linux/arch/arm64/kernel/fpsimd.c
Linus Torvalds 6d75c6f40a arm64 updates for 6.9:
* Reorganise the arm64 kernel VA space and add support for LPA2 (at
   stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address range
   with 4KB and 16KB pages
 
 * Enable Rust on arm64
 
 * Support for the 2023 dpISA extensions (data processing ISA), host only
 
 * arm64 perf updates:
 
   - StarFive's StarLink (integrates one or more CPU cores with a shared
     L3 memory system) PMU support
 
   - Enable HiSilicon Erratum 162700402 quirk for HIP09
 
   - Several updates for the HiSilicon PCIe PMU driver
 
   - Arm CoreSight PMU support
 
   - Convert all drivers under drivers/perf/ to use .remove_new()
 
 * Miscellaneous:
 
   - Don't enable workarounds for "rare" errata by default
 
   - Clean up the DAIF flags handling for EL0 returns (in preparation for
     NMI support)
 
   - Kselftest update for ptrace()
 
   - Update some of the sysreg field definitions
 
   - Slight improvement in the code generation for inline asm I/O
     accessors to permit offset addressing
 
   - kretprobes: acquire regs via a BRK exception (previously done via a
     trampoline handler)
 
   - SVE/SME cleanups, comment updates
 
   - Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously disabled
     due to gcc silently ignoring -falign-functions=N)
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmXxiSgACgkQa9axLQDI
 XvHd7hAAjQrQqxJogPT2ahM5/gxct8qTrXpIgX0B1Y7bb5R8ztvOUN9MJNuDyRsj
 0s28SSZw387LReM5OUu+U6G/iahcuNAyP/8d9qeac32Tidd255fV3KPEh4C4eC+u
 0HeOqLBZ+stmNoa71tBC2K6SmchizhYyYduvRnri8km8K4OMDawHWqWRTXl0PNRT
 RMVJvZTDJMPfMBFeD4+B7EnSFOoP14tKCw9MZvlbpT2PEV0kINjhCQiojW2jJgqv
 w36vm/dhwsg1avSzT1xhy3KE+m+7n28+IC/wr1HB7c1WumvYKv7Z84ieCp3PlO3Z
 owvVO7dKJC6X3RkoY6Kge5p2RHU6poDerDVHYiAvG+Zi57nrDmHyAubskThsGTGR
 AibSEeJ5nQ0yM6hx7zAIQa5XEo4l0svD1ZM7NynY+5JR44W9cdAH3SnEsvIBMGIf
 /ja+iZ1W4ZQnIESQXD5uDPSxILfqQ8Ebhdorpw+Qg3rB7OhdTdGSSGQCi6V2PcJH
 d/ErFO+i0lFRBPJtBbUAN4EEu3HJcVYEoEnVJYQahC+6KyNGLxO+7L6sH0YO7Pag
 P1LRa6h8ktuBMrbCrOPWdmJYNDYCbb5rRtmcCwO0ItZ4g5tYWp9djFc8pyctCaNB
 MZxxRrUCNwXTOcFTDiYzyk+JCvpf3EvXfvj8AH+P8BMjFWgqHqw=
 =KTD/
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "The major features are support for LPA2 (52-bit VA/PA with 4K and 16K
  pages), the dpISA extension and Rust enabled on arm64. The changes are
  mostly contained within the usual arch/arm64/, drivers/perf, the arm64
  Documentation and kselftests. The exception is the Rust support which
  touches some generic build files.

  Summary:

   - Reorganise the arm64 kernel VA space and add support for LPA2 (at
     stage 1, KVM stage 2 was merged earlier) - 52-bit VA/PA address
     range with 4KB and 16KB pages

   - Enable Rust on arm64

   - Support for the 2023 dpISA extensions (data processing ISA), host
     only

   - arm64 perf updates:

      - StarFive's StarLink (integrates one or more CPU cores with a
        shared L3 memory system) PMU support

      - Enable HiSilicon Erratum 162700402 quirk for HIP09

      - Several updates for the HiSilicon PCIe PMU driver

      - Arm CoreSight PMU support

      - Convert all drivers under drivers/perf/ to use .remove_new()

   - Miscellaneous:

      - Don't enable workarounds for "rare" errata by default

      - Clean up the DAIF flags handling for EL0 returns (in preparation
        for NMI support)

      - Kselftest update for ptrace()

      - Update some of the sysreg field definitions

      - Slight improvement in the code generation for inline asm I/O
        accessors to permit offset addressing

      - kretprobes: acquire regs via a BRK exception (previously done
        via a trampoline handler)

      - SVE/SME cleanups, comment updates

      - Allow CALL_OPS+CC_OPTIMIZE_FOR_SIZE with clang (previously
        disabled due to gcc silently ignoring -falign-functions=N)"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (134 commits)
  Revert "mm: add arch hook to validate mmap() prot flags"
  Revert "arm64: mm: add support for WXN memory translation attribute"
  Revert "ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512"
  ARM64: Dynamically allocate cpumasks and increase supported CPUs to 512
  kselftest/arm64: Add 2023 DPISA hwcap test coverage
  kselftest/arm64: Add basic FPMR test
  kselftest/arm64: Handle FPMR context in generic signal frame parser
  arm64/hwcap: Define hwcaps for 2023 DPISA features
  arm64/ptrace: Expose FPMR via ptrace
  arm64/signal: Add FPMR signal handling
  arm64/fpsimd: Support FEAT_FPMR
  arm64/fpsimd: Enable host kernel access to FPMR
  arm64/cpufeature: Hook new identification registers up to cpufeature
  docs: perf: Fix build warning of hisi-pcie-pmu.rst
  perf: starfive: Only allow COMPILE_TEST for 64-bit architectures
  MAINTAINERS: Add entry for StarFive StarLink PMU
  docs: perf: Add description for StarFive's StarLink PMU
  dt-bindings: perf: starfive: Add JH8100 StarLink PMU
  perf: starfive: Add StarLink PMU support
  docs: perf: Update usage for target filter of hisi-pcie-pmu
  ...
2024-03-14 15:35:42 -07:00

