linux/drivers/net/ethernet/ti/cpsw.c
Lorenzo Bianconi a8225efdf3 net: ethernet: ti: fix netdevice stats for XDP
Align netdevice statistics when the device is running in XDP mode
to other upstream drivers. In particular report to user-space rx
packets even if they are not forwarded to the networking stack
(XDP_PASS) but if they are redirected (XDP_REDIRECT), dropped (XDP_DROP)
or sent back using the same interface (XDP_TX). This patch allows the
system administrator to verify the device is receiving data correctly.

Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Link: https://lore.kernel.org/r/a457cb17dd9c58c116d64ee34c354b2e89c0ff8f.1612375372.git.lorenzo@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-06 10:48:27 -08:00

1822 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Texas Instruments Ethernet Switch Driver
*
* Copyright (C) 2012 Texas Instruments
*
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/phy.h>
#include <linux/phy/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/gpio/consumer.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_device.h>
#include <linux/if_vlan.h>
#include <linux/kmemleak.h>
#include <linux/sys_soc.h>
#include <net/page_pool.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/pinctrl/consumer.h>
#include <net/pkt_cls.h>
#include "cpsw.h"
#include "cpsw_ale.h"
#include "cpsw_priv.h"
#include "cpsw_sl.h"
#include "cpts.h"
#include "davinci_cpdma.h"
#include <net/pkt_sched.h>
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");
static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");
static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");
#define for_each_slave(priv, func, arg...) \
do { \
struct cpsw_slave *slave; \
struct cpsw_common *cpsw = (priv)->cpsw; \
int n; \
if (cpsw->data.dual_emac) \
(func)((cpsw)->slaves + priv->emac_port, ##arg);\
else \
for (n = cpsw->data.slaves, \
slave = cpsw->slaves; \
n; n--) \
(func)(slave++, ##arg); \
} while (0)
static int cpsw_slave_index_priv(struct cpsw_common *cpsw,
struct cpsw_priv *priv)
{
return cpsw->data.dual_emac ? priv->emac_port : cpsw->data.active_slave;
}
static int cpsw_get_slave_port(u32 slave_num)
{
return slave_num + 1;
}
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
__be16 proto, u16 vid);
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
struct cpsw_ale *ale = cpsw->ale;
int i;
if (cpsw->data.dual_emac) {
bool flag = false;
/* Enabling promiscuous mode for one interface will be
* common for both the interface as the interface shares
* the same hardware resource.
*/
for (i = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
flag = true;
if (!enable && flag) {
enable = true;
dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
}
if (enable) {
/* Enable Bypass */
cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);
dev_dbg(&ndev->dev, "promiscuity enabled\n");
} else {
/* Disable Bypass */
cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
dev_dbg(&ndev->dev, "promiscuity disabled\n");
}
} else {
if (enable) {
unsigned long timeout = jiffies + HZ;
/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
for (i = 0; i <= cpsw->data.slaves; i++) {
cpsw_ale_control_set(ale, i,
ALE_PORT_NOLEARN, 1);
cpsw_ale_control_set(ale, i,
ALE_PORT_NO_SA_UPDATE, 1);
}
/* Clear All Untouched entries */
cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
do {
cpu_relax();
if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
break;
} while (time_after(timeout, jiffies));
cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
/* Clear all mcast from ALE */
cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
__hw_addr_ref_unsync_dev(&ndev->mc, ndev, NULL);
/* Flood All Unicast Packets to Host port */
cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
dev_dbg(&ndev->dev, "promiscuity enabled\n");
} else {
/* Don't Flood All Unicast Packets to Host port */
cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);
/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
for (i = 0; i <= cpsw->data.slaves; i++) {
cpsw_ale_control_set(ale, i,
ALE_PORT_NOLEARN, 0);
cpsw_ale_control_set(ale, i,
ALE_PORT_NO_SA_UPDATE, 0);
}
dev_dbg(&ndev->dev, "promiscuity disabled\n");
}
}
}
/**
* cpsw_set_mc - adds multicast entry to the table if it's not added or deletes
* if it's not deleted
* @ndev: device to sync
* @addr: address to be added or deleted
* @vid: vlan id, if vid < 0 set/unset address for real device
* @add: add address if the flag is set or remove otherwise
*/
static int cpsw_set_mc(struct net_device *ndev, const u8 *addr,
int vid, int add)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int mask, flags, ret;
if (vid < 0) {
if (cpsw->data.dual_emac)
vid = cpsw->slaves[priv->emac_port].port_vlan;
else
vid = 0;
}
mask = cpsw->data.dual_emac ? ALE_PORT_HOST : ALE_ALL_PORTS;
flags = vid ? ALE_VLAN : 0;
if (add)
ret = cpsw_ale_add_mcast(cpsw->ale, addr, mask, flags, vid, 0);
else
ret = cpsw_ale_del_mcast(cpsw->ale, addr, 0, flags, vid);
return ret;
}
static int cpsw_update_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
struct addr_sync_ctx *sync_ctx = ctx;
struct netdev_hw_addr *ha;
int found = 0, ret = 0;
if (!vdev || !(vdev->flags & IFF_UP))
return 0;
/* vlan address is relevant if its sync_cnt != 0 */
netdev_for_each_mc_addr(ha, vdev) {
if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
found = ha->sync_cnt;
break;
}
}
if (found)
sync_ctx->consumed++;
