mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 08:14:15 +08:00
a2c0b0fbe0
The alternatives code must be `noinstr` such that it does not patch itself, as the cache invalidation is only performed after all the alternatives have been applied. Mark patch_alternative() as `noinstr`. Mark branch_insn_requires_update() and get_alt_insn() with `__always_inline` since they are both only called through patch_alternative(). Booting a kernel in QEMU TCG with KCSAN=y and ARM64_USE_LSE_ATOMICS=y caused a boot hang: [ 0.241121] CPU: All CPU(s) started at EL2 The alternatives code was patching the atomics in __tsan_read4() from LL/SC atomics to LSE atomics. The following fragment is using LL/SC atomics in the .text section: | <__tsan_unaligned_read4+304>: ldxr x6, [x2] | <__tsan_unaligned_read4+308>: add x6, x6, x5 | <__tsan_unaligned_read4+312>: stxr w7, x6, [x2] | <__tsan_unaligned_read4+316>: cbnz w7, <__tsan_unaligned_read4+304> This LL/SC atomic sequence was to be replaced with LSE atomics. However since the alternatives code was instrumentable, __tsan_read4() was being called after only the first instruction was replaced, which led to the following code in memory: | <__tsan_unaligned_read4+304>: ldadd x5, x6, [x2] | <__tsan_unaligned_read4+308>: add x6, x6, x5 | <__tsan_unaligned_read4+312>: stxr w7, x6, [x2] | <__tsan_unaligned_read4+316>: cbnz w7, <__tsan_unaligned_read4+304> This caused an infinite loop as the `stxr` instruction never completed successfully, so `w7` was always 0. Signed-off-by: Joey Gouly <joey.gouly@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20220405104733.11476-1-joey.gouly@arm.com Signed-off-by: Will Deacon <will@kernel.org>
264 lines
6.7 KiB
C
264 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* alternative runtime patching
|
|
* inspired by the x86 version
|
|
*
|
|
* Copyright (C) 2014 ARM Ltd.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "alternatives: " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/sections.h>
|
|
#include <linux/stop_machine.h>
|
|
|
|
#define __ALT_PTR(a, f) ((void *)&(a)->f + (a)->f)
|
|
#define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset)
|
|
#define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset)
|
|
|
|
/* Volatile, as we may be patching the guts of READ_ONCE() */
|
|
static volatile int all_alternatives_applied;
|
|
|
|
static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS);
|
|
|
|
struct alt_region {
|
|
struct alt_instr *begin;
|
|
struct alt_instr *end;
|
|
};
|
|
|
|
bool alternative_is_applied(u16 cpufeature)
|
|
{
|
|
if (WARN_ON(cpufeature >= ARM64_NCAPS))
|
|
return false;
|
|
|
|
return test_bit(cpufeature, applied_alternatives);
|
|
}
|
|
|
|
/*
|
|
* Check if the target PC is within an alternative block.
|
|
*/
|
|
static __always_inline bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc)
|
|
{
|
|
unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt);
|
|
return !(pc >= replptr && pc <= (replptr + alt->alt_len));
|
|
}
|
|
|
|
#define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1))
|
|
|
|
static __always_inline u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr)
|
|
{
|
|
u32 insn;
|
|
|
|
insn = le32_to_cpu(*altinsnptr);
|
|
|
|
if (aarch64_insn_is_branch_imm(insn)) {
|
|
s32 offset = aarch64_get_branch_offset(insn);
|
|
unsigned long target;
|
|
|
|
target = (unsigned long)altinsnptr + offset;
|
|
|
|
/*
|
|
* If we're branching inside the alternate sequence,
|
|
* do not rewrite the instruction, as it is already
|
|
* correct. Otherwise, generate the new instruction.
|
|
*/
|
|
if (branch_insn_requires_update(alt, target)) {
|
|
offset = target - (unsigned long)insnptr;
|
|
insn = aarch64_set_branch_offset(insn, offset);
|
|
}
|
|
} else if (aarch64_insn_is_adrp(insn)) {
|
|
s32 orig_offset, new_offset;
|
|
unsigned long target;
|
|
|
|
/*
|
|
* If we're replacing an adrp instruction, which uses PC-relative
|
|
* immediate addressing, adjust the offset to reflect the new
|
|
* PC. adrp operates on 4K aligned addresses.
|
|
*/
|
|
orig_offset = aarch64_insn_adrp_get_offset(insn);
|
|
target = align_down(altinsnptr, SZ_4K) + orig_offset;
|
|
new_offset = target - align_down(insnptr, SZ_4K);
|
|
insn = aarch64_insn_adrp_set_offset(insn, new_offset);
|
|
} else if (aarch64_insn_uses_literal(insn)) {
|
|
/*
|
|
* Disallow patching unhandled instructions using PC relative
|
|
* literal addresses
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
return insn;
|
|
}
|
|
|
|
static noinstr void patch_alternative(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
__le32 *replptr;
|
|
int i;
|
|
|
|
replptr = ALT_REPL_PTR(alt);
|
|
for (i = 0; i < nr_inst; i++) {
|
|
u32 insn;
|
|
|
|
insn = get_alt_insn(alt, origptr + i, replptr + i);
|
|
updptr[i] = cpu_to_le32(insn);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We provide our own, private D-cache cleaning function so that we don't
|
|
* accidentally call into the cache.S code, which is patched by us at
|
|
* runtime.
