for example
* by other thread calling munmap()).
*/
static vm_fault_t do_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct mm_struct *vm_mm = vma->vm_mm;
vm_fault_t ret;
/*
* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
*/
if (!vma->vm_ops->fault) {
vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (unlikely(!vmf->pte))
ret = VM_FAULT_SIGBUS;
else {
/*
* Make sure this is not a temporary clearing of pte
* by holding ptl and checking again. A R/M/W update
* of pte involves: take ptl, clearing the pte so that
* we don't have concurrent modification by hardware
* followed by an update.
*/
if (unlikely(pte_none(ptep_get(vmf->pte))))
ret = VM_FAULT_SIGBUS;
else
ret = VM_FAULT_NOPAGE;
pte_unmap_unlock(vmf->pte, vmf->ptl);
}
} else if (!(vmf->flags & FAULT_FLAG_WRITE))
ret = do_read_fault(vmf);
else if (!(vma->vm_flags & VM_SHARED))
ret = do_cow_fault(vmf);
else
ret = do_shared_fault(vmf);
/* preallocated pagetable is unused: free it */
if (vmf->prealloc_pte) {
pte_free(vm_mm, vmf->prealloc_pte);
vmf->prealloc_pte = NULL;
}
return ret;
}
int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
unsigned long addr, int page_nid, int *flags)
{
folio_get(folio);
/* Record the current PID acceesing VMA */
vma_set_access_pid_bit(vma);
count_vm_numa_event(NUMA_HINT_FAULTS);
if (page_nid == numa_node_id()) {
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
*flags |= TNF_FAULT_LOCAL;
}
return mpol_misplaced(folio, vma, addr);
}
static vm_fault_t do_numa_page(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct folio *folio = NULL;
int nid = NUMA_NO_NODE;
bool writable = false;
int last_cpupid;
int target_nid;
pte_t pte, old_pte;
int flags = 0;
/*
* The "pte" at this point cannot be used safely without
* validation through pte_unmap_same(). It's of NUMA type but
* the pfn may be screwed if the read is non atomic.
*/
spin_lock(vmf->ptl);
if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
goto out;
}
/* Get the normal PTE */
old_pte = ptep_get(vmf->pte);
pte = pte_modify(old_pte, vma->vm_page_prot);
/*
* Detect now whether the PTE could be writable; this information
* is only valid while holding the PT lock.
*/
writable = pte_write(pte);
if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
can_change_pte_writable(vma, vmf->address, pte))
writable = true;
folio = vm_normal_folio(vma, vmf->address, pte);
if (!folio || folio_is_zone_device(folio))
goto out_map;
/* TODO: handle PTE-mapped THP */
if (folio_test_large(folio))
goto out_map;
/*
* Avoid grouping on RO pages in general. RO pages shouldn't hurt as
* much anyway since they can be in shared cache state. This misses
* the case where a mapping is writable but the process never writes
* to it but pte_write gets cleared during protection updates and
* pte_dirty has unpredictable behaviour between PTE scan updates,
* background writeback, dirty balancing and application behaviour.
*/
if (!writable)
flags |= TNF_NO_GROUP;
/*
* Flag if the folio is shared between multiple address spaces. This
* is later used when determining whether to group tasks together
*/
if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
flags |= TNF_SHARED;
nid = folio_nid(folio);
/*
* For memory tiering mode, cpupid of slow memory page is used
* to record page access time. So use default value.
*/
if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
!node_is_toptier(nid))
last_cpupid = (-1 & LAST_CPUPID_MASK);
else
last_cpupid = folio_last_cpupid(folio);
target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
if (target_nid == NUMA_NO_NODE) {
folio_put(folio);
goto out_map;
}
pte_unmap_unlock(vmf->pte, vmf->ptl);
writable = false;
/* Migrate to the requested node */
if (migrate_misplaced_folio(folio, vma, target_nid)) {
nid = target_nid;
flags |= TNF_MIGRATED;
} else {
flags |= TNF_MIGRATE_FAIL;
vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (unlikely(!vmf->pte))
goto out;
if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
pte_unmap_unlock(vmf->pte, vmf->ptl);
goto out;
}
goto out_map;
}
out:
if (nid != NUMA_NO_NODE)
task_numa_fault(last_cpupid, nid, 1, flags);
return 0;
out_map:
/*
* Make it present again, depending on how arch implements
* non-accessible ptes, some can allow access by kernel mode.