if (sync_ctx->flush) {
if (!found)
cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
return 0;
}
if (found)
ret = cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 1);
return ret;
}
static int cpsw_add_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
int ret;
sync_ctx.consumed = 0;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.flush = 0;
ret = vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
if (sync_ctx.consumed < num && !ret)
ret = cpsw_set_mc(ndev, addr, -1, 1);
return ret;
}
static int cpsw_del_mc_addr(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
sync_ctx.consumed = 0;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.flush = 1;
vlan_for_each(ndev, cpsw_update_vlan_mc, &sync_ctx);
if (sync_ctx.consumed == num)
cpsw_set_mc(ndev, addr, -1, 0);
return 0;
}
static int cpsw_purge_vlan_mc(struct net_device *vdev, int vid, void *ctx)
{
struct addr_sync_ctx *sync_ctx = ctx;
struct netdev_hw_addr *ha;
int found = 0;
if (!vdev || !(vdev->flags & IFF_UP))
return 0;
/* vlan address is relevant if its sync_cnt != 0 */
netdev_for_each_mc_addr(ha, vdev) {
if (ether_addr_equal(ha->addr, sync_ctx->addr)) {
found = ha->sync_cnt;
break;
}
}
if (!found)
return 0;
sync_ctx->consumed++;
cpsw_set_mc(sync_ctx->ndev, sync_ctx->addr, vid, 0);
return 0;
}
static int cpsw_purge_all_mc(struct net_device *ndev, const u8 *addr, int num)
{
struct addr_sync_ctx sync_ctx;
sync_ctx.addr = addr;
sync_ctx.ndev = ndev;
sync_ctx.consumed = 0;
vlan_for_each(ndev, cpsw_purge_vlan_mc, &sync_ctx);
if (sync_ctx.consumed < num)
cpsw_set_mc(ndev, addr, -1, 0);
return 0;
}
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int slave_port = -1;
if (cpsw->data.dual_emac)
slave_port = priv->emac_port + 1;
if (ndev->flags & IFF_PROMISC) {
/* Enable promiscuous mode */
cpsw_set_promiscious(ndev, true);
cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI, slave_port);
return;
} else {
/* Disable promiscuous mode */
cpsw_set_promiscious(ndev, false);
}
/* Restore allmulti on vlans if necessary */
cpsw_ale_set_allmulti(cpsw->ale,
ndev->flags & IFF_ALLMULTI, slave_port);
/* add/remove mcast address either for real netdev or for vlan */
__hw_addr_ref_sync_dev(&ndev->mc, ndev, cpsw_add_mc_addr,
cpsw_del_mc_addr);
}
static unsigned int cpsw_rxbuf_total_len(unsigned int len)
{
len += CPSW_HEADROOM;
len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
return SKB_DATA_ALIGN(len);
}
static void cpsw_rx_handler(void *token, int len, int status)
{
struct page *new_page, *page = token;
void *pa = page_address(page);
struct cpsw_meta_xdp *xmeta = pa + CPSW_XMETA_OFFSET;
struct cpsw_common *cpsw = ndev_to_cpsw(xmeta->ndev);
int pkt_size = cpsw->rx_packet_max;
int ret = 0, port, ch = xmeta->ch;
int headroom = CPSW_HEADROOM;
struct net_device *ndev = xmeta->ndev;
struct cpsw_priv *priv;
struct page_pool *pool;
struct sk_buff *skb;
struct xdp_buff xdp;
dma_addr_t dma;
if (cpsw->data.dual_emac && status >= 0) {
port = CPDMA_RX_SOURCE_PORT(status);
if (port)
ndev = cpsw->slaves[--port].ndev;
}
priv = netdev_priv(ndev);
pool = cpsw->page_pool[ch];
if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
/* In dual emac mode check for all interfaces */
if (cpsw->data.dual_emac && cpsw->usage_count &&
(status >= 0)) {
/* The packet received is for the interface which
* is already down and the other interface is up
* and running, instead of freeing which results
* in reducing of the number of rx descriptor in
* DMA engine, requeue page back to cpdma.
*/
new_page = page;
goto requeue;
}
/* the interface is going down, pages are purged */
page_pool_recycle_direct(pool, page);
return;
}
new_page = page_pool_dev_alloc_pages(pool);
if (unlikely(!new_page)) {
new_page = page;
ndev->stats.rx_dropped++;
goto requeue;
}
if (priv->xdp_prog) {
int headroom = CPSW_HEADROOM, size = len;
xdp_init_buff(&xdp, PAGE_SIZE, &priv->xdp_rxq[ch]);
if (status & CPDMA_RX_VLAN_ENCAP) {
headroom += CPSW_RX_VLAN_ENCAP_HDR_SIZE;
size -= CPSW_RX_VLAN_ENCAP_HDR_SIZE;
}
xdp_prepare_buff(&xdp, pa, headroom, size, false);
port = priv->emac_port + cpsw->data.dual_emac;
ret = cpsw_run_xdp(priv, ch, &xdp, page, port, &len);
if (ret != CPSW_XDP_PASS)
goto requeue;
headroom = xdp.data - xdp.data_hard_start;
/* XDP prog can modify vlan tag, so can't use encap header */
status &= ~CPDMA_RX_VLAN_ENCAP;
}
/* pass skb to netstack if no XDP prog or returned XDP_PASS */
skb = build_skb(pa, cpsw_rxbuf_total_len(pkt_size));
if (!skb) {
ndev->stats.rx_dropped++;
page_pool_recycle_direct(pool, page);
goto requeue;
}
skb_reserve(skb, headroom);
skb_put(skb, len);
skb->dev = ndev;
if (status & CPDMA_RX_VLAN_ENCAP)
cpsw_rx_vlan_encap(skb);
if (priv->rx_ts_enabled)
cpts_rx_timestamp(cpsw->cpts, skb);
skb->protocol = eth_type_trans(skb, ndev);
/* unmap page as no netstack skb page recycling */
page_pool_release_page(pool, page);
netif_receive_skb(skb);
ndev->stats.rx_bytes += len;
ndev->stats.rx_packets++;
requeue:
xmeta = page_address(new_page) + CPSW_XMETA_OFFSET;
xmeta->ndev = ndev;
xmeta->ch = ch;
dma = page_pool_get_dma_addr(new_page) + CPSW_HEADROOM;
ret = cpdma_chan_submit_mapped(cpsw->rxv[ch].ch, new_page, dma,
pkt_size, 0);
if (ret < 0) {
WARN_ON(ret == -ENOMEM);
page_pool_recycle_direct(pool, new_page);
}
}
static void _cpsw_adjust_link(struct cpsw_slave *slave,
struct cpsw_priv *priv, bool *link)
{
struct phy_device *phy = slave->phy;
u32 mac_control = 0;
u32 slave_port;
