mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-19 10:14:23 +08:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
190 lines
5.3 KiB
C
190 lines
5.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _S390_TLB_H
|
|
#define _S390_TLB_H
|
|
|
|
/*
|
|
* TLB flushing on s390 is complicated. The following requirement
|
|
* from the principles of operation is the most arduous:
|
|
*
|
|
* "A valid table entry must not be changed while it is attached
|
|
* to any CPU and may be used for translation by that CPU except to
|
|
* (1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY,
|
|
* or INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page
|
|
* table entry, or (3) make a change by means of a COMPARE AND SWAP
|
|
* AND PURGE instruction that purges the TLB."
|
|
*
|
|
* The modification of a pte of an active mm struct therefore is
|
|
* a two step process: i) invalidate the pte, ii) store the new pte.
|
|
* This is true for the page protection bit as well.
|
|
* The only possible optimization is to flush at the beginning of
|
|
* a tlb_gather_mmu cycle if the mm_struct is currently not in use.
|
|
*
|
|
* Pages used for the page tables is a different story. FIXME: more
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
struct mmu_gather {
|
|
struct mm_struct *mm;
|
|
struct mmu_table_batch *batch;
|
|
unsigned int fullmm;
|
|
unsigned long start, end;
|
|
};
|
|
|
|
struct mmu_table_batch {
|
|
struct rcu_head rcu;
|
|
unsigned int nr;
|
|
void *tables[0];
|
|
};
|
|
|
|
#define MAX_TABLE_BATCH \
|
|
((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
|
|
|
|
extern void tlb_table_flush(struct mmu_gather *tlb);
|
|
extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
|
|
|
|
static inline void
|
|
arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
tlb->mm = mm;
|
|
tlb->start = start;
|
|
tlb->end = end;
|
|
tlb->fullmm = !(start | (end+1));
|
|
tlb->batch = NULL;
|
|
}
|
|
|
|
static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
|
|
{
|
|
__tlb_flush_mm_lazy(tlb->mm);
|
|
}
|
|
|
|
static inline void tlb_flush_mmu_free(struct mmu_gather *tlb)
|
|
{
|
|
tlb_table_flush(tlb);
|
|
}
|
|
|
|
|
|
static inline void tlb_flush_mmu(struct mmu_gather *tlb)
|
|
{
|
|
tlb_flush_mmu_tlbonly(tlb);
|
|
tlb_flush_mmu_free(tlb);
|
|
}
|
|
|
|
static inline void
|
|
arch_tlb_finish_mmu(struct mmu_gather *tlb,
|
|
unsigned long start, unsigned long end, bool force)
|
|
{
|
|
if (force) {
|
|
tlb->start = start;
|
|
tlb->end = end;
|
|
}
|
|
|
|
tlb_flush_mmu(tlb);
|
|
}
|
|
|
|
/*
|
|
* Release the page cache reference for a pte removed by
|
|
* tlb_ptep_clear_flush. In both flush modes the tlb for a page cache page
|
|
* has already been freed, so just do free_page_and_swap_cache.
|
|
*/
|
|
static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
{
|
|
free_page_and_swap_cache(page);
|
|
return false; /* avoid calling tlb_flush_mmu */
|
|
}
|
|
|
|
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
{
|
|
free_page_and_swap_cache(page);
|
|
}
|
|
|
|
static inline bool __tlb_remove_page_size(struct mmu_gather *tlb,
|
|
struct page *page, int page_size)
|
|
{
|
|
return __tlb_remove_page(tlb, page);
|
|
}
|
|
|
|
static inline void tlb_remove_page_size(struct mmu_gather *tlb,
|
|
struct page *page, int page_size)
|
|
{
|
|
return tlb_remove_page(tlb, page);
|
|
}
|
|
|
|
/*
|
|
* pte_free_tlb frees a pte table and clears the CRSTE for the
|
|
* page table from the tlb.
|
|
*/
|
|
static inline void pte_free_tlb(struct mmu_gather *tlb, pgtable_t pte,
|
|
unsigned long address)
|
|
{
|
|
page_table_free_rcu(tlb, (unsigned long *) pte, address);
|
|
}
|
|
|
|
/*
|
|
* pmd_free_tlb frees a pmd table and clears the CRSTE for the
|
|
* segment table entry from the tlb.
|
|
* If the mm uses a two level page table the single pmd is freed
|
|
* as the pgd. pmd_free_tlb checks the asce_limit against 2GB
|
|
* to avoid the double free of the pmd in this case.
|
|
*/
|
|
static inline void pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
if (tlb->mm->context.asce_limit <= _REGION3_SIZE)
|
|
return;
|
|
pgtable_pmd_page_dtor(virt_to_page(pmd));
|
|
tlb_remove_table(tlb, pmd);
|
|
}
|
|
|
|
/*
|
|
* p4d_free_tlb frees a pud table and clears the CRSTE for the
|
|
* region second table entry from the tlb.
|
|
* If the mm uses a four level page table the single p4d is freed
|
|
* as the pgd. p4d_free_tlb checks the asce_limit against 8PB
|
|
* to avoid the double free of the p4d in this case.
|
|
*/
|
|
static inline void p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d,
|
|
unsigned long address)
|
|
{
|
|
if (tlb->mm->context.asce_limit <= _REGION1_SIZE)
|
|
return;
|
|
tlb_remove_table(tlb, p4d);
|
|
}
|
|
|
|
/*
|
|
* pud_free_tlb frees a pud table and clears the CRSTE for the
|
|
* region third table entry from the tlb.
|
|
* If the mm uses a three level page table the single pud is freed
|
|
* as the pgd. pud_free_tlb checks the asce_limit against 4TB
|
|
* to avoid the double free of the pud in this case.
|
|
*/
|
|
static inline void pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
if (tlb->mm->context.asce_limit <= _REGION2_SIZE)
|
|
return;
|
|
tlb_remove_table(tlb, pud);
|
|
}
|
|
|
|
#define tlb_start_vma(tlb, vma) do { } while (0)
|
|
#define tlb_end_vma(tlb, vma) do { } while (0)
|
|
#define tlb_remove_tlb_entry(tlb, ptep, addr) do { } while (0)
|
|
#define tlb_remove_pmd_tlb_entry(tlb, pmdp, addr) do { } while (0)
|
|
#define tlb_migrate_finish(mm) do { } while (0)
|
|
#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
|
|
tlb_remove_tlb_entry(tlb, ptep, address)
|
|
|
|
#define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
|
|
static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb,
|
|
unsigned int page_size)
|
|
{
|
|
}
|
|
|
|
#endif /* _S390_TLB_H */
|