*/
old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
pte = pte_modify(old_pte, vma->vm_page_prot);
pte = pte_mkyoung(pte);
if (writable)
pte = pte_mkwrite(pte, vma);
ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
pte_unmap_unlock(vmf->pte, vmf->ptl);
goto out;
}
static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
if (vma_is_anonymous(vma))
return do_huge_pmd_anonymous_page(vmf);
if (vma->vm_ops->huge_fault)
return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
return VM_FAULT_FALLBACK;
}
/* `inline' is required to avoid gcc 4.1.2 build error */
static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
vm_fault_t ret;
if (vma_is_anonymous(vma)) {
if (likely(!unshare) &&
userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
if (userfaultfd_wp_async(vmf->vma))
goto split;
return handle_userfault(vmf, VM_UFFD_WP);
}
return do_huge_pmd_wp_page(vmf);
}
if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
if (vma->vm_ops->huge_fault) {
ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
}
}
split:
/* COW or write-notify handled on pte level: split pmd. */
__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
return VM_FAULT_FALLBACK;
}
static vm_fault_t create_huge_pud(struct vm_fault *vmf)
{
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
struct vm_area_struct *vma = vmf->vma;
/* No support for anonymous transparent PUD pages yet */
if (vma_is_anonymous(vma))
return VM_FAULT_FALLBACK;
if (vma->vm_ops->huge_fault)
return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
return VM_FAULT_FALLBACK;
}
static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
{
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
struct vm_area_struct *vma = vmf->vma;
vm_fault_t ret;
/* No support for anonymous transparent PUD pages yet */
if (vma_is_anonymous(vma))
goto split;
if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
if (vma->vm_ops->huge_fault) {
ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
}
}
split:
/* COW or write-notify not handled on PUD level: split pud.*/
__split_huge_pud(vma, vmf->pud, vmf->address);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
return VM_FAULT_FALLBACK;
}
/*
* These routines also need to handle stuff like marking pages dirty
* and/or accessed for architectures that don't do it in hardware (most
* RISC architectures). The early dirtying is also good on the i386.
*
* There is also a hook called "update_mmu_cache()" that architectures
* with external mmu caches can use to update those (ie the Sparc or
* PowerPC hashed page tables that act as extended TLBs).
*
* We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
* concurrent faults).
*
* The mmap_lock may have been released depending on flags and our return value.
* See filemap_fault() and __folio_lock_or_retry().
*/
static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
{
pte_t entry;
if (unlikely(pmd_none(*vmf->pmd))) {
/*
* Leave __pte_alloc() until later: because vm_ops->fault may
* want to allocate huge page, and if we expose page table
* for an instant, it will be difficult to retract from
* concurrent faults and from rmap lookups.
*/
vmf->pte = NULL;
vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
} else {
/*
* A regular pmd is established and it can't morph into a huge
* pmd by anon khugepaged, since that takes mmap_lock in write
* mode; but shmem or file collapse to THP could still morph
* it into a huge pmd: just retry later if so.
*/
vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
vmf->address, &vmf->ptl);
if (unlikely(!vmf->pte))
return 0;
vmf->orig_pte = ptep_get_lockless(vmf->pte);
vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
if (pte_none(vmf->orig_pte)) {
pte_unmap(vmf->pte);
vmf->pte = NULL;
}
}
if (!vmf->pte)
return do_pte_missing(vmf);
if (!pte_present(vmf->orig_pte))
return do_swap_page(vmf);
if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
return do_numa_page(vmf);
spin_lock(vmf->ptl);
entry = vmf->orig_pte;
if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
goto unlock;
}
if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
if (!pte_write(entry))
return do_wp_page(vmf);
else if (likely(vmf->flags & FAULT_FLAG_WRITE))
entry = pte_mkdirty(entry);
}
entry = pte_mkyoung(entry);
if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
vmf->flags & FAULT_FLAG_WRITE)) {
update_mmu_cache_range(vmf, vmf->vma, vmf->address,
vmf->pte, 1);
} else {
/* Skip spurious TLB flush for retried page fault */
if (vmf->flags & FAULT_FLAG_TRIED)
goto unlock;
/*
* This is needed only for protection faults but the arch code
* is not yet telling us if this is a protection fault or not.
* This still avoids useless tlb flushes for .text page faults
* with threads.
