mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 15:54:15 +08:00
23ebda2fc7
ata_sff_data_xfer_noirq() is invoked via the ->sff_data_xfer hook. The latter is invoked by ata_pio_sector(), atapi_send_cdb() and __atapi_pio_bytes() which in turn is invoked by ata_sff_hsm_move(). The latter function requires that the "ap->lock" lock is held which needs to be taken with disabled interrupts. There is no need have to have ata_sff_data_xfer_noirq() which invokes ata_sff_data_xfer32() with disabled interrupts because at this point the interrupts are already disabled. Remove the function and its references to it and replace all callers with ata_sff_data_xfer32(). Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Tejun Heo <tj@kernel.org>
3291 lines
83 KiB
C
3291 lines
83 KiB
C
/*
|
|
* libata-sff.c - helper library for PCI IDE BMDMA
|
|
*
|
|
* Maintained by: Tejun Heo <tj@kernel.org>
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org
|
|
* on emails.
|
|
*
|
|
* Copyright 2003-2006 Red Hat, Inc. All rights reserved.
|
|
* Copyright 2003-2006 Jeff Garzik
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* libata documentation is available via 'make {ps|pdf}docs',
|
|
* as Documentation/driver-api/libata.rst
|
|
*
|
|
* Hardware documentation available from http://www.t13.org/ and
|
|
* http://www.sata-io.org/
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/libata.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "libata.h"
|
|
|
|
static struct workqueue_struct *ata_sff_wq;
|
|
|
|
const struct ata_port_operations ata_sff_port_ops = {
|
|
.inherits = &ata_base_port_ops,
|
|
|
|
.qc_prep = ata_noop_qc_prep,
|
|
.qc_issue = ata_sff_qc_issue,
|
|
.qc_fill_rtf = ata_sff_qc_fill_rtf,
|
|
|
|
.freeze = ata_sff_freeze,
|
|
.thaw = ata_sff_thaw,
|
|
.prereset = ata_sff_prereset,
|
|
.softreset = ata_sff_softreset,
|
|
.hardreset = sata_sff_hardreset,
|
|
.postreset = ata_sff_postreset,
|
|
.error_handler = ata_sff_error_handler,
|
|
|
|
.sff_dev_select = ata_sff_dev_select,
|
|
.sff_check_status = ata_sff_check_status,
|
|
.sff_tf_load = ata_sff_tf_load,
|
|
.sff_tf_read = ata_sff_tf_read,
|
|
.sff_exec_command = ata_sff_exec_command,
|
|
.sff_data_xfer = ata_sff_data_xfer,
|
|
.sff_drain_fifo = ata_sff_drain_fifo,
|
|
|
|
.lost_interrupt = ata_sff_lost_interrupt,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_sff_port_ops);
|
|
|
|
/**
|
|
* ata_sff_check_status - Read device status reg & clear interrupt
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile status register for currently-selected device
|
|
* and return its value. This also clears pending interrupts
|
|
* from this device
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
u8 ata_sff_check_status(struct ata_port *ap)
|
|
{
|
|
return ioread8(ap->ioaddr.status_addr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_check_status);
|
|
|
|
/**
|
|
* ata_sff_altstatus - Read device alternate status reg
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile alternate status register for
|
|
* currently-selected device and return its value.
|
|
*
|
|
* Note: may NOT be used as the check_altstatus() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_sff_altstatus(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus)
|
|
return ap->ops->sff_check_altstatus(ap);
|
|
|
|
return ioread8(ap->ioaddr.altstatus_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_irq_status - Check if the device is busy
|
|
* @ap: port where the device is
|
|
*
|
|
* Determine if the port is currently busy. Uses altstatus
|
|
* if available in order to avoid clearing shared IRQ status
|
|
* when finding an IRQ source. Non ctl capable devices don't
|
|
* share interrupt lines fortunately for us.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_sff_irq_status(struct ata_port *ap)
|
|
{
|
|
u8 status;
|
|
|
|
if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
|
|
status = ata_sff_altstatus(ap);
|
|
/* Not us: We are busy */
|
|
if (status & ATA_BUSY)
|
|
return status;
|
|
}
|
|
/* Clear INTRQ latch */
|
|
status = ap->ops->sff_check_status(ap);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ata_sff_sync - Flush writes
|
|
* @ap: Port to wait for.
|
|
*
|
|
* CAUTION:
|
|
* If we have an mmio device with no ctl and no altstatus
|
|
* method this will fail. No such devices are known to exist.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_sff_sync(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus)
|
|
ap->ops->sff_check_altstatus(ap);
|
|
else if (ap->ioaddr.altstatus_addr)
|
|
ioread8(ap->ioaddr.altstatus_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_pause - Flush writes and wait 400nS
|
|
* @ap: Port to pause for.
|
|
*
|
|
* CAUTION:
|
|
* If we have an mmio device with no ctl and no altstatus
|
|
* method this will fail. No such devices are known to exist.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_sff_pause(struct ata_port *ap)
|
|
{
|
|
ata_sff_sync(ap);
|
|
ndelay(400);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_pause);
|
|
|
|
/**
|
|
* ata_sff_dma_pause - Pause before commencing DMA
|
|
* @ap: Port to pause for.
|
|
*
|
|
* Perform I/O fencing and ensure sufficient cycle delays occur
|
|
* for the HDMA1:0 transition
|
|
*/
|
|
|
|
void ata_sff_dma_pause(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
|
|
/* An altstatus read will cause the needed delay without
|
|
messing up the IRQ status */
|
|
ata_sff_altstatus(ap);
|
|
return;
|
|
}
|
|
/* There are no DMA controllers without ctl. BUG here to ensure
|
|
we never violate the HDMA1:0 transition timing and risk
|
|
corruption. */
|
|
BUG();
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
|
|
|
|
/**
|
|
* ata_sff_busy_sleep - sleep until BSY clears, or timeout
|
|
* @ap: port containing status register to be polled
|
|
* @tmout_pat: impatience timeout in msecs
|
|
* @tmout: overall timeout in msecs
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears,
|
|
* or a timeout occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_busy_sleep(struct ata_port *ap,
|
|
unsigned long tmout_pat, unsigned long tmout)
|
|
{
|
|
unsigned long timer_start, timeout;
|
|
u8 status;
|
|
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
|
|
timer_start = jiffies;
|
|
timeout = ata_deadline(timer_start, tmout_pat);
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
ata_msleep(ap, 50);
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
|
|
}
|
|
|
|
if (status != 0xff && (status & ATA_BUSY))
|
|
ata_port_warn(ap,
|
|
"port is slow to respond, please be patient (Status 0x%x)\n",
|
|
status);
|
|
|
|
timeout = ata_deadline(timer_start, tmout);
|
|
while (status != 0xff && (status & ATA_BUSY) &&
|
|
time_before(jiffies, timeout)) {
|
|
ata_msleep(ap, 50);
|
|
status = ap->ops->sff_check_status(ap);
|
|
}
|
|
|
|
if (status == 0xff)
|
|
return -ENODEV;
|
|
|
|
if (status & ATA_BUSY) {
|
|
ata_port_err(ap,
|
|
"port failed to respond (%lu secs, Status 0x%x)\n",
|
|
DIV_ROUND_UP(tmout, 1000), status);
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
|
|
|
|
static int ata_sff_check_ready(struct ata_link *link)
|
|
{
|
|
u8 status = link->ap->ops->sff_check_status(link->ap);
|
|
|
|
return ata_check_ready(status);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_wait_ready - sleep until BSY clears, or timeout
|
|
* @link: SFF link to wait ready status for
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears, or timeout
|
|
* occurs.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
return ata_wait_ready(link, deadline, ata_sff_check_ready);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
|
|
|
|
/**
|
|
* ata_sff_set_devctl - Write device control reg
|
|
* @ap: port where the device is
|
|
* @ctl: value to write
|
|
*
|
|
* Writes ATA taskfile device control register.
|
|
*
|
|
* Note: may NOT be used as the sff_set_devctl() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
|
|
{
|
|
if (ap->ops->sff_set_devctl)
|
|
ap->ops->sff_set_devctl(ap, ctl);
|
|
else
|
|
iowrite8(ctl, ap->ioaddr.ctl_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel. Works with both PIO and MMIO.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
|
|
{
|
|
u8 tmp;
|
|
|
|
if (device == 0)
|
|
tmp = ATA_DEVICE_OBS;
|
|
else
|
|
tmp = ATA_DEVICE_OBS | ATA_DEV1;
|
|
|
|
iowrite8(tmp, ap->ioaddr.device_addr);
|
|
ata_sff_pause(ap); /* needed; also flushes, for mmio */
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dev_select);
|
|
|
|
/**
|
|
* ata_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
* @wait: non-zero to wait for Status register BSY bit to clear
|
|
* @can_sleep: non-zero if context allows sleeping
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel.
|
|
*
|
|
* This is a high-level version of ata_sff_dev_select(), which
|
|
* additionally provides the services of inserting the proper
|
|
* pauses and status polling, where needed.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static void ata_dev_select(struct ata_port *ap, unsigned int device,
|
|
unsigned int wait, unsigned int can_sleep)
|
|
{
|
|
if (ata_msg_probe(ap))
|
|
ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
|
|
device, wait);
|
|
|
|
if (wait)
|
|
ata_wait_idle(ap);
|
|
|
|
ap->ops->sff_dev_select(ap, device);
|
|
|
|
if (wait) {
|
|
if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
|
|
ata_msleep(ap, 150);
|
|
ata_wait_idle(ap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_sff_irq_on - Enable interrupts on a port.
|
|
* @ap: Port on which interrupts are enabled.
|
|
*
|
|
* Enable interrupts on a legacy IDE device using MMIO or PIO,
|
|
* wait for idle, clear any pending interrupts.
