mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 01:54:09 +08:00
b6c5734db0
syzbot reported a hang involving SCTP, on which it kept flooding dmesg
with the message:
[ 246.742374] sctp: sctp_transport_update_pmtu: Reported pmtu 508 too
low, using default minimum of 512
That happened because whenever SCTP hits an ICMP Frag Needed, it tries
to adjust to the new MTU and triggers an immediate retransmission. But
it didn't consider the fact that MTUs smaller than the SCTP minimum MTU
allowed (512) would not cause the PMTU to change, and issued the
retransmission anyway (thus leading to another ICMP Frag Needed, and so
on).
As IPv4 (ip_rt_min_pmtu=556) and IPv6 (IPV6_MIN_MTU=1280) minimum MTU
are higher than that, sctp_transport_update_pmtu() is changed to
re-fetch the PMTU that got set after our request, and with that, detect
if there was an actual change or not.
The fix, thus, skips the immediate retransmission if the received ICMP
resulted in no change, in the hope that SCTP will select another path.
Note: The value being used for the minimum MTU (512,
SCTP_DEFAULT_MINSEGMENT) is not right and instead it should be (576,
SCTP_MIN_PMTU), but such change belongs to another patch.
Changes from v1:
- do not disable PMTU discovery, in the light of commit
06ad391919
("[SCTP] Don't disable PMTU discovery when mtu is small")
and as suggested by Xin Long.
- changed the way to break the rtx loop by detecting if the icmp
resulted in a change or not
Changes from v2:
none
See-also: https://lkml.org/lkml/2017/12/22/811
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
700 lines
21 KiB
C
700 lines
21 KiB
C
/* SCTP kernel implementation
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
* Copyright (c) 2001-2003 International Business Machines Corp.
|
|
* Copyright (c) 2001 Intel Corp.
|
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
|
*
|
|
* This file is part of the SCTP kernel implementation
|
|
*
|
|
* This module provides the abstraction for an SCTP tranport representing
|
|
* a remote transport address. For local transport addresses, we just use
|
|
* union sctp_addr.
|
|
*
|
|
* This SCTP implementation is free software;
|
|
* you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This SCTP implementation is distributed in the hope that it
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* ************************
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU CC; see the file COPYING. If not, see
|
|
* <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <linux-sctp@vger.kernel.org>
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
* Jon Grimm <jgrimm@us.ibm.com>
|
|
* Xingang Guo <xingang.guo@intel.com>
|
|
* Hui Huang <hui.huang@nokia.com>
|
|
* Sridhar Samudrala <sri@us.ibm.com>
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/random.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
|
|
/* 1st Level Abstractions. */
|
|
|
|
/* Initialize a new transport from provided memory. */
|
|
static struct sctp_transport *sctp_transport_init(struct net *net,
|
|
struct sctp_transport *peer,
|
|
const union sctp_addr *addr,
|
|
gfp_t gfp)
|
|
{
|
|
/* Copy in the address. */
|
|
peer->ipaddr = *addr;
|
|
peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
|
|
memset(&peer->saddr, 0, sizeof(union sctp_addr));
|
|
|
|
peer->sack_generation = 0;
|
|
|
|
/* From 6.3.1 RTO Calculation:
|
|
*
|
|
* C1) Until an RTT measurement has been made for a packet sent to the
|
|
* given destination transport address, set RTO to the protocol
|
|
* parameter 'RTO.Initial'.
|
|
*/
|
|
peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
|
|
|
|
peer->last_time_heard = 0;
|
|
peer->last_time_ecne_reduced = jiffies;
|
|
|
|
peer->param_flags = SPP_HB_DISABLE |
|
|
SPP_PMTUD_ENABLE |
|
|
SPP_SACKDELAY_ENABLE;
|
|
|
|
/* Initialize the default path max_retrans. */
|
|
peer->pathmaxrxt = net->sctp.max_retrans_path;
|
|
peer->pf_retrans = net->sctp.pf_retrans;
|
|
|
|
INIT_LIST_HEAD(&peer->transmitted);
|
|
INIT_LIST_HEAD(&peer->send_ready);
|
|
INIT_LIST_HEAD(&peer->transports);
|
|
|
|
timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
|
|
timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
|
|
timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
|
|
timer_setup(&peer->proto_unreach_timer,
|
|
sctp_generate_proto_unreach_event, 0);
|
|
|
|
/* Initialize the 64-bit random nonce sent with heartbeat. */
|
|
get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
|
|
|
|
refcount_set(&peer->refcnt, 1);
|
|
|
|
return peer;
|
|
}
|
|
|
|
/* Allocate and initialize a new transport. */
|
|
struct sctp_transport *sctp_transport_new(struct net *net,
|
|
const union sctp_addr *addr,
|
|
gfp_t gfp)
|
|
{
|
|
struct sctp_transport *transport;
|
|
|
|
transport = kzalloc(sizeof(*transport), gfp);
|
|
if (!transport)
|
|
goto fail;
|
|
|
|
if (!sctp_transport_init(net, transport, addr, gfp))
|
|
goto fail_init;
|
|
|
|
SCTP_DBG_OBJCNT_INC(transport);
|
|
|
|
return transport;
|
|
|
|
fail_init:
|
|
kfree(transport);
|
|
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/* This transport is no longer needed. Free up if possible, or
|
|
* delay until it last reference count.