*/
if (vmf->flags & FAULT_FLAG_WRITE)
flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
vmf->pte);
}
unlock:
pte_unmap_unlock(vmf->pte, vmf->ptl);
return 0;
}
/*
* On entry, we hold either the VMA lock or the mmap_lock
* (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
* the result, the mmap_lock is not held on exit. See filemap_fault()
* and __folio_lock_or_retry().
*/
static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
struct vm_fault vmf = {
.vma = vma,
.address = address & PAGE_MASK,
.real_address = address,
.flags = flags,
.pgoff = linear_page_index(vma, address),
.gfp_mask = __get_fault_gfp_mask(vma),
};
struct mm_struct *mm = vma->vm_mm;
unsigned long vm_flags = vma->vm_flags;
pgd_t *pgd;
p4d_t *p4d;
vm_fault_t ret;
pgd = pgd_offset(mm, address);
p4d = p4d_alloc(mm, pgd, address);
if (!p4d)
return VM_FAULT_OOM;
vmf.pud = pud_alloc(mm, p4d, address);
if (!vmf.pud)
return VM_FAULT_OOM;
retry_pud:
if (pud_none(*vmf.pud) &&
thp_vma_allowable_order(vma, vm_flags, false, true, true, PUD_ORDER)) {
ret = create_huge_pud(&vmf);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
} else {
pud_t orig_pud = *vmf.pud;
barrier();
if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
/*
* TODO once we support anonymous PUDs: NUMA case and
* FAULT_FLAG_UNSHARE handling.
*/
if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
ret = wp_huge_pud(&vmf, orig_pud);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
} else {
huge_pud_set_accessed(&vmf, orig_pud);
return 0;
}
}
}
vmf.pmd = pmd_alloc(mm, vmf.pud, address);
if (!vmf.pmd)
return VM_FAULT_OOM;
/* Huge pud page fault raced with pmd_alloc? */
if (pud_trans_unstable(vmf.pud))
goto retry_pud;
if (pmd_none(*vmf.pmd) &&
thp_vma_allowable_order(vma, vm_flags, false, true, true, PMD_ORDER)) {
ret = create_huge_pmd(&vmf);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
} else {
vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(vmf.orig_pmd));
if (is_pmd_migration_entry(vmf.orig_pmd))
pmd_migration_entry_wait(mm, vmf.pmd);
return 0;
}
if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
return do_huge_pmd_numa_page(&vmf);
if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
!pmd_write(vmf.orig_pmd)) {
ret = wp_huge_pmd(&vmf);
if (!(ret & VM_FAULT_FALLBACK))
return ret;
} else {
huge_pmd_set_accessed(&vmf);
return 0;
}
}
}
return handle_pte_fault(&vmf);
}
/**
* mm_account_fault - Do page fault accounting
* @mm: mm from which memcg should be extracted. It can be NULL.
* @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
* of perf event counters, but we'll still do the per-task accounting to
* the task who triggered this page fault.
* @address: the faulted address.
* @flags: the fault flags.
* @ret: the fault retcode.
*
* This will take care of most of the page fault accounting. Meanwhile, it
* will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
* updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
* still be in per-arch page fault handlers at the entry of page fault.
*/
static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
unsigned long address, unsigned int flags,
vm_fault_t ret)
{
bool major;
/* Incomplete faults will be accounted upon completion. */
if (ret & VM_FAULT_RETRY)
return;
/*
* To preserve the behavior of older kernels, PGFAULT counters record
* both successful and failed faults, as opposed to perf counters,
* which ignore failed cases.
*/
count_vm_event(PGFAULT);
count_memcg_event_mm(mm, PGFAULT);
/*
* Do not account for unsuccessful faults (e.g. when the address wasn't
* valid). That includes arch_vma_access_permitted() failing before
* reaching here. So this is not a "this many hardware page faults"
* counter. We should use the hw profiling for that.
*/
if (ret & VM_FAULT_ERROR)
return;
/*
* We define the fault as a major fault when the final successful fault
* is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
* handle it immediately previously).
*/
major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
if (major)
current->maj_flt++;
else
current->min_flt++;
/*
* If the fault is done for GUP, regs will be NULL. We only do the
* accounting for the per thread fault counters who triggered the
* fault, and we skip the perf event updates.
