mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-16 15:34:48 +08:00
a6846234f4
Today module_frob_arch_sections() spots init sections from their
'init' prefix, and uses this to keep the init PLTs separate from the rest.
get_module_plt() uses within_module_init() to determine if a
location is in the init text or not, but this depends on whether
core code thought this was an init section.
Naturally the logic is different.
module_init_layout_section() groups the init and exit text together if
module unloading is disabled, as the exit code will never run. The result
is kernels with this configuration can't load all their modules because
there are not enough PLTs for the combined init+exit section.
A previous patch exposed module_init_layout_section(), use that so the
logic is the same.
Fixes: 055f23b74b
("module: check for exit sections in layout_sections() instead of module_init_section()")
Cc: stable@vger.kernel.org
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
296 lines
8.2 KiB
C
296 lines
8.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/moduleloader.h>
|
|
|
|
#include <asm/cache.h>
|
|
#include <asm/opcodes.h>
|
|
|
|
#ifdef CONFIG_THUMB2_KERNEL
|
|
#define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \
|
|
(PLT_ENT_STRIDE - 4))
|
|
#else
|
|
#define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \
|
|
(PLT_ENT_STRIDE - 8))
|
|
#endif
|
|
|
|
static const u32 fixed_plts[] = {
|
|
#ifdef CONFIG_DYNAMIC_FTRACE
|
|
FTRACE_ADDR,
|
|
MCOUNT_ADDR,
|
|
#endif
|
|
};
|
|
|
|
static void prealloc_fixed(struct mod_plt_sec *pltsec, struct plt_entries *plt)
|
|
{
|
|
int i;
|
|
|
|
if (!ARRAY_SIZE(fixed_plts) || pltsec->plt_count)
|
|
return;
|
|
pltsec->plt_count = ARRAY_SIZE(fixed_plts);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(plt->ldr); ++i)
|
|
plt->ldr[i] = PLT_ENT_LDR;
|
|
|
|
BUILD_BUG_ON(sizeof(fixed_plts) > sizeof(plt->lit));
|
|
memcpy(plt->lit, fixed_plts, sizeof(fixed_plts));
|
|
}
|
|
|
|
u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val)
|
|
{
|
|
struct mod_plt_sec *pltsec = !within_module_init(loc, mod) ?
|
|
&mod->arch.core : &mod->arch.init;
|
|
struct plt_entries *plt;
|
|
int idx;
|
|
|
|
/* cache the address, ELF header is available only during module load */
|
|
if (!pltsec->plt_ent)
|
|
pltsec->plt_ent = (struct plt_entries *)pltsec->plt->sh_addr;
|
|
plt = pltsec->plt_ent;
|
|
|
|
prealloc_fixed(pltsec, plt);
|
|
|
|
for (idx = 0; idx < ARRAY_SIZE(fixed_plts); ++idx)
|
|
if (plt->lit[idx] == val)
|
|
return (u32)&plt->ldr[idx];
|
|
|
|
idx = 0;
|
|
/*
|
|
* Look for an existing entry pointing to 'val'. Given that the
|
|
* relocations are sorted, this will be the last entry we allocated.
|
|
* (if one exists).
|
|
*/
|
|
if (pltsec->plt_count > 0) {
|
|
plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT;
|
|
idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT;
|
|
|
|
if (plt->lit[idx] == val)
|
|
return (u32)&plt->ldr[idx];
|
|
|
|
idx = (idx + 1) % PLT_ENT_COUNT;
|
|
if (!idx)
|
|
plt++;
|
|
}
|
|
|
|
pltsec->plt_count++;
|
|
BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size);
|
|
|
|
if (!idx)
|
|
/* Populate a new set of entries */
|
|
*plt = (struct plt_entries){
|
|
{ [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, },
|
|
{ val, }
|
|
};
|
|
else
|
|
plt->lit[idx] = val;
|
|
|
|
return (u32)&plt->ldr[idx];
|
|
}
|
|
|
|
#define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
|
|
|
|
static int cmp_rel(const void *a, const void *b)
|
|
{
|
|
const Elf32_Rel *x = a, *y = b;
|
|
int i;
|
|
|
|
/* sort by type and symbol index */
|
|
i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info));
|
|
if (i == 0)
|
|
i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info));
|
|
return i;
|
|
}
|
|
|
|
static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel)
|
|
{
|
|
u32 *tval = (u32 *)(base + rel->r_offset);
|
|
|
|
/*
|
|
* Do a bitwise compare on the raw addend rather than fully decoding
|
|
* the offset and doing an arithmetic comparison.
|
|
* Note that a zero-addend jump/call relocation is encoded taking the
|
|
* PC bias into account, i.e., -8 for ARM and -4 for Thumb2.
|
|
*/
|
|
switch (ELF32_R_TYPE(rel->r_info)) {
|
|
u16 upper, lower;
|
|
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]);
|
|
lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]);
|
|
|
|
return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe;
|
|
|
|
case R_ARM_CALL:
|
|
case R_ARM_PC24:
|
|
case R_ARM_JUMP24:
|
|
return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num)
|
|
{
|
|
const Elf32_Rel *prev;
|
|
|
|
/*
|
|
* Entries are sorted by type and symbol index. That means that,
|
|
* if a duplicate entry exists, it must be in the preceding
|
|
* slot.