|
|
*
|
|
* Note: may NOT be used as the sff_irq_on() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_irq_on(struct ata_port *ap)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
if (ap->ops->sff_irq_on) {
|
|
ap->ops->sff_irq_on(ap);
|
|
return;
|
|
}
|
|
|
|
ap->ctl &= ~ATA_NIEN;
|
|
ap->last_ctl = ap->ctl;
|
|
|
|
if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
ata_wait_idle(ap);
|
|
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_irq_on);
|
|
|
|
/**
|
|
* ata_sff_tf_load - send taskfile registers to host controller
|
|
* @ap: Port to which output is sent
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Outputs ATA taskfile to standard ATA host controller.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
|
|
|
|
if (tf->ctl != ap->last_ctl) {
|
|
if (ioaddr->ctl_addr)
|
|
iowrite8(tf->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
|
|
WARN_ON_ONCE(!ioaddr->ctl_addr);
|
|
iowrite8(tf->hob_feature, ioaddr->feature_addr);
|
|
iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
|
|
iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
|
|
iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
|
|
iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
|
|
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->hob_feature,
|
|
tf->hob_nsect,
|
|
tf->hob_lbal,
|
|
tf->hob_lbam,
|
|
tf->hob_lbah);
|
|
}
|
|
|
|
if (is_addr) {
|
|
iowrite8(tf->feature, ioaddr->feature_addr);
|
|
iowrite8(tf->nsect, ioaddr->nsect_addr);
|
|
iowrite8(tf->lbal, ioaddr->lbal_addr);
|
|
iowrite8(tf->lbam, ioaddr->lbam_addr);
|
|
iowrite8(tf->lbah, ioaddr->lbah_addr);
|
|
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
|
|
tf->feature,
|
|
tf->nsect,
|
|
tf->lbal,
|
|
tf->lbam,
|
|
tf->lbah);
|
|
}
|
|
|
|
if (tf->flags & ATA_TFLAG_DEVICE) {
|
|
iowrite8(tf->device, ioaddr->device_addr);
|
|
VPRINTK("device 0x%X\n", tf->device);
|
|
}
|
|
|
|
ata_wait_idle(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_tf_load);
|
|
|
|
/**
|
|
* ata_sff_tf_read - input device's ATA taskfile shadow registers
|
|
* @ap: Port from which input is read
|
|
* @tf: ATA taskfile register set for storing input
|
|
*
|
|
* Reads ATA taskfile registers for currently-selected device
|
|
* into @tf. Assumes the device has a fully SFF compliant task file
|
|
* layout and behaviour. If you device does not (eg has a different
|
|
* status method) then you will need to provide a replacement tf_read
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
tf->command = ata_sff_check_status(ap);
|
|
tf->feature = ioread8(ioaddr->error_addr);
|
|
tf->nsect = ioread8(ioaddr->nsect_addr);
|
|
tf->lbal = ioread8(ioaddr->lbal_addr);
|
|
tf->lbam = ioread8(ioaddr->lbam_addr);
|
|
tf->lbah = ioread8(ioaddr->lbah_addr);
|
|
tf->device = ioread8(ioaddr->device_addr);
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
if (likely(ioaddr->ctl_addr)) {
|
|
iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
|
|
tf->hob_feature = ioread8(ioaddr->error_addr);
|
|
tf->hob_nsect = ioread8(ioaddr->nsect_addr);
|
|
tf->hob_lbal = ioread8(ioaddr->lbal_addr);
|
|
tf->hob_lbam = ioread8(ioaddr->lbam_addr);
|
|
tf->hob_lbah = ioread8(ioaddr->lbah_addr);
|
|
iowrite8(tf->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
} else
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_tf_read);
|
|
|
|
/**
|
|
* ata_sff_exec_command - issue ATA command to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA command, with proper synchronization with interrupt
|
|
* handler / other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
|
|
|
|
iowrite8(tf->command, ap->ioaddr.command_addr);
|
|
ata_sff_pause(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_exec_command);
|
|
|
|
/**
|
|
* ata_tf_to_host - issue ATA taskfile to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA taskfile register set to ATA host controller,
|
|
* with proper synchronization with interrupt handler and
|
|
* other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
static inline void ata_tf_to_host(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
ap->ops->sff_tf_load(ap, tf);
|
|
ap->ops->sff_exec_command(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_data_xfer - Transfer data by PIO
|
|
* @qc: queued command
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @rw: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* Bytes consumed.
|
|
*/
|
|
unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
|
|
unsigned int buflen, int rw)
|
|
{
|
|
struct ata_port *ap = qc->dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned int words = buflen >> 1;
|
|
|
|
/* Transfer multiple of 2 bytes */
|
|
if (rw == READ)
|
|
ioread16_rep(data_addr, buf, words);
|
|
else
|
|
iowrite16_rep(data_addr, buf, words);
|
|
|
|
/* Transfer trailing byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
unsigned char pad[2] = { };
|
|
|
|
/* Point buf to the tail of buffer */
|
|
buf += buflen - 1;
|
|
|
|
/*
|
|
* Use io*16_rep() accessors here as well to avoid pointlessly
|
|
* swapping bytes to and from on the big endian machines...
|
|
*/
|
|
if (rw == READ) {
|
|
ioread16_rep(data_addr, pad, 1);
|
|
*buf = pad[0];
|
|
} else {
|
|
pad[0] = *buf;
|
|
iowrite16_rep(data_addr, pad, 1);
|
|
}
|
|
words++;
|
|
}
|
|
|
|
return words << 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
|
|
|
|
/**
|
|
* ata_sff_data_xfer32 - Transfer data by PIO
|
|
* @qc: queued command
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @rw: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO using 32bit
|
|
* I/O operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
* RETURNS:
|
|
* Bytes consumed.
|
|
*/
|
|
|
|
unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
|
|
unsigned int buflen, int rw)
|
|
{
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_port *ap = dev->link->ap;
|
|
void __iomem *data_addr = ap->ioaddr.data_addr;
|
|
unsigned int words = buflen >> 2;
|
|
int slop = buflen & 3;
|
|
|
|
if (!(ap->pflags & ATA_PFLAG_PIO32))
|
|
return ata_sff_data_xfer(qc, buf, buflen, rw);
|
|
|
|
/* Transfer multiple of 4 bytes */
|
|
if (rw == READ)
|
|
ioread32_rep(data_addr, buf, words);
|
|
else
|
|
iowrite32_rep(data_addr, buf, words);
|
|
|
|
/* Transfer trailing bytes, if any */
|
|
if (unlikely(slop)) {
|
|
unsigned char pad[4] = { };
|
|
|
|
/* Point buf to the tail of buffer */
|
|
buf += buflen - slop;
|
|
|
|
/*
|
|
* Use io*_rep() accessors here as well to avoid pointlessly
|
|
* swapping bytes to and from on the big endian machines...
|
|
*/
|
|
if (rw == READ) {
|
|
if (slop < 3)
|
|
ioread16_rep(data_addr, pad, 1);
|
|
else
|
|
ioread32_rep(data_addr, pad, 1);
|
|
memcpy(buf, pad, slop);
|
|
} else {
|
|
memcpy(pad, buf, slop);
|
|
if (slop < 3)
|
|
iowrite16_rep(data_addr, pad, 1);
|
|
else
|
|
iowrite32_rep(data_addr, pad, 1);
|
|
}
|
|
}
|
|
return (buflen + 1) & ~1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
|
|
|
|
/**
|
|
* ata_pio_sector - Transfer a sector of data.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer qc->sect_size bytes of data from/to the ATA device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_pio_sector(struct ata_queued_cmd *qc)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned int offset;
|
|
unsigned char *buf;
|
|
|
|
if (qc->curbytes == qc->nbytes - qc->sect_size)
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
page = sg_page(qc->cursg);
|
|
offset = qc->cursg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
/* do the actual data transfer */
|
|
buf = kmap_atomic(page);
|
|
ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write);
|
|
kunmap_atomic(buf);
|
|
|
|
if (!do_write && !PageSlab(page))
|
|
flush_dcache_page(page);
|
|
|
|
qc->curbytes += qc->sect_size;
|
|
qc->cursg_ofs += qc->sect_size;
|
|
|
|
if (qc->cursg_ofs == qc->cursg->length) {
|
|
qc->cursg = sg_next(qc->cursg);
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pio_sectors - Transfer one or many sectors.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer one or many sectors of data from/to the
|
|
* ATA device for the DRQ request.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void ata_pio_sectors(struct ata_queued_cmd *qc)
|
|
{
|
|
if (is_multi_taskfile(&qc->tf)) {
|
|
/* READ/WRITE MULTIPLE */
|
|
unsigned int nsect;
|
|
|
|
WARN_ON_ONCE(qc->dev->multi_count == 0);
|
|
|
|
nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
|
|
qc->dev->multi_count);
|
|
while (nsect--)
|
|
ata_pio_sector(qc);
|
|
} else
|
|
ata_pio_sector(qc);
|
|
|
|
ata_sff_sync(qc->ap); /* flush */
|
|
}
|
|
|
|
/**
|
|
* atapi_send_cdb - Write CDB bytes to hardware
|
|
* @ap: Port to which ATAPI device is attached.