struct cpsw_common *cpsw = priv->cpsw;
if (!phy)
return;
slave_port = cpsw_get_slave_port(slave->slave_num);
if (phy->link) {
mac_control = CPSW_SL_CTL_GMII_EN;
if (phy->speed == 1000)
mac_control |= CPSW_SL_CTL_GIG;
if (phy->duplex)
mac_control |= CPSW_SL_CTL_FULLDUPLEX;
/* set speed_in input in case RMII mode is used in 100Mbps */
if (phy->speed == 100)
mac_control |= CPSW_SL_CTL_IFCTL_A;
/* in band mode only works in 10Mbps RGMII mode */
else if ((phy->speed == 10) && phy_interface_is_rgmii(phy))
mac_control |= CPSW_SL_CTL_EXT_EN; /* In Band mode */
if (priv->rx_pause)
mac_control |= CPSW_SL_CTL_RX_FLOW_EN;
if (priv->tx_pause)
mac_control |= CPSW_SL_CTL_TX_FLOW_EN;
if (mac_control != slave->mac_control)
cpsw_sl_ctl_set(slave->mac_sl, mac_control);
/* enable forwarding */
cpsw_ale_control_set(cpsw->ale, slave_port,
ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
*link = true;
if (priv->shp_cfg_speed &&
priv->shp_cfg_speed != slave->phy->speed &&
!cpsw_shp_is_off(priv))
dev_warn(priv->dev,
"Speed was changed, CBS shaper speeds are changed!");
} else {
mac_control = 0;
/* disable forwarding */
cpsw_ale_control_set(cpsw->ale, slave_port,
ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
cpsw_sl_wait_for_idle(slave->mac_sl, 100);
cpsw_sl_ctl_reset(slave->mac_sl);
}
if (mac_control != slave->mac_control)
phy_print_status(phy);
slave->mac_control = mac_control;
}
static void cpsw_adjust_link(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
bool link = false;
for_each_slave(priv, _cpsw_adjust_link, priv, &link);
if (link) {
if (cpsw_need_resplit(cpsw))
cpsw_split_res(cpsw);
netif_carrier_on(ndev);
if (netif_running(ndev))
netif_tx_wake_all_queues(ndev);
} else {
netif_carrier_off(ndev);
netif_tx_stop_all_queues(ndev);
}
}
static inline void cpsw_add_dual_emac_def_ale_entries(
struct cpsw_priv *priv, struct cpsw_slave *slave,
u32 slave_port)
{
struct cpsw_common *cpsw = priv->cpsw;
u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
if (cpsw->version == CPSW_VERSION_1)
slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
else
slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
port_mask, port_mask, 0);
cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
ALE_PORT_HOST, ALE_VLAN, slave->port_vlan, 0);
cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN |
ALE_SECURE, slave->port_vlan);
cpsw_ale_control_set(cpsw->ale, slave_port,
ALE_PORT_DROP_UNKNOWN_VLAN, 1);
}
static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
u32 slave_port;
struct phy_device *phy;
struct cpsw_common *cpsw = priv->cpsw;
cpsw_sl_reset(slave->mac_sl, 100);
cpsw_sl_ctl_reset(slave->mac_sl);
/* setup priority mapping */
cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_PRI_MAP,
RX_PRIORITY_MAPPING);
switch (cpsw->version) {
case CPSW_VERSION_1:
slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
/* Increase RX FIFO size to 5 for supporting fullduplex
* flow control mode
*/
slave_write(slave,
(CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
break;
case CPSW_VERSION_2:
case CPSW_VERSION_3:
case CPSW_VERSION_4:
slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
/* Increase RX FIFO size to 5 for supporting fullduplex
* flow control mode
*/
slave_write(slave,
(CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
break;
}
/* setup max packet size, and mac address */
cpsw_sl_reg_write(slave->mac_sl, CPSW_SL_RX_MAXLEN,
cpsw->rx_packet_max);
cpsw_set_slave_mac(slave, priv);
slave->mac_control = 0; /* no link yet */
slave_port = cpsw_get_slave_port(slave->slave_num);
if (cpsw->data.dual_emac)
cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
else
cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
if (slave->data->phy_node) {
phy = of_phy_connect(priv->ndev, slave->data->phy_node,
&cpsw_adjust_link, 0, slave->data->phy_if);
if (!phy) {
dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
slave->data->phy_node,
slave->slave_num);
return;
}
} else {
phy = phy_connect(priv->ndev, slave->data->phy_id,
&cpsw_adjust_link, slave->data->phy_if);
if (IS_ERR(phy)) {
dev_err(priv->dev,
"phy \"%s\" not found on slave %d, err %ld\n",
slave->data->phy_id, slave->slave_num,
PTR_ERR(phy));
return;
}
}
slave->phy = phy;
phy_attached_info(slave->phy);
phy_start(slave->phy);
/* Configure GMII_SEL register */
if (!IS_ERR(slave->data->ifphy))
phy_set_mode_ext(slave->data->ifphy, PHY_MODE_ETHERNET,
slave->data->phy_if);
else
cpsw_phy_sel(cpsw->dev, slave->phy->interface,
slave->slave_num);
}
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
const int vlan = cpsw->data.default_vlan;
u32 reg;
int i;
int unreg_mcast_mask;
reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
CPSW2_PORT_VLAN;
writel(vlan, &cpsw->host_port_regs->port_vlan);
for (i = 0; i < cpsw->data.slaves; i++)
slave_write(cpsw->slaves + i, vlan, reg);
if (priv->ndev->flags & IFF_ALLMULTI)
unreg_mcast_mask = ALE_ALL_PORTS;
else
unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
ALE_ALL_PORTS, ALE_ALL_PORTS,
unreg_mcast_mask);
}
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
u32 fifo_mode;
u32 control_reg;
struct cpsw_common *cpsw = priv->cpsw;
/* soft reset the controller and initialize ale */
soft_reset("cpsw", &cpsw->regs->soft_reset);
cpsw_ale_start(cpsw->ale);
/* switch to vlan unaware mode */
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
CPSW_ALE_VLAN_AWARE);
control_reg = readl(&cpsw->regs->control);