*/
if (!regs)
return;
if (major)
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
else
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
}
#ifdef CONFIG_LRU_GEN
static void lru_gen_enter_fault(struct vm_area_struct *vma)
{
/* the LRU algorithm only applies to accesses with recency */
current->in_lru_fault = vma_has_recency(vma);
}
static void lru_gen_exit_fault(void)
{
current->in_lru_fault = false;
}
#else
static void lru_gen_enter_fault(struct vm_area_struct *vma)
{
}
static void lru_gen_exit_fault(void)
{
}
#endif /* CONFIG_LRU_GEN */
static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
unsigned int *flags)
{
if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
return VM_FAULT_SIGSEGV;
/*
* FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
* just treat it like an ordinary read-fault otherwise.
*/
if (!is_cow_mapping(vma->vm_flags))
*flags &= ~FAULT_FLAG_UNSHARE;
} else if (*flags & FAULT_FLAG_WRITE) {
/* Write faults on read-only mappings are impossible ... */
if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
return VM_FAULT_SIGSEGV;
/* ... and FOLL_FORCE only applies to COW mappings. */
if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
!is_cow_mapping(vma->vm_flags)))
return VM_FAULT_SIGSEGV;
}
#ifdef CONFIG_PER_VMA_LOCK
/*
* Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
* the assumption that lock is dropped on VM_FAULT_RETRY.
*/
if (WARN_ON_ONCE((*flags &
(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
return VM_FAULT_SIGSEGV;
#endif
return 0;
}
/*
* By the time we get here, we already hold the mm semaphore
*
* The mmap_lock may have been released depending on flags and our
* return value. See filemap_fault() and __folio_lock_or_retry().
*/
vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
unsigned int flags, struct pt_regs *regs)
{
/* If the fault handler drops the mmap_lock, vma may be freed */
struct mm_struct *mm = vma->vm_mm;
vm_fault_t ret;
__set_current_state(TASK_RUNNING);
ret = sanitize_fault_flags(vma, &flags);
if (ret)
goto out;
if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
flags & FAULT_FLAG_INSTRUCTION,
flags & FAULT_FLAG_REMOTE)) {
ret = VM_FAULT_SIGSEGV;
goto out;
}
/*
* Enable the memcg OOM handling for faults triggered in user
* space. Kernel faults are handled more gracefully.
*/
if (flags & FAULT_FLAG_USER)
mem_cgroup_enter_user_fault();
lru_gen_enter_fault(vma);
if (unlikely(is_vm_hugetlb_page(vma)))
ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
else
ret = __handle_mm_fault(vma, address, flags);
lru_gen_exit_fault();
if (flags & FAULT_FLAG_USER) {
mem_cgroup_exit_user_fault();
/*
* The task may have entered a memcg OOM situation but
* if the allocation error was handled gracefully (no
* VM_FAULT_OOM), there is no need to kill anything.
* Just clean up the OOM state peacefully.
*/
if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
mem_cgroup_oom_synchronize(false);
}
out:
mm_account_fault(mm, regs, address, flags, ret);
return ret;
}
EXPORT_SYMBOL_GPL(handle_mm_fault);
#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
#include <linux/extable.h>
static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
if (likely(mmap_read_trylock(mm)))
return true;
if (regs && !user_mode(regs)) {
unsigned long ip = exception_ip(regs);
if (!search_exception_tables(ip))
return false;
}
return !mmap_read_lock_killable(mm);
}
static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
{
/*
* We don't have this operation yet.
*
* It should be easy enough to do: it's basically a
* atomic_long_try_cmpxchg_acquire()
* from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
* it also needs the proper lockdep magic etc.
*/
return false;
}
static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
{
mmap_read_unlock(mm);
if (regs && !user_mode(regs)) {
unsigned long ip = exception_ip(regs);
if (!search_exception_tables(ip))
return false;
}
return !mmap_write_lock_killable(mm);
}
/*
* Helper for page fault handling.
*
* This is kind of equivalend to "mmap_read_lock()" followed
* by "find_extend_vma()", except it's a lot more careful about
* the locking (and will drop the lock on failure).
*
* For example, if we have a kernel bug that causes a page
* fault, we don't want to just use mmap_read_lock() to get
* the mm lock, because that would deadlock if the bug were
* to happen while we're holding the mm lock for writing.
*
* So this checks the exception tables on kernel faults in
* order to only do this all for instructions that are actually
* expected to fault.