|
|
* @qc: Taskfile currently active
|
|
*
|
|
* When device has indicated its readiness to accept
|
|
* a CDB, this function is called. Send the CDB.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
/* send SCSI cdb */
|
|
DPRINTK("send cdb\n");
|
|
WARN_ON_ONCE(qc->dev->cdb_len < 12);
|
|
|
|
ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
|
|
ata_sff_sync(ap);
|
|
/* FIXME: If the CDB is for DMA do we need to do the transition delay
|
|
or is bmdma_start guaranteed to do it ? */
|
|
switch (qc->tf.protocol) {
|
|
case ATAPI_PROT_PIO:
|
|
ap->hsm_task_state = HSM_ST;
|
|
break;
|
|
case ATAPI_PROT_NODATA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
case ATAPI_PROT_DMA:
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
/* initiate bmdma */
|
|
ap->ops->bmdma_start(qc);
|
|
break;
|
|
#endif /* CONFIG_ATA_BMDMA */
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
* @bytes: number of bytes
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
*/
|
|
static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
|
|
{
|
|
int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_eh_info *ehi = &dev->link->eh_info;
|
|
struct scatterlist *sg;
|
|
struct page *page;
|
|
unsigned char *buf;
|
|
unsigned int offset, count, consumed;
|
|
|
|
next_sg:
|
|
sg = qc->cursg;
|
|
if (unlikely(!sg)) {
|
|
ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
|
|
"buf=%u cur=%u bytes=%u",
|
|
qc->nbytes, qc->curbytes, bytes);
|
|
return -1;
|
|
}
|
|
|
|
page = sg_page(sg);
|
|
offset = sg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
/* don't overrun current sg */
|
|
count = min(sg->length - qc->cursg_ofs, bytes);
|
|
|
|
/* don't cross page boundaries */
|
|
count = min(count, (unsigned int)PAGE_SIZE - offset);
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
/* do the actual data transfer */
|
|
buf = kmap_atomic(page);
|
|
consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
|
|
kunmap_atomic(buf);
|
|
|
|
bytes -= min(bytes, consumed);
|
|
qc->curbytes += count;
|
|
qc->cursg_ofs += count;
|
|
|
|
if (qc->cursg_ofs == sg->length) {
|
|
qc->cursg = sg_next(qc->cursg);
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
|
|
/*
|
|
* There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
|
|
* Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
|
|
* check correctly as it doesn't know if it is the last request being
|
|
* made. Somebody should implement a proper sanity check.
|
|
*/
|
|
if (bytes)
|
|
goto next_sg;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
struct ata_eh_info *ehi = &dev->link->eh_info;
|
|
unsigned int ireason, bc_lo, bc_hi, bytes;
|
|
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
/* Abuse qc->result_tf for temp storage of intermediate TF
|
|
* here to save some kernel stack usage.
|
|
* For normal completion, qc->result_tf is not relevant. For
|
|
* error, qc->result_tf is later overwritten by ata_qc_complete().
|
|
* So, the correctness of qc->result_tf is not affected.
|
|
*/
|
|
ap->ops->sff_tf_read(ap, &qc->result_tf);
|
|
ireason = qc->result_tf.nsect;
|
|
bc_lo = qc->result_tf.lbam;
|
|
bc_hi = qc->result_tf.lbah;
|
|
bytes = (bc_hi << 8) | bc_lo;
|
|
|
|
/* shall be cleared to zero, indicating xfer of data */
|
|
if (unlikely(ireason & ATAPI_COD))
|
|
goto atapi_check;
|
|
|
|
/* make sure transfer direction matches expected */
|
|
i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
|
|
if (unlikely(do_write != i_write))
|
|
goto atapi_check;
|
|
|
|
if (unlikely(!bytes))
|
|
goto atapi_check;
|
|
|
|
VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
|
|
|
|
if (unlikely(__atapi_pio_bytes(qc, bytes)))
|
|
goto err_out;
|
|
ata_sff_sync(ap); /* flush */
|
|
|
|
return;
|
|
|
|
atapi_check:
|
|
ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
|
|
ireason, bytes);
|
|
err_out:
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
*
|
|
* RETURNS:
|
|
* 1 if ok in workqueue, 0 otherwise.
|
|
*/
|
|
static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
|
|
struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
return 1;
|
|
|
|
if (ap->hsm_task_state == HSM_ST_FIRST) {
|
|
if (qc->tf.protocol == ATA_PROT_PIO &&
|
|
(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
return 1;
|
|
|
|
if (ata_is_atapi(qc->tf.protocol) &&
|
|
!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_hsm_qc_complete - finish a qc running on standard HSM
|
|
* @qc: Command to complete
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* Finish @qc which is running on standard HSM.
|
|
*
|
|
* LOCKING:
|
|
* If @in_wq is zero, spin_lock_irqsave(host lock).
|
|
* Otherwise, none on entry and grabs host lock.
|
|
*/
|
|
static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
if (ap->ops->error_handler) {
|
|
if (in_wq) {
|
|
/* EH might have kicked in while host lock is
|
|
* released.
|
|
*/
|
|
qc = ata_qc_from_tag(ap, qc->tag);
|
|
if (qc) {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM))) {
|
|
ata_sff_irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
} else
|
|
ata_port_freeze(ap);
|
|
}
|
|
} else {
|
|
if (likely(!(qc->err_mask & AC_ERR_HSM)))
|
|
ata_qc_complete(qc);
|
|
else
|
|
ata_port_freeze(ap);
|
|
}
|
|
} else {
|
|
if (in_wq) {
|
|
ata_sff_irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
} else
|
|
ata_qc_complete(qc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_sff_hsm_move - move the HSM to the next state.
|
|
* @ap: the target ata_port
|
|
* @qc: qc on going
|
|
* @status: current device status
|
|
* @in_wq: 1 if called from workqueue, 0 otherwise
|
|
*
|
|
* RETURNS:
|
|
* 1 when poll next status needed, 0 otherwise.
|
|
*/
|
|
int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
|
|
u8 status, int in_wq)
|
|
{
|
|
struct ata_link *link = qc->dev->link;
|
|
struct ata_eh_info *ehi = &link->eh_info;
|
|
int poll_next;
|
|
|
|
lockdep_assert_held(ap->lock);
|
|
|
|
WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
|
|
|
|
/* Make sure ata_sff_qc_issue() does not throw things
|
|
* like DMA polling into the workqueue. Notice that
|
|
* in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
|
|
*/
|
|
WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
|
|
|
|
fsm_start:
|
|
DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
|
|
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Send first data block or PACKET CDB */
|
|
|
|
/* If polling, we will stay in the work queue after
|
|
* sending the data. Otherwise, interrupt handler
|
|
* takes over after sending the data.
|
|
*/
|
|
poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
/* check device status */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF)))
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
else {
|
|
/* HSM violation. Let EH handle this */
|
|
ata_ehi_push_desc(ehi,
|
|
"ST_FIRST: !(DRQ|ERR|DF)");
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
}
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
/* Some ATAPI tape drives forget to clear the ERR bit
|
|
* when doing the next command (mostly request sense).
|
|
* We ignore ERR here to workaround and proceed sending
|
|
* the CDB.
|
|
*/
|
|
if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
|
|
ata_ehi_push_desc(ehi, "ST_FIRST: "
|
|
"DRQ=1 with device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
}
|
|
|
|
if (qc->tf.protocol == ATA_PROT_PIO) {
|
|
/* PIO data out protocol.
|
|
* send first data block.
|
|
*/
|
|
|
|
/* ata_pio_sectors() might change the state
|
|
* to HSM_ST_LAST. so, the state is changed here
|
|
* before ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST;
|
|
ata_pio_sectors(qc);
|
|
} else
|
|
/* send CDB */
|
|
atapi_send_cdb(ap, qc);
|
|
|
|
/* if polling, ata_sff_pio_task() handles the rest.
|
|
* otherwise, interrupt handler takes over from here.
|
|
*/
|
|
break;
|
|
|
|
case HSM_ST:
|
|
/* complete command or read/write the data register */
|
|
if (qc->tf.protocol == ATAPI_PROT_PIO) {
|
|
/* ATAPI PIO protocol */
|
|
if ((status & ATA_DRQ) == 0) {
|
|
/* No more data to transfer or device error.
|
|
* Device error will be tagged in HSM_ST_LAST.
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* Device should not ask for data transfer (DRQ=1)
|
|
* when it finds something wrong.
|
|
* We ignore DRQ here and stop the HSM by
|
|
* changing hsm_task_state to HSM_ST_ERR and
|
|
* let the EH abort the command or reset the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
ata_ehi_push_desc(ehi, "ST-ATAPI: "
|
|
"DRQ=1 with device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
atapi_pio_bytes(qc);
|
|
|
|
if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
|
|
/* bad ireason reported by device */
|
|
goto fsm_start;
|
|
|
|
} else {
|
|
/* ATA PIO protocol */
|
|
if (unlikely((status & ATA_DRQ) == 0)) {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if (likely(status & (ATA_ERR | ATA_DF))) {
|
|
/* device stops HSM for abort/error */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
/* If diagnostic failed and this is
|
|
* IDENTIFY, it's likely a phantom
|
|
* device. Mark hint.
|
|
*/
|
|
if (qc->dev->horkage &
|
|
ATA_HORKAGE_DIAGNOSTIC)
|
|
qc->err_mask |=
|
|
AC_ERR_NODEV_HINT;
|
|
} else {
|
|
/* HSM violation. Let EH handle this.
|
|
* Phantom devices also trigger this
|
|
* condition. Mark hint.
|
|
*/
|
|
ata_ehi_push_desc(ehi, "ST-ATA: "
|
|
"DRQ=0 without device error, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM |
|
|
AC_ERR_NODEV_HINT;
|
|
}
|
|
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* For PIO reads, some devices may ask for
|
|
* data transfer (DRQ=1) alone with ERR=1.
|
|
* We respect DRQ here and transfer one
|
|
* block of junk data before changing the
|
|
* hsm_task_state to HSM_ST_ERR.
|
|
*
|
|
* For PIO writes, ERR=1 DRQ=1 doesn't make
|
|
* sense since the data block has been
|
|
* transferred to the device.
|
|
*/
|
|
if (unlikely(status & (ATA_ERR | ATA_DF))) {
|
|
/* data might be corrputed */
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
|
|
if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
|
|
ata_pio_sectors(qc);
|
|
status = ata_wait_idle(ap);
|
|
}
|
|
|
|
if (status & (ATA_BUSY | ATA_DRQ)) {
|
|
ata_ehi_push_desc(ehi, "ST-ATA: "
|
|
"BUSY|DRQ persists on ERR|DF, "
|
|
"dev_stat 0x%X", status);
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
}
|
|
|
|
/* There are oddball controllers with
|
|
* status register stuck at 0x7f and
|
|
* lbal/m/h at zero which makes it
|
|
* pass all other presence detection
|
|
* mechanisms we have. Set NODEV_HINT
|
|
* for it. Kernel bz#7241.
