mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 15:54:15 +08:00
b53c6bd5d2
cpu_feature_enabled(X86_FEATURE_OSPKE) does not necessarily reflect whether CR4.PKE is set on the CPU. In particular, they may differ on non-BSP CPUs before setup_pku() is executed. In this scenario, RDPKRU will #UD causing the system to hang. Fix by checking CR4 for PKE enablement which is always correct for the current CPU. The scenario happens by inserting a WARN* before setup_pku() in identiy_cpu() or some other diagnostic which would lead to calling __show_regs(). [ bp: Massage commit message. ] Signed-off-by: David Kaplan <david.kaplan@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240421191728.32239-1-bp@kernel.org
983 lines
26 KiB
C
983 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
||
/*
|
||
* Copyright (C) 1995 Linus Torvalds
|
||
*
|
||
* Pentium III FXSR, SSE support
|
||
* Gareth Hughes <gareth@valinux.com>, May 2000
|
||
*
|
||
* X86-64 port
|
||
* Andi Kleen.
|
||
*
|
||
* CPU hotplug support - ashok.raj@intel.com
|
||
*/
|
||
|
||
/*
|
||
* This file handles the architecture-dependent parts of process handling..
|
||
*/
|
||
|
||
#include <linux/cpu.h>
|
||
#include <linux/errno.h>
|
||
#include <linux/sched.h>
|
||
#include <linux/sched/task.h>
|
||
#include <linux/sched/task_stack.h>
|
||
#include <linux/fs.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/mm.h>
|
||
#include <linux/elfcore.h>
|
||
#include <linux/smp.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/user.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/export.h>
|
||
#include <linux/ptrace.h>
|
||
#include <linux/notifier.h>
|
||
#include <linux/kprobes.h>
|
||
#include <linux/kdebug.h>
|
||
#include <linux/prctl.h>
|
||
#include <linux/uaccess.h>
|
||
#include <linux/io.h>
|
||
#include <linux/ftrace.h>
|
||
#include <linux/syscalls.h>
|
||
#include <linux/iommu.h>
|
||
|
||
#include <asm/processor.h>
|
||
#include <asm/pkru.h>
|
||
#include <asm/fpu/sched.h>
|
||
#include <asm/mmu_context.h>
|
||
#include <asm/prctl.h>
|
||
#include <asm/desc.h>
|
||
#include <asm/proto.h>
|
||
#include <asm/ia32.h>
|
||
#include <asm/debugreg.h>
|
||
#include <asm/switch_to.h>
|
||
#include <asm/xen/hypervisor.h>
|
||
#include <asm/vdso.h>
|
||
#include <asm/resctrl.h>
|
||
#include <asm/unistd.h>
|
||
#include <asm/fsgsbase.h>
|
||
#include <asm/fred.h>
|
||
#ifdef CONFIG_IA32_EMULATION
|
||
/* Not included via unistd.h */
|
||
#include <asm/unistd_32_ia32.h>
|
||
#endif
|
||
|
||
#include "process.h"
|
||
|
||
/* Prints also some state that isn't saved in the pt_regs */
|
||
void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
|
||
const char *log_lvl)
|
||
{
|
||
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
|
||
unsigned long d0, d1, d2, d3, d6, d7;
|
||
unsigned int fsindex, gsindex;
|
||
unsigned int ds, es;
|
||
|
||
show_iret_regs(regs, log_lvl);
|
||
|
||
if (regs->orig_ax != -1)
|
||
pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
|
||
else
|
||
pr_cont("\n");
|
||
|
||
printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
|
||
log_lvl, regs->ax, regs->bx, regs->cx);
|
||
printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
|
||
log_lvl, regs->dx, regs->si, regs->di);
|
||
printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
|
||
log_lvl, regs->bp, regs->r8, regs->r9);
|
||
printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
|
||
log_lvl, regs->r10, regs->r11, regs->r12);
|
||
printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
|
||
log_lvl, regs->r13, regs->r14, regs->r15);
|
||
|
||
if (mode == SHOW_REGS_SHORT)
|
||
return;
|
||
|
||
if (mode == SHOW_REGS_USER) {
|
||
rdmsrl(MSR_FS_BASE, fs);
|
||
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
||
printk("%sFS: %016lx GS: %016lx\n",
|
||
log_lvl, fs, shadowgs);
|
||
return;
|
||
}
|
||
|
||
asm("movl %%ds,%0" : "=r" (ds));
|
||
asm("movl %%es,%0" : "=r" (es));
|
||
asm("movl %%fs,%0" : "=r" (fsindex));
|
||
asm("movl %%gs,%0" : "=r" (gsindex));
|
||
|
||
rdmsrl(MSR_FS_BASE, fs);
|
||
rdmsrl(MSR_GS_BASE, gs);
|
||