*
* We can also actually take the mm lock for writing if we
* need to extend the vma, which helps the VM layer a lot.
*/
struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
unsigned long addr, struct pt_regs *regs)
{
struct vm_area_struct *vma;
if (!get_mmap_lock_carefully(mm, regs))
return NULL;
vma = find_vma(mm, addr);
if (likely(vma && (vma->vm_start <= addr)))
return vma;
/*
* Well, dang. We might still be successful, but only
* if we can extend a vma to do so.
*/
if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
mmap_read_unlock(mm);
return NULL;
}
/*
* We can try to upgrade the mmap lock atomically,
* in which case we can continue to use the vma
* we already looked up.
*
* Otherwise we'll have to drop the mmap lock and
* re-take it, and also look up the vma again,
* re-checking it.
*/
if (!mmap_upgrade_trylock(mm)) {
if (!upgrade_mmap_lock_carefully(mm, regs))
return NULL;
vma = find_vma(mm, addr);
if (!vma)
goto fail;
if (vma->vm_start <= addr)
goto success;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto fail;
}
if (expand_stack_locked(vma, addr))
goto fail;
success:
mmap_write_downgrade(mm);
return vma;
fail:
mmap_write_unlock(mm);
return NULL;
}
#endif
#ifdef CONFIG_PER_VMA_LOCK
/*
* Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
* stable and not isolated. If the VMA is not found or is being modified the
* function returns NULL.
*/
struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
unsigned long address)
{
MA_STATE(mas, &mm->mm_mt, address, address);
struct vm_area_struct *vma;
rcu_read_lock();
retry:
vma = mas_walk(&mas);
if (!vma)
goto inval;
if (!vma_start_read(vma))
goto inval;
/*
* find_mergeable_anon_vma uses adjacent vmas which are not locked.
* This check must happen after vma_start_read(); otherwise, a
* concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
* from its anon_vma.
*/
if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
goto inval_end_read;
/* Check since vm_start/vm_end might change before we lock the VMA */
if (unlikely(address < vma->vm_start || address >= vma->vm_end))
goto inval_end_read;
/* Check if the VMA got isolated after we found it */
if (vma->detached) {
vma_end_read(vma);
count_vm_vma_lock_event(VMA_LOCK_MISS);
/* The area was replaced with another one */
goto retry;
}
rcu_read_unlock();
return vma;
inval_end_read:
vma_end_read(vma);
inval:
rcu_read_unlock();
count_vm_vma_lock_event(VMA_LOCK_ABORT);
return NULL;
}
#endif /* CONFIG_PER_VMA_LOCK */
#ifndef __PAGETABLE_P4D_FOLDED
/*
* Allocate p4d page table.
* We've already handled the fast-path in-line.
*/
int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
p4d_t *new = p4d_alloc_one(mm, address);
if (!new)
return -ENOMEM;
spin_lock(&mm->page_table_lock);
if (pgd_present(*pgd)) { /* Another has populated it */
p4d_free(mm, new);
} else {
smp_wmb(); /* See comment in pmd_install() */
pgd_populate(mm, pgd, new);
}
spin_unlock(&mm->page_table_lock);
return 0;
}
#endif /* __PAGETABLE_P4D_FOLDED */
#ifndef __PAGETABLE_PUD_FOLDED
/*
* Allocate page upper directory.
* We've already handled the fast-path in-line.
*/
int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
{
pud_t *new = pud_alloc_one(mm, address);
if (!new)
return -ENOMEM;
spin_lock(&mm->page_table_lock);
if (!p4d_present(*p4d)) {
mm_inc_nr_puds(mm);
smp_wmb(); /* See comment in pmd_install() */
p4d_populate(mm, p4d, new);
} else /* Another has populated it */
pud_free(mm, new);
spin_unlock(&mm->page_table_lock);
return 0;
}
#endif /* __PAGETABLE_PUD_FOLDED */
#ifndef __PAGETABLE_PMD_FOLDED
/*
* Allocate page middle directory.
* We've already handled the fast-path in-line.