|
|
*/
|
|
if (status == 0x7f)
|
|
qc->err_mask |= AC_ERR_NODEV_HINT;
|
|
|
|
/* ata_pio_sectors() might change the
|
|
* state to HSM_ST_LAST. so, the state
|
|
* is changed after ata_pio_sectors().
|
|
*/
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
ata_pio_sectors(qc);
|
|
|
|
if (ap->hsm_task_state == HSM_ST_LAST &&
|
|
(!(qc->tf.flags & ATA_TFLAG_WRITE))) {
|
|
/* all data read */
|
|
status = ata_wait_idle(ap);
|
|
goto fsm_start;
|
|
}
|
|
}
|
|
|
|
poll_next = 1;
|
|
break;
|
|
|
|
case HSM_ST_LAST:
|
|
if (unlikely(!ata_ok(status))) {
|
|
qc->err_mask |= __ac_err_mask(status);
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
goto fsm_start;
|
|
}
|
|
|
|
/* no more data to transfer */
|
|
DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
|
|
ap->print_id, qc->dev->devno, status);
|
|
|
|
WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
|
|
case HSM_ST_ERR:
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
/* complete taskfile transaction */
|
|
ata_hsm_qc_complete(qc, in_wq);
|
|
|
|
poll_next = 0;
|
|
break;
|
|
default:
|
|
poll_next = 0;
|
|
WARN(true, "ata%d: SFF host state machine in invalid state %d",
|
|
ap->print_id, ap->hsm_task_state);
|
|
}
|
|
|
|
return poll_next;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
|
|
|
|
void ata_sff_queue_work(struct work_struct *work)
|
|
{
|
|
queue_work(ata_sff_wq, work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_work);
|
|
|
|
void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
|
|
{
|
|
queue_delayed_work(ata_sff_wq, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
|
|
|
|
void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
|
|
WARN_ON((ap->sff_pio_task_link != NULL) &&
|
|
(ap->sff_pio_task_link != link));
|
|
ap->sff_pio_task_link = link;
|
|
|
|
/* may fail if ata_sff_flush_pio_task() in progress */
|
|
ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
|
|
|
|
void ata_sff_flush_pio_task(struct ata_port *ap)
|
|
{
|
|
DPRINTK("ENTER\n");
|
|
|
|
cancel_delayed_work_sync(&ap->sff_pio_task);
|
|
|
|
/*
|
|
* We wanna reset the HSM state to IDLE. If we do so without
|
|
* grabbing the port lock, critical sections protected by it which
|
|
* expect the HSM state to stay stable may get surprised. For
|
|
* example, we may set IDLE in between the time
|
|
* __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
|
|
* ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
|
|
*/
|
|
spin_lock_irq(ap->lock);
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
spin_unlock_irq(ap->lock);
|
|
|
|
ap->sff_pio_task_link = NULL;
|
|
|
|
if (ata_msg_ctl(ap))
|
|
ata_port_dbg(ap, "%s: EXIT\n", __func__);
|
|
}
|
|
|
|
static void ata_sff_pio_task(struct work_struct *work)
|
|
{
|
|
struct ata_port *ap =
|
|
container_of(work, struct ata_port, sff_pio_task.work);
|
|
struct ata_link *link = ap->sff_pio_task_link;
|
|
struct ata_queued_cmd *qc;
|
|
u8 status;
|
|
int poll_next;
|
|
|
|
spin_lock_irq(ap->lock);
|
|
|
|
BUG_ON(ap->sff_pio_task_link == NULL);
|
|
/* qc can be NULL if timeout occurred */
|
|
qc = ata_qc_from_tag(ap, link->active_tag);
|
|
if (!qc) {
|
|
ap->sff_pio_task_link = NULL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
fsm_start:
|
|
WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
|
|
|
|
/*
|
|
* This is purely heuristic. This is a fast path.
|
|
* Sometimes when we enter, BSY will be cleared in
|
|
* a chk-status or two. If not, the drive is probably seeking
|
|
* or something. Snooze for a couple msecs, then
|
|
* chk-status again. If still busy, queue delayed work.
|
|
*/
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
|
|
if (status & ATA_BUSY) {
|
|
spin_unlock_irq(ap->lock);
|
|
ata_msleep(ap, 2);
|
|
spin_lock_irq(ap->lock);
|
|
|
|
status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
|
|
if (status & ATA_BUSY) {
|
|
ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hsm_move() may trigger another command to be processed.
|
|
* clean the link beforehand.
|
|
*/
|
|
ap->sff_pio_task_link = NULL;
|
|
/* move the HSM */
|
|
poll_next = ata_sff_hsm_move(ap, qc, status, 1);
|
|
|
|
/* another command or interrupt handler
|
|
* may be running at this point.
|
|
*/
|
|
if (poll_next)
|
|
goto fsm_start;
|
|
out_unlock:
|
|
spin_unlock_irq(ap->lock);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_qc_issue - issue taskfile to a SFF controller
|
|
* @qc: command to issue to device
|
|
*
|
|
* This function issues a PIO or NODATA command to a SFF
|
|
* controller.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_link *link = qc->dev->link;
|
|
|
|
/* Use polling pio if the LLD doesn't handle
|
|
* interrupt driven pio and atapi CDB interrupt.
|
|
*/
|
|
if (ap->flags & ATA_FLAG_PIO_POLLING)
|
|
qc->tf.flags |= ATA_TFLAG_POLLING;
|
|
|
|
/* select the device */
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
/* start the command */
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
break;
|
|
|
|
case ATA_PROT_PIO:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE) {
|
|
/* PIO data out protocol */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
/* always send first data block using the
|
|
* ata_sff_pio_task() codepath.
|
|
*/
|
|
} else {
|
|
/* PIO data in protocol */
|
|
ap->hsm_task_state = HSM_ST;
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_sff_queue_pio_task(link, 0);
|
|
|
|
/* if polling, ata_sff_pio_task() handles the
|
|
* rest. otherwise, interrupt handler takes
|
|
* over from here.
|
|
*/
|
|
}
|
|
|
|
break;
|
|
|
|
case ATAPI_PROT_PIO:
|
|
case ATAPI_PROT_NODATA:
|
|
if (qc->tf.flags & ATA_TFLAG_POLLING)
|
|
ata_qc_set_polling(qc);
|
|
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
|
|
(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
ata_sff_queue_pio_task(link, 0);
|
|
break;
|
|
|
|
default:
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
|
|
|
|
/**
|
|
* ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
|
|
* @qc: qc to fill result TF for
|
|
*
|
|
* @qc is finished and result TF needs to be filled. Fill it
|
|
* using ->sff_tf_read.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* true indicating that result TF is successfully filled.
|
|
*/
|
|
bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
|
|
{
|
|
qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
|
|
|
|
static unsigned int ata_sff_idle_irq(struct ata_port *ap)
|
|
{
|
|
ap->stats.idle_irq++;
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
if ((ap->stats.idle_irq % 1000) == 0) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
ata_port_warn(ap, "irq trap\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0; /* irq not handled */
|
|
}
|
|
|
|
static unsigned int __ata_sff_port_intr(struct ata_port *ap,
|
|
struct ata_queued_cmd *qc,
|
|
bool hsmv_on_idle)
|
|
{
|
|
u8 status;
|
|
|
|
VPRINTK("ata%u: protocol %d task_state %d\n",
|
|
ap->print_id, qc->tf.protocol, ap->hsm_task_state);
|
|
|
|
/* Check whether we are expecting interrupt in this state */
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_FIRST:
|
|
/* Some pre-ATAPI-4 devices assert INTRQ
|
|
* at this state when ready to receive CDB.
|
|
*/
|
|
|
|
/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
|
|
* The flag was turned on only for atapi devices. No
|
|
* need to check ata_is_atapi(qc->tf.protocol) again.
|
|
*/
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
return ata_sff_idle_irq(ap);
|
|
break;
|
|
case HSM_ST_IDLE:
|
|
return ata_sff_idle_irq(ap);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* check main status, clearing INTRQ if needed */
|
|
status = ata_sff_irq_status(ap);
|
|
if (status & ATA_BUSY) {
|
|
if (hsmv_on_idle) {
|
|
/* BMDMA engine is already stopped, we're screwed */
|
|
qc->err_mask |= AC_ERR_HSM;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
} else
|
|
return ata_sff_idle_irq(ap);
|
|
}
|
|
|
|
/* clear irq events */
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
|
|
ata_sff_hsm_move(ap, qc, status, 0);
|
|
|
|
return 1; /* irq handled */
|
|
}
|
|
|
|
/**
|
|
* ata_sff_port_intr - Handle SFF port interrupt
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle port interrupt for given queued command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
return __ata_sff_port_intr(ap, qc, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_port_intr);
|
|
|
|
static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
|
|
unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
|
|
{
|
|
struct ata_host *host = dev_instance;
|
|
bool retried = false;
|
|
unsigned int i;
|
|
unsigned int handled, idle, polling;
|
|
unsigned long flags;
|
|
|
|
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
|
|
spin_lock_irqsave(&host->lock, flags);
|
|
|
|
retry:
|
|
handled = idle = polling = 0;
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc) {
|
|
if (!(qc->tf.flags & ATA_TFLAG_POLLING))
|
|
handled |= port_intr(ap, qc);
|
|
else
|
|
polling |= 1 << i;
|
|
} else
|
|
idle |= 1 << i;
|
|
}
|
|
|
|
/*
|
|
* If no port was expecting IRQ but the controller is actually
|
|
* asserting IRQ line, nobody cared will ensue. Check IRQ
|
|
* pending status if available and clear spurious IRQ.