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
||
|
||
cr0 = read_cr0();
|
||
cr2 = read_cr2();
|
||
cr3 = __read_cr3();
|
||
cr4 = __read_cr4();
|
||
|
||
printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
|
||
log_lvl, fs, fsindex, gs, gsindex, shadowgs);
|
||
printk("%sCS: %04x DS: %04x ES: %04x CR0: %016lx\n",
|
||
log_lvl, regs->cs, ds, es, cr0);
|
||
printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
|
||
log_lvl, cr2, cr3, cr4);
|
||
|
||
get_debugreg(d0, 0);
|
||
get_debugreg(d1, 1);
|
||
get_debugreg(d2, 2);
|
||
get_debugreg(d3, 3);
|
||
get_debugreg(d6, 6);
|
||
get_debugreg(d7, 7);
|
||
|
||
/* Only print out debug registers if they are in their non-default state. */
|
||
if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
|
||
(d6 == DR6_RESERVED) && (d7 == 0x400))) {
|
||
printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
|
||
log_lvl, d0, d1, d2);
|
||
printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
|
||
log_lvl, d3, d6, d7);
|
||
}
|
||
|
||
if (cr4 & X86_CR4_PKE)
|
||
printk("%sPKRU: %08x\n", log_lvl, read_pkru());
|
||
}
|
||
|
||
void release_thread(struct task_struct *dead_task)
|
||
{
|
||
WARN_ON(dead_task->mm);
|
||
}
|
||
|
||
enum which_selector {
|
||
FS,
|
||
GS
|
||
};
|
||
|
||
/*
|
||
* Out of line to be protected from kprobes and tracing. If this would be
|
||
* traced or probed than any access to a per CPU variable happens with
|
||
* the wrong GS.
|
||
*
|
||
* It is not used on Xen paravirt. When paravirt support is needed, it
|
||
* needs to be renamed with native_ prefix.
|
||
*/
|
||
static noinstr unsigned long __rdgsbase_inactive(void)
|
||
{
|
||
unsigned long gsbase;
|
||
|
||
lockdep_assert_irqs_disabled();
|
||
|
||
/*
|
||
* SWAPGS is no longer needed thus NOT allowed with FRED because
|
||
* FRED transitions ensure that an operating system can _always_
|
||
* operate with its own GS base address:
|
||
* - For events that occur in ring 3, FRED event delivery swaps
|
||
* the GS base address with the IA32_KERNEL_GS_BASE MSR.
|
||
* - ERETU (the FRED transition that returns to ring 3) also swaps
|
||
* the GS base address with the IA32_KERNEL_GS_BASE MSR.
|
||
*
|
||
* And the operating system can still setup the GS segment for a
|
||
* user thread without the need of loading a user thread GS with:
|
||
* - Using LKGS, available with FRED, to modify other attributes
|
||
* of the GS segment without compromising its ability always to
|
||
* operate with its own GS base address.
|
||
* - Accessing the GS segment base address for a user thread as
|
||
* before using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
|
||
*
|
||
* Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE
|
||
* MSR instead of the GS segment’s descriptor cache. As such, the
|
||
* operating system never changes its runtime GS base address.
|
||
*/
|
||
if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
|
||
!cpu_feature_enabled(X86_FEATURE_XENPV)) {
|
||
native_swapgs();
|
||
gsbase = rdgsbase();
|
||
native_swapgs();
|
||
} else {
|
||
instrumentation_begin();
|
||
rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
|
||
instrumentation_end();
|
||
}
|
||
|
||
return gsbase;
|
||
}
|
||
|
||
/*
|
||
* Out of line to be protected from kprobes and tracing. If this would be
|
||
* traced or probed than any access to a per CPU variable happens with
|
||
* the wrong GS.
|
||
*
|
||
* It is not used on Xen paravirt. When paravirt support is needed, it
|
||
* needs to be renamed with native_ prefix.
|
||
*/
|
||
static noinstr void __wrgsbase_inactive(unsigned long gsbase)
|
||
{
|
||
lockdep_assert_irqs_disabled();
|
||
|
||
if (!cpu_feature_enabled(X86_FEATURE_FRED) &&
|
||
!cpu_feature_enabled(X86_FEATURE_XENPV)) {
|
||
native_swapgs();
|
||
wrgsbase(gsbase);
|
||
native_swapgs();
|
||
} else {
|
||
instrumentation_begin();
|
||
wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
|
||
instrumentation_end();
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
|
||
* not available. The goal is to be reasonably fast on non-FSGSBASE systems.