*/
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
spinlock_t *ptl;
pmd_t *new = pmd_alloc_one(mm, address);
if (!new)
return -ENOMEM;
ptl = pud_lock(mm, pud);
if (!pud_present(*pud)) {
mm_inc_nr_pmds(mm);
smp_wmb(); /* See comment in pmd_install() */
pud_populate(mm, pud, new);
} else { /* Another has populated it */
pmd_free(mm, new);
}
spin_unlock(ptl);
return 0;
}
#endif /* __PAGETABLE_PMD_FOLDED */
/**
* follow_pte - look up PTE at a user virtual address
* @mm: the mm_struct of the target address space
* @address: user virtual address
* @ptepp: location to store found PTE
* @ptlp: location to store the lock for the PTE
*
* On a successful return, the pointer to the PTE is stored in @ptepp;
* the corresponding lock is taken and its location is stored in @ptlp.
* The contents of the PTE are only stable until @ptlp is released;
* any further use, if any, must be protected against invalidation
* with MMU notifiers.
*
* Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
* should be taken for read.
*
* KVM uses this function. While it is arguably less bad than ``follow_pfn``,
* it is not a good general-purpose API.
*
* Return: zero on success, -ve otherwise.
*/
int follow_pte(struct mm_struct *mm, unsigned long address,
pte_t **ptepp, spinlock_t **ptlp)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *ptep;
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
goto out;
p4d = p4d_offset(pgd, address);
if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
goto out;
pud = pud_offset(p4d, address);
if (pud_none(*pud) || unlikely(pud_bad(*pud)))
goto out;
pmd = pmd_offset(pud, address);
VM_BUG_ON(pmd_trans_huge(*pmd));
ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
if (!ptep)
goto out;
if (!pte_present(ptep_get(ptep)))
goto unlock;
*ptepp = ptep;
return 0;
unlock:
pte_unmap_unlock(ptep, *ptlp);
out:
return -EINVAL;
}
EXPORT_SYMBOL_GPL(follow_pte);
/**
* follow_pfn - look up PFN at a user virtual address
* @vma: memory mapping
* @address: user virtual address
* @pfn: location to store found PFN
*
* Only IO mappings and raw PFN mappings are allowed.
*
* This function does not allow the caller to read the permissions
* of the PTE. Do not use it.
*
* Return: zero and the pfn at @pfn on success, -ve otherwise.
*/
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn)
{
int ret = -EINVAL;
spinlock_t *ptl;
pte_t *ptep;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
return ret;
ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
if (ret)
return ret;
*pfn = pte_pfn(ptep_get(ptep));
pte_unmap_unlock(ptep, ptl);
return 0;
}
EXPORT_SYMBOL(follow_pfn);
#ifdef CONFIG_HAVE_IOREMAP_PROT
int follow_phys(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
unsigned long *prot, resource_size_t *phys)
{
int ret = -EINVAL;
pte_t *ptep, pte;
spinlock_t *ptl;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
goto out;
if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
goto out;
pte = ptep_get(ptep);
if ((flags & FOLL_WRITE) && !pte_write(pte))
goto unlock;
*prot = pgprot_val(pte_pgprot(pte));
*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
ret = 0;
unlock:
pte_unmap_unlock(ptep, ptl);
out:
return ret;
}
/**
* generic_access_phys - generic implementation for iomem mmap access
* @vma: the vma to access
* @addr: userspace address, not relative offset within @vma
* @buf: buffer to read/write
* @len: length of transfer
* @write: set to FOLL_WRITE when writing, otherwise reading
*
* This is a generic implementation for &vm_operations_struct.access for an
* iomem mapping. This callback is used by access_process_vm() when the @vma is
* not page based.
*/
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write)
{
resource_size_t phys_addr;
unsigned long prot = 0;
void __iomem *maddr;
pte_t *ptep, pte;
spinlock_t *ptl;
int offset = offset_in_page(addr);
int ret = -EINVAL;
if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
return -EINVAL;
retry:
if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
return -EINVAL;
pte = ptep_get(ptep);
pte_unmap_unlock(ptep, ptl);
prot = pgprot_val(pte_pgprot(pte));
phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
if ((write & FOLL_WRITE) && !pte_write(pte))
return -EINVAL;
maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
if (!maddr)
return -ENOMEM;
if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
goto out_unmap;
if (!pte_same(pte, ptep_get(ptep))) {
pte_unmap_unlock(ptep, ptl);
iounmap(maddr);
goto retry;
}
if (write)
memcpy_toio(maddr + offset, buf, len);
else
memcpy_fromio(buf, maddr + offset, len);
ret = len;
pte_unmap_unlock(ptep, ptl);
out_unmap:
iounmap(maddr);
return ret;
}
EXPORT_SYMBOL_GPL(generic_access_phys);
#endif
/*
* Access another process' address space as given in mm.