|
|
*/
|
|
if (!handled && !retried) {
|
|
bool retry = false;
|
|
|
|
for (i = 0; i < host->n_ports; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
|
|
if (polling & (1 << i))
|
|
continue;
|
|
|
|
if (!ap->ops->sff_irq_check ||
|
|
!ap->ops->sff_irq_check(ap))
|
|
continue;
|
|
|
|
if (idle & (1 << i)) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
} else {
|
|
/* clear INTRQ and check if BUSY cleared */
|
|
if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
|
|
retry |= true;
|
|
/*
|
|
* With command in flight, we can't do
|
|
* sff_irq_clear() w/o racing with completion.
|
|
*/
|
|
}
|
|
}
|
|
|
|
if (retry) {
|
|
retried = true;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host->lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_interrupt - Default SFF ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host information structure
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_sff_port_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
|
|
{
|
|
return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_interrupt);
|
|
|
|
/**
|
|
* ata_sff_lost_interrupt - Check for an apparent lost interrupt
|
|
* @ap: port that appears to have timed out
|
|
*
|
|
* Called from the libata error handlers when the core code suspects
|
|
* an interrupt has been lost. If it has complete anything we can and
|
|
* then return. Interface must support altstatus for this faster
|
|
* recovery to occur.
|
|
*
|
|
* Locking:
|
|
* Caller holds host lock
|
|
*/
|
|
|
|
void ata_sff_lost_interrupt(struct ata_port *ap)
|
|
{
|
|
u8 status;
|
|
struct ata_queued_cmd *qc;
|
|
|
|
/* Only one outstanding command per SFF channel */
|
|
qc = ata_qc_from_tag(ap, ap->link.active_tag);
|
|
/* We cannot lose an interrupt on a non-existent or polled command */
|
|
if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
|
|
return;
|
|
/* See if the controller thinks it is still busy - if so the command
|
|
isn't a lost IRQ but is still in progress */
|
|
status = ata_sff_altstatus(ap);
|
|
if (status & ATA_BUSY)
|
|
return;
|
|
|
|
/* There was a command running, we are no longer busy and we have
|
|
no interrupt. */
|
|
ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
|
|
status);
|
|
/* Run the host interrupt logic as if the interrupt had not been
|
|
lost */
|
|
ata_sff_port_intr(ap, qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
|
|
|
|
/**
|
|
* ata_sff_freeze - Freeze SFF controller port
|
|
* @ap: port to freeze
|
|
*
|
|
* Freeze SFF controller port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_freeze(struct ata_port *ap)
|
|
{
|
|
ap->ctl |= ATA_NIEN;
|
|
ap->last_ctl = ap->ctl;
|
|
|
|
if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
|
|
/* Under certain circumstances, some controllers raise IRQ on
|
|
* ATA_NIEN manipulation. Also, many controllers fail to mask
|
|
* previously pending IRQ on ATA_NIEN assertion. Clear it.
|
|
*/
|
|
ap->ops->sff_check_status(ap);
|
|
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_freeze);
|
|
|
|
/**
|
|
* ata_sff_thaw - Thaw SFF controller port
|
|
* @ap: port to thaw
|
|
*
|
|
* Thaw SFF controller port.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_sff_thaw(struct ata_port *ap)
|
|
{
|
|
/* clear & re-enable interrupts */
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
ata_sff_irq_on(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_thaw);
|
|
|
|
/**
|
|
* ata_sff_prereset - prepare SFF link for reset
|
|
* @link: SFF link to be reset
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SFF link @link is about to be reset. Initialize it. It first
|
|
* calls ata_std_prereset() and wait for !BSY if the port is
|
|
* being softreset.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
int rc;
|
|
|
|
rc = ata_std_prereset(link, deadline);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* if we're about to do hardreset, nothing more to do */
|
|
if (ehc->i.action & ATA_EH_HARDRESET)
|
|
return 0;
|
|
|
|
/* wait for !BSY if we don't know that no device is attached */
|
|
if (!ata_link_offline(link)) {
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
if (rc && rc != -ENODEV) {
|
|
ata_link_warn(link,
|
|
"device not ready (errno=%d), forcing hardreset\n",
|
|
rc);
|
|
ehc->i.action |= ATA_EH_HARDRESET;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_prereset);
|
|
|
|
/**
|
|
* ata_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* This technique was originally described in
|
|
* Hale Landis's ATADRVR (www.ata-atapi.com), and
|
|
* later found its way into the ATA/ATAPI spec.
|
|
*
|
|
* Write a pattern to the ATA shadow registers,
|
|
* and if a device is present, it will respond by
|
|
* correctly storing and echoing back the
|
|
* ATA shadow register contents.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->sff_dev_select(ap, device);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0xaa, ioaddr->nsect_addr);
|
|
iowrite8(0x55, ioaddr->lbal_addr);
|
|
|
|
iowrite8(0x55, ioaddr->nsect_addr);
|
|
iowrite8(0xaa, ioaddr->lbal_addr);
|
|
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
|
|
if ((nsect == 0x55) && (lbal == 0xaa))
|
|
return 1; /* we found a device */
|
|
|
|
return 0; /* nothing found */
|
|
}
|
|
|
|
/**
|
|
* ata_sff_dev_classify - Parse returned ATA device signature
|
|
* @dev: ATA device to classify (starting at zero)
|
|
* @present: device seems present
|
|
* @r_err: Value of error register on completion
|
|
*
|
|
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
|
|
* an ATA/ATAPI-defined set of values is placed in the ATA
|
|
* shadow registers, indicating the results of device detection
|
|
* and diagnostics.
|
|
*
|
|
* Select the ATA device, and read the values from the ATA shadow
|
|
* registers. Then parse according to the Error register value,
|
|
* and the spec-defined values examined by ata_dev_classify().
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*
|
|
* RETURNS:
|
|
* Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
|
|
*/
|
|
unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
|
|
u8 *r_err)
|
|
{
|
|
struct ata_port *ap = dev->link->ap;
|
|
struct ata_taskfile tf;
|
|
unsigned int class;
|
|
u8 err;
|
|
|
|
ap->ops->sff_dev_select(ap, dev->devno);
|
|
|
|
memset(&tf, 0, sizeof(tf));
|
|
|
|
ap->ops->sff_tf_read(ap, &tf);
|
|
err = tf.feature;
|
|
if (r_err)
|
|
*r_err = err;
|
|
|
|
/* see if device passed diags: continue and warn later */
|
|
if (err == 0)
|
|
/* diagnostic fail : do nothing _YET_ */
|
|
dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
|
|
else if (err == 1)
|
|
/* do nothing */ ;
|
|
else if ((dev->devno == 0) && (err == 0x81))
|
|
/* do nothing */ ;
|
|
else
|
|
return ATA_DEV_NONE;
|
|
|
|
/* determine if device is ATA or ATAPI */
|
|
class = ata_dev_classify(&tf);
|
|
|
|
if (class == ATA_DEV_UNKNOWN) {
|
|
/* If the device failed diagnostic, it's likely to
|
|
* have reported incorrect device signature too.
|
|
* Assume ATA device if the device seems present but
|
|
* device signature is invalid with diagnostic
|
|
* failure.
|
|
*/
|
|
if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
|
|
class = ATA_DEV_ATA;
|
|
else
|
|
class = ATA_DEV_NONE;
|
|
} else if ((class == ATA_DEV_ATA) &&
|
|
(ap->ops->sff_check_status(ap) == 0))
|
|
class = ATA_DEV_NONE;
|
|
|
|
return class;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
|
|
|
|
/**
|
|
* ata_sff_wait_after_reset - wait for devices to become ready after reset
|
|
* @link: SFF link which is just reset
|
|
* @devmask: mask of present devices
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Wait devices attached to SFF @link to become ready after
|
|
* reset. It contains preceding 150ms wait to avoid accessing TF
|
|
* status register too early.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -ENODEV if some or all of devices in @devmask
|
|
* don't seem to exist. -errno on other errors.
|
|
*/
|
|
int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int dev0 = devmask & (1 << 0);
|
|
unsigned int dev1 = devmask & (1 << 1);
|
|
int rc, ret = 0;
|
|
|
|
ata_msleep(ap, ATA_WAIT_AFTER_RESET);
|
|
|
|
/* always check readiness of the master device */
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
/* -ENODEV means the odd clown forgot the D7 pulldown resistor
|
|
* and TF status is 0xff, bail out on it too.
|
|
*/
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* if device 1 was found in ata_devchk, wait for register
|
|
* access briefly, then wait for BSY to clear.
