linux/drivers/gpu/host1x/syncpt.c
Mikko Perttunen f5ba33fb96 gpu: host1x: Reserve VBLANK syncpoints at initialization
On T20-T148 chips, the bootloader can set up a boot splash
screen with DC configured to increment syncpoint 26/27
at VBLANK. Because of this we shouldn't allow these syncpoints
to be allocated until DC has been reset and will no longer
increment them in the background.

As such, on these chips, reserve those two syncpoints at
initialization, and only mark them free once the DC
driver has indicated it's safe to do so.

Signed-off-by: Mikko Perttunen <mperttunen@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2021-03-31 17:42:13 +02:00

595 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Tegra host1x Syncpoints
*
* Copyright (c) 2010-2015, NVIDIA Corporation.
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <trace/events/host1x.h>
#include "syncpt.h"
#include "dev.h"
#include "intr.h"
#include "debug.h"
#define SYNCPT_CHECK_PERIOD (2 * HZ)
#define MAX_STUCK_CHECK_COUNT 15
static struct host1x_syncpt_base *
host1x_syncpt_base_request(struct host1x *host)
{
struct host1x_syncpt_base *bases = host->bases;
unsigned int i;
for (i = 0; i < host->info->nb_bases; i++)
if (!bases[i].requested)
break;
if (i >= host->info->nb_bases)
return NULL;
bases[i].requested = true;
return &bases[i];
}
static void host1x_syncpt_base_free(struct host1x_syncpt_base *base)
{
if (base)
base->requested = false;
}
/**
* host1x_syncpt_alloc() - allocate a syncpoint
* @host: host1x device data
* @flags: bitfield of HOST1X_SYNCPT_* flags
* @name: name for the syncpoint for use in debug prints
*
* Allocates a hardware syncpoint for the caller's use. The caller then has
* the sole authority to mutate the syncpoint's value until it is freed again.
*
* If no free syncpoints are available, or a NULL name was specified, returns
* NULL.
*/
struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host,
unsigned long flags,
const char *name)
{
struct host1x_syncpt *sp = host->syncpt;
char *full_name;
unsigned int i;
if (!name)
return NULL;
mutex_lock(&host->syncpt_mutex);
for (i = 0; i < host->info->nb_pts && kref_read(&sp->ref); i++, sp++)
;
if (i >= host->info->nb_pts)
goto unlock;
if (flags & HOST1X_SYNCPT_HAS_BASE) {
sp->base = host1x_syncpt_base_request(host);
if (!sp->base)
goto unlock;
}
full_name = kasprintf(GFP_KERNEL, "%u-%s", sp->id, name);
if (!full_name)
goto free_base;
sp->name = full_name;
if (flags & HOST1X_SYNCPT_CLIENT_MANAGED)
sp->client_managed = true;
else
sp->client_managed = false;
kref_init(&sp->ref);
mutex_unlock(&host->syncpt_mutex);
return sp;
free_base:
host1x_syncpt_base_free(sp->base);
sp->base = NULL;
unlock:
mutex_unlock(&host->syncpt_mutex);
return NULL;
}
EXPORT_SYMBOL(host1x_syncpt_alloc);
/**
* host1x_syncpt_id() - retrieve syncpoint ID
* @sp: host1x syncpoint
*
* Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is
* often used as a value to program into registers that control how hardware
* blocks interact with syncpoints.
*/
u32 host1x_syncpt_id(struct host1x_syncpt *sp)
{
return sp->id;
}
EXPORT_SYMBOL(host1x_syncpt_id);
/**
* host1x_syncpt_incr_max() - update the value sent to hardware
* @sp: host1x syncpoint
* @incrs: number of increments
*/
u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
{
return (u32)atomic_add_return(incrs, &sp->max_val);
}
EXPORT_SYMBOL(host1x_syncpt_incr_max);
/*
* Write cached syncpoint and waitbase values to hardware.
*/
void host1x_syncpt_restore(struct host1x *host)
{
struct host1x_syncpt *sp_base = host->syncpt;
unsigned int i;
for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
host1x_hw_syncpt_restore(host, sp_base + i);
for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
wmb();
}
/*
* Update the cached syncpoint and waitbase values by reading them
* from the registers.