*/
static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags)
{
void *old_buf = buf;
int write = gup_flags & FOLL_WRITE;
if (mmap_read_lock_killable(mm))
return 0;
/* Untag the address before looking up the VMA */
addr = untagged_addr_remote(mm, addr);
/* Avoid triggering the temporary warning in __get_user_pages */
if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
return 0;
/* ignore errors, just check how much was successfully transferred */
while (len) {
int bytes, offset;
void *maddr;
struct vm_area_struct *vma = NULL;
struct page *page = get_user_page_vma_remote(mm, addr,
gup_flags, &vma);
if (IS_ERR(page)) {
/* We might need to expand the stack to access it */
vma = vma_lookup(mm, addr);
if (!vma) {
vma = expand_stack(mm, addr);
/* mmap_lock was dropped on failure */
if (!vma)
return buf - old_buf;
/* Try again if stack expansion worked */
continue;
}
/*
* Check if this is a VM_IO | VM_PFNMAP VMA, which
* we can access using slightly different code.
*/
bytes = 0;
#ifdef CONFIG_HAVE_IOREMAP_PROT
if (vma->vm_ops && vma->vm_ops->access)
bytes = vma->vm_ops->access(vma, addr, buf,
len, write);
#endif
if (bytes <= 0)
break;
} else {
bytes = len;
offset = addr & (PAGE_SIZE-1);
if (bytes > PAGE_SIZE-offset)
bytes = PAGE_SIZE-offset;
maddr = kmap_local_page(page);
if (write) {
copy_to_user_page(vma, page, addr,
maddr + offset, buf, bytes);
set_page_dirty_lock(page);
} else {
copy_from_user_page(vma, page, addr,
buf, maddr + offset, bytes);
}
unmap_and_put_page(page, maddr);
}
len -= bytes;
buf += bytes;
addr += bytes;
}
mmap_read_unlock(mm);
return buf - old_buf;
}
/**
* access_remote_vm - access another process' address space
* @mm: the mm_struct of the target address space
* @addr: start address to access
* @buf: source or destination buffer
* @len: number of bytes to transfer
* @gup_flags: flags modifying lookup behaviour
*
* The caller must hold a reference on @mm.
*
* Return: number of bytes copied from source to destination.
*/
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags)
{
return __access_remote_vm(mm, addr, buf, len, gup_flags);
}
/*
* Access another process' address space.
* Source/target buffer must be kernel space,
* Do not walk the page table directly, use get_user_pages
*/
int access_process_vm(struct task_struct *tsk, unsigned long addr,
void *buf, int len, unsigned int gup_flags)
{
struct mm_struct *mm;
int ret;
mm = get_task_mm(tsk);
if (!mm)
return 0;
ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
mmput(mm);
return ret;
}
EXPORT_SYMBOL_GPL(access_process_vm);
/*
* Print the name of a VMA.
*/
void print_vma_addr(char *prefix, unsigned long ip)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
/*
* we might be running from an atomic context so we cannot sleep
*/
if (!mmap_read_trylock(mm))
return;
vma = find_vma(mm, ip);
if (vma && vma->vm_file) {
struct file *f = vma->vm_file;
char *buf = (char *)__get_free_page(GFP_NOWAIT);
if (buf) {
char *p;
p = file_path(f, buf, PAGE_SIZE);
if (IS_ERR(p))
p = "?";
printk("%s%s[%lx+%lx]", prefix, kbasename(p),
vma->vm_start,
vma->vm_end - vma->vm_start);
free_page((unsigned long)buf);
}
}
mmap_read_unlock(mm);
}
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
void __might_fault(const char *file, int line)
{
if (pagefault_disabled())
return;
__might_sleep(file, line);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
if (current->mm)
might_lock_read(&current->mm->mmap_lock);
#endif
}
EXPORT_SYMBOL(__might_fault);
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
/*
* Process all subpages of the specified huge page with the specified
* operation. The target subpage will be processed last to keep its
* cache lines hot.