|
|
*/
|
|
if (dev1) {
|
|
int i;
|
|
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
|
|
/* Wait for register access. Some ATAPI devices fail
|
|
* to set nsect/lbal after reset, so don't waste too
|
|
* much time on it. We're gonna wait for !BSY anyway.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
u8 nsect, lbal;
|
|
|
|
nsect = ioread8(ioaddr->nsect_addr);
|
|
lbal = ioread8(ioaddr->lbal_addr);
|
|
if ((nsect == 1) && (lbal == 1))
|
|
break;
|
|
ata_msleep(ap, 50); /* give drive a breather */
|
|
}
|
|
|
|
rc = ata_sff_wait_ready(link, deadline);
|
|
if (rc) {
|
|
if (rc != -ENODEV)
|
|
return rc;
|
|
ret = rc;
|
|
}
|
|
}
|
|
|
|
/* is all this really necessary? */
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
if (dev1)
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
if (dev0)
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
|
|
|
|
static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
|
|
|
|
if (ap->ioaddr.ctl_addr) {
|
|
/* software reset. causes dev0 to be selected */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
iowrite8(ap->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = ap->ctl;
|
|
}
|
|
|
|
/* wait the port to become ready */
|
|
return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
|
|
}
|
|
|
|
/**
|
|
* ata_sff_softreset - reset host port via ATA SRST
|
|
* @link: ATA link to reset
|
|
* @classes: resulting classes of attached devices
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Reset host port using ATA SRST.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
|
|
unsigned int devmask = 0;
|
|
int rc;
|
|
u8 err;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
/* determine if device 0/1 are present */
|
|
if (ata_devchk(ap, 0))
|
|
devmask |= (1 << 0);
|
|
if (slave_possible && ata_devchk(ap, 1))
|
|
devmask |= (1 << 1);
|
|
|
|
/* select device 0 again */
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
/* issue bus reset */
|
|
DPRINTK("about to softreset, devmask=%x\n", devmask);
|
|
rc = ata_bus_softreset(ap, devmask, deadline);
|
|
/* if link is occupied, -ENODEV too is an error */
|
|
if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
|
|
ata_link_err(link, "SRST failed (errno=%d)\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
/* determine by signature whether we have ATA or ATAPI devices */
|
|
classes[0] = ata_sff_dev_classify(&link->device[0],
|
|
devmask & (1 << 0), &err);
|
|
if (slave_possible && err != 0x81)
|
|
classes[1] = ata_sff_dev_classify(&link->device[1],
|
|
devmask & (1 << 1), &err);
|
|
|
|
DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_softreset);
|
|
|
|
/**
|
|
* sata_sff_hardreset - reset host port via SATA phy reset
|
|
* @link: link to reset
|
|
* @class: resulting class of attached device
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* SATA phy-reset host port using DET bits of SControl register,
|
|
* wait for !BSY and classify the attached device.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
|
|
unsigned long deadline)
|
|
{
|
|
struct ata_eh_context *ehc = &link->eh_context;
|
|
const unsigned long *timing = sata_ehc_deb_timing(ehc);
|
|
bool online;
|
|
int rc;
|
|
|
|
rc = sata_link_hardreset(link, timing, deadline, &online,
|
|
ata_sff_check_ready);
|
|
if (online)
|
|
*class = ata_sff_dev_classify(link->device, 1, NULL);
|
|
|
|
DPRINTK("EXIT, class=%u\n", *class);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sata_sff_hardreset);
|
|
|
|
/**
|
|
* ata_sff_postreset - SFF postreset callback
|
|
* @link: the target SFF ata_link
|
|
* @classes: classes of attached devices
|
|
*
|
|
* This function is invoked after a successful reset. It first
|
|
* calls ata_std_postreset() and performs SFF specific postreset
|
|
* processing.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
|
|
ata_std_postreset(link, classes);
|
|
|
|
/* is double-select really necessary? */
|
|
if (classes[0] != ATA_DEV_NONE)
|
|
ap->ops->sff_dev_select(ap, 1);
|
|
if (classes[1] != ATA_DEV_NONE)
|
|
ap->ops->sff_dev_select(ap, 0);
|
|
|
|
/* bail out if no device is present */
|
|
if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
|
|
DPRINTK("EXIT, no device\n");
|
|
return;
|
|
}
|
|
|
|
/* set up device control */
|
|
if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
|
|
ata_sff_set_devctl(ap, ap->ctl);
|
|
ap->last_ctl = ap->ctl;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_postreset);
|
|
|
|
/**
|
|
* ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
|
|
* @qc: command
|
|
*
|
|
* Drain the FIFO and device of any stuck data following a command
|
|
* failing to complete. In some cases this is necessary before a
|
|
* reset will recover the device.
|
|
*
|
|
*/
|
|
|
|
void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
|
|
{
|
|
int count;
|
|
struct ata_port *ap;
|
|
|
|
/* We only need to flush incoming data when a command was running */
|
|
if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
|
|
return;
|
|
|
|
ap = qc->ap;
|
|
/* Drain up to 64K of data before we give up this recovery method */
|
|
for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
|
|
&& count < 65536; count += 2)
|
|
ioread16(ap->ioaddr.data_addr);
|
|
|
|
/* Can become DEBUG later */
|
|
if (count)
|
|
ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
|
|
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
|
|
|
|
/**
|
|
* ata_sff_error_handler - Stock error handler for SFF controller
|
|
* @ap: port to handle error for
|
|
*
|
|
* Stock error handler for SFF controller. It can handle both
|
|
* PATA and SATA controllers. Many controllers should be able to
|
|
* use this EH as-is or with some added handling before and
|
|
* after.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_sff_error_handler(struct ata_port *ap)
|
|
{
|
|
ata_reset_fn_t softreset = ap->ops->softreset;
|
|
ata_reset_fn_t hardreset = ap->ops->hardreset;
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
|
|
qc = __ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
|
|
qc = NULL;
|
|
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
/*
|
|
* We *MUST* do FIFO draining before we issue a reset as
|
|
* several devices helpfully clear their internal state and
|
|
* will lock solid if we touch the data port post reset. Pass
|
|
* qc in case anyone wants to do different PIO/DMA recovery or
|
|
* has per command fixups
|
|
*/
|
|
if (ap->ops->sff_drain_fifo)
|
|
ap->ops->sff_drain_fifo(qc);
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
/* ignore built-in hardresets if SCR access is not available */
|
|
if ((hardreset == sata_std_hardreset ||
|
|
hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
|
|
hardreset = NULL;
|
|
|
|
ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
|
|
ap->ops->postreset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_error_handler);
|
|
|
|
/**
|
|
* ata_sff_std_ports - initialize ioaddr with standard port offsets.
|
|
* @ioaddr: IO address structure to be initialized
|
|
*
|
|
* Utility function which initializes data_addr, error_addr,
|
|
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
|
|
* device_addr, status_addr, and command_addr to standard offsets
|
|
* relative to cmd_addr.
|
|
*
|
|
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
|
|
*/
|
|
void ata_sff_std_ports(struct ata_ioports *ioaddr)
|
|
{
|
|
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
|
|
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
|
|
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
|
|
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
|
|
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
|
|
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
|
|
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
|
|
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
|
|
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
|
|
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_sff_std_ports);
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
static int ata_resources_present(struct pci_dev *pdev, int port)
|
|
{
|
|
int i;
|
|
|
|
/* Check the PCI resources for this channel are enabled */
|
|
port = port * 2;
|
|
for (i = 0; i < 2; i++) {
|
|
if (pci_resource_start(pdev, port + i) == 0 ||
|
|
pci_resource_len(pdev, port + i) == 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_sff_init_host - acquire native PCI ATA resources and init host
|
|
* @host: target ATA host
|
|
*
|
|
* Acquire native PCI ATA resources for @host and initialize the
|
|
* first two ports of @host accordingly. Ports marked dummy are
|
|
* skipped and allocation failure makes the port dummy.
|
|
*
|
|
* Note that native PCI resources are valid even for legacy hosts
|
|
* as we fix up pdev resources array early in boot, so this
|
|
* function can be used for both native and legacy SFF hosts.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 if at least one port is initialized, -ENODEV if no port is
|
|
* available.
|
|
*/
|
|
int ata_pci_sff_init_host(struct ata_host *host)
|
|
{
|
|
struct device *gdev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(gdev);
|
|
unsigned int mask = 0;
|
|
int i, rc;
|
|
|
|
/* request, iomap BARs and init port addresses accordingly */
|
|
for (i = 0; i < 2; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
int base = i * 2;
|
|
void __iomem * const *iomap;
|
|
|
|
if (ata_port_is_dummy(ap))
|
|
continue;
|
|
|
|
/* Discard disabled ports. Some controllers show
|
|
* their unused channels this way. Disabled ports are
|
|
* made dummy.