control_reg |= CPSW_VLAN_AWARE | CPSW_RX_VLAN_ENCAP;
writel(control_reg, &cpsw->regs->control);
fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
CPSW_FIFO_NORMAL_MODE;
writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
/* setup host port priority mapping */
writel_relaxed(CPDMA_TX_PRIORITY_MAP,
&cpsw->host_port_regs->cpdma_tx_pri_map);
writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);
if (!cpsw->data.dual_emac) {
cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
0, 0);
cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
}
}
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
{
u32 slave_port;
slave_port = cpsw_get_slave_port(slave->slave_num);
if (!slave->phy)
return;
phy_stop(slave->phy);
phy_disconnect(slave->phy);
slave->phy = NULL;
cpsw_ale_control_set(cpsw->ale, slave_port,
ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
cpsw_sl_reset(slave->mac_sl, 100);
cpsw_sl_ctl_reset(slave->mac_sl);
}
static int cpsw_restore_vlans(struct net_device *vdev, int vid, void *arg)
{
struct cpsw_priv *priv = arg;
if (!vdev)
return 0;
cpsw_ndo_vlan_rx_add_vid(priv->ndev, 0, vid);
return 0;
}
/* restore resources after port reset */
static void cpsw_restore(struct cpsw_priv *priv)
{
/* restore vlan configurations */
vlan_for_each(priv->ndev, cpsw_restore_vlans, priv);
/* restore MQPRIO offload */
for_each_slave(priv, cpsw_mqprio_resume, priv);
/* restore CBS offload */
for_each_slave(priv, cpsw_cbs_resume, priv);
}
static int cpsw_ndo_open(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret;
u32 reg;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
netif_carrier_off(ndev);
/* Notify the stack of the actual queue counts. */
ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
if (ret) {
dev_err(priv->dev, "cannot set real number of tx queues\n");
goto err_cleanup;
}
ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
if (ret) {
dev_err(priv->dev, "cannot set real number of rx queues\n");
goto err_cleanup;
}
reg = cpsw->version;
dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
CPSW_RTL_VERSION(reg));
/* Initialize host and slave ports */
if (!cpsw->usage_count)
cpsw_init_host_port(priv);
for_each_slave(priv, cpsw_slave_open, priv);
/* Add default VLAN */
if (!cpsw->data.dual_emac)
cpsw_add_default_vlan(priv);
else
cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
/* initialize shared resources for every ndev */
if (!cpsw->usage_count) {
/* disable priority elevation */
writel_relaxed(0, &cpsw->regs->ptype);
/* enable statistics collection only on all ports */
writel_relaxed(0x7, &cpsw->regs->stat_port_en);
/* Enable internal fifo flow control */
writel(0x7, &cpsw->regs->flow_control);
napi_enable(&cpsw->napi_rx);
napi_enable(&cpsw->napi_tx);
if (cpsw->tx_irq_disabled) {
cpsw->tx_irq_disabled = false;
enable_irq(cpsw->irqs_table[1]);
}
if (cpsw->rx_irq_disabled) {
cpsw->rx_irq_disabled = false;
enable_irq(cpsw->irqs_table[0]);
}
/* create rxqs for both infs in dual mac as they use same pool
* and must be destroyed together when no users.
*/
ret = cpsw_create_xdp_rxqs(cpsw);
if (ret < 0)
goto err_cleanup;
ret = cpsw_fill_rx_channels(priv);
if (ret < 0)
goto err_cleanup;
if (cpsw->cpts) {
if (cpts_register(cpsw->cpts))
dev_err(priv->dev, "error registering cpts device\n");
else
writel(0x10, &cpsw->wr_regs->misc_en);
}
}
cpsw_restore(priv);
/* Enable Interrupt pacing if configured */
if (cpsw->coal_intvl != 0) {
struct ethtool_coalesce coal;
coal.rx_coalesce_usecs = cpsw->coal_intvl;
cpsw_set_coalesce(ndev, &coal);
}
cpdma_ctlr_start(cpsw->dma);
cpsw_intr_enable(cpsw);
cpsw->usage_count++;
return 0;
err_cleanup:
if (!cpsw->usage_count) {
cpdma_ctlr_stop(cpsw->dma);
cpsw_destroy_xdp_rxqs(cpsw);
}
for_each_slave(priv, cpsw_slave_stop, cpsw);
pm_runtime_put_sync(cpsw->dev);
netif_carrier_off(priv->ndev);
return ret;
}
static int cpsw_ndo_stop(struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
cpsw_info(priv, ifdown, "shutting down cpsw device\n");
__hw_addr_ref_unsync_dev(&ndev->mc, ndev, cpsw_purge_all_mc);
netif_tx_stop_all_queues(priv->ndev);
netif_carrier_off(priv->ndev);
if (cpsw->usage_count <= 1) {
napi_disable(&cpsw->napi_rx);
napi_disable(&cpsw->napi_tx);
cpts_unregister(cpsw->cpts);
cpsw_intr_disable(cpsw);
cpdma_ctlr_stop(cpsw->dma);
cpsw_ale_stop(cpsw->ale);
cpsw_destroy_xdp_rxqs(cpsw);
}
for_each_slave(priv, cpsw_slave_stop, cpsw);
if (cpsw_need_resplit(cpsw))
cpsw_split_res(cpsw);
cpsw->usage_count--;
pm_runtime_put_sync(cpsw->dev);
return 0;
}
static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct cpts *cpts = cpsw->cpts;
struct netdev_queue *txq;
struct cpdma_chan *txch;
int ret, q_idx;
if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
cpsw_err(priv, tx_err, "packet pad failed\n");
ndev->stats.tx_dropped++;
return NET_XMIT_DROP;
}
if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
priv->tx_ts_enabled && cpts_can_timestamp(cpts, skb))
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
q_idx = skb_get_queue_mapping(skb);
if (q_idx >= cpsw->tx_ch_num)
q_idx = q_idx % cpsw->tx_ch_num;
txch = cpsw->txv[q_idx].ch;
txq = netdev_get_tx_queue(ndev, q_idx);
skb_tx_timestamp(skb);
ret = cpdma_chan_submit(txch, skb, skb->data, skb->len,
priv->emac_port + cpsw->data.dual_emac);
if (unlikely(ret != 0)) {
cpsw_err(priv, tx_err, "desc submit failed\n");
goto fail;
}
/* If there is no more tx desc left free then we need to
* tell the kernel to stop sending us tx frames.