|
||
* It's forcibly inlined because it'll generate better code and this function
|
||
* is hot.
|
||
*/
|
||
static __always_inline void save_base_legacy(struct task_struct *prev_p,
|
||
unsigned short selector,
|
||
enum which_selector which)
|
||
{
|
||
if (likely(selector == 0)) {
|
||
/*
|
||
* On Intel (without X86_BUG_NULL_SEG), the segment base could
|
||
* be the pre-existing saved base or it could be zero. On AMD
|
||
* (with X86_BUG_NULL_SEG), the segment base could be almost
|
||
* anything.
|
||
*
|
||
* This branch is very hot (it's hit twice on almost every
|
||
* context switch between 64-bit programs), and avoiding
|
||
* the RDMSR helps a lot, so we just assume that whatever
|
||
* value is already saved is correct. This matches historical
|
||
* Linux behavior, so it won't break existing applications.
|
||
*
|
||
* To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
|
||
* report that the base is zero, it needs to actually be zero:
|
||
* see the corresponding logic in load_seg_legacy.
|
||
*/
|
||
} else {
|
||
/*
|
||
* If the selector is 1, 2, or 3, then the base is zero on
|
||
* !X86_BUG_NULL_SEG CPUs and could be anything on
|
||
* X86_BUG_NULL_SEG CPUs. In the latter case, Linux
|
||
* has never attempted to preserve the base across context
|
||
* switches.
|
||
*
|
||
* If selector > 3, then it refers to a real segment, and
|
||
* saving the base isn't necessary.
|
||
*/
|
||
if (which == FS)
|
||
prev_p->thread.fsbase = 0;
|
||
else
|
||
prev_p->thread.gsbase = 0;
|
||
}
|
||
}
|
||
|
||
static __always_inline void save_fsgs(struct task_struct *task)
|
||
{
|
||
savesegment(fs, task->thread.fsindex);
|
||
savesegment(gs, task->thread.gsindex);
|
||
if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
|
||
/*
|
||
* If FSGSBASE is enabled, we can't make any useful guesses
|
||
* about the base, and user code expects us to save the current
|
||
* value. Fortunately, reading the base directly is efficient.
|
||
*/
|
||
task->thread.fsbase = rdfsbase();
|
||
task->thread.gsbase = __rdgsbase_inactive();
|
||
} else {
|
||
save_base_legacy(task, task->thread.fsindex, FS);
|
||
save_base_legacy(task, task->thread.gsindex, GS);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* While a process is running,current->thread.fsbase and current->thread.gsbase
|
||
* may not match the corresponding CPU registers (see save_base_legacy()).
|
||
*/
|
||
void current_save_fsgs(void)
|
||
{
|
||
unsigned long flags;
|
||
|
||
/* Interrupts need to be off for FSGSBASE */
|
||
local_irq_save(flags);
|
||
save_fsgs(current);
|
||
local_irq_restore(flags);
|
||
}
|
||
#if IS_ENABLED(CONFIG_KVM)
|
||
EXPORT_SYMBOL_GPL(current_save_fsgs);
|
||
#endif
|
||
|
||
static __always_inline void loadseg(enum which_selector which,
|
||
unsigned short sel)
|
||
{
|
||
if (which == FS)
|
||
loadsegment(fs, sel);
|
||
else
|
||
load_gs_index(sel);
|
||
}
|
||
|
||
static __always_inline void load_seg_legacy(unsigned short prev_index,
|
||
unsigned long prev_base,
|
||
unsigned short next_index,
|
||
unsigned long next_base,
|
||
enum which_selector which)
|
||
{
|
||
if (likely(next_index <= 3)) {
|
||
/*
|
||
* The next task is using 64-bit TLS, is not using this
|
||
* segment at all, or is having fun with arcane CPU features.
|
||
*/
|
||
if (next_base == 0) {
|
||
/*
|
||
* Nasty case: on AMD CPUs, we need to forcibly zero
|
||
* the base.
|
||
*/
|
||
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
||
loadseg(which, __USER_DS);
|
||
loadseg(which, next_index);
|
||
} else {
|
||
/*
|
||
* We could try to exhaustively detect cases
|
||
* under which we can skip the segment load,
|
||
* but there's really only one case that matters
|
||
* for performance: if both the previous and
|
||
* next states are fully zeroed, we can skip
|
||
* the load.
|
||
*
|
||
* (This assumes that prev_base == 0 has no
|
||
* false positives. This is the case on
|
||
* Intel-style CPUs.)