2175 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* FP/SIMD context switching and fault handling
*
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*/
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/bottom_half.h>
#include <linux/bug.h>
#include <linux/cache.h>
#include <linux/compat.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/ctype.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/irqflags.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/prctl.h>
#include <linux/preempt.h>
#include <linux/ptrace.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/stddef.h>
#include <linux/sysctl.h>
#include <linux/swab.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/fpsimd.h>
#include <asm/cpufeature.h>
#include <asm/cputype.h>
#include <asm/neon.h>
#include <asm/processor.h>
#include <asm/simd.h>
#include <asm/sigcontext.h>
#include <asm/sysreg.h>
#include <asm/traps.h>
#include <asm/virt.h>
#define FPEXC_IOF (1 << 0)
#define FPEXC_DZF (1 << 1)
#define FPEXC_OFF (1 << 2)
#define FPEXC_UFF (1 << 3)
#define FPEXC_IXF (1 << 4)
#define FPEXC_IDF (1 << 7)
/*
* (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
*
* In order to reduce the number of times the FPSIMD state is needlessly saved
* and restored, we need to keep track of two things:
* (a) for each task, we need to remember which CPU was the last one to have
* the task's FPSIMD state loaded into its FPSIMD registers;
* (b) for each CPU, we need to remember which task's userland FPSIMD state has
* been loaded into its FPSIMD registers most recently, or whether it has
* been used to perform kernel mode NEON in the meantime.
*
* For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
* the id of the current CPU every time the state is loaded onto a CPU. For (b),
* we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
* address of the userland FPSIMD state of the task that was loaded onto the CPU
* the most recently, or NULL if kernel mode NEON has been performed after that.
*
* With this in place, we no longer have to restore the next FPSIMD state right
* when switching between tasks. Instead, we can defer this check to userland
* resume, at which time we verify whether the CPU's fpsimd_last_state and the
* task's fpsimd_cpu are still mutually in sync. If this is the case, we
* can omit the FPSIMD restore.
*
* As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
* indicate whether or not the userland FPSIMD state of the current task is
* present in the registers. The flag is set unless the FPSIMD registers of this
* CPU currently contain the most recent userland FPSIMD state of the current
* task. If the task is behaving as a VMM, then this is will be managed by
* KVM which will clear it to indicate that the vcpu FPSIMD state is currently
* loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
* softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
* flag the register state as invalid.
*
* In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may be
* called from softirq context, which will save the task's FPSIMD context back
* to task_struct. To prevent this from racing with the manipulation of the
* task's FPSIMD state from task context and thereby corrupting the state, it
* is necessary to protect any manipulation of a task's fpsimd_state or
* TIF_FOREIGN_FPSTATE flag with get_cpu_fpsimd_context(), which will suspend
* softirq servicing entirely until put_cpu_fpsimd_context() is called.
*
* For a certain task, the sequence may look something like this:
* - the task gets scheduled in; if both the task's fpsimd_cpu field
* contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
* variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
* cleared, otherwise it is set;
*
* - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
* userland FPSIMD state is copied from memory to the registers, the task's
* fpsimd_cpu field is set to the id of the current CPU, the current
* CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
* TIF_FOREIGN_FPSTATE flag is cleared;
*
* - the task executes an ordinary syscall; upon return to userland, the
* TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
* restored;
*
* - the task executes a syscall which executes some NEON instructions; this is
* preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
* register contents to memory, clears the fpsimd_last_state per-cpu variable
* and sets the TIF_FOREIGN_FPSTATE flag;
*
* - the task gets preempted after kernel_neon_end() is called; as we have not
* returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
* whatever is in the FPSIMD registers is not saved to memory, but discarded.
*/
static DEFINE_PER_CPU(struct cpu_fp_state, fpsimd_last_state);
__ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
#ifdef CONFIG_ARM64_SVE
[ARM64_VEC_SVE] = {
.type = ARM64_VEC_SVE,
.name = "SVE",
.min_vl = SVE_VL_MIN,
.max_vl = SVE_VL_MIN,
.max_virtualisable_vl = SVE_VL_MIN,
},
#endif
#ifdef CONFIG_ARM64_SME
[ARM64_VEC_SME] = {
.type = ARM64_VEC_SME,
.name = "SME",
},
#endif
};
static unsigned int vec_vl_inherit_flag(enum vec_type type)
{
switch (type) {
case ARM64_VEC_SVE:
return TIF_SVE_VL_INHERIT;
case ARM64_VEC_SME:
return TIF_SME_VL_INHERIT;
default:
WARN_ON_ONCE(1);
return 0;
}
}
struct vl_config {
int __default_vl; /* Default VL for tasks */
};
static struct vl_config vl_config[ARM64_VEC_MAX];
static inline int get_default_vl(enum vec_type type)
{
return READ_ONCE(vl_config[type].__default_vl);
}
#ifdef CONFIG_ARM64_SVE
static inline int get_sve_default_vl(void)
{
return get_default_vl(ARM64_VEC_SVE);
}
static inline void set_default_vl(enum vec_type type, int val)
{
WRITE_ONCE(vl_config[type].__default_vl, val);
}
static inline void set_sve_default_vl(int val)
{
set_default_vl(ARM64_VEC_SVE, val);
}
static void __percpu *efi_sve_state;
#else /* ! CONFIG_ARM64_SVE */
/* Dummy declaration for code that will be optimised out: */
extern void __percpu *efi_sve_state;
#endif /* ! CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_SME
static int get_sme_default_vl(void)
{
return get_default_vl(ARM64_VEC_SME);
}
static void set_sme_default_vl(int val)
{
set_default_vl(ARM64_VEC_SME, val);
}
static void sme_free(struct task_struct *);
#else
static inline void sme_free(struct task_struct *t) { }
#endif
static void fpsimd_bind_task_to_cpu(void);
/*
* Claim ownership of the CPU FPSIMD context for use by the calling context.
*
* The caller may freely manipulate the FPSIMD context metadata until
* put_cpu_fpsimd_context() is called.
*
* On RT kernels local_bh_disable() is not sufficient because it only
* serializes soft interrupt related sections via a local lock, but stays
* preemptible. Disabling preemption is the right choice here as bottom
* half processing is always in thread context on RT kernels so it
* implicitly prevents bottom half processing as well.
*/
static void get_cpu_fpsimd_context(void)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_bh_disable();
else
preempt_disable();
}
/*
* Release the CPU FPSIMD context.
*
* Must be called from a context in which get_cpu_fpsimd_context() was
* previously called, with no call to put_cpu_fpsimd_context() in the
* meantime.
*/
static void put_cpu_fpsimd_context(void)
{
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
local_bh_enable();
else
preempt_enable();
}
unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
{
return task->thread.vl[type];
}
void task_set_vl(struct task_struct *task, enum vec_type type,
unsigned long vl)
{
task->thread.vl[type] = vl;
}
unsigned int task_get_vl_onexec(const struct task_struct *task,
enum vec_type type)
{
return task->thread.vl_onexec[type];
}
void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
unsigned long vl)
{
task->thread.vl_onexec[type] = vl;
}
/*
* TIF_SME controls whether a task can use SME without trapping while
* in userspace, when TIF_SME is set then we must have storage