*/
if (unlikely(!cpdma_check_free_tx_desc(txch))) {
netif_tx_stop_queue(txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
if (cpdma_check_free_tx_desc(txch))
netif_tx_wake_queue(txq);
}
return NETDEV_TX_OK;
fail:
ndev->stats.tx_dropped++;
netif_tx_stop_queue(txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb__after_atomic();
if (cpdma_check_free_tx_desc(txch))
netif_tx_wake_queue(txq);
return NETDEV_TX_BUSY;
}
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct sockaddr *addr = (struct sockaddr *)p;
struct cpsw_common *cpsw = priv->cpsw;
int flags = 0;
u16 vid = 0;
int ret;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
if (cpsw->data.dual_emac) {
vid = cpsw->slaves[priv->emac_port].port_vlan;
flags = ALE_VLAN;
}
cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
flags, vid);
cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
flags, vid);
memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
for_each_slave(priv, cpsw_set_slave_mac, priv);
pm_runtime_put(cpsw->dev);
return 0;
}
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
unsigned short vid)
{
int ret;
int unreg_mcast_mask = 0;
int mcast_mask;
u32 port_mask;
struct cpsw_common *cpsw = priv->cpsw;
if (cpsw->data.dual_emac) {
port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
mcast_mask = ALE_PORT_HOST;
if (priv->ndev->flags & IFF_ALLMULTI)
unreg_mcast_mask = mcast_mask;
} else {
port_mask = ALE_ALL_PORTS;
mcast_mask = port_mask;
if (priv->ndev->flags & IFF_ALLMULTI)
unreg_mcast_mask = ALE_ALL_PORTS;
else
unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
}
ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
unreg_mcast_mask);
if (ret != 0)
return ret;
ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
if (ret != 0)
goto clean_vid;
ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
mcast_mask, ALE_VLAN, vid, 0);
if (ret != 0)
goto clean_vlan_ucast;
return 0;
clean_vlan_ucast:
cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
clean_vid:
cpsw_ale_del_vlan(cpsw->ale, vid, 0);
return ret;
}
static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret;
if (vid == cpsw->data.default_vlan)
return 0;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
if (cpsw->data.dual_emac) {
/* In dual EMAC, reserved VLAN id should not be used for
* creating VLAN interfaces as this can break the dual
* EMAC port separation
*/
int i;
for (i = 0; i < cpsw->data.slaves; i++) {
if (vid == cpsw->slaves[i].port_vlan) {
ret = -EINVAL;
goto err;
}
}
}
dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
ret = cpsw_add_vlan_ale_entry(priv, vid);
err:
pm_runtime_put(cpsw->dev);
return ret;
}
static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
__be16 proto, u16 vid)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
int ret;
if (vid == cpsw->data.default_vlan)
return 0;
ret = pm_runtime_get_sync(cpsw->dev);
if (ret < 0) {
pm_runtime_put_noidle(cpsw->dev);
return ret;
}
if (cpsw->data.dual_emac) {
int i;
for (i = 0; i < cpsw->data.slaves; i++) {
if (vid == cpsw->slaves[i].port_vlan)
goto err;
}
}
dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
ret |= cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
HOST_PORT_NUM, ALE_VLAN, vid);
ret |= cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
0, ALE_VLAN, vid);
ret |= cpsw_ale_flush_multicast(cpsw->ale, ALE_PORT_HOST, vid);
err:
pm_runtime_put(cpsw->dev);
return ret;
}
static int cpsw_ndo_xdp_xmit(struct net_device *ndev, int n,
struct xdp_frame **frames, u32 flags)
{
struct cpsw_priv *priv = netdev_priv(ndev);
struct cpsw_common *cpsw = priv->cpsw;
struct xdp_frame *xdpf;
int i, drops = 0, port;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
for (i = 0; i < n; i++) {
xdpf = frames[i];
if (xdpf->len < CPSW_MIN_PACKET_SIZE) {
xdp_return_frame_rx_napi(xdpf);
drops++;
continue;
}
port = priv->emac_port + cpsw->data.dual_emac;
if (cpsw_xdp_tx_frame(priv, xdpf, NULL, port))
drops++;
}
return n - drops;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
cpsw_intr_disable(cpsw);
cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
cpsw_intr_enable(cpsw);
}
#endif
static const struct net_device_ops cpsw_netdev_ops = {
.ndo_open = cpsw_ndo_open,
.ndo_stop = cpsw_ndo_stop,
.ndo_start_xmit = cpsw_ndo_start_xmit,
.ndo_set_mac_address = cpsw_ndo_set_mac_address,
.ndo_do_ioctl = cpsw_ndo_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_tx_timeout = cpsw_ndo_tx_timeout,
.ndo_set_rx_mode = cpsw_ndo_set_rx_mode,
.ndo_set_tx_maxrate = cpsw_ndo_set_tx_maxrate,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = cpsw_ndo_poll_controller,
#endif
.ndo_vlan_rx_add_vid = cpsw_ndo_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = cpsw_ndo_vlan_rx_kill_vid,
.ndo_setup_tc = cpsw_ndo_setup_tc,
.ndo_bpf = cpsw_ndo_bpf,
.ndo_xdp_xmit = cpsw_ndo_xdp_xmit,