|
|
*/
|
|
void sctp_transport_free(struct sctp_transport *transport)
|
|
{
|
|
/* Try to delete the heartbeat timer. */
|
|
if (del_timer(&transport->hb_timer))
|
|
sctp_transport_put(transport);
|
|
|
|
/* Delete the T3_rtx timer if it's active.
|
|
* There is no point in not doing this now and letting
|
|
* structure hang around in memory since we know
|
|
* the tranport is going away.
|
|
*/
|
|
if (del_timer(&transport->T3_rtx_timer))
|
|
sctp_transport_put(transport);
|
|
|
|
if (del_timer(&transport->reconf_timer))
|
|
sctp_transport_put(transport);
|
|
|
|
/* Delete the ICMP proto unreachable timer if it's active. */
|
|
if (del_timer(&transport->proto_unreach_timer))
|
|
sctp_association_put(transport->asoc);
|
|
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
static void sctp_transport_destroy_rcu(struct rcu_head *head)
|
|
{
|
|
struct sctp_transport *transport;
|
|
|
|
transport = container_of(head, struct sctp_transport, rcu);
|
|
|
|
dst_release(transport->dst);
|
|
kfree(transport);
|
|
SCTP_DBG_OBJCNT_DEC(transport);
|
|
}
|
|
|
|
/* Destroy the transport data structure.
|
|
* Assumes there are no more users of this structure.
|
|
*/
|
|
static void sctp_transport_destroy(struct sctp_transport *transport)
|
|
{
|
|
if (unlikely(refcount_read(&transport->refcnt))) {
|
|
WARN(1, "Attempt to destroy undead transport %p!\n", transport);
|
|
return;
|
|
}
|
|
|
|
sctp_packet_free(&transport->packet);
|
|
|
|
if (transport->asoc)
|
|
sctp_association_put(transport->asoc);
|
|
|
|
call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
|
|
}
|
|
|
|
/* Start T3_rtx timer if it is not already running and update the heartbeat
|
|
* timer. This routine is called every time a DATA chunk is sent.
|
|
*/
|
|
void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
|
|
{
|
|
/* RFC 2960 6.3.2 Retransmission Timer Rules
|
|
*
|
|
* R1) Every time a DATA chunk is sent to any address(including a
|
|
* retransmission), if the T3-rtx timer of that address is not running
|
|
* start it running so that it will expire after the RTO of that
|
|
* address.
|
|
*/
|
|
|
|
if (!timer_pending(&transport->T3_rtx_timer))
|
|
if (!mod_timer(&transport->T3_rtx_timer,
|
|
jiffies + transport->rto))
|
|
sctp_transport_hold(transport);
|
|
}
|
|
|
|
void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
|
|
{
|
|
unsigned long expires;
|
|
|
|
/* When a data chunk is sent, reset the heartbeat interval. */
|
|
expires = jiffies + sctp_transport_timeout(transport);
|
|
if (time_before(transport->hb_timer.expires, expires) &&
|
|
!mod_timer(&transport->hb_timer,
|
|
expires + prandom_u32_max(transport->rto)))
|
|
sctp_transport_hold(transport);
|
|
}
|
|
|
|
void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
|
|
{
|
|
if (!timer_pending(&transport->reconf_timer))
|
|
if (!mod_timer(&transport->reconf_timer,
|
|
jiffies + transport->rto))
|
|
sctp_transport_hold(transport);
|
|
}
|
|
|
|
/* This transport has been assigned to an association.
|
|
* Initialize fields from the association or from the sock itself.
|
|
* Register the reference count in the association.