* allocated in sve_state and sme_state to store the contents of both ZA
* and the SVE registers for both streaming and non-streaming modes.
*
* If both SVCR.ZA and SVCR.SM are disabled then at any point we
* may disable TIF_SME and reenable traps.
*/
/*
* TIF_SVE controls whether a task can use SVE without trapping while
* in userspace, and also (together with TIF_SME) the way a task's
* FPSIMD/SVE state is stored in thread_struct.
*
* The kernel uses this flag to track whether a user task is actively
* using SVE, and therefore whether full SVE register state needs to
* be tracked. If not, the cheaper FPSIMD context handling code can
* be used instead of the more costly SVE equivalents.
*
* * TIF_SVE or SVCR.SM set:
*
* The task can execute SVE instructions while in userspace without
* trapping to the kernel.
*
* During any syscall, the kernel may optionally clear TIF_SVE and
* discard the vector state except for the FPSIMD subset.
*
* * TIF_SVE clear:
*
* An attempt by the user task to execute an SVE instruction causes
* do_sve_acc() to be called, which does some preparation and then
* sets TIF_SVE.
*
* During any syscall, the kernel may optionally clear TIF_SVE and
* discard the vector state except for the FPSIMD subset.
*
* The data will be stored in one of two formats:
*
* * FPSIMD only - FP_STATE_FPSIMD:
*
* When the FPSIMD only state stored task->thread.fp_type is set to
* FP_STATE_FPSIMD, the FPSIMD registers V0-V31 are encoded in
* task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
* logically zero but not stored anywhere; P0-P15 and FFR are not
* stored and have unspecified values from userspace's point of
* view. For hygiene purposes, the kernel zeroes them on next use,
* but userspace is discouraged from relying on this.
*
* task->thread.sve_state does not need to be non-NULL, valid or any
* particular size: it must not be dereferenced and any data stored
* there should be considered stale and not referenced.
*
* * SVE state - FP_STATE_SVE:
*
* When the full SVE state is stored task->thread.fp_type is set to
* FP_STATE_SVE and Z0-Z31 (incorporating Vn in bits[127:0] or the
* corresponding Zn), P0-P15 and FFR are encoded in in
* task->thread.sve_state, formatted appropriately for vector
* length task->thread.sve_vl or, if SVCR.SM is set,
* task->thread.sme_vl. The storage for the vector registers in
* task->thread.uw.fpsimd_state should be ignored.
*
* task->thread.sve_state must point to a valid buffer at least
* sve_state_size(task) bytes in size. The data stored in
* task->thread.uw.fpsimd_state.vregs should be considered stale
* and not referenced.
*
* * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
* irrespective of whether TIF_SVE is clear or set, since these are
* not vector length dependent.
*/
/*
* Update current's FPSIMD/SVE registers from thread_struct.
*
* This function should be called only when the FPSIMD/SVE state in
* thread_struct is known to be up to date, when preparing to enter
* userspace.
*/
static void task_fpsimd_load(void)
{
bool restore_sve_regs = false;
bool restore_ffr;
WARN_ON(!system_supports_fpsimd());
WARN_ON(preemptible());
WARN_ON(test_thread_flag(TIF_KERNEL_FPSTATE));
if (system_supports_fpmr())
write_sysreg_s(current->thread.uw.fpmr, SYS_FPMR);
if (system_supports_sve() || system_supports_sme()) {
switch (current->thread.fp_type) {
case FP_STATE_FPSIMD:
/* Stop tracking SVE for this task until next use. */
if (test_and_clear_thread_flag(TIF_SVE))
sve_user_disable();
break;
case FP_STATE_SVE:
if (!thread_sm_enabled(&current->thread) &&
!WARN_ON_ONCE(!test_and_set_thread_flag(TIF_SVE)))
sve_user_enable();
if (test_thread_flag(TIF_SVE))
sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
restore_sve_regs = true;
restore_ffr = true;
break;
default:
/*
* This indicates either a bug in
* fpsimd_save_user_state() or memory corruption, we
* should always record an explicit format
* when we save. We always at least have the
* memory allocated for FPSMID registers so
* try that and hope for the best.
*/
WARN_ON_ONCE(1);
clear_thread_flag(TIF_SVE);
break;
}
}
/* Restore SME, override SVE register configuration if needed */
if (system_supports_sme()) {
unsigned long sme_vl = task_get_sme_vl(current);
/* Ensure VL is set up for restoring data */
if (test_thread_flag(TIF_SME))
sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
write_sysreg_s(current->thread.svcr, SYS_SVCR);
if (thread_za_enabled(&current->thread))
sme_load_state(current->thread.sme_state,
system_supports_sme2());
if (thread_sm_enabled(&current->thread))
restore_ffr = system_supports_fa64();
}
if (restore_sve_regs) {
WARN_ON_ONCE(current->thread.fp_type != FP_STATE_SVE);
sve_load_state(sve_pffr(&current->thread),
&current->thread.uw.fpsimd_state.fpsr,
restore_ffr);
} else {
WARN_ON_ONCE(current->thread.fp_type != FP_STATE_FPSIMD);
fpsimd_load_state(&current->thread.uw.fpsimd_state);
}
}
/*
* Ensure FPSIMD/SVE storage in memory for the loaded context is up to
* date with respect to the CPU registers. Note carefully that the
* current context is the context last bound to the CPU stored in
* last, if KVM is involved this may be the guest VM context rather
* than the host thread for the VM pointed to by current. This means
* that we must always reference the state storage via last rather
* than via current, if we are saving KVM state then it will have
* ensured that the type of registers to save is set in last->to_save.
*/
static void fpsimd_save_user_state(void)
{
struct cpu_fp_state const *last =
this_cpu_ptr(&fpsimd_last_state);
/* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
bool save_sve_regs = false;
bool save_ffr;
unsigned int vl;
WARN_ON(!system_supports_fpsimd());
WARN_ON(preemptible());
if (test_thread_flag(TIF_FOREIGN_FPSTATE))
return;
if (system_supports_fpmr())
*(last->fpmr) = read_sysreg_s(SYS_FPMR);
/*
* If a task is in a syscall the ABI allows us to only
* preserve the state shared with FPSIMD so don't bother
* saving the full SVE state in that case.
*/
if ((last->to_save == FP_STATE_CURRENT && test_thread_flag(TIF_SVE) &&
!in_syscall(current_pt_regs())) ||
last->to_save == FP_STATE_SVE) {
save_sve_regs = true;
save_ffr = true;
vl = last->sve_vl;
}
if (system_supports_sme()) {
u64 *svcr = last->svcr;
*svcr = read_sysreg_s(SYS_SVCR);
if (*svcr & SVCR_ZA_MASK)
sme_save_state(last->sme_state,
system_supports_sme2());
/* If we are in streaming mode override regular SVE. */
if (*svcr & SVCR_SM_MASK) {
save_sve_regs = true;
save_ffr = system_supports_fa64();
vl = last->sme_vl;
}
}
if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
/* Get the configured VL from RDVL, will account for SM */
if (WARN_ON(sve_get_vl() != vl)) {
/*
* Can't save the user regs, so current would
* re-enter user with corrupt state.
* There's no way to recover, so kill it:
*/
force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
return;
}
sve_save_state((char *)last->sve_state +
sve_ffr_offset(vl),
&last->st->fpsr, save_ffr);
*last->fp_type = FP_STATE_SVE;
} else {
fpsimd_save_state(last->st);
*last->fp_type = FP_STATE_FPSIMD;
}
}
/*
* All vector length selection from userspace comes through here.
* We're on a slow path, so some sanity-checks are included.
* If things go wrong there's a bug somewhere, but try to fall back to a
* safe choice.
*/
static unsigned int find_supported_vector_length(enum vec_type type,
unsigned int vl)
{
struct vl_info *info = &vl_info[type];
int bit;
int max_vl = info->max_vl;
if (WARN_ON(!sve_vl_valid(vl)))
vl = info->min_vl;
if (WARN_ON(!sve_vl_valid(max_vl)))
max_vl = info->min_vl;
if (vl > max_vl)
vl = max_vl;
if (vl < info->min_vl)
vl = info->min_vl;
bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
__vq_to_bit(sve_vq_from_vl(vl)));
return sve_vl_from_vq(__bit_to_vq(bit));
}
#if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
static int vec_proc_do_default_vl(struct ctl_table *table, int write,