|
||
*/
|
||
if (likely(prev_index | next_index | prev_base))
|
||
loadseg(which, next_index);
|
||
}
|
||
} else {
|
||
if (prev_index != next_index)
|
||
loadseg(which, next_index);
|
||
wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
|
||
next_base);
|
||
}
|
||
} else {
|
||
/*
|
||
* The next task is using a real segment. Loading the selector
|
||
* is sufficient.
|
||
*/
|
||
loadseg(which, next_index);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Store prev's PKRU value and load next's PKRU value if they differ. PKRU
|
||
* is not XSTATE managed on context switch because that would require a
|
||
* lookup in the task's FPU xsave buffer and require to keep that updated
|
||
* in various places.
|
||
*/
|
||
static __always_inline void x86_pkru_load(struct thread_struct *prev,
|
||
struct thread_struct *next)
|
||
{
|
||
if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
|
||
return;
|
||
|
||
/* Stash the prev task's value: */
|
||
prev->pkru = rdpkru();
|
||
|
||
/*
|
||
* PKRU writes are slightly expensive. Avoid them when not
|
||
* strictly necessary:
|
||
*/
|
||
if (prev->pkru != next->pkru)
|
||
wrpkru(next->pkru);
|
||
}
|
||
|
||
static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
|
||
struct thread_struct *next)
|
||
{
|
||
if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
|
||
/* Update the FS and GS selectors if they could have changed. */
|
||
if (unlikely(prev->fsindex || next->fsindex))
|
||
loadseg(FS, next->fsindex);
|
||
if (unlikely(prev->gsindex || next->gsindex))
|
||
loadseg(GS, next->gsindex);
|
||
|
||
/* Update the bases. */
|
||
wrfsbase(next->fsbase);
|
||
__wrgsbase_inactive(next->gsbase);
|
||
} else {
|
||
load_seg_legacy(prev->fsindex, prev->fsbase,
|
||
next->fsindex, next->fsbase, FS);
|
||
load_seg_legacy(prev->gsindex, prev->gsbase,
|
||
next->gsindex, next->gsbase, GS);
|
||
}
|
||
}
|
||
|
||
unsigned long x86_fsgsbase_read_task(struct task_struct *task,
|
||
unsigned short selector)
|
||
{
|
||
unsigned short idx = selector >> 3;
|
||
unsigned long base;
|
||
|
||
if (likely((selector & SEGMENT_TI_MASK) == 0)) {
|
||
if (unlikely(idx >= GDT_ENTRIES))
|
||
return 0;
|
||
|
||
/*
|
||
* There are no user segments in the GDT with nonzero bases
|
||
* other than the TLS segments.
|
||
*/
|
||
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
|
||
return 0;
|
||
|
||
idx -= GDT_ENTRY_TLS_MIN;
|
||
base = get_desc_base(&task->thread.tls_array[idx]);
|
||
} else {
|
||
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
||
struct ldt_struct *ldt;
|
||
|
||
/*
|
||
* If performance here mattered, we could protect the LDT
|
||
* with RCU. This is a slow path, though, so we can just
|
||
* take the mutex.
|
||
*/
|
||
mutex_lock(&task->mm->context.lock);
|
||
ldt = task->mm->context.ldt;
|
||
if (unlikely(!ldt || idx >= ldt->nr_entries))
|
||
base = 0;
|
||
else
|
||
base = get_desc_base(ldt->entries + idx);
|
||
mutex_unlock(&task->mm->context.lock);
|
||
#else
|
||
base = 0;
|
||
#endif
|
||
}
|
||
|
||
return base;
|
||
}
|
||
|
||
unsigned long x86_gsbase_read_cpu_inactive(void)
|
||
{
|
||
unsigned long gsbase;
|
||
|
||
if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
|
||
unsigned long flags;
|
||
|
||
local_irq_save(flags);
|
||
gsbase = __rdgsbase_inactive();
|
||
local_irq_restore(flags);
|
||
} else {
|
||
rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
|
||
}
|
||
|
||
return gsbase;
|
||
}
|
||
|
||
void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
|
||
{
|
||
if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
|
||
unsigned long flags;
|
||
|
||
local_irq_save(flags);
|
||
__wrgsbase_inactive(gsbase);
|
||
local_irq_restore(flags);
|
||
} else {
|
||
wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
|
||
}
|
||
}
|
||
|
||
unsigned long x86_fsbase_read_task(struct task_struct *task)
|
||
{
|
||
unsigned long fsbase;
|
||
|
||
if (task == current)
|
||
fsbase = x86_fsbase_read_cpu();
|
||
else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
|
||