*/
void host1x_syncpt_save(struct host1x *host)
{
struct host1x_syncpt *sp_base = host->syncpt;
unsigned int i;
for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
if (host1x_syncpt_client_managed(sp_base + i))
host1x_hw_syncpt_load(host, sp_base + i);
else
WARN_ON(!host1x_syncpt_idle(sp_base + i));
}
for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
host1x_hw_syncpt_load_wait_base(host, sp_base + i);
}
/*
* Updates the cached syncpoint value by reading a new value from the hardware
* register
*/
u32 host1x_syncpt_load(struct host1x_syncpt *sp)
{
u32 val;
val = host1x_hw_syncpt_load(sp->host, sp);
trace_host1x_syncpt_load_min(sp->id, val);
return val;
}
/*
* Get the current syncpoint base
*/
u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
{
host1x_hw_syncpt_load_wait_base(sp->host, sp);
return sp->base_val;
}
/**
* host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache
* @sp: host1x syncpoint
*/
int host1x_syncpt_incr(struct host1x_syncpt *sp)
{
return host1x_hw_syncpt_cpu_incr(sp->host, sp);
}
EXPORT_SYMBOL(host1x_syncpt_incr);
/*
* Updated sync point form hardware, and returns true if syncpoint is expired,
* false if we may need to wait
*/
static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
{
host1x_hw_syncpt_load(sp->host, sp);
return host1x_syncpt_is_expired(sp, thresh);
}
/**
* host1x_syncpt_wait() - wait for a syncpoint to reach a given value
* @sp: host1x syncpoint
* @thresh: threshold
* @timeout: maximum time to wait for the syncpoint to reach the given value
* @value: return location for the syncpoint value
*/
int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
u32 *value)
{
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
void *ref;
struct host1x_waitlist *waiter;
int err = 0, check_count = 0;
u32 val;
if (value)
*value = 0;
/* first check cache */
if (host1x_syncpt_is_expired(sp, thresh)) {
if (value)
*value = host1x_syncpt_load(sp);
return 0;
}
/* try to read from register */
val = host1x_hw_syncpt_load(sp->host, sp);
if (host1x_syncpt_is_expired(sp, thresh)) {
if (value)
*value = val;
goto done;
}
if (!timeout) {
err = -EAGAIN;
goto done;
}
/* allocate a waiter */
waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
if (!waiter) {
err = -ENOMEM;
goto done;
}
/* schedule a wakeup when the syncpoint value is reached */
err = host1x_intr_add_action(sp->host, sp, thresh,
HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
&wq, waiter, &ref);
if (err)
goto done;
err = -EAGAIN;
/* Caller-specified timeout may be impractically low */
if (timeout < 0)
timeout = LONG_MAX;
/* wait for the syncpoint, or timeout, or signal */
while (timeout) {
long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
int remain;
remain = wait_event_interruptible_timeout(wq,
syncpt_load_min_is_expired(sp, thresh),
check);
if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
if (value)
*value = host1x_syncpt_load(sp);
err = 0;
break;
}
if (remain < 0) {
err = remain;
break;
}
timeout -= check;
if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
dev_warn(sp->host->dev,
"%s: syncpoint id %u (%s) stuck waiting %d, timeout=%ld\n",
current->comm, sp->id, sp->name,
thresh, timeout);
host1x_debug_dump_syncpts(sp->host);
if (check_count == MAX_STUCK_CHECK_COUNT)
host1x_debug_dump(sp->host);
check_count++;
}
}
host1x_intr_put_ref(sp->host, sp->id, ref, true);
done:
return err;
}
EXPORT_SYMBOL(host1x_syncpt_wait);
/*
* Returns true if syncpoint is expired, false if we may need to wait
*/
bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
{
u32 current_val;
smp_rmb();
current_val = (u32)atomic_read(&sp->min_val);
return ((current_val - thresh) & 0x80000000U) == 0U;
}
int host1x_syncpt_init(struct host1x *host)
{
struct host1x_syncpt_base *bases;
struct host1x_syncpt *syncpt;
unsigned int i;
syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt),
GFP_KERNEL);
if (!syncpt)
return -ENOMEM;
bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases),
GFP_KERNEL);
if (!bases)
return -ENOMEM;
for (i = 0; i < host->info->nb_pts; i++) {
syncpt[i].id = i;
syncpt[i].host = host;
/*
* Unassign syncpt from channels for purposes of Tegra186
* syncpoint protection. This prevents any channel from
* accessing it until it is reassigned.
*/
host1x_hw_syncpt_assign_to_channel(host, &syncpt[i], NULL);
}
for (i = 0; i < host->info->nb_bases; i++)
bases[i].id = i;
mutex_init(&host->syncpt_mutex);
host->syncpt = syncpt;
host->bases = bases;
host1x_syncpt_restore(host);
host1x_hw_syncpt_enable_protection(host);
/* Allocate sync point to use for clearing waits for expired fences */
host->nop_sp = host1x_syncpt_alloc(host, 0, "reserved-nop");
if (!host->nop_sp)
return -ENOMEM;
if (host->info->reserve_vblank_syncpts) {
kref_init(&host->syncpt[26].ref);
kref_init(&host->syncpt[27].ref);
}
return 0;
}
/**
* host1x_syncpt_request() - request a syncpoint
* @client: client requesting the syncpoint
* @flags: flags
*
* host1x client drivers can use this function to allocate a syncpoint for
* subsequent use. A syncpoint returned by this function will be reserved for
* use by the client exclusively. When no longer using a syncpoint, a host1x
* client driver needs to release it using host1x_syncpt_put().