|
|
*/
|
|
void sctp_transport_set_owner(struct sctp_transport *transport,
|
|
struct sctp_association *asoc)
|
|
{
|
|
transport->asoc = asoc;
|
|
sctp_association_hold(asoc);
|
|
}
|
|
|
|
/* Initialize the pmtu of a transport. */
|
|
void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
|
|
{
|
|
/* If we don't have a fresh route, look one up */
|
|
if (!transport->dst || transport->dst->obsolete) {
|
|
sctp_transport_dst_release(transport);
|
|
transport->af_specific->get_dst(transport, &transport->saddr,
|
|
&transport->fl, sk);
|
|
}
|
|
|
|
if (transport->dst) {
|
|
transport->pathmtu = SCTP_TRUNC4(dst_mtu(transport->dst));
|
|
} else
|
|
transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
|
|
}
|
|
|
|
bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
|
|
{
|
|
struct dst_entry *dst = sctp_transport_dst_check(t);
|
|
bool change = true;
|
|
|
|
if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
|
|
pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n",
|
|
__func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
|
|
/* Use default minimum segment instead */
|
|
pmtu = SCTP_DEFAULT_MINSEGMENT;
|
|
}
|
|
pmtu = SCTP_TRUNC4(pmtu);
|
|
|
|
if (dst) {
|
|
dst->ops->update_pmtu(dst, t->asoc->base.sk, NULL, pmtu);
|
|
dst = sctp_transport_dst_check(t);
|
|
}
|
|
|
|
if (!dst) {
|
|
t->af_specific->get_dst(t, &t->saddr, &t->fl, t->asoc->base.sk);
|
|
dst = t->dst;
|
|
}
|
|
|
|
if (dst) {
|
|
/* Re-fetch, as under layers may have a higher minimum size */
|
|
pmtu = SCTP_TRUNC4(dst_mtu(dst));
|
|
change = t->pathmtu != pmtu;
|
|
}
|
|
t->pathmtu = pmtu;
|
|
|
|
return change;
|
|
}
|
|
|
|
/* Caches the dst entry and source address for a transport's destination
|
|
* address.
|
|
*/
|
|
void sctp_transport_route(struct sctp_transport *transport,
|
|
union sctp_addr *saddr, struct sctp_sock *opt)
|
|
{
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sctp_af *af = transport->af_specific;
|
|
|
|
af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
|
|
|
|
if (saddr)
|
|
memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
|
|
else
|
|
af->get_saddr(opt, transport, &transport->fl);
|
|
|
|
if ((transport->param_flags & SPP_PMTUD_DISABLE) && transport->pathmtu) {
|
|
return;
|
|
}
|
|
if (transport->dst) {
|
|
transport->pathmtu = SCTP_TRUNC4(dst_mtu(transport->dst));
|
|
|
|
/* Initialize sk->sk_rcv_saddr, if the transport is the
|
|
* association's active path for getsockname().
|
|
*/
|
|
if (asoc && (!asoc->peer.primary_path ||
|
|
(transport == asoc->peer.active_path)))
|
|
opt->pf->to_sk_saddr(&transport->saddr,
|
|
asoc->base.sk);
|
|
} else
|
|
transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
|
|
}
|
|
|
|
/* Hold a reference to a transport. */
|
|
int sctp_transport_hold(struct sctp_transport *transport)
|
|
{
|
|
return refcount_inc_not_zero(&transport->refcnt);
|
|
}
|
|
|
|
/* Release a reference to a transport and clean up
|
|
* if there are no more references.
|
|
*/
|
|
void sctp_transport_put(struct sctp_transport *transport)
|
|
{
|
|
if (refcount_dec_and_test(&transport->refcnt))
|
|
sctp_transport_destroy(transport);
|
|
}
|
|
|
|
/* Update transport's RTO based on the newly calculated RTT. */
|
|
void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
|
|
{
|
|
if (unlikely(!tp->rto_pending))
|
|
/* We should not be doing any RTO updates unless rto_pending is set. */
|
|
pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
|
|
|
|
if (tp->rttvar || tp->srtt) {
|
|
struct net *net = sock_net(tp->asoc->base.sk);
|
|
/* 6.3.1 C3) When a new RTT measurement R' is made, set
|
|
* RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
|
|
* SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
|
|
*/
|
|
|
|
/* Note: The above algorithm has been rewritten to
|
|
* express rto_beta and rto_alpha as inverse powers
|
|
* of two.