};
static void cpsw_get_drvinfo(struct net_device *ndev,
struct ethtool_drvinfo *info)
{
struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
struct platform_device *pdev = to_platform_device(cpsw->dev);
strlcpy(info->driver, "cpsw", sizeof(info->driver));
strlcpy(info->version, "1.0", sizeof(info->version));
strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
}
static int cpsw_set_pauseparam(struct net_device *ndev,
struct ethtool_pauseparam *pause)
{
struct cpsw_priv *priv = netdev_priv(ndev);
bool link;
priv->rx_pause = pause->rx_pause ? true : false;
priv->tx_pause = pause->tx_pause ? true : false;
for_each_slave(priv, _cpsw_adjust_link, priv, &link);
return 0;
}
static int cpsw_set_channels(struct net_device *ndev,
struct ethtool_channels *chs)
{
return cpsw_set_channels_common(ndev, chs, cpsw_rx_handler);
}
static const struct ethtool_ops cpsw_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
.get_drvinfo = cpsw_get_drvinfo,
.get_msglevel = cpsw_get_msglevel,
.set_msglevel = cpsw_set_msglevel,
.get_link = ethtool_op_get_link,
.get_ts_info = cpsw_get_ts_info,
.get_coalesce = cpsw_get_coalesce,
.set_coalesce = cpsw_set_coalesce,
.get_sset_count = cpsw_get_sset_count,
.get_strings = cpsw_get_strings,
.get_ethtool_stats = cpsw_get_ethtool_stats,
.get_pauseparam = cpsw_get_pauseparam,
.set_pauseparam = cpsw_set_pauseparam,
.get_wol = cpsw_get_wol,
.set_wol = cpsw_set_wol,
.get_regs_len = cpsw_get_regs_len,
.get_regs = cpsw_get_regs,
.begin = cpsw_ethtool_op_begin,
.complete = cpsw_ethtool_op_complete,
.get_channels = cpsw_get_channels,
.set_channels = cpsw_set_channels,
.get_link_ksettings = cpsw_get_link_ksettings,
.set_link_ksettings = cpsw_set_link_ksettings,
.get_eee = cpsw_get_eee,
.set_eee = cpsw_set_eee,
.nway_reset = cpsw_nway_reset,
.get_ringparam = cpsw_get_ringparam,
.set_ringparam = cpsw_set_ringparam,
};
static int cpsw_probe_dt(struct cpsw_platform_data *data,
struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device_node *slave_node;
int i = 0, ret;
u32 prop;
if (!node)
return -EINVAL;
if (of_property_read_u32(node, "slaves", &prop)) {
dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
return -EINVAL;
}
data->slaves = prop;
if (of_property_read_u32(node, "active_slave", &prop)) {
dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
return -EINVAL;
}
data->active_slave = prop;
data->slave_data = devm_kcalloc(&pdev->dev,
data->slaves,
sizeof(struct cpsw_slave_data),
GFP_KERNEL);
if (!data->slave_data)
return -ENOMEM;
if (of_property_read_u32(node, "cpdma_channels", &prop)) {
dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
return -EINVAL;
}
data->channels = prop;
if (of_property_read_u32(node, "bd_ram_size", &prop)) {
dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
return -EINVAL;
}
data->bd_ram_size = prop;
if (of_property_read_u32(node, "mac_control", &prop)) {
dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
return -EINVAL;
}
data->mac_control = prop;
if (of_property_read_bool(node, "dual_emac"))
data->dual_emac = true;
/*
* Populate all the child nodes here...
*/
ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
/* We do not want to force this, as in some cases may not have child */
if (ret)
dev_warn(&pdev->dev, "Doesn't have any child node\n");
for_each_available_child_of_node(node, slave_node) {
struct cpsw_slave_data *slave_data = data->slave_data + i;
const void *mac_addr = NULL;
int lenp;
const __be32 *parp;
/* This is no slave child node, continue */
if (!of_node_name_eq(slave_node, "slave"))
continue;
slave_data->ifphy = devm_of_phy_get(&pdev->dev, slave_node,
NULL);
if (!IS_ENABLED(CONFIG_TI_CPSW_PHY_SEL) &&
IS_ERR(slave_data->ifphy)) {
ret = PTR_ERR(slave_data->ifphy);
dev_err(&pdev->dev,
"%d: Error retrieving port phy: %d\n", i, ret);
goto err_node_put;
}
slave_data->slave_node = slave_node;
slave_data->phy_node = of_parse_phandle(slave_node,
"phy-handle", 0);
parp = of_get_property(slave_node, "phy_id", &lenp);
if (slave_data->phy_node) {
dev_dbg(&pdev->dev,
"slave[%d] using phy-handle=\"%pOF\"\n",
i, slave_data->phy_node);
} else if (of_phy_is_fixed_link(slave_node)) {
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
ret = of_phy_register_fixed_link(slave_node);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
goto err_node_put;
}
slave_data->phy_node = of_node_get(slave_node);
} else if (parp) {
u32 phyid;
struct device_node *mdio_node;
struct platform_device *mdio;
if (lenp != (sizeof(__be32) * 2)) {
dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
goto no_phy_slave;
}
mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
phyid = be32_to_cpup(parp+1);
mdio = of_find_device_by_node(mdio_node);
of_node_put(mdio_node);
if (!mdio) {
dev_err(&pdev->dev, "Missing mdio platform device\n");
ret = -EINVAL;