void *buffer, size_t *lenp, loff_t *ppos)
{
struct vl_info *info = table->extra1;
enum vec_type type = info->type;
int ret;
int vl = get_default_vl(type);
struct ctl_table tmp_table = {
.data = &vl,
.maxlen = sizeof(vl),
};
ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
if (ret || !write)
return ret;
/* Writing -1 has the special meaning "set to max": */
if (vl == -1)
vl = info->max_vl;
if (!sve_vl_valid(vl))
return -EINVAL;
set_default_vl(type, find_supported_vector_length(type, vl));
return 0;
}
static struct ctl_table sve_default_vl_table[] = {
{
.procname = "sve_default_vector_length",
.mode = 0644,
.proc_handler = vec_proc_do_default_vl,
.extra1 = &vl_info[ARM64_VEC_SVE],
},
};
static int __init sve_sysctl_init(void)
{
if (system_supports_sve())
if (!register_sysctl("abi", sve_default_vl_table))
return -EINVAL;
return 0;
}
#else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
static int __init sve_sysctl_init(void) { return 0; }
#endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
#if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
static struct ctl_table sme_default_vl_table[] = {
{
.procname = "sme_default_vector_length",
.mode = 0644,
.proc_handler = vec_proc_do_default_vl,
.extra1 = &vl_info[ARM64_VEC_SME],
},
};
static int __init sme_sysctl_init(void)
{
if (system_supports_sme())
if (!register_sysctl("abi", sme_default_vl_table))
return -EINVAL;
return 0;
}
#else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
static int __init sme_sysctl_init(void) { return 0; }
#endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
#define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
(SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
#ifdef CONFIG_CPU_BIG_ENDIAN
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
{
u64 a = swab64(x);
u64 b = swab64(x >> 64);
return ((__uint128_t)a << 64) | b;
}
#else
static __uint128_t arm64_cpu_to_le128(__uint128_t x)
{
return x;
}
#endif
#define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
unsigned int vq)
{
unsigned int i;
__uint128_t *p;
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
p = (__uint128_t *)ZREG(sst, vq, i);
*p = arm64_cpu_to_le128(fst->vregs[i]);
}
}
/*
* Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
* task->thread.sve_state.
*
* Task can be a non-runnable task, or current. In the latter case,
* the caller must have ownership of the cpu FPSIMD context before calling
* this function.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.uw.fpsimd_state must be up to date before calling this
* function.
*/
static void fpsimd_to_sve(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
if (!system_supports_sve() && !system_supports_sme())
return;
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
__fpsimd_to_sve(sst, fst, vq);
}
/*
* Transfer the SVE state in task->thread.sve_state to
* task->thread.uw.fpsimd_state.
*
* Task can be a non-runnable task, or current. In the latter case,
* the caller must have ownership of the cpu FPSIMD context before calling
* this function.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.sve_state must be up to date before calling this function.
*/
static void sve_to_fpsimd(struct task_struct *task)
{
unsigned int vq, vl;
void const *sst = task->thread.sve_state;
struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
unsigned int i;
__uint128_t const *p;
if (!system_supports_sve() && !system_supports_sme())
return;
vl = thread_get_cur_vl(&task->thread);
vq = sve_vq_from_vl(vl);
for (i = 0; i < SVE_NUM_ZREGS; ++i) {
p = (__uint128_t const *)ZREG(sst, vq, i);
fst->vregs[i] = arm64_le128_to_cpu(*p);
}
}
void cpu_enable_fpmr(const struct arm64_cpu_capabilities *__always_unused p)
{
write_sysreg_s(read_sysreg_s(SYS_SCTLR_EL1) | SCTLR_EL1_EnFPM_MASK,
SYS_SCTLR_EL1);
}
#ifdef CONFIG_ARM64_SVE
/*
* Call __sve_free() directly only if you know task can't be scheduled
* or preempted.
*/
static void __sve_free(struct task_struct *task)
{
kfree(task->thread.sve_state);
task->thread.sve_state = NULL;
}
static void sve_free(struct task_struct *task)
{
WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
__sve_free(task);
}
/*
* Return how many bytes of memory are required to store the full SVE
* state for task, given task's currently configured vector length.
*/
size_t sve_state_size(struct task_struct const *task)
{
unsigned int vl = 0;
if (system_supports_sve())
vl = task_get_sve_vl(task);
if (system_supports_sme())
vl = max(vl, task_get_sme_vl(task));
return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
}
/*
* Ensure that task->thread.sve_state is allocated and sufficiently large.
*
* This function should be used only in preparation for replacing
* task->thread.sve_state with new data. The memory is always zeroed
* here to prevent stale data from showing through: this is done in
* the interest of testability and predictability: except in the
* do_sve_acc() case, there is no ABI requirement to hide stale data
* written previously be task.
*/
void sve_alloc(struct task_struct *task, bool flush)
{
if (task->thread.sve_state) {
if (flush)
memset(task->thread.sve_state, 0,
sve_state_size(task));
return;
}
/* This is a small allocation (maximum ~8KB) and Should Not Fail. */
task->thread.sve_state =
kzalloc(sve_state_size(task), GFP_KERNEL);
}
/*
* Force the FPSIMD state shared with SVE to be updated in the SVE state
* even if the SVE state is the current active state.
*
* This should only be called by ptrace. task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
*/
void fpsimd_force_sync_to_sve(struct task_struct *task)
{
fpsimd_to_sve(task);
}
/*
* Ensure that task->thread.sve_state is up to date with respect to
* the user task, irrespective of when SVE is in use or not.
*
* This should only be called by ptrace. task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
*/
void fpsimd_sync_to_sve(struct task_struct *task)
{
if (!test_tsk_thread_flag(task, TIF_SVE) &&
!thread_sm_enabled(&task->thread))
fpsimd_to_sve(task);
}
/*
* Ensure that task->thread.uw.fpsimd_state is up to date with respect to
* the user task, irrespective of whether SVE is in use or not.
*
* This should only be called by ptrace. task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
*/
void sve_sync_to_fpsimd(struct task_struct *task)
{
if (task->thread.fp_type == FP_STATE_SVE)
sve_to_fpsimd(task);
}
/*
* Ensure that task->thread.sve_state is up to date with respect to
* the task->thread.uw.fpsimd_state.
*
* This should only be called by ptrace to merge new FPSIMD register
* values into a task for which SVE is currently active.
* task must be non-runnable.
* task->thread.sve_state must point to at least sve_state_size(task)
* bytes of allocated kernel memory.
* task->thread.uw.fpsimd_state must already have been initialised with
* the new FPSIMD register values to be merged in.
*/
void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
{
unsigned int vq;
void *sst = task->thread.sve_state;
struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
if (!test_tsk_thread_flag(task, TIF_SVE) &&
!thread_sm_enabled(&task->thread))
return;
vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
__fpsimd_to_sve(sst, fst, vq);
}
int vec_set_vector_length(struct task_struct *task, enum vec_type type,
unsigned long vl, unsigned long flags)
{
bool free_sme = false;
if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
PR_SVE_SET_VL_ONEXEC))
return -EINVAL;
if (!sve_vl_valid(vl))
return -EINVAL;
/*
* Clamp to the maximum vector length that VL-agnostic code
* can work with. A flag may be assigned in the future to
* allow setting of larger vector lengths without confusing
* older software.
*/
if (vl > VL_ARCH_MAX)
vl = VL_ARCH_MAX;
vl = find_supported_vector_length(type, vl);
if (flags & (PR_SVE_VL_INHERIT |
PR_SVE_SET_VL_ONEXEC))
task_set_vl_onexec(task, type, vl);
else
/* Reset VL to system default on next exec: */