|
|
*/
|
|
static void clean_dcache_range_nopatch(u64 start, u64 end)
|
|
{
|
|
u64 cur, d_size, ctr_el0;
|
|
|
|
ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
|
|
d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0,
|
|
CTR_DMINLINE_SHIFT);
|
|
cur = start & ~(d_size - 1);
|
|
do {
|
|
/*
|
|
* We must clean+invalidate to the PoC in order to avoid
|
|
* Cortex-A53 errata 826319, 827319, 824069 and 819472
|
|
* (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE)
|
|
*/
|
|
asm volatile("dc civac, %0" : : "r" (cur) : "memory");
|
|
} while (cur += d_size, cur < end);
|
|
}
|
|
|
|
static void __nocfi __apply_alternatives(struct alt_region *region, bool is_module,
|
|
unsigned long *feature_mask)
|
|
{
|
|
struct alt_instr *alt;
|
|
__le32 *origptr, *updptr;
|
|
alternative_cb_t alt_cb;
|
|
|
|
for (alt = region->begin; alt < region->end; alt++) {
|
|
int nr_inst;
|
|
|
|
if (!test_bit(alt->cpufeature, feature_mask))
|
|
continue;
|
|
|
|
/* Use ARM64_CB_PATCH as an unconditional patch */
|
|
if (alt->cpufeature < ARM64_CB_PATCH &&
|
|
!cpus_have_cap(alt->cpufeature))
|
|
continue;
|
|
|
|
if (alt->cpufeature == ARM64_CB_PATCH)
|
|
BUG_ON(alt->alt_len != 0);
|
|
else
|
|
BUG_ON(alt->alt_len != alt->orig_len);
|
|
|
|
pr_info_once("patching kernel code\n");
|
|
|
|
origptr = ALT_ORIG_PTR(alt);
|
|
updptr = is_module ? origptr : lm_alias(origptr);
|
|
nr_inst = alt->orig_len / AARCH64_INSN_SIZE;
|
|
|
|
if (alt->cpufeature < ARM64_CB_PATCH)
|
|
alt_cb = patch_alternative;
|
|
else
|
|
alt_cb = ALT_REPL_PTR(alt);
|
|
|
|
alt_cb(alt, origptr, updptr, nr_inst);
|
|
|
|
if (!is_module) {
|
|
clean_dcache_range_nopatch((u64)origptr,
|
|
(u64)(origptr + nr_inst));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The core module code takes care of cache maintenance in
|
|
* flush_module_icache().
|
|
*/
|
|
if (!is_module) {
|
|
dsb(ish);
|
|
icache_inval_all_pou();
|
|
isb();
|
|
|
|
/* Ignore ARM64_CB bit from feature mask */
|
|
bitmap_or(applied_alternatives, applied_alternatives,
|
|
feature_mask, ARM64_NCAPS);
|
|
bitmap_and(applied_alternatives, applied_alternatives,
|
|
cpu_hwcaps, ARM64_NCAPS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We might be patching the stop_machine state machine, so implement a
|
|
* really simple polling protocol here.
|
|
*/
|
|
static int __apply_alternatives_multi_stop(void *unused)
|
|
{
|
|
struct alt_region region = {
|
|
.begin = (struct alt_instr *)__alt_instructions,
|
|
.end = (struct alt_instr *)__alt_instructions_end,
|
|
};
|
|
|
|
/* We always have a CPU 0 at this point (__init) */
|
|
if (smp_processor_id()) {
|
|
while (!all_alternatives_applied)
|
|
cpu_relax();
|
|
isb();
|
|
} else {
|
|
DECLARE_BITMAP(remaining_capabilities, ARM64_NPATCHABLE);
|
|
|
|
bitmap_complement(remaining_capabilities, boot_capabilities,
|
|
ARM64_NPATCHABLE);
|
|
|
|
BUG_ON(all_alternatives_applied);
|
|
__apply_alternatives(®ion, false, remaining_capabilities);
|
|
/* Barriers provided by the cache flushing */
|
|
all_alternatives_applied = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __init apply_alternatives_all(void)
|
|
{
|
|
/* better not try code patching on a live SMP system */
|
|
stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask);
|
|
}
|
|
|
|
/*
|
|
* This is called very early in the boot process (directly after we run
|
|
* a feature detect on the boot CPU). No need to worry about other CPUs
|
|
* here.
|
|
*/
|
|
void __init apply_boot_alternatives(void)
|
|
{
|
|
struct alt_region region = {
|
|
.begin = (struct alt_instr *)__alt_instructions,
|
|
.end = (struct alt_instr *)__alt_instructions_end,
|
|
};
|
|
|
|
/* If called on non-boot cpu things could go wrong */
|
|
WARN_ON(smp_processor_id() != 0);
|
|
|
|
__apply_alternatives(®ion, false, &boot_capabilities[0]);
|
|
}
|
|
|
|
#ifdef CONFIG_MODULES
|
|
void apply_alternatives_module(void *start, size_t length)
|
|
{
|
|
struct alt_region region = {
|
|
.begin = start,
|
|
.end = start + length,
|
|
};
|
|
DECLARE_BITMAP(all_capabilities, ARM64_NPATCHABLE);
|
|
|
|
bitmap_fill(all_capabilities, ARM64_NPATCHABLE);
|
|
|
|
__apply_alternatives(®ion, true, &all_capabilities[0]);
|
|
}
|
|
#endif
|