|
|
*/
|
|
if (!ata_resources_present(pdev, i)) {
|
|
ap->ops = &ata_dummy_port_ops;
|
|
continue;
|
|
}
|
|
|
|
rc = pcim_iomap_regions(pdev, 0x3 << base,
|
|
dev_driver_string(gdev));
|
|
if (rc) {
|
|
dev_warn(gdev,
|
|
"failed to request/iomap BARs for port %d (errno=%d)\n",
|
|
i, rc);
|
|
if (rc == -EBUSY)
|
|
pcim_pin_device(pdev);
|
|
ap->ops = &ata_dummy_port_ops;
|
|
continue;
|
|
}
|
|
host->iomap = iomap = pcim_iomap_table(pdev);
|
|
|
|
ap->ioaddr.cmd_addr = iomap[base];
|
|
ap->ioaddr.altstatus_addr =
|
|
ap->ioaddr.ctl_addr = (void __iomem *)
|
|
((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
|
|
ata_sff_std_ports(&ap->ioaddr);
|
|
|
|
ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
|
|
(unsigned long long)pci_resource_start(pdev, base),
|
|
(unsigned long long)pci_resource_start(pdev, base + 1));
|
|
|
|
mask |= 1 << i;
|
|
}
|
|
|
|
if (!mask) {
|
|
dev_err(gdev, "no available native port\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
|
|
|
|
/**
|
|
* ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
|
|
* @pdev: target PCI device
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @r_host: out argument for the initialized ATA host
|
|
*
|
|
* Helper to allocate PIO-only SFF ATA host for @pdev, acquire
|
|
* all PCI resources and initialize it accordingly in one go.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_sff_prepare_host(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct ata_host **r_host)
|
|
{
|
|
struct ata_host *host;
|
|
int rc;
|
|
|
|
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
|
|
if (!host) {
|
|
dev_err(&pdev->dev, "failed to allocate ATA host\n");
|
|
rc = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
|
|
rc = ata_pci_sff_init_host(host);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
devres_remove_group(&pdev->dev, NULL);
|
|
*r_host = host;
|
|
return 0;
|
|
|
|
err_out:
|
|
devres_release_group(&pdev->dev, NULL);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
|
|
|
|
/**
|
|
* ata_pci_sff_activate_host - start SFF host, request IRQ and register it
|
|
* @host: target SFF ATA host
|
|
* @irq_handler: irq_handler used when requesting IRQ(s)
|
|
* @sht: scsi_host_template to use when registering the host
|
|
*
|
|
* This is the counterpart of ata_host_activate() for SFF ATA
|
|
* hosts. This separate helper is necessary because SFF hosts
|
|
* use two separate interrupts in legacy mode.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_sff_activate_host(struct ata_host *host,
|
|
irq_handler_t irq_handler,
|
|
struct scsi_host_template *sht)
|
|
{
|
|
struct device *dev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
const char *drv_name = dev_driver_string(host->dev);
|
|
int legacy_mode = 0, rc;
|
|
|
|
rc = ata_host_start(host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
|
|
u8 tmp8, mask = 0;
|
|
|
|
/*
|
|
* ATA spec says we should use legacy mode when one
|
|
* port is in legacy mode, but disabled ports on some
|
|
* PCI hosts appear as fixed legacy ports, e.g SB600/700
|
|
* on which the secondary port is not wired, so
|
|
* ignore ports that are marked as 'dummy' during
|
|
* this check
|
|
*/
|
|
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
|
|
if (!ata_port_is_dummy(host->ports[0]))
|
|
mask |= (1 << 0);
|
|
if (!ata_port_is_dummy(host->ports[1]))
|
|
mask |= (1 << 2);
|
|
if ((tmp8 & mask) != mask)
|
|
legacy_mode = 1;
|
|
}
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
if (!legacy_mode && pdev->irq) {
|
|
int i;
|
|
|
|
rc = devm_request_irq(dev, pdev->irq, irq_handler,
|
|
IRQF_SHARED, drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (ata_port_is_dummy(host->ports[i]))
|
|
continue;
|
|
ata_port_desc(host->ports[i], "irq %d", pdev->irq);
|
|
}
|
|
} else if (legacy_mode) {
|
|
if (!ata_port_is_dummy(host->ports[0])) {
|
|
rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
|
|
irq_handler, IRQF_SHARED,
|
|
drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
ata_port_desc(host->ports[0], "irq %d",
|
|
ATA_PRIMARY_IRQ(pdev));
|
|
}
|
|
|
|
if (!ata_port_is_dummy(host->ports[1])) {
|
|
rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
|
|
irq_handler, IRQF_SHARED,
|
|
drv_name, host);
|
|
if (rc)
|
|
goto out;
|
|
|
|
ata_port_desc(host->ports[1], "irq %d",
|
|
ATA_SECONDARY_IRQ(pdev));
|
|
}
|
|
}
|
|
|
|
rc = ata_host_register(host, sht);
|
|
out:
|
|
if (rc == 0)
|
|
devres_remove_group(dev, NULL);
|
|
else
|
|
devres_release_group(dev, NULL);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
|
|
|
|
static const struct ata_port_info *ata_sff_find_valid_pi(
|
|
const struct ata_port_info * const *ppi)
|
|
{
|
|
int i;
|
|
|
|
/* look up the first valid port_info */
|
|
for (i = 0; i < 2 && ppi[i]; i++)
|
|
if (ppi[i]->port_ops != &ata_dummy_port_ops)
|
|
return ppi[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ata_pci_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct scsi_host_template *sht, void *host_priv,
|
|
int hflags, bool bmdma)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
const struct ata_port_info *pi;
|
|
struct ata_host *host = NULL;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
pi = ata_sff_find_valid_pi(ppi);
|
|
if (!pi) {
|
|
dev_err(&pdev->dev, "no valid port_info specified\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!devres_open_group(dev, NULL, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
rc = pcim_enable_device(pdev);
|
|
if (rc)
|
|
goto out;
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
if (bmdma)
|
|
/* prepare and activate BMDMA host */
|
|
rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
|
|
else
|
|
#endif
|
|
/* prepare and activate SFF host */
|
|
rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
|
|
if (rc)
|
|
goto out;
|
|
host->private_data = host_priv;
|
|
host->flags |= hflags;
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
if (bmdma) {
|
|
pci_set_master(pdev);
|
|
rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
|
|
} else
|
|
#endif
|
|
rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
|
|
out:
|
|
if (rc == 0)
|
|
devres_remove_group(&pdev->dev, NULL);
|
|
else
|
|
devres_release_group(&pdev->dev, NULL);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
|
|
* @pdev: Controller to be initialized
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @sht: scsi_host_template to use when registering the host
|
|
* @host_priv: host private_data
|
|
* @hflag: host flags
|
|
*
|
|
* This is a helper function which can be called from a driver's
|
|
* xxx_init_one() probe function if the hardware uses traditional
|
|
* IDE taskfile registers and is PIO only.
|
|
*
|
|
* ASSUMPTION:
|
|
* Nobody makes a single channel controller that appears solely as
|
|
* the secondary legacy port on PCI.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on errno-based value on error.
|
|
*/
|
|
int ata_pci_sff_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const *ppi,
|
|
struct scsi_host_template *sht, void *host_priv, int hflag)
|
|
{
|
|
return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
|
|
|
|
#endif /* CONFIG_PCI */
|
|
|
|
/*
|
|
* BMDMA support
|
|
*/
|
|
|
|
#ifdef CONFIG_ATA_BMDMA
|
|
|
|
const struct ata_port_operations ata_bmdma_port_ops = {
|
|
.inherits = &ata_sff_port_ops,
|
|
|
|
.error_handler = ata_bmdma_error_handler,
|
|
.post_internal_cmd = ata_bmdma_post_internal_cmd,
|
|
|
|
.qc_prep = ata_bmdma_qc_prep,
|
|
.qc_issue = ata_bmdma_qc_issue,
|
|
|
|
.sff_irq_clear = ata_bmdma_irq_clear,
|
|
.bmdma_setup = ata_bmdma_setup,
|
|
.bmdma_start = ata_bmdma_start,
|
|
.bmdma_stop = ata_bmdma_stop,
|
|
.bmdma_status = ata_bmdma_status,
|
|
|
|
.port_start = ata_bmdma_port_start,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
|
|
|
|
const struct ata_port_operations ata_bmdma32_port_ops = {
|
|
.inherits = &ata_bmdma_port_ops,
|
|
|
|
.sff_data_xfer = ata_sff_data_xfer32,
|
|
.port_start = ata_bmdma_port_start32,
|
|
};
|
|
EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
|
|
|
|
/**
|
|
* ata_bmdma_fill_sg - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_bmdma_prd *prd = ap->bmdma_prd;
|
|
struct scatterlist *sg;
|
|
unsigned int si, pi;
|
|
|
|
pi = 0;
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
prd[pi].addr = cpu_to_le32(addr);
|
|
prd[pi].flags_len = cpu_to_le32(len & 0xffff);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
|
|
|
|
pi++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command. Perform the fill
|
|
* so that we avoid writing any length 64K records for
|
|
* controllers that don't follow the spec.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
*/
|
|
static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_bmdma_prd *prd = ap->bmdma_prd;
|
|
struct scatterlist *sg;
|
|
unsigned int si, pi;
|
|
|
|
pi = 0;
|
|
for_each_sg(qc->sg, sg, qc->n_elem, si) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len, blen;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
blen = len & 0xffff;
|
|
prd[pi].addr = cpu_to_le32(addr);
|
|
if (blen == 0) {
|
|
/* Some PATA chipsets like the CS5530 can't
|
|
cope with 0x0000 meaning 64K as the spec
|
|
says */
|
|
prd[pi].flags_len = cpu_to_le32(0x8000);
|
|
blen = 0x8000;
|
|
prd[++pi].addr = cpu_to_le32(addr + 0x8000);
|
|
}
|
|
prd[pi].flags_len = cpu_to_le32(blen);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
|
|
|
|
pi++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_bmdma_fill_sg(qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
|
|
|
|
/**
|
|
* ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_bmdma_fill_sg_dumb(qc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
|
|
|
|
/**
|
|
* ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
|
|
* @qc: command to issue to device
|
|
*
|
|
* This function issues a PIO, NODATA or DMA command to a
|
|
* SFF/BMDMA controller. PIO and NODATA are handled by
|
|
* ata_sff_qc_issue().
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, AC_ERR_* mask on failure
|
|
*/
|
|
unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_link *link = qc->dev->link;
|
|
|
|
/* defer PIO handling to sff_qc_issue */
|
|
if (!ata_is_dma(qc->tf.protocol))
|
|
return ata_sff_qc_issue(qc);
|
|
|
|
/* select the device */
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
/* start the command */
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_DMA:
|
|
WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->ops->bmdma_start(qc); /* initiate bmdma */
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
break;
|
|
|
|
case ATAPI_PROT_DMA:
|
|
WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
|
|
|
|
ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->hsm_task_state = HSM_ST_FIRST;
|
|
|
|
/* send cdb by polling if no cdb interrupt */
|
|
if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
|
|
ata_sff_queue_pio_task(link, 0);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
return AC_ERR_SYSTEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
|
|
|
|
/**
|
|
* ata_bmdma_port_intr - Handle BMDMA port interrupt
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle port interrupt for given queued command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_eh_info *ehi = &ap->link.eh_info;
|
|
u8 host_stat = 0;
|
|
bool bmdma_stopped = false;
|
|
unsigned int handled;
|
|
|
|
if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
|
|
/* check status of DMA engine */
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
|
|
|
|
/* if it's not our irq... */
|
|
if (!(host_stat & ATA_DMA_INTR))
|
|
return ata_sff_idle_irq(ap);
|
|
|
|
/* before we do anything else, clear DMA-Start bit */
|
|
ap->ops->bmdma_stop(qc);
|
|
bmdma_stopped = true;
|
|
|
|
if (unlikely(host_stat & ATA_DMA_ERR)) {
|
|
/* error when transferring data to/from memory */
|
|
qc->err_mask |= AC_ERR_HOST_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
}
|
|
|
|
handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
|
|
|
|
if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
|
|
ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
|
|
|
|
return handled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
|
|
|
|
/**
|
|
* ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host information structure
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_bmdma_port_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
|
|
{
|
|
return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
|
|
|
|
/**
|
|
* ata_bmdma_error_handler - Stock error handler for BMDMA controller
|
|
* @ap: port to handle error for
|
|
*
|
|
* Stock error handler for BMDMA controller. It can handle both
|
|
* PATA and SATA controllers. Most BMDMA controllers should be
|
|
* able to use this EH as-is or with some added handling before
|
|
* and after.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_bmdma_error_handler(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
unsigned long flags;
|
|
bool thaw = false;
|
|
|
|
qc = __ata_qc_from_tag(ap, ap->link.active_tag);
|
|
if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
|
|
qc = NULL;
|
|
|
|
/* reset PIO HSM and stop DMA engine */
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
|
|
if (qc && ata_is_dma(qc->tf.protocol)) {
|
|
u8 host_stat;
|
|
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
|
|
/* BMDMA controllers indicate host bus error by
|
|
* setting DMA_ERR bit and timing out. As it wasn't
|
|
* really a timeout event, adjust error mask and
|
|
* cancel frozen state.