task_set_vl_onexec(task, type, 0);
/* Only actually set the VL if not deferred: */
if (flags & PR_SVE_SET_VL_ONEXEC)
goto out;
if (vl == task_get_vl(task, type))
goto out;
/*
* To ensure the FPSIMD bits of the SVE vector registers are preserved,
* write any live register state back to task_struct, and convert to a
* regular FPSIMD thread.
*/
if (task == current) {
get_cpu_fpsimd_context();
fpsimd_save_user_state();
}
fpsimd_flush_task_state(task);
if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
thread_sm_enabled(&task->thread)) {
sve_to_fpsimd(task);
task->thread.fp_type = FP_STATE_FPSIMD;
}
if (system_supports_sme()) {
if (type == ARM64_VEC_SME ||
!(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
/*
* We are changing the SME VL or weren't using
* SME anyway, discard the state and force a
* reallocation.
*/
task->thread.svcr &= ~(SVCR_SM_MASK |
SVCR_ZA_MASK);
clear_tsk_thread_flag(task, TIF_SME);
free_sme = true;
}
}
if (task == current)
put_cpu_fpsimd_context();
task_set_vl(task, type, vl);
/*
* Free the changed states if they are not in use, SME will be
* reallocated to the correct size on next use and we just
* allocate SVE now in case it is needed for use in streaming
* mode.
*/
sve_free(task);
sve_alloc(task, true);
if (free_sme)
sme_free(task);
out:
update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
flags & PR_SVE_VL_INHERIT);
return 0;
}
/*
* Encode the current vector length and flags for return.
* This is only required for prctl(): ptrace has separate fields.
* SVE and SME use the same bits for _ONEXEC and _INHERIT.
*
* flags are as for vec_set_vector_length().
*/
static int vec_prctl_status(enum vec_type type, unsigned long flags)
{
int ret;
if (flags & PR_SVE_SET_VL_ONEXEC)
ret = task_get_vl_onexec(current, type);
else
ret = task_get_vl(current, type);
if (test_thread_flag(vec_vl_inherit_flag(type)))
ret |= PR_SVE_VL_INHERIT;
return ret;
}
/* PR_SVE_SET_VL */
int sve_set_current_vl(unsigned long arg)
{
unsigned long vl, flags;
int ret;
vl = arg & PR_SVE_VL_LEN_MASK;
flags = arg & ~vl;
if (!system_supports_sve() || is_compat_task())
return -EINVAL;
ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
if (ret)
return ret;
return vec_prctl_status(ARM64_VEC_SVE, flags);
}
/* PR_SVE_GET_VL */
int sve_get_current_vl(void)
{
if (!system_supports_sve() || is_compat_task())
return -EINVAL;
return vec_prctl_status(ARM64_VEC_SVE, 0);
}
#ifdef CONFIG_ARM64_SME
/* PR_SME_SET_VL */
int sme_set_current_vl(unsigned long arg)
{
unsigned long vl, flags;
int ret;
vl = arg & PR_SME_VL_LEN_MASK;
flags = arg & ~vl;
if (!system_supports_sme() || is_compat_task())
return -EINVAL;
ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
if (ret)
return ret;
return vec_prctl_status(ARM64_VEC_SME, flags);
}
/* PR_SME_GET_VL */
int sme_get_current_vl(void)
{
if (!system_supports_sme() || is_compat_task())
return -EINVAL;
return vec_prctl_status(ARM64_VEC_SME, 0);
}
#endif /* CONFIG_ARM64_SME */
static void vec_probe_vqs(struct vl_info *info,
DECLARE_BITMAP(map, SVE_VQ_MAX))
{
unsigned int vq, vl;
bitmap_zero(map, SVE_VQ_MAX);
for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
write_vl(info->type, vq - 1); /* self-syncing */
switch (info->type) {
case ARM64_VEC_SVE:
vl = sve_get_vl();
break;
case ARM64_VEC_SME:
vl = sme_get_vl();
break;
default:
vl = 0;
break;
}
/* Minimum VL identified? */
if (sve_vq_from_vl(vl) > vq)
break;
vq = sve_vq_from_vl(vl); /* skip intervening lengths */
set_bit(__vq_to_bit(vq), map);
}
}
/*
* Initialise the set of known supported VQs for the boot CPU.
* This is called during kernel boot, before secondary CPUs are brought up.
*/
void __init vec_init_vq_map(enum vec_type type)
{
struct vl_info *info = &vl_info[type];
vec_probe_vqs(info, info->vq_map);
bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
}
/*
* If we haven't committed to the set of supported VQs yet, filter out
* those not supported by the current CPU.
* This function is called during the bring-up of early secondary CPUs only.
*/
void vec_update_vq_map(enum vec_type type)
{
struct vl_info *info = &vl_info[type];
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
vec_probe_vqs(info, tmp_map);
bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
SVE_VQ_MAX);
}
/*
* Check whether the current CPU supports all VQs in the committed set.
* This function is called during the bring-up of late secondary CPUs only.
*/
int vec_verify_vq_map(enum vec_type type)
{
struct vl_info *info = &vl_info[type];
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
unsigned long b;
vec_probe_vqs(info, tmp_map);
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
pr_warn("%s: cpu%d: Required vector length(s) missing\n",
info->name, smp_processor_id());
return -EINVAL;
}
if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
return 0;
/*
* For KVM, it is necessary to ensure that this CPU doesn't
* support any vector length that guests may have probed as
* unsupported.
*/
/* Recover the set of supported VQs: */
bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
/* Find VQs supported that are not globally supported: */
bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
/* Find the lowest such VQ, if any: */
b = find_last_bit(tmp_map, SVE_VQ_MAX);
if (b >= SVE_VQ_MAX)
return 0; /* no mismatches */
/*
* Mismatches above sve_max_virtualisable_vl are fine, since
* no guest is allowed to configure ZCR_EL2.LEN to exceed this:
*/
if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
info->name, smp_processor_id());
return -EINVAL;
}
return 0;
}
static void __init sve_efi_setup(void)
{
int max_vl = 0;
int i;
if (!IS_ENABLED(CONFIG_EFI))
return;
for (i = 0; i < ARRAY_SIZE(vl_info); i++)
max_vl = max(vl_info[i].max_vl, max_vl);
/*
* alloc_percpu() warns and prints a backtrace if this goes wrong.
* This is evidence of a crippled system and we are returning void,
* so no attempt is made to handle this situation here.
*/
if (!sve_vl_valid(max_vl))
goto fail;
efi_sve_state = __alloc_percpu(
SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
if (!efi_sve_state)
goto fail;
return;
fail:
panic("Cannot allocate percpu memory for EFI SVE save/restore");
}
void cpu_enable_sve(const struct arm64_cpu_capabilities *__always_unused p)
{
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
isb();
write_sysreg_s(0, SYS_ZCR_EL1);
}
void __init sve_setup(void)
{
struct vl_info *info = &vl_info[ARM64_VEC_SVE];
DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
unsigned long b;
int max_bit;
if (!system_supports_sve())
return;
/*
* The SVE architecture mandates support for 128-bit vectors,
* so sve_vq_map must have at least SVE_VQ_MIN set.
* If something went wrong, at least try to patch it up:
*/
if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
/*
* For the default VL, pick the maximum supported value <= 64.
* VL == 64 is guaranteed not to grow the signal frame.
*/
set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
SVE_VQ_MAX);
b = find_last_bit(tmp_map, SVE_VQ_MAX);
if (b >= SVE_VQ_MAX)
/* No non-virtualisable VLs found */
info->max_virtualisable_vl = SVE_VQ_MAX;
else if (WARN_ON(b == SVE_VQ_MAX - 1))
/* No virtualisable VLs? This is architecturally forbidden. */
info->max_virtualisable_vl = SVE_VQ_MIN;
else /* b + 1 < SVE_VQ_MAX */
info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
if (info->max_virtualisable_vl > info->max_vl)
info->max_virtualisable_vl = info->max_vl;
pr_info("%s: maximum available vector length %u bytes per vector\n",
info->name, info->max_vl);
pr_info("%s: default vector length %u bytes per vector\n",
info->name, get_sve_default_vl());
/* KVM decides whether to support mismatched systems. Just warn here: */
if (sve_max_virtualisable_vl() < sve_max_vl())
pr_warn("%s: unvirtualisable vector lengths present\n",
info->name);
sve_efi_setup();
}
/*
* Called from the put_task_struct() path, which cannot get here
* unless dead_task is really dead and not schedulable.