goto err_node_put;
}
snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
PHY_ID_FMT, mdio->name, phyid);
put_device(&mdio->dev);
} else {
dev_err(&pdev->dev,
"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
i);
goto no_phy_slave;
}
ret = of_get_phy_mode(slave_node, &slave_data->phy_if);
if (ret) {
dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
i);
goto err_node_put;
}
no_phy_slave:
mac_addr = of_get_mac_address(slave_node);
if (!IS_ERR(mac_addr)) {
ether_addr_copy(slave_data->mac_addr, mac_addr);
} else {
ret = ti_cm_get_macid(&pdev->dev, i,
slave_data->mac_addr);
if (ret)
goto err_node_put;
}
if (data->dual_emac) {
if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
&prop)) {
dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
slave_data->dual_emac_res_vlan = i+1;
dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
slave_data->dual_emac_res_vlan, i);
} else {
slave_data->dual_emac_res_vlan = prop;
}
}
i++;
if (i == data->slaves) {
ret = 0;
goto err_node_put;
}
}
return 0;
err_node_put:
of_node_put(slave_node);
return ret;
}
static void cpsw_remove_dt(struct platform_device *pdev)
{
struct cpsw_common *cpsw = platform_get_drvdata(pdev);
struct cpsw_platform_data *data = &cpsw->data;
struct device_node *node = pdev->dev.of_node;
struct device_node *slave_node;
int i = 0;
for_each_available_child_of_node(node, slave_node) {
struct cpsw_slave_data *slave_data = &data->slave_data[i];
if (!of_node_name_eq(slave_node, "slave"))
continue;
if (of_phy_is_fixed_link(slave_node))
of_phy_deregister_fixed_link(slave_node);
of_node_put(slave_data->phy_node);
i++;
if (i == data->slaves) {
of_node_put(slave_node);
break;
}
}
of_platform_depopulate(&pdev->dev);
}
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
{
struct cpsw_common *cpsw = priv->cpsw;
struct cpsw_platform_data *data = &cpsw->data;
struct net_device *ndev;
struct cpsw_priv *priv_sl2;
int ret = 0;
ndev = devm_alloc_etherdev_mqs(cpsw->dev, sizeof(struct cpsw_priv),
CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
if (!ndev) {
dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
return -ENOMEM;
}
priv_sl2 = netdev_priv(ndev);
priv_sl2->cpsw = cpsw;
priv_sl2->ndev = ndev;
priv_sl2->dev = &ndev->dev;
priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
ETH_ALEN);
dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
priv_sl2->mac_addr);
} else {
eth_random_addr(priv_sl2->mac_addr);
dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
priv_sl2->mac_addr);
}
memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);
priv_sl2->emac_port = 1;
cpsw->slaves[1].ndev = ndev;
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
ndev->netdev_ops = &cpsw_netdev_ops;
ndev->ethtool_ops = &cpsw_ethtool_ops;
/* register the network device */
SET_NETDEV_DEV(ndev, cpsw->dev);
ndev->dev.of_node = cpsw->slaves[1].data->slave_node;
ret = register_netdev(ndev);
if (ret)
dev_err(cpsw->dev, "cpsw: error registering net device\n");
return ret;
}
static const struct of_device_id cpsw_of_mtable[] = {
{ .compatible = "ti,cpsw"},
{ .compatible = "ti,am335x-cpsw"},
{ .compatible = "ti,am4372-cpsw"},
{ .compatible = "ti,dra7-cpsw"},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);
static const struct soc_device_attribute cpsw_soc_devices[] = {
{ .family = "AM33xx", .revision = "ES1.0"},
{ /* sentinel */ }
};
static int cpsw_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct clk *clk;
struct cpsw_platform_data *data;
struct net_device *ndev;
struct cpsw_priv *priv;
void __iomem *ss_regs;
struct resource *ss_res;
struct gpio_descs *mode;
const struct soc_device_attribute *soc;
struct cpsw_common *cpsw;
int ret = 0, ch;
int irq;
cpsw = devm_kzalloc(dev, sizeof(struct cpsw_common), GFP_KERNEL);
if (!cpsw)
return -ENOMEM;
platform_set_drvdata(pdev, cpsw);
cpsw_slave_index = cpsw_slave_index_priv;
cpsw->dev = dev;
mode = devm_gpiod_get_array_optional(dev, "mode", GPIOD_OUT_LOW);
if (IS_ERR(mode)) {
ret = PTR_ERR(mode);
dev_err(dev, "gpio request failed, ret %d\n", ret);
return ret;
}
clk = devm_clk_get(dev, "fck");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "fck is not found %d\n", ret);
return ret;
}
cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ss_regs = devm_ioremap_resource(dev, ss_res);
if (IS_ERR(ss_regs))
return PTR_ERR(ss_regs);
cpsw->regs = ss_regs;
cpsw->wr_regs = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(cpsw->wr_regs))
return PTR_ERR(cpsw->wr_regs);
/* RX IRQ */
irq = platform_get_irq(pdev, 1);
if (irq < 0)
return irq;
cpsw->irqs_table[0] = irq;
/* TX IRQ */
irq = platform_get_irq(pdev, 2);
if (irq < 0)
return irq;
cpsw->irqs_table[1] = irq;
/* get misc irq*/
irq = platform_get_irq(pdev, 3);
if (irq <= 0)
return irq;
cpsw->misc_irq = irq;
/*
* This may be required here for child devices.