(task->thread.fsindex == 0))
|
||
fsbase = task->thread.fsbase;
|
||
else
|
||
fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
|
||
|
||
return fsbase;
|
||
}
|
||
|
||
unsigned long x86_gsbase_read_task(struct task_struct *task)
|
||
{
|
||
unsigned long gsbase;
|
||
|
||
if (task == current)
|
||
gsbase = x86_gsbase_read_cpu_inactive();
|
||
else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
|
||
(task->thread.gsindex == 0))
|
||
gsbase = task->thread.gsbase;
|
||
else
|
||
gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
|
||
|
||
return gsbase;
|
||
}
|
||
|
||
void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
|
||
{
|
||
WARN_ON_ONCE(task == current);
|
||
|
||
task->thread.fsbase = fsbase;
|
||
}
|
||
|
||
void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
|
||
{
|
||
WARN_ON_ONCE(task == current);
|
||
|
||
task->thread.gsbase = gsbase;
|
||
}
|
||
|
||
static void
|
||
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
||
unsigned long new_sp,
|
||
u16 _cs, u16 _ss, u16 _ds)
|
||
{
|
||
WARN_ON_ONCE(regs != current_pt_regs());
|
||
|
||
if (static_cpu_has(X86_BUG_NULL_SEG)) {
|
||
/* Loading zero below won't clear the base. */
|
||
loadsegment(fs, __USER_DS);
|
||
load_gs_index(__USER_DS);
|
||
}
|
||
|
||
reset_thread_features();
|
||
|
||
loadsegment(fs, 0);
|
||
loadsegment(es, _ds);
|
||
loadsegment(ds, _ds);
|
||
load_gs_index(0);
|
||
|
||
regs->ip = new_ip;
|
||
regs->sp = new_sp;
|
||
regs->csx = _cs;
|
||
regs->ssx = _ss;
|
||
/*
|
||
* Allow single-step trap and NMI when starting a new task, thus
|
||
* once the new task enters user space, single-step trap and NMI
|
||
* are both enabled immediately.
|
||
*
|
||
* Entering a new task is logically speaking a return from a
|
||
* system call (exec, fork, clone, etc.). As such, if ptrace
|
||
* enables single stepping a single step exception should be
|
||
* allowed to trigger immediately upon entering user space.
|
||
* This is not optional.
|
||
*
|
||
* NMI should *never* be disabled in user space. As such, this
|
||
* is an optional, opportunistic way to catch errors.
|
||
*
|
||
* Paranoia: High-order 48 bits above the lowest 16 bit SS are
|
||
* discarded by the legacy IRET instruction on all Intel, AMD,
|
||
* and Cyrix/Centaur/VIA CPUs, thus can be set unconditionally,
|
||
* even when FRED is not enabled. But we choose the safer side
|
||
* to use these bits only when FRED is enabled.
|
||
*/
|
||
if (cpu_feature_enabled(X86_FEATURE_FRED)) {
|
||
regs->fred_ss.swevent = true;
|
||
regs->fred_ss.nmi = true;
|
||
}
|
||
|
||
regs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
|
||
}
|
||
|
||
void
|
||
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
||
{
|
||
start_thread_common(regs, new_ip, new_sp,
|
||
__USER_CS, __USER_DS, 0);
|
||
}
|
||
EXPORT_SYMBOL_GPL(start_thread);
|
||
|
||
#ifdef CONFIG_COMPAT
|
||
void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
|
||
{
|
||
start_thread_common(regs, new_ip, new_sp,
|
||
x32 ? __USER_CS : __USER32_CS,
|
||
__USER_DS, __USER_DS);
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* switch_to(x,y) should switch tasks from x to y.
|
||
*
|
||
* This could still be optimized:
|
||
* - fold all the options into a flag word and test it with a single test.
|
||
* - could test fs/gs bitsliced
|
||
*
|
||
* Kprobes not supported here. Set the probe on schedule instead.
|
||
* Function graph tracer not supported too.
|
||
*/
|
||
__no_kmsan_checks
|
||
__visible __notrace_funcgraph struct task_struct *
|
||
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
||
{
|
||
struct thread_struct *prev = &prev_p->thread;
|
||
struct thread_struct *next = &next_p->thread;
|
||
int cpu = smp_processor_id();
|
||
|
||
WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
|
||
this_cpu_read(pcpu_hot.hardirq_stack_inuse));
|
||
|
||
if (!test_tsk_thread_flag(prev_p, TIF_NEED_FPU_LOAD))
|
||
switch_fpu_prepare(prev_p, cpu);
|
||
|
||
/* We must save %fs and %gs before load_TLS() because
|
||
* %fs and %gs may be cleared by load_TLS().