*/
void fpsimd_release_task(struct task_struct *dead_task)
{
__sve_free(dead_task);
sme_free(dead_task);
}
#endif /* CONFIG_ARM64_SVE */
#ifdef CONFIG_ARM64_SME
/*
* Ensure that task->thread.sme_state is allocated and sufficiently large.
*
* This function should be used only in preparation for replacing
* task->thread.sme_state with new data. The memory is always zeroed
* here to prevent stale data from showing through: this is done in
* the interest of testability and predictability, the architecture
* guarantees that when ZA is enabled it will be zeroed.
*/
void sme_alloc(struct task_struct *task, bool flush)
{
if (task->thread.sme_state) {
if (flush)
memset(task->thread.sme_state, 0,
sme_state_size(task));
return;
}
/* This could potentially be up to 64K. */
task->thread.sme_state =
kzalloc(sme_state_size(task), GFP_KERNEL);
}
static void sme_free(struct task_struct *task)
{
kfree(task->thread.sme_state);
task->thread.sme_state = NULL;
}
void cpu_enable_sme(const struct arm64_cpu_capabilities *__always_unused p)
{
/* Set priority for all PEs to architecturally defined minimum */
write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
SYS_SMPRI_EL1);
/* Allow SME in kernel */
write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
isb();
/* Ensure all bits in SMCR are set to known values */
write_sysreg_s(0, SYS_SMCR_EL1);
/* Allow EL0 to access TPIDR2 */
write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
isb();
}
void cpu_enable_sme2(const struct arm64_cpu_capabilities *__always_unused p)
{
/* This must be enabled after SME */
BUILD_BUG_ON(ARM64_SME2 <= ARM64_SME);
/* Allow use of ZT0 */
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_EZT0_MASK,
SYS_SMCR_EL1);
}
void cpu_enable_fa64(const struct arm64_cpu_capabilities *__always_unused p)
{
/* This must be enabled after SME */
BUILD_BUG_ON(ARM64_SME_FA64 <= ARM64_SME);
/* Allow use of FA64 */
write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
SYS_SMCR_EL1);
}
void __init sme_setup(void)
{
struct vl_info *info = &vl_info[ARM64_VEC_SME];
int min_bit, max_bit;
if (!system_supports_sme())
return;
/*
* SME doesn't require any particular vector length be
* supported but it does require at least one. We should have
* disabled the feature entirely while bringing up CPUs but
* let's double check here. The bitmap is SVE_VQ_MAP sized for
* sharing with SVE.
*/
WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
max_bit = find_first_bit(info->vq_map, SVE_VQ_MAX);
info->max_vl = sve_vl_from_vq(__bit_to_vq(max_bit));
WARN_ON(info->min_vl > info->max_vl);
/*
* For the default VL, pick the maximum supported value <= 32
* (256 bits) if there is one since this is guaranteed not to
* grow the signal frame when in streaming mode, otherwise the
* minimum available VL will be used.
*/
set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
pr_info("SME: minimum available vector length %u bytes per vector\n",
info->min_vl);
pr_info("SME: maximum available vector length %u bytes per vector\n",
info->max_vl);
pr_info("SME: default vector length %u bytes per vector\n",
get_sme_default_vl());
}
void sme_suspend_exit(void)
{
u64 smcr = 0;
if (!system_supports_sme())
return;
if (system_supports_fa64())
smcr |= SMCR_ELx_FA64;
if (system_supports_sme2())
smcr |= SMCR_ELx_EZT0;
write_sysreg_s(smcr, SYS_SMCR_EL1);
write_sysreg_s(0, SYS_SMPRI_EL1);
}
#endif /* CONFIG_ARM64_SME */
static void sve_init_regs(void)
{
/*
* Convert the FPSIMD state to SVE, zeroing all the state that
* is not shared with FPSIMD. If (as is likely) the current
* state is live in the registers then do this there and
* update our metadata for the current task including
* disabling the trap, otherwise update our in-memory copy.
* We are guaranteed to not be in streaming mode, we can only
* take a SVE trap when not in streaming mode and we can't be
* in streaming mode when taking a SME trap.
*/
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
unsigned long vq_minus_one =
sve_vq_from_vl(task_get_sve_vl(current)) - 1;
sve_set_vq(vq_minus_one);
sve_flush_live(true, vq_minus_one);
fpsimd_bind_task_to_cpu();
} else {
fpsimd_to_sve(current);
current->thread.fp_type = FP_STATE_SVE;
}
}
/*
* Trapped SVE access
*
* Storage is allocated for the full SVE state, the current FPSIMD
* register contents are migrated across, and the access trap is
* disabled.
*
* TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
* would have disabled the SVE access trap for userspace during
* ret_to_user, making an SVE access trap impossible in that case.
*/
void do_sve_acc(unsigned long esr, struct pt_regs *regs)
{
/* Even if we chose not to use SVE, the hardware could still trap: */
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
sve_alloc(current, true);
if (!current->thread.sve_state) {
force_sig(SIGKILL);
return;
}
get_cpu_fpsimd_context();
if (test_and_set_thread_flag(TIF_SVE))
WARN_ON(1); /* SVE access shouldn't have trapped */
/*
* Even if the task can have used streaming mode we can only
* generate SVE access traps in normal SVE mode and
* transitioning out of streaming mode may discard any
* streaming mode state. Always clear the high bits to avoid
* any potential errors tracking what is properly initialised.
*/
sve_init_regs();
put_cpu_fpsimd_context();
}
/*
* Trapped SME access
*
* Storage is allocated for the full SVE and SME state, the current
* FPSIMD register contents are migrated to SVE if SVE is not already
* active, and the access trap is disabled.
*
* TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
* would have disabled the SME access trap for userspace during
* ret_to_user, making an SME access trap impossible in that case.
*/
void do_sme_acc(unsigned long esr, struct pt_regs *regs)
{
/* Even if we chose not to use SME, the hardware could still trap: */
if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
/*
* If this not a trap due to SME being disabled then something
* is being used in the wrong mode, report as SIGILL.
*/
if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
sve_alloc(current, false);
sme_alloc(current, true);
if (!current->thread.sve_state || !current->thread.sme_state) {
force_sig(SIGKILL);
return;
}
get_cpu_fpsimd_context();
/* With TIF_SME userspace shouldn't generate any traps */
if (test_and_set_thread_flag(TIF_SME))
WARN_ON(1);
if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
unsigned long vq_minus_one =
sve_vq_from_vl(task_get_sme_vl(current)) - 1;
sme_set_vq(vq_minus_one);
fpsimd_bind_task_to_cpu();
}
put_cpu_fpsimd_context();
}
/*
* Trapped FP/ASIMD access.
*/
void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
{
/* Even if we chose not to use FPSIMD, the hardware could still trap: */
if (!system_supports_fpsimd()) {
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
return;
}
/*
* When FPSIMD is enabled, we should never take a trap unless something
* has gone very wrong.
*/
BUG();
}
/*
* Raise a SIGFPE for the current process.
*/
void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
{
unsigned int si_code = FPE_FLTUNK;
if (esr & ESR_ELx_FP_EXC_TFV) {
if (esr & FPEXC_IOF)
si_code = FPE_FLTINV;
else if (esr & FPEXC_DZF)
si_code = FPE_FLTDIV;
else if (esr & FPEXC_OFF)
si_code = FPE_FLTOVF;
else if (esr & FPEXC_UFF)
si_code = FPE_FLTUND;
else if (esr & FPEXC_IXF)
si_code = FPE_FLTRES;
}
send_sig_fault(SIGFPE, si_code,
(void __user *)instruction_pointer(regs),
current);
}
static void fpsimd_load_kernel_state(struct task_struct *task)
{
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
/*
* Elide the load if this CPU holds the most recent kernel mode
* FPSIMD context of the current task.
*/
if (last->st == &task->thread.kernel_fpsimd_state &&
task->thread.kernel_fpsimd_cpu == smp_processor_id())
return;
fpsimd_load_state(&task->thread.kernel_fpsimd_state);
}
static void fpsimd_save_kernel_state(struct task_struct *task)
{