*/
static inline int process_huge_page(
unsigned long addr_hint, unsigned int pages_per_huge_page,
int (*process_subpage)(unsigned long addr, int idx, void *arg),
void *arg)
{
int i, n, base, l, ret;
unsigned long addr = addr_hint &
~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
/* Process target subpage last to keep its cache lines hot */
might_sleep();
n = (addr_hint - addr) / PAGE_SIZE;
if (2 * n <= pages_per_huge_page) {
/* If target subpage in first half of huge page */
base = 0;
l = n;
/* Process subpages at the end of huge page */
for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
cond_resched();
ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
if (ret)
return ret;
}
} else {
/* If target subpage in second half of huge page */
base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
l = pages_per_huge_page - n;
/* Process subpages at the begin of huge page */
for (i = 0; i < base; i++) {
cond_resched();
ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
if (ret)
return ret;
}
}
/*
* Process remaining subpages in left-right-left-right pattern
* towards the target subpage
*/
for (i = 0; i < l; i++) {
int left_idx = base + i;
int right_idx = base + 2 * l - 1 - i;
cond_resched();
ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
if (ret)
return ret;
cond_resched();
ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
if (ret)
return ret;
}
return 0;
}
static void clear_gigantic_page(struct page *page,
unsigned long addr,
unsigned int pages_per_huge_page)
{
int i;
struct page *p;
might_sleep();
for (i = 0; i < pages_per_huge_page; i++) {
p = nth_page(page, i);
cond_resched();
clear_user_highpage(p, addr + i * PAGE_SIZE);
}
}
static int clear_subpage(unsigned long addr, int idx, void *arg)
{
struct page *page = arg;
clear_user_highpage(page + idx, addr);
return 0;
}
void clear_huge_page(struct page *page,
unsigned long addr_hint, unsigned int pages_per_huge_page)
{
unsigned long addr = addr_hint &
~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
clear_gigantic_page(page, addr, pages_per_huge_page);
return;
}
process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
}
static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
unsigned long addr,
struct vm_area_struct *vma,
unsigned int pages_per_huge_page)
{
int i;
struct page *dst_page;
struct page *src_page;
for (i = 0; i < pages_per_huge_page; i++) {
dst_page = folio_page(dst, i);
src_page = folio_page(src, i);
cond_resched();
if (copy_mc_user_highpage(dst_page, src_page,
addr + i*PAGE_SIZE, vma)) {
memory_failure_queue(page_to_pfn(src_page), 0);
return -EHWPOISON;
}
}
return 0;
}
struct copy_subpage_arg {
struct page *dst;
struct page *src;
struct vm_area_struct *vma;
};
static int copy_subpage(unsigned long addr, int idx, void *arg)
{
struct copy_subpage_arg *copy_arg = arg;
if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
addr, copy_arg->vma)) {
memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
return -EHWPOISON;
}
return 0;
}
int copy_user_large_folio(struct folio *dst, struct folio *src,
unsigned long addr_hint, struct vm_area_struct *vma)
{
unsigned int pages_per_huge_page = folio_nr_pages(dst);
unsigned long addr = addr_hint &
~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
struct copy_subpage_arg arg = {
.dst = &dst->page,
.src = &src->page,
.vma = vma,
};
if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
return copy_user_gigantic_page(dst, src, addr, vma,
pages_per_huge_page);
return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
}
long copy_folio_from_user(struct folio *dst_folio,
const void __user *usr_src,
bool allow_pagefault)
{
void *kaddr;
unsigned long i, rc = 0;
unsigned int nr_pages = folio_nr_pages(dst_folio);
unsigned long ret_val = nr_pages * PAGE_SIZE;
struct page *subpage;
for (i = 0; i < nr_pages; i++) {
subpage = folio_page(dst_folio, i);
kaddr = kmap_local_page(subpage);
if (!allow_pagefault)
pagefault_disable();
rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
if (!allow_pagefault)
pagefault_enable();
kunmap_local(kaddr);
ret_val -= (PAGE_SIZE - rc);
if (rc)
break;
flush_dcache_page(subpage);
cond_resched();
}
return ret_val;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
static struct kmem_cache *page_ptl_cachep;
void __init ptlock_cache_init(void)
{
page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
SLAB_PANIC, NULL);
}
bool ptlock_alloc(struct ptdesc *ptdesc)
{
spinlock_t *ptl;
ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
if (!ptl)
return false;
ptdesc->ptl = ptl;
return true;
}
void ptlock_free(struct ptdesc *ptdesc)
{
kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
}
#endif