|
||
*
|
||
* (e.g. xen_load_tls())
|
||
*/
|
||
save_fsgs(prev_p);
|
||
|
||
/*
|
||
* Load TLS before restoring any segments so that segment loads
|
||
* reference the correct GDT entries.
|
||
*/
|
||
load_TLS(next, cpu);
|
||
|
||
/*
|
||
* Leave lazy mode, flushing any hypercalls made here. This
|
||
* must be done after loading TLS entries in the GDT but before
|
||
* loading segments that might reference them.
|
||
*/
|
||
arch_end_context_switch(next_p);
|
||
|
||
/* Switch DS and ES.
|
||
*
|
||
* Reading them only returns the selectors, but writing them (if
|
||
* nonzero) loads the full descriptor from the GDT or LDT. The
|
||
* LDT for next is loaded in switch_mm, and the GDT is loaded
|
||
* above.
|
||
*
|
||
* We therefore need to write new values to the segment
|
||
* registers on every context switch unless both the new and old
|
||
* values are zero.
|
||
*
|
||
* Note that we don't need to do anything for CS and SS, as
|
||
* those are saved and restored as part of pt_regs.
|
||
*/
|
||
savesegment(es, prev->es);
|
||
if (unlikely(next->es | prev->es))
|
||
loadsegment(es, next->es);
|
||
|
||
savesegment(ds, prev->ds);
|
||
if (unlikely(next->ds | prev->ds))
|
||
loadsegment(ds, next->ds);
|
||
|
||
x86_fsgsbase_load(prev, next);
|
||
|
||
x86_pkru_load(prev, next);
|
||
|
||
/*
|
||
* Switch the PDA and FPU contexts.
|
||
*/
|
||
raw_cpu_write(pcpu_hot.current_task, next_p);
|
||
raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
|
||
|
||
switch_fpu_finish(next_p);
|
||
|
||
/* Reload sp0. */
|
||
update_task_stack(next_p);
|
||
|
||
switch_to_extra(prev_p, next_p);
|
||
|
||
if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
|
||
/*
|
||
* AMD CPUs have a misfeature: SYSRET sets the SS selector but
|
||
* does not update the cached descriptor. As a result, if we
|
||
* do SYSRET while SS is NULL, we'll end up in user mode with
|
||
* SS apparently equal to __USER_DS but actually unusable.
|
||
*
|
||
* The straightforward workaround would be to fix it up just
|
||
* before SYSRET, but that would slow down the system call
|
||
* fast paths. Instead, we ensure that SS is never NULL in
|
||
* system call context. We do this by replacing NULL SS
|
||
* selectors at every context switch. SYSCALL sets up a valid
|
||
* SS, so the only way to get NULL is to re-enter the kernel
|
||
* from CPL 3 through an interrupt. Since that can't happen
|
||
* in the same task as a running syscall, we are guaranteed to
|
||
* context switch between every interrupt vector entry and a
|
||
* subsequent SYSRET.
|
||
*
|
||
* We read SS first because SS reads are much faster than
|
||
* writes. Out of caution, we force SS to __KERNEL_DS even if
|
||
* it previously had a different non-NULL value.
|
||
*/
|
||
unsigned short ss_sel;
|
||
savesegment(ss, ss_sel);
|
||
if (ss_sel != __KERNEL_DS)
|
||
loadsegment(ss, __KERNEL_DS);
|
||
}
|
||
|
||
/* Load the Intel cache allocation PQR MSR. */
|
||
resctrl_sched_in(next_p);
|
||
|
||
return prev_p;
|
||
}
|
||
|
||
void set_personality_64bit(void)
|
||
{
|
||
/* inherit personality from parent */
|
||
|
||
/* Make sure to be in 64bit mode */
|
||
clear_thread_flag(TIF_ADDR32);
|
||
/* Pretend that this comes from a 64bit execve */
|
||
task_pt_regs(current)->orig_ax = __NR_execve;
|
||
current_thread_info()->status &= ~TS_COMPAT;
|
||
if (current->mm)
|
||
__set_bit(MM_CONTEXT_HAS_VSYSCALL, ¤t->mm->context.flags);
|
||
|
||
/* TBD: overwrites user setup. Should have two bits.