|
|
*/
|
|
if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
|
|
qc->err_mask = AC_ERR_HOST_BUS;
|
|
thaw = true;
|
|
}
|
|
|
|
ap->ops->bmdma_stop(qc);
|
|
|
|
/* if we're gonna thaw, make sure IRQ is clear */
|
|
if (thaw) {
|
|
ap->ops->sff_check_status(ap);
|
|
if (ap->ops->sff_irq_clear)
|
|
ap->ops->sff_irq_clear(ap);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
|
|
if (thaw)
|
|
ata_eh_thaw_port(ap);
|
|
|
|
ata_sff_error_handler(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
|
|
|
|
/**
|
|
* ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
|
|
* @qc: internal command to clean up
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned long flags;
|
|
|
|
if (ata_is_dma(qc->tf.protocol)) {
|
|
spin_lock_irqsave(ap->lock, flags);
|
|
ap->ops->bmdma_stop(qc);
|
|
spin_unlock_irqrestore(ap->lock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
|
|
|
|
/**
|
|
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Clear interrupt and error flags in DMA status register.
|
|
*
|
|
* May be used as the irq_clear() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_irq_clear(struct ata_port *ap)
|
|
{
|
|
void __iomem *mmio = ap->ioaddr.bmdma_addr;
|
|
|
|
if (!mmio)
|
|
return;
|
|
|
|
iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
|
|
|
|
/**
|
|
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
u8 dmactl;
|
|
|
|
/* load PRD table addr. */
|
|
mb(); /* make sure PRD table writes are visible to controller */
|
|
iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
|
|
|
|
/* specify data direction, triple-check start bit is clear */
|
|
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
|
|
if (!rw)
|
|
dmactl |= ATA_DMA_WR;
|
|
iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
|
|
/* issue r/w command */
|
|
ap->ops->sff_exec_command(ap, &qc->tf);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
|
|
|
|
/**
|
|
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
u8 dmactl;
|
|
|
|
/* start host DMA transaction */
|
|
dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
|
|
/* Strictly, one may wish to issue an ioread8() here, to
|
|
* flush the mmio write. However, control also passes
|
|
* to the hardware at this point, and it will interrupt
|
|
* us when we are to resume control. So, in effect,
|
|
* we don't care when the mmio write flushes.
|
|
* Further, a read of the DMA status register _immediately_
|
|
* following the write may not be what certain flaky hardware
|
|
* is expected, so I think it is best to not add a readb()
|
|
* without first all the MMIO ATA cards/mobos.
|
|
* Or maybe I'm just being paranoid.
|
|
*
|
|
* FIXME: The posting of this write means I/O starts are
|
|
* unnecessarily delayed for MMIO
|
|
*/
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_start);
|
|
|
|
/**
|
|
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
|
|
* @qc: Command we are ending DMA for
|
|
*
|
|
* Clears the ATA_DMA_START flag in the dma control register
|
|
*
|
|
* May be used as the bmdma_stop() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
void ata_bmdma_stop(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *mmio = ap->ioaddr.bmdma_addr;
|
|
|
|
/* clear start/stop bit */
|
|
iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
|
|
mmio + ATA_DMA_CMD);
|
|
|
|
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
|
|
ata_sff_dma_pause(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
|
|
|
|
/**
|
|
* ata_bmdma_status - Read PCI IDE BMDMA status
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Read and return BMDMA status register.
|
|
*
|
|
* May be used as the bmdma_status() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host lock)
|
|
*/
|
|
u8 ata_bmdma_status(struct ata_port *ap)
|
|
{
|
|
return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_status);
|
|
|
|
|
|
/**
|
|
* ata_bmdma_port_start - Set port up for bmdma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Allocates space for PRD table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
int ata_bmdma_port_start(struct ata_port *ap)
|
|
{
|
|
if (ap->mwdma_mask || ap->udma_mask) {
|
|
ap->bmdma_prd =
|
|
dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
|
|
&ap->bmdma_prd_dma, GFP_KERNEL);
|
|
if (!ap->bmdma_prd)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
|
|
|
|
/**
|
|
* ata_bmdma_port_start32 - Set port up for dma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Enables 32bit PIO and allocates space for PRD
|
|
* table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations for
|
|
* devices that are capable of 32bit PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
int ata_bmdma_port_start32(struct ata_port *ap)
|
|
{
|
|
ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
|
|
return ata_bmdma_port_start(ap);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
/**
|
|
* ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
|
|
* @pdev: PCI device
|
|
*
|
|
* Some PCI ATA devices report simplex mode but in fact can be told to
|
|
* enter non simplex mode. This implements the necessary logic to
|
|
* perform the task on such devices. Calling it on other devices will
|
|
* have -undefined- behaviour.
|
|
*/
|
|
int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
|
|
{
|
|
unsigned long bmdma = pci_resource_start(pdev, 4);
|
|
u8 simplex;
|
|
|
|
if (bmdma == 0)
|
|
return -ENOENT;
|
|
|
|
simplex = inb(bmdma + 0x02);
|
|
outb(simplex & 0x60, bmdma + 0x02);
|
|
simplex = inb(bmdma + 0x02);
|
|
if (simplex & 0x80)
|
|
return -EOPNOTSUPP;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
|
|
|
|
static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
|
|
{
|
|
int i;
|
|
|
|
dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
host->ports[i]->mwdma_mask = 0;
|
|
host->ports[i]->udma_mask = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
|
|
* @host: target ATA host
|
|
*
|
|
* Acquire PCI BMDMA resources and initialize @host accordingly.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
void ata_pci_bmdma_init(struct ata_host *host)
|
|
{
|
|
struct device *gdev = host->dev;
|
|
struct pci_dev *pdev = to_pci_dev(gdev);
|
|
int i, rc;
|
|
|
|
/* No BAR4 allocation: No DMA */
|
|
if (pci_resource_start(pdev, 4) == 0) {
|
|
ata_bmdma_nodma(host, "BAR4 is zero");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Some controllers require BMDMA region to be initialized
|
|
* even if DMA is not in use to clear IRQ status via
|
|
* ->sff_irq_clear method. Try to initialize bmdma_addr
|
|
* regardless of dma masks.
|
|
*/
|
|
rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
|
|
if (rc)
|
|
ata_bmdma_nodma(host, "failed to set dma mask");
|
|
if (!rc) {
|
|
rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
|
|
if (rc)
|
|
ata_bmdma_nodma(host,
|
|
"failed to set consistent dma mask");
|
|
}
|
|
|
|
/* request and iomap DMA region */
|
|
rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
|
|
if (rc) {
|
|
ata_bmdma_nodma(host, "failed to request/iomap BAR4");
|
|
return;
|
|
}
|
|
host->iomap = pcim_iomap_table(pdev);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct ata_port *ap = host->ports[i];
|
|
void __iomem *bmdma = host->iomap[4] + 8 * i;
|
|
|
|
if (ata_port_is_dummy(ap))
|
|
continue;
|
|
|
|
ap->ioaddr.bmdma_addr = bmdma;
|
|
if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
|
|
(ioread8(bmdma + 2) & 0x80))
|
|
host->flags |= ATA_HOST_SIMPLEX;
|
|
|
|
ata_port_desc(ap, "bmdma 0x%llx",
|
|
(unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
|
|
|
|
/**
|
|
* ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
|
|
* @pdev: target PCI device
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @r_host: out argument for the initialized ATA host
|
|
*
|
|
* Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
|
|
* resources and initialize it accordingly in one go.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -errno otherwise.
|
|
*/
|
|
int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
|
|
const struct ata_port_info * const * ppi,
|
|
struct ata_host **r_host)
|
|
{
|
|
int rc;
|
|
|
|
rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ata_pci_bmdma_init(*r_host);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
|
|
|
|
/**
|
|
* ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
|
|
* @pdev: Controller to be initialized
|
|
* @ppi: array of port_info, must be enough for two ports
|
|
* @sht: scsi_host_template to use when registering the host
|
|
* @host_priv: host private_data
|
|
* @hflags: host flags
|
|
*
|
|
* This function is similar to ata_pci_sff_init_one() but also
|
|
* takes care of BMDMA initialization.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on errno-based value on error.
|
|
*/
|
|
int ata_pci_bmdma_init_one(struct pci_dev *pdev,
|
|
const struct ata_port_info * const * ppi,
|
|
struct scsi_host_template *sht, void *host_priv,
|
|
int hflags)
|
|
{
|
|
return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
|
|
|
|
#endif /* CONFIG_PCI */
|
|
#endif /* CONFIG_ATA_BMDMA */
|
|
|
|
/**
|
|
* ata_sff_port_init - Initialize SFF/BMDMA ATA port
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called on port allocation to initialize SFF/BMDMA specific
|
|
* fields.
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
void ata_sff_port_init(struct ata_port *ap)
|
|
{
|
|
INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
|
|
ap->ctl = ATA_DEVCTL_OBS;
|
|
ap->last_ctl = 0xFF;
|
|
}
|
|
|
|
int __init ata_sff_init(void)
|
|
{
|
|
ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
|
|
if (!ata_sff_wq)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ata_sff_exit(void)
|
|
{
|
|
destroy_workqueue(ata_sff_wq);
|
|
}
|