|
|
* For example, assuming the default value of RTO.Alpha of
|
|
* 1/8, rto_alpha would be expressed as 3.
|
|
*/
|
|
tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
|
|
+ (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
|
|
tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
|
|
+ (rtt >> net->sctp.rto_alpha);
|
|
} else {
|
|
/* 6.3.1 C2) When the first RTT measurement R is made, set
|
|
* SRTT <- R, RTTVAR <- R/2.
|
|
*/
|
|
tp->srtt = rtt;
|
|
tp->rttvar = rtt >> 1;
|
|
}
|
|
|
|
/* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
|
|
* adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
|
|
*/
|
|
if (tp->rttvar == 0)
|
|
tp->rttvar = SCTP_CLOCK_GRANULARITY;
|
|
|
|
/* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
|
|
tp->rto = tp->srtt + (tp->rttvar << 2);
|
|
|
|
/* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
|
|
* seconds then it is rounded up to RTO.Min seconds.
|
|
*/
|
|
if (tp->rto < tp->asoc->rto_min)
|
|
tp->rto = tp->asoc->rto_min;
|
|
|
|
/* 6.3.1 C7) A maximum value may be placed on RTO provided it is
|
|
* at least RTO.max seconds.
|
|
*/
|
|
if (tp->rto > tp->asoc->rto_max)
|
|
tp->rto = tp->asoc->rto_max;
|
|
|
|
sctp_max_rto(tp->asoc, tp);
|
|
tp->rtt = rtt;
|
|
|
|
/* Reset rto_pending so that a new RTT measurement is started when a
|
|
* new data chunk is sent.
|
|
*/
|
|
tp->rto_pending = 0;
|
|
|
|
pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
|
|
__func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
|
|
}
|
|
|
|
/* This routine updates the transport's cwnd and partial_bytes_acked
|
|
* parameters based on the bytes acked in the received SACK.
|
|
*/
|
|
void sctp_transport_raise_cwnd(struct sctp_transport *transport,
|
|
__u32 sack_ctsn, __u32 bytes_acked)
|
|
{
|
|
struct sctp_association *asoc = transport->asoc;
|
|
__u32 cwnd, ssthresh, flight_size, pba, pmtu;
|
|
|
|
cwnd = transport->cwnd;
|
|
flight_size = transport->flight_size;
|
|
|
|
/* See if we need to exit Fast Recovery first */
|
|
if (asoc->fast_recovery &&
|
|
TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
|
|
asoc->fast_recovery = 0;
|
|
|
|
ssthresh = transport->ssthresh;
|
|
pba = transport->partial_bytes_acked;
|
|
pmtu = transport->asoc->pathmtu;
|
|
|
|
if (cwnd <= ssthresh) {
|
|
/* RFC 4960 7.2.1
|
|
* o When cwnd is less than or equal to ssthresh, an SCTP
|
|
* endpoint MUST use the slow-start algorithm to increase
|
|
* cwnd only if the current congestion window is being fully
|
|
* utilized, an incoming SACK advances the Cumulative TSN
|
|
* Ack Point, and the data sender is not in Fast Recovery.
|
|
* Only when these three conditions are met can the cwnd be
|
|
* increased; otherwise, the cwnd MUST not be increased.
|
|
* If these conditions are met, then cwnd MUST be increased
|
|
* by, at most, the lesser of 1) the total size of the
|
|
* previously outstanding DATA chunk(s) acknowledged, and
|
|
* 2) the destination's path MTU. This upper bound protects
|
|
* against the ACK-Splitting attack outlined in [SAVAGE99].
|
|
*/
|
|
if (asoc->fast_recovery)
|
|
return;
|
|
|
|
/* The appropriate cwnd increase algorithm is performed
|
|
* if, and only if the congestion window is being fully
|
|
* utilized. Note that RFC4960 Errata 3.22 removed the
|
|
* other condition on ctsn moving.