|
||
But 64bit processes have always behaved this way,
|
||
so it's not too bad. The main problem is just that
|
||
32bit children are affected again. */
|
||
current->personality &= ~READ_IMPLIES_EXEC;
|
||
}
|
||
|
||
static void __set_personality_x32(void)
|
||
{
|
||
#ifdef CONFIG_X86_X32_ABI
|
||
if (current->mm)
|
||
current->mm->context.flags = 0;
|
||
|
||
current->personality &= ~READ_IMPLIES_EXEC;
|
||
/*
|
||
* in_32bit_syscall() uses the presence of the x32 syscall bit
|
||
* flag to determine compat status. The x86 mmap() code relies on
|
||
* the syscall bitness so set x32 syscall bit right here to make
|
||
* in_32bit_syscall() work during exec().
|
||
*
|
||
* Pretend to come from a x32 execve.
|
||
*/
|
||
task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
|
||
current_thread_info()->status &= ~TS_COMPAT;
|
||
#endif
|
||
}
|
||
|
||
static void __set_personality_ia32(void)
|
||
{
|
||
#ifdef CONFIG_IA32_EMULATION
|
||
if (current->mm) {
|
||
/*
|
||
* uprobes applied to this MM need to know this and
|
||
* cannot use user_64bit_mode() at that time.
|
||
*/
|
||
__set_bit(MM_CONTEXT_UPROBE_IA32, ¤t->mm->context.flags);
|
||
}
|
||
|
||
current->personality |= force_personality32;
|
||
/* Prepare the first "return" to user space */
|
||
task_pt_regs(current)->orig_ax = __NR_ia32_execve;
|
||
current_thread_info()->status |= TS_COMPAT;
|
||
#endif
|
||
}
|
||
|
||
void set_personality_ia32(bool x32)
|
||
{
|
||
/* Make sure to be in 32bit mode */
|
||
set_thread_flag(TIF_ADDR32);
|
||
|
||
if (x32)
|
||
__set_personality_x32();
|
||
else
|
||
__set_personality_ia32();
|
||
}
|
||
EXPORT_SYMBOL_GPL(set_personality_ia32);
|
||
|
||
#ifdef CONFIG_CHECKPOINT_RESTORE
|
||
static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
|
||
{
|
||
int ret;
|
||
|
||
ret = map_vdso_once(image, addr);
|
||
if (ret)
|
||
return ret;
|
||
|
||
return (long)image->size;
|
||
}
|
||
#endif
|
||
|
||
#ifdef CONFIG_ADDRESS_MASKING
|
||
|
||
#define LAM_U57_BITS 6
|
||
|
||
static int prctl_enable_tagged_addr(struct mm_struct *mm, unsigned long nr_bits)
|
||
{
|
||
if (!cpu_feature_enabled(X86_FEATURE_LAM))
|
||
return -ENODEV;
|
||
|
||
/* PTRACE_ARCH_PRCTL */
|
||
if (current->mm != mm)
|
||
return -EINVAL;
|
||
|
||
if (mm_valid_pasid(mm) &&
|
||
!test_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &mm->context.flags))
|
||
return -EINVAL;
|
||
|
||
if (mmap_write_lock_killable(mm))
|
||
return -EINTR;
|
||
|
||
if (test_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags)) {
|
||
mmap_write_unlock(mm);
|
||
return -EBUSY;
|
||
}
|
||
|
||
if (!nr_bits) {
|
||
mmap_write_unlock(mm);
|
||
return -EINVAL;
|
||
} else if (nr_bits <= LAM_U57_BITS) {
|
||
mm->context.lam_cr3_mask = X86_CR3_LAM_U57;
|
||
mm->context.untag_mask = ~GENMASK(62, 57);
|
||
} else {
|
||
mmap_write_unlock(mm);
|
||
return -EINVAL;
|
||
}
|
||
|
||
write_cr3(__read_cr3() | mm->context.lam_cr3_mask);
|
||
set_tlbstate_lam_mode(mm);
|
||
set_bit(MM_CONTEXT_LOCK_LAM, &mm->context.flags);
|
||
|
||
mmap_write_unlock(mm);
|
||
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
|
||
{
|
||
int ret = 0;
|
||
|
||
switch (option) {
|
||
case ARCH_SET_GS: {
|
||
if (unlikely(arg2 >= TASK_SIZE_MAX))
|
||
return -EPERM;
|
||
|
||
preempt_disable();
|
||
/*
|
||
* ARCH_SET_GS has always overwritten the index
|
||
* and the base. Zero is the most sensible value
|
||
* to put in the index, and is the only value that
|
||
* makes any sense if FSGSBASE is unavailable.