|
|
*/
|
|
if (!num)
|
|
return false;
|
|
|
|
prev = rel + num - 1;
|
|
return cmp_rel(rel + num, prev) == 0 &&
|
|
is_zero_addend_relocation(base, prev);
|
|
}
|
|
|
|
/* Count how many PLT entries we may need */
|
|
static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base,
|
|
const Elf32_Rel *rel, int num, Elf32_Word dstidx)
|
|
{
|
|
unsigned int ret = 0;
|
|
const Elf32_Sym *s;
|
|
int i;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
switch (ELF32_R_TYPE(rel[i].r_info)) {
|
|
case R_ARM_CALL:
|
|
case R_ARM_PC24:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
/*
|
|
* We only have to consider branch targets that resolve
|
|
* to symbols that are defined in a different section.
|
|
* This is not simply a heuristic, it is a fundamental
|
|
* limitation, since there is no guaranteed way to emit
|
|
* PLT entries sufficiently close to the branch if the
|
|
* section size exceeds the range of a branch
|
|
* instruction. So ignore relocations against defined
|
|
* symbols if they live in the same section as the
|
|
* relocation target.
|
|
*/
|
|
s = syms + ELF32_R_SYM(rel[i].r_info);
|
|
if (s->st_shndx == dstidx)
|
|
break;
|
|
|
|
/*
|
|
* Jump relocations with non-zero addends against
|
|
* undefined symbols are supported by the ELF spec, but
|
|
* do not occur in practice (e.g., 'jump n bytes past
|
|
* the entry point of undefined function symbol f').
|
|
* So we need to support them, but there is no need to
|
|
* take them into consideration when trying to optimize
|
|
* this code. So let's only check for duplicates when
|
|
* the addend is zero. (Note that calls into the core
|
|
* module via init PLT entries could involve section
|
|
* relative symbol references with non-zero addends, for
|
|
* which we may end up emitting duplicates, but the init
|
|
* PLT is released along with the rest of the .init
|
|
* region as soon as module loading completes.)
|
|
*/
|
|
if (!is_zero_addend_relocation(base, rel + i) ||
|
|
!duplicate_rel(base, rel, i))
|
|
ret++;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
|
|
char *secstrings, struct module *mod)
|
|
{
|
|
unsigned long core_plts = ARRAY_SIZE(fixed_plts);
|
|
unsigned long init_plts = ARRAY_SIZE(fixed_plts);
|
|
Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum;
|
|
Elf32_Sym *syms = NULL;
|
|
|
|
/*
|
|
* To store the PLTs, we expand the .text section for core module code
|
|
* and for initialization code.
|
|
*/
|
|
for (s = sechdrs; s < sechdrs_end; ++s) {
|
|
if (strcmp(".plt", secstrings + s->sh_name) == 0)
|
|
mod->arch.core.plt = s;
|
|
else if (strcmp(".init.plt", secstrings + s->sh_name) == 0)
|
|
mod->arch.init.plt = s;
|
|
else if (s->sh_type == SHT_SYMTAB)
|
|
syms = (Elf32_Sym *)s->sh_addr;
|
|
}
|
|
|
|
if (!mod->arch.core.plt || !mod->arch.init.plt) {
|
|
pr_err("%s: module PLT section(s) missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
if (!syms) {
|
|
pr_err("%s: module symtab section missing\n", mod->name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
for (s = sechdrs + 1; s < sechdrs_end; ++s) {
|
|
Elf32_Rel *rels = (void *)ehdr + s->sh_offset;
|
|
int numrels = s->sh_size / sizeof(Elf32_Rel);
|
|
Elf32_Shdr *dstsec = sechdrs + s->sh_info;
|
|
|
|
if (s->sh_type != SHT_REL)
|
|
continue;
|
|
|
|
/* ignore relocations that operate on non-exec sections */
|
|
if (!(dstsec->sh_flags & SHF_EXECINSTR))
|
|
continue;
|
|
|
|
/* sort by type and symbol index */
|
|
sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL);
|
|
|
|
if (!module_init_layout_section(secstrings + dstsec->sh_name))
|
|
core_plts += count_plts(syms, dstsec->sh_addr, rels,
|
|
numrels, s->sh_info);
|
|
else
|
|
init_plts += count_plts(syms, dstsec->sh_addr, rels,
|
|
numrels, s->sh_info);
|
|
}
|
|
|
|
mod->arch.core.plt->sh_type = SHT_NOBITS;
|
|
mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
|
|
mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE,
|
|
sizeof(struct plt_entries));
|
|
mod->arch.core.plt_count = 0;
|
|
mod->arch.core.plt_ent = NULL;
|
|
|
|
mod->arch.init.plt->sh_type = SHT_NOBITS;
|
|
mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
|
|
mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
|
|
mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE,
|
|
sizeof(struct plt_entries));
|
|
mod->arch.init.plt_count = 0;
|
|
mod->arch.init.plt_ent = NULL;
|
|
|
|
pr_debug("%s: plt=%x, init.plt=%x\n", __func__,
|
|
mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size);
|
|
return 0;
|
|
}
|
|
|
|
bool in_module_plt(unsigned long loc)
|
|
{
|
|
struct module *mod;
|
|
bool ret;
|
|
|
|
preempt_disable();
|
|
mod = __module_text_address(loc);
|
|
ret = mod && (loc - (u32)mod->arch.core.plt_ent < mod->arch.core.plt_count * PLT_ENT_SIZE ||
|
|
loc - (u32)mod->arch.init.plt_ent < mod->arch.init.plt_count * PLT_ENT_SIZE);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|