*/
struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client,
unsigned long flags)
{
struct host1x *host = dev_get_drvdata(client->host->parent);
return host1x_syncpt_alloc(host, flags, dev_name(client->dev));
}
EXPORT_SYMBOL(host1x_syncpt_request);
static void syncpt_release(struct kref *ref)
{
struct host1x_syncpt *sp = container_of(ref, struct host1x_syncpt, ref);
atomic_set(&sp->max_val, host1x_syncpt_read(sp));
mutex_lock(&sp->host->syncpt_mutex);
host1x_syncpt_base_free(sp->base);
kfree(sp->name);
sp->base = NULL;
sp->name = NULL;
sp->client_managed = false;
mutex_unlock(&sp->host->syncpt_mutex);
}
/**
* host1x_syncpt_put() - free a requested syncpoint
* @sp: host1x syncpoint
*
* Release a syncpoint previously allocated using host1x_syncpt_request(). A
* host1x client driver should call this when the syncpoint is no longer in
* use.
*/
void host1x_syncpt_put(struct host1x_syncpt *sp)
{
if (!sp)
return;
kref_put(&sp->ref, syncpt_release);
}
EXPORT_SYMBOL(host1x_syncpt_put);
void host1x_syncpt_deinit(struct host1x *host)
{
struct host1x_syncpt *sp = host->syncpt;
unsigned int i;
for (i = 0; i < host->info->nb_pts; i++, sp++)
kfree(sp->name);
}
/**
* host1x_syncpt_read_max() - read maximum syncpoint value
* @sp: host1x syncpoint
*
* The maximum syncpoint value indicates how many operations there are in
* queue, either in channel or in a software thread.
*/
u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
{
smp_rmb();
return (u32)atomic_read(&sp->max_val);
}
EXPORT_SYMBOL(host1x_syncpt_read_max);
/**
* host1x_syncpt_read_min() - read minimum syncpoint value
* @sp: host1x syncpoint
*
* The minimum syncpoint value is a shadow of the current sync point value in
* hardware.
*/
u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
{
smp_rmb();
return (u32)atomic_read(&sp->min_val);
}
EXPORT_SYMBOL(host1x_syncpt_read_min);
/**
* host1x_syncpt_read() - read the current syncpoint value
* @sp: host1x syncpoint
*/
u32 host1x_syncpt_read(struct host1x_syncpt *sp)
{
return host1x_syncpt_load(sp);
}
EXPORT_SYMBOL(host1x_syncpt_read);
unsigned int host1x_syncpt_nb_pts(struct host1x *host)
{
return host->info->nb_pts;
}
unsigned int host1x_syncpt_nb_bases(struct host1x *host)
{
return host->info->nb_bases;
}
unsigned int host1x_syncpt_nb_mlocks(struct host1x *host)
{
return host->info->nb_mlocks;
}
/**
* host1x_syncpt_get_by_id() - obtain a syncpoint by ID
* @host: host1x controller
* @id: syncpoint ID
*/
struct host1x_syncpt *host1x_syncpt_get_by_id(struct host1x *host,
unsigned int id)
{
if (id >= host->info->nb_pts)
return NULL;
if (kref_get_unless_zero(&host->syncpt[id].ref))
return &host->syncpt[id];
else
return NULL;
}
EXPORT_SYMBOL(host1x_syncpt_get_by_id);
/**
* host1x_syncpt_get_by_id_noref() - obtain a syncpoint by ID but don't
* increase the refcount.
* @host: host1x controller
* @id: syncpoint ID
*/
struct host1x_syncpt *host1x_syncpt_get_by_id_noref(struct host1x *host,
unsigned int id)
{
if (id >= host->info->nb_pts)
return NULL;
return &host->syncpt[id];
}
EXPORT_SYMBOL(host1x_syncpt_get_by_id_noref);
/**
* host1x_syncpt_get() - increment syncpoint refcount
* @sp: syncpoint
*/
struct host1x_syncpt *host1x_syncpt_get(struct host1x_syncpt *sp)
{
kref_get(&sp->ref);
return sp;
}
EXPORT_SYMBOL(host1x_syncpt_get);
/**
* host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint
* @sp: host1x syncpoint
*/
struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp)
{
return sp ? sp->base : NULL;
}
EXPORT_SYMBOL(host1x_syncpt_get_base);
/**
* host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base
* @base: host1x syncpoint wait base
*/
u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base)
{
return base->id;
}
EXPORT_SYMBOL(host1x_syncpt_base_id);
static void do_nothing(struct kref *ref)
{
}
/**
* host1x_syncpt_release_vblank_reservation() - Make VBLANK syncpoint
* available for allocation
*
* @client: host1x bus client
* @syncpt_id: syncpoint ID to make available
*
* Makes VBLANK<i> syncpoint available for allocatation if it was
* reserved at initialization time. This should be called by the display
* driver after it has ensured that any VBLANK increment programming configured
* by the boot chain has been disabled.
*/
void host1x_syncpt_release_vblank_reservation(struct host1x_client *client,
u32 syncpt_id)
{
struct host1x *host = dev_get_drvdata(client->host->parent);
if (!host->info->reserve_vblank_syncpts)
return;
kref_put(&host->syncpt[syncpt_id].ref, do_nothing);
}
EXPORT_SYMBOL(host1x_syncpt_release_vblank_reservation);