struct cpu_fp_state cpu_fp_state = {
.st = &task->thread.kernel_fpsimd_state,
.to_save = FP_STATE_FPSIMD,
};
fpsimd_save_state(&task->thread.kernel_fpsimd_state);
fpsimd_bind_state_to_cpu(&cpu_fp_state);
task->thread.kernel_fpsimd_cpu = smp_processor_id();
}
void fpsimd_thread_switch(struct task_struct *next)
{
bool wrong_task, wrong_cpu;
if (!system_supports_fpsimd())
return;
WARN_ON_ONCE(!irqs_disabled());
/* Save unsaved fpsimd state, if any: */
if (test_thread_flag(TIF_KERNEL_FPSTATE))
fpsimd_save_kernel_state(current);
else
fpsimd_save_user_state();
if (test_tsk_thread_flag(next, TIF_KERNEL_FPSTATE)) {
fpsimd_load_kernel_state(next);
set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
} else {
/*
* Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
* state. For kernel threads, FPSIMD registers are never
* loaded with user mode FPSIMD state and so wrong_task and
* wrong_cpu will always be true.
*/
wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
&next->thread.uw.fpsimd_state;
wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
wrong_task || wrong_cpu);
}
}
static void fpsimd_flush_thread_vl(enum vec_type type)
{
int vl, supported_vl;
/*
* Reset the task vector length as required. This is where we
* ensure that all user tasks have a valid vector length
* configured: no kernel task can become a user task without
* an exec and hence a call to this function. By the time the
* first call to this function is made, all early hardware
* probing is complete, so __sve_default_vl should be valid.
* If a bug causes this to go wrong, we make some noise and
* try to fudge thread.sve_vl to a safe value here.
*/
vl = task_get_vl_onexec(current, type);
if (!vl)
vl = get_default_vl(type);
if (WARN_ON(!sve_vl_valid(vl)))
vl = vl_info[type].min_vl;
supported_vl = find_supported_vector_length(type, vl);
if (WARN_ON(supported_vl != vl))
vl = supported_vl;
task_set_vl(current, type, vl);
/*
* If the task is not set to inherit, ensure that the vector
* length will be reset by a subsequent exec:
*/
if (!test_thread_flag(vec_vl_inherit_flag(type)))
task_set_vl_onexec(current, type, 0);
}
void fpsimd_flush_thread(void)
{
void *sve_state = NULL;
void *sme_state = NULL;
if (!system_supports_fpsimd())
return;
get_cpu_fpsimd_context();
fpsimd_flush_task_state(current);
memset(&current->thread.uw.fpsimd_state, 0,
sizeof(current->thread.uw.fpsimd_state));
if (system_supports_sve()) {
clear_thread_flag(TIF_SVE);
/* Defer kfree() while in atomic context */
sve_state = current->thread.sve_state;
current->thread.sve_state = NULL;
fpsimd_flush_thread_vl(ARM64_VEC_SVE);
}
if (system_supports_sme()) {
clear_thread_flag(TIF_SME);
/* Defer kfree() while in atomic context */
sme_state = current->thread.sme_state;
current->thread.sme_state = NULL;
fpsimd_flush_thread_vl(ARM64_VEC_SME);
current->thread.svcr = 0;
}
current->thread.fp_type = FP_STATE_FPSIMD;
put_cpu_fpsimd_context();
kfree(sve_state);
kfree(sme_state);
}
/*
* Save the userland FPSIMD state of 'current' to memory, but only if the state
* currently held in the registers does in fact belong to 'current'
*/
void fpsimd_preserve_current_state(void)
{
if (!system_supports_fpsimd())
return;
get_cpu_fpsimd_context();
fpsimd_save_user_state();
put_cpu_fpsimd_context();
}
/*
* Like fpsimd_preserve_current_state(), but ensure that
* current->thread.uw.fpsimd_state is updated so that it can be copied to
* the signal frame.
*/
void fpsimd_signal_preserve_current_state(void)
{
fpsimd_preserve_current_state();
if (current->thread.fp_type == FP_STATE_SVE)
sve_to_fpsimd(current);
}
/*
* Called by KVM when entering the guest.
*/
void fpsimd_kvm_prepare(void)
{
if (!system_supports_sve())
return;
/*
* KVM does not save host SVE state since we can only enter
* the guest from a syscall so the ABI means that only the
* non-saved SVE state needs to be saved. If we have left
* SVE enabled for performance reasons then update the task
* state to be FPSIMD only.
*/
get_cpu_fpsimd_context();
if (test_and_clear_thread_flag(TIF_SVE)) {
sve_to_fpsimd(current);
current->thread.fp_type = FP_STATE_FPSIMD;
}
put_cpu_fpsimd_context();
}
/*
* Associate current's FPSIMD context with this cpu
* The caller must have ownership of the cpu FPSIMD context before calling
* this function.
*/
static void fpsimd_bind_task_to_cpu(void)
{
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
WARN_ON(!system_supports_fpsimd());
last->st = &current->thread.uw.fpsimd_state;
last->sve_state = current->thread.sve_state;
last->sme_state = current->thread.sme_state;
last->sve_vl = task_get_sve_vl(current);
last->sme_vl = task_get_sme_vl(current);
last->svcr = &current->thread.svcr;
last->fpmr = &current->thread.uw.fpmr;
last->fp_type = &current->thread.fp_type;
last->to_save = FP_STATE_CURRENT;
current->thread.fpsimd_cpu = smp_processor_id();
/*
* Toggle SVE and SME trapping for userspace if needed, these
* are serialsied by ret_to_user().
*/
if (system_supports_sme()) {
if (test_thread_flag(TIF_SME))
sme_user_enable();
else
sme_user_disable();
}
if (system_supports_sve()) {
if (test_thread_flag(TIF_SVE))
sve_user_enable();
else
sve_user_disable();
}
}
void fpsimd_bind_state_to_cpu(struct cpu_fp_state *state)
{
struct cpu_fp_state *last = this_cpu_ptr(&fpsimd_last_state);
WARN_ON(!system_supports_fpsimd());
WARN_ON(!in_softirq() && !irqs_disabled());
*last = *state;
}
/*
* Load the userland FPSIMD state of 'current' from memory, but only if the
* FPSIMD state already held in the registers is /not/ the most recent FPSIMD
* state of 'current'. This is called when we are preparing to return to
* userspace to ensure that userspace sees a good register state.
*/
void fpsimd_restore_current_state(void)
{
/*
* TIF_FOREIGN_FPSTATE is set on the init task and copied by
* arch_dup_task_struct() regardless of whether FP/SIMD is detected.
* Thus user threads can have this set even when FP/SIMD hasn't been
* detected.
*
* When FP/SIMD is detected, begin_new_exec() will set
* TIF_FOREIGN_FPSTATE via flush_thread() -> fpsimd_flush_thread(),
* and fpsimd_thread_switch() will set TIF_FOREIGN_FPSTATE when
* switching tasks. We detect FP/SIMD before we exec the first user
* process, ensuring this has TIF_FOREIGN_FPSTATE set and
* do_notify_resume() will call fpsimd_restore_current_state() to
* install the user FP/SIMD context.
*
* When FP/SIMD is not detected, nothing else will clear or set
* TIF_FOREIGN_FPSTATE prior to the first return to userspace, and
* we must clear TIF_FOREIGN_FPSTATE to avoid do_notify_resume()
* looping forever calling fpsimd_restore_current_state().
*/
if (!system_supports_fpsimd()) {
clear_thread_flag(TIF_FOREIGN_FPSTATE);
return;
}
get_cpu_fpsimd_context();
if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
}
put_cpu_fpsimd_context();
}
/*
* Load an updated userland FPSIMD state for 'current' from memory and set the
* flag that indicates that the FPSIMD register contents are the most recent
* FPSIMD state of 'current'. This is used by the signal code to restore the
* register state when returning from a signal handler in FPSIMD only cases,
* any SVE context will be discarded.
*/
void fpsimd_update_current_state(struct user_fpsimd_state const *state)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
get_cpu_fpsimd_context();
current->thread.uw.fpsimd_state = *state;
if (test_thread_flag(TIF_SVE))
fpsimd_to_sve(current);
task_fpsimd_load();
fpsimd_bind_task_to_cpu();
clear_thread_flag(TIF_FOREIGN_FPSTATE);
put_cpu_fpsimd_context();
}
/*
* Invalidate live CPU copies of task t's FPSIMD state
*
* This function may be called with preemption enabled. The barrier()
* ensures that the assignment to fpsimd_cpu is visible to any
* preemption/softirq that could race with set_tsk_thread_flag(), so
* that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
*
* The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
* subsequent code.
*/
void fpsimd_flush_task_state(struct task_struct *t)