*/
pm_runtime_enable(dev);
/* Need to enable clocks with runtime PM api to access module
* registers
*/
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
goto clean_runtime_disable_ret;
}
ret = cpsw_probe_dt(&cpsw->data, pdev);
if (ret)
goto clean_dt_ret;
soc = soc_device_match(cpsw_soc_devices);
if (soc)
cpsw->quirk_irq = true;
data = &cpsw->data;
cpsw->slaves = devm_kcalloc(dev,
data->slaves, sizeof(struct cpsw_slave),
GFP_KERNEL);
if (!cpsw->slaves) {
ret = -ENOMEM;
goto clean_dt_ret;
}
cpsw->rx_packet_max = max(rx_packet_max, CPSW_MAX_PACKET_SIZE);
cpsw->descs_pool_size = descs_pool_size;
ret = cpsw_init_common(cpsw, ss_regs, ale_ageout,
ss_res->start + CPSW2_BD_OFFSET,
descs_pool_size);
if (ret)
goto clean_dt_ret;
ch = cpsw->quirk_irq ? 0 : 7;
cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, ch, cpsw_tx_handler, 0);
if (IS_ERR(cpsw->txv[0].ch)) {
dev_err(dev, "error initializing tx dma channel\n");
ret = PTR_ERR(cpsw->txv[0].ch);
goto clean_cpts;
}
cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
if (IS_ERR(cpsw->rxv[0].ch)) {
dev_err(dev, "error initializing rx dma channel\n");
ret = PTR_ERR(cpsw->rxv[0].ch);
goto clean_cpts;
}
cpsw_split_res(cpsw);
/* setup netdev */
ndev = devm_alloc_etherdev_mqs(dev, sizeof(struct cpsw_priv),
CPSW_MAX_QUEUES, CPSW_MAX_QUEUES);
if (!ndev) {
dev_err(dev, "error allocating net_device\n");
ret = -ENOMEM;
goto clean_cpts;
}
priv = netdev_priv(ndev);
priv->cpsw = cpsw;
priv->ndev = ndev;
priv->dev = dev;
priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
priv->emac_port = 0;
if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
dev_info(dev, "Detected MACID = %pM\n", priv->mac_addr);
} else {
eth_random_addr(priv->mac_addr);
dev_info(dev, "Random MACID = %pM\n", priv->mac_addr);
}
memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
cpsw->slaves[0].ndev = ndev;
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
ndev->netdev_ops = &cpsw_netdev_ops;
ndev->ethtool_ops = &cpsw_ethtool_ops;
netif_napi_add(ndev, &cpsw->napi_rx,
cpsw->quirk_irq ? cpsw_rx_poll : cpsw_rx_mq_poll,
CPSW_POLL_WEIGHT);
netif_tx_napi_add(ndev, &cpsw->napi_tx,
cpsw->quirk_irq ? cpsw_tx_poll : cpsw_tx_mq_poll,
CPSW_POLL_WEIGHT);
/* register the network device */
SET_NETDEV_DEV(ndev, dev);
ndev->dev.of_node = cpsw->slaves[0].data->slave_node;
ret = register_netdev(ndev);
if (ret) {
dev_err(dev, "error registering net device\n");
ret = -ENODEV;
goto clean_cpts;
}
if (cpsw->data.dual_emac) {
ret = cpsw_probe_dual_emac(priv);
if (ret) {
cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
goto clean_unregister_netdev_ret;
}
}
/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
* MISC IRQs which are always kept disabled with this driver so
* we will not request them.
*
* If anyone wants to implement support for those, make sure to
* first request and append them to irqs_table array.
*/
ret = devm_request_irq(dev, cpsw->irqs_table[0], cpsw_rx_interrupt,
0, dev_name(dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching irq (%d)\n", ret);
goto clean_unregister_netdev_ret;
}
ret = devm_request_irq(dev, cpsw->irqs_table[1], cpsw_tx_interrupt,
0, dev_name(&pdev->dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching irq (%d)\n", ret);
goto clean_unregister_netdev_ret;
}
if (!cpsw->cpts)
goto skip_cpts;
ret = devm_request_irq(&pdev->dev, cpsw->misc_irq, cpsw_misc_interrupt,
0, dev_name(&pdev->dev), cpsw);
if (ret < 0) {
dev_err(dev, "error attaching misc irq (%d)\n", ret);
goto clean_unregister_netdev_ret;
}
/* Enable misc CPTS evnt_pend IRQ */
cpts_set_irqpoll(cpsw->cpts, false);
skip_cpts:
cpsw_notice(priv, probe,
"initialized device (regs %pa, irq %d, pool size %d)\n",
&ss_res->start, cpsw->irqs_table[0], descs_pool_size);
pm_runtime_put(&pdev->dev);
return 0;
clean_unregister_netdev_ret:
unregister_netdev(ndev);
clean_cpts:
cpts_release(cpsw->cpts);
cpdma_ctlr_destroy(cpsw->dma);
clean_dt_ret:
cpsw_remove_dt(pdev);
pm_runtime_put_sync(&pdev->dev);
clean_runtime_disable_ret:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int cpsw_remove(struct platform_device *pdev)
{
struct cpsw_common *cpsw = platform_get_drvdata(pdev);
int i, ret;
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
pm_runtime_put_noidle(&pdev->dev);
return ret;
}
for (i = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].ndev)
unregister_netdev(cpsw->slaves[i].ndev);
cpts_release(cpsw->cpts);
cpdma_ctlr_destroy(cpsw->dma);
cpsw_remove_dt(pdev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int cpsw_suspend(struct device *dev)
{
struct cpsw_common *cpsw = dev_get_drvdata(dev);
int i;
rtnl_lock();
for (i = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].ndev)
if (netif_running(cpsw->slaves[i].ndev))
cpsw_ndo_stop(cpsw->slaves[i].ndev);
rtnl_unlock();
/* Select sleep pin state */
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int cpsw_resume(struct device *dev)
{
struct cpsw_common *cpsw = dev_get_drvdata(dev);
int i;
/* Select default pin state */
pinctrl_pm_select_default_state(dev);
/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
rtnl_lock();
for (i = 0; i < cpsw->data.slaves; i++)
if (cpsw->slaves[i].ndev)
if (netif_running(cpsw->slaves[i].ndev))
cpsw_ndo_open(cpsw->slaves[i].ndev);
rtnl_unlock();
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
static struct platform_driver cpsw_driver = {
.driver = {
.name = "cpsw",
.pm = &cpsw_pm_ops,
.of_match_table = cpsw_of_mtable,
},
.probe = cpsw_probe,
.remove = cpsw_remove,
};
module_platform_driver(cpsw_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");