|
||
*/
|
||
if (task == current) {
|
||
loadseg(GS, 0);
|
||
x86_gsbase_write_cpu_inactive(arg2);
|
||
|
||
/*
|
||
* On non-FSGSBASE systems, save_base_legacy() expects
|
||
* that we also fill in thread.gsbase.
|
||
*/
|
||
task->thread.gsbase = arg2;
|
||
|
||
} else {
|
||
task->thread.gsindex = 0;
|
||
x86_gsbase_write_task(task, arg2);
|
||
}
|
||
preempt_enable();
|
||
break;
|
||
}
|
||
case ARCH_SET_FS: {
|
||
/*
|
||
* Not strictly needed for %fs, but do it for symmetry
|
||
* with %gs
|
||
*/
|
||
if (unlikely(arg2 >= TASK_SIZE_MAX))
|
||
return -EPERM;
|
||
|
||
preempt_disable();
|
||
/*
|
||
* Set the selector to 0 for the same reason
|
||
* as %gs above.
|
||
*/
|
||
if (task == current) {
|
||
loadseg(FS, 0);
|
||
x86_fsbase_write_cpu(arg2);
|
||
|
||
/*
|
||
* On non-FSGSBASE systems, save_base_legacy() expects
|
||
* that we also fill in thread.fsbase.
|
||
*/
|
||
task->thread.fsbase = arg2;
|
||
} else {
|
||
task->thread.fsindex = 0;
|
||
x86_fsbase_write_task(task, arg2);
|
||
}
|
||
preempt_enable();
|
||
break;
|
||
}
|
||
case ARCH_GET_FS: {
|
||
unsigned long base = x86_fsbase_read_task(task);
|
||
|
||
ret = put_user(base, (unsigned long __user *)arg2);
|
||
break;
|
||
}
|
||
case ARCH_GET_GS: {
|
||
unsigned long base = x86_gsbase_read_task(task);
|
||
|
||
ret = put_user(base, (unsigned long __user *)arg2);
|
||
break;
|
||
}
|
||
|
||
#ifdef CONFIG_CHECKPOINT_RESTORE
|
||
# ifdef CONFIG_X86_X32_ABI
|
||
case ARCH_MAP_VDSO_X32:
|
||
return prctl_map_vdso(&vdso_image_x32, arg2);
|
||
# endif
|
||
# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
||
case ARCH_MAP_VDSO_32:
|
||
return prctl_map_vdso(&vdso_image_32, arg2);
|
||
# endif
|
||
case ARCH_MAP_VDSO_64:
|
||
return prctl_map_vdso(&vdso_image_64, arg2);
|
||
#endif
|
||
#ifdef CONFIG_ADDRESS_MASKING
|
||
case ARCH_GET_UNTAG_MASK:
|
||
return put_user(task->mm->context.untag_mask,
|
||
(unsigned long __user *)arg2);
|
||
case ARCH_ENABLE_TAGGED_ADDR:
|
||
return prctl_enable_tagged_addr(task->mm, arg2);
|
||
case ARCH_FORCE_TAGGED_SVA:
|
||
if (current != task)
|
||
return -EINVAL;
|
||
set_bit(MM_CONTEXT_FORCE_TAGGED_SVA, &task->mm->context.flags);
|
||
return 0;
|
||
case ARCH_GET_MAX_TAG_BITS:
|
||
if (!cpu_feature_enabled(X86_FEATURE_LAM))
|
||
return put_user(0, (unsigned long __user *)arg2);
|
||
else
|
||
return put_user(LAM_U57_BITS, (unsigned long __user *)arg2);
|
||
#endif
|
||
case ARCH_SHSTK_ENABLE:
|
||
case ARCH_SHSTK_DISABLE:
|
||
case ARCH_SHSTK_LOCK:
|
||
case ARCH_SHSTK_UNLOCK:
|
||
case ARCH_SHSTK_STATUS:
|
||
return shstk_prctl(task, option, arg2);
|
||
default:
|
||
ret = -EINVAL;
|
||
break;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
|
||
{
|
||
long ret;
|
||
|
||
ret = do_arch_prctl_64(current, option, arg2);
|
||
if (ret == -EINVAL)
|
||
ret = do_arch_prctl_common(option, arg2);
|
||
|
||
return ret;
|
||
}
|
||
|
||
#ifdef CONFIG_IA32_EMULATION
|
||
COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
|
||
{
|
||
return do_arch_prctl_common(option, arg2);
|
||
}
|
||
#endif
|
||
|
||
unsigned long KSTK_ESP(struct task_struct *task)
|
||
{
|
||
return task_pt_regs(task)->sp;
|
||
}
|