{
t->thread.fpsimd_cpu = NR_CPUS;
/*
* If we don't support fpsimd, bail out after we have
* reset the fpsimd_cpu for this task and clear the
* FPSTATE.
*/
if (!system_supports_fpsimd())
return;
barrier();
set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
barrier();
}
/*
* Invalidate any task's FPSIMD state that is present on this cpu.
* The FPSIMD context should be acquired with get_cpu_fpsimd_context()
* before calling this function.
*/
static void fpsimd_flush_cpu_state(void)
{
WARN_ON(!system_supports_fpsimd());
__this_cpu_write(fpsimd_last_state.st, NULL);
/*
* Leaving streaming mode enabled will cause issues for any kernel
* NEON and leaving streaming mode or ZA enabled may increase power
* consumption.
*/
if (system_supports_sme())
sme_smstop();
set_thread_flag(TIF_FOREIGN_FPSTATE);
}
/*
* Save the FPSIMD state to memory and invalidate cpu view.
* This function must be called with preemption disabled.
*/
void fpsimd_save_and_flush_cpu_state(void)
{
unsigned long flags;
if (!system_supports_fpsimd())
return;
WARN_ON(preemptible());
local_irq_save(flags);
fpsimd_save_user_state();
fpsimd_flush_cpu_state();
local_irq_restore(flags);
}
#ifdef CONFIG_KERNEL_MODE_NEON
/*
* Kernel-side NEON support functions
*/
/*
* kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
* context
*
* Must not be called unless may_use_simd() returns true.
* Task context in the FPSIMD registers is saved back to memory as necessary.
*
* A matching call to kernel_neon_end() must be made before returning from the
* calling context.
*
* The caller may freely use the FPSIMD registers until kernel_neon_end() is
* called.
*/
void kernel_neon_begin(void)
{
if (WARN_ON(!system_supports_fpsimd()))
return;
BUG_ON(!may_use_simd());
get_cpu_fpsimd_context();
/* Save unsaved fpsimd state, if any: */
if (test_thread_flag(TIF_KERNEL_FPSTATE)) {
BUG_ON(IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq());
fpsimd_save_kernel_state(current);
} else {
fpsimd_save_user_state();
/*
* Set the thread flag so that the kernel mode FPSIMD state
* will be context switched along with the rest of the task
* state.
*
* On non-PREEMPT_RT, softirqs may interrupt task level kernel
* mode FPSIMD, but the task will not be preemptible so setting
* TIF_KERNEL_FPSTATE for those would be both wrong (as it
* would mark the task context FPSIMD state as requiring a
* context switch) and unnecessary.
*
* On PREEMPT_RT, softirqs are serviced from a separate thread,
* which is scheduled as usual, and this guarantees that these
* softirqs are not interrupting use of the FPSIMD in kernel
* mode in task context. So in this case, setting the flag here
* is always appropriate.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT) || !in_serving_softirq())
set_thread_flag(TIF_KERNEL_FPSTATE);
}
/* Invalidate any task state remaining in the fpsimd regs: */
fpsimd_flush_cpu_state();
put_cpu_fpsimd_context();
}
EXPORT_SYMBOL_GPL(kernel_neon_begin);
/*
* kernel_neon_end(): give the CPU FPSIMD registers back to the current task
*
* Must be called from a context in which kernel_neon_begin() was previously
* called, with no call to kernel_neon_end() in the meantime.
*
* The caller must not use the FPSIMD registers after this function is called,
* unless kernel_neon_begin() is called again in the meantime.
*/
void kernel_neon_end(void)
{
if (!system_supports_fpsimd())
return;
/*
* If we are returning from a nested use of kernel mode FPSIMD, restore
* the task context kernel mode FPSIMD state. This can only happen when
* running in softirq context on non-PREEMPT_RT.
*/
if (!IS_ENABLED(CONFIG_PREEMPT_RT) && in_serving_softirq() &&
test_thread_flag(TIF_KERNEL_FPSTATE))
fpsimd_load_kernel_state(current);
else
clear_thread_flag(TIF_KERNEL_FPSTATE);
}
EXPORT_SYMBOL_GPL(kernel_neon_end);
#ifdef CONFIG_EFI
static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
static DEFINE_PER_CPU(bool, efi_sve_state_used);
static DEFINE_PER_CPU(bool, efi_sm_state);
/*
* EFI runtime services support functions
*
* The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
* This means that for EFI (and only for EFI), we have to assume that FPSIMD
* is always used rather than being an optional accelerator.
*
* These functions provide the necessary support for ensuring FPSIMD
* save/restore in the contexts from which EFI is used.
*
* Do not use them for any other purpose -- if tempted to do so, you are
* either doing something wrong or you need to propose some refactoring.
*/
/*
* __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
*/
void __efi_fpsimd_begin(void)
{
if (!system_supports_fpsimd())
return;
WARN_ON(preemptible());
if (may_use_simd()) {
kernel_neon_begin();
} else {
/*
* If !efi_sve_state, SVE can't be in use yet and doesn't need
* preserving:
*/
if (system_supports_sve() && likely(efi_sve_state)) {
char *sve_state = this_cpu_ptr(efi_sve_state);
bool ffr = true;
u64 svcr;
__this_cpu_write(efi_sve_state_used, true);
if (system_supports_sme()) {
svcr = read_sysreg_s(SYS_SVCR);
__this_cpu_write(efi_sm_state,
svcr & SVCR_SM_MASK);
/*
* Unless we have FA64 FFR does not
* exist in streaming mode.
*/
if (!system_supports_fa64())
ffr = !(svcr & SVCR_SM_MASK);
}
sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
ffr);
if (system_supports_sme())
sysreg_clear_set_s(SYS_SVCR,
SVCR_SM_MASK, 0);
} else {
fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
}
__this_cpu_write(efi_fpsimd_state_used, true);
}
}
/*
* __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
*/
void __efi_fpsimd_end(void)
{
if (!system_supports_fpsimd())
return;
if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
kernel_neon_end();
} else {
if (system_supports_sve() &&
likely(__this_cpu_read(efi_sve_state_used))) {
char const *sve_state = this_cpu_ptr(efi_sve_state);
bool ffr = true;
/*
* Restore streaming mode; EFI calls are
* normal function calls so should not return in
* streaming mode.
*/
if (system_supports_sme()) {
if (__this_cpu_read(efi_sm_state)) {
sysreg_clear_set_s(SYS_SVCR,
0,
SVCR_SM_MASK);
/*
* Unless we have FA64 FFR does not
* exist in streaming mode.
*/
if (!system_supports_fa64())
ffr = false;
}
}
sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
&this_cpu_ptr(&efi_fpsimd_state)->fpsr,
ffr);
__this_cpu_write(efi_sve_state_used, false);
} else {
fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
}
}
}
#endif /* CONFIG_EFI */
#endif /* CONFIG_KERNEL_MODE_NEON */
#ifdef CONFIG_CPU_PM
static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
switch (cmd) {
case CPU_PM_ENTER:
fpsimd_save_and_flush_cpu_state();
break;
case CPU_PM_EXIT:
break;
case CPU_PM_ENTER_FAILED:
default:
return NOTIFY_DONE;
}
return NOTIFY_OK;
}
static struct notifier_block fpsimd_cpu_pm_notifier_block = {
.notifier_call = fpsimd_cpu_pm_notifier,
};
static void __init fpsimd_pm_init(void)
{
cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
}
#else
static inline void fpsimd_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
#ifdef CONFIG_HOTPLUG_CPU
static int fpsimd_cpu_dead(unsigned int cpu)
{
per_cpu(fpsimd_last_state.st, cpu) = NULL;
return 0;
}
static inline void fpsimd_hotplug_init(void)
{
cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
NULL, fpsimd_cpu_dead);
}
#else
static inline void fpsimd_hotplug_init(void) { }
#endif
void cpu_enable_fpsimd(const struct arm64_cpu_capabilities *__always_unused p)
{
unsigned long enable = CPACR_EL1_FPEN_EL1EN | CPACR_EL1_FPEN_EL0EN;
write_sysreg(read_sysreg(CPACR_EL1) | enable, CPACR_EL1);
isb();
}
/*
* FP/SIMD support code initialisation.
*/
static int __init fpsimd_init(void)
{
if (cpu_have_named_feature(FP)) {
fpsimd_pm_init();
fpsimd_hotplug_init();
} else {
pr_notice("Floating-point is not implemented\n");
}
if (!cpu_have_named_feature(ASIMD))
pr_notice("Advanced SIMD is not implemented\n");
sve_sysctl_init();
sme_sysctl_init();
return 0;
}
core_initcall(fpsimd_init);