|
|
*/
|
|
if (flight_size < cwnd)
|
|
return;
|
|
|
|
if (bytes_acked > pmtu)
|
|
cwnd += pmtu;
|
|
else
|
|
cwnd += bytes_acked;
|
|
|
|
pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
|
|
"cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
|
|
__func__, transport, bytes_acked, cwnd, ssthresh,
|
|
flight_size, pba);
|
|
} else {
|
|
/* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
|
|
* upon each SACK arrival, increase partial_bytes_acked
|
|
* by the total number of bytes of all new chunks
|
|
* acknowledged in that SACK including chunks
|
|
* acknowledged by the new Cumulative TSN Ack and by Gap
|
|
* Ack Blocks. (updated by RFC4960 Errata 3.22)
|
|
*
|
|
* When partial_bytes_acked is greater than cwnd and
|
|
* before the arrival of the SACK the sender had less
|
|
* bytes of data outstanding than cwnd (i.e., before
|
|
* arrival of the SACK, flightsize was less than cwnd),
|
|
* reset partial_bytes_acked to cwnd. (RFC 4960 Errata
|
|
* 3.26)
|
|
*
|
|
* When partial_bytes_acked is equal to or greater than
|
|
* cwnd and before the arrival of the SACK the sender
|
|
* had cwnd or more bytes of data outstanding (i.e.,
|
|
* before arrival of the SACK, flightsize was greater
|
|
* than or equal to cwnd), partial_bytes_acked is reset
|
|
* to (partial_bytes_acked - cwnd). Next, cwnd is
|
|
* increased by MTU. (RFC 4960 Errata 3.12)
|
|
*/
|
|
pba += bytes_acked;
|
|
if (pba > cwnd && flight_size < cwnd)
|
|
pba = cwnd;
|
|
if (pba >= cwnd && flight_size >= cwnd) {
|
|
pba = pba - cwnd;
|
|
cwnd += pmtu;
|
|
}
|
|
|
|
pr_debug("%s: congestion avoidance: transport:%p, "
|
|
"bytes_acked:%d, cwnd:%d, ssthresh:%d, "
|
|
"flight_size:%d, pba:%d\n", __func__,
|
|
transport, bytes_acked, cwnd, ssthresh,
|
|
flight_size, pba);
|
|
}
|
|
|
|
transport->cwnd = cwnd;
|
|
transport->partial_bytes_acked = pba;
|
|
}
|
|
|
|
/* This routine is used to lower the transport's cwnd when congestion is
|
|
* detected.
|
|
*/
|
|
void sctp_transport_lower_cwnd(struct sctp_transport *transport,
|
|
enum sctp_lower_cwnd reason)
|
|
{
|
|
struct sctp_association *asoc = transport->asoc;
|
|
|
|
switch (reason) {
|
|
case SCTP_LOWER_CWND_T3_RTX:
|
|
/* RFC 2960 Section 7.2.3, sctpimpguide
|
|
* When the T3-rtx timer expires on an address, SCTP should
|
|
* perform slow start by:
|
|
* ssthresh = max(cwnd/2, 4*MTU)
|
|
* cwnd = 1*MTU
|
|
* partial_bytes_acked = 0
|
|
*/
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
4*asoc->pathmtu);
|
|
transport->cwnd = asoc->pathmtu;
|
|
|
|
/* T3-rtx also clears fast recovery */
|
|
asoc->fast_recovery = 0;
|
|
break;
|
|
|
|
case SCTP_LOWER_CWND_FAST_RTX:
|
|
/* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
|
|
* destination address(es) to which the missing DATA chunks
|
|
* were last sent, according to the formula described in
|
|
* Section 7.2.3.
|
|
*
|
|
* RFC 2960 7.2.3, sctpimpguide Upon detection of packet
|
|
* losses from SACK (see Section 7.2.4), An endpoint
|
|
* should do the following:
|
|
* ssthresh = max(cwnd/2, 4*MTU)
|
|
* cwnd = ssthresh
|
|
* partial_bytes_acked = 0
|
|
*/
|
|
if (asoc->fast_recovery)
|
|
return;
|
|
|
|
/* Mark Fast recovery */
|
|
asoc->fast_recovery = 1;
|
|
asoc->fast_recovery_exit = asoc->next_tsn - 1;
|
|
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
4*asoc->pathmtu);
|
|
transport->cwnd = transport->ssthresh;
|
|
break;
|
|
|
|
case SCTP_LOWER_CWND_ECNE:
|
|
/* RFC 2481 Section 6.1.2.
|
|
* If the sender receives an ECN-Echo ACK packet
|
|
* then the sender knows that congestion was encountered in the
|
|
* network on the path from the sender to the receiver. The
|
|
* indication of congestion should be treated just as a
|
|
* congestion loss in non-ECN Capable TCP. That is, the TCP
|
|
* source halves the congestion window "cwnd" and reduces the
|
|
* slow start threshold "ssthresh".
|
|
* A critical condition is that TCP does not react to
|
|
* congestion indications more than once every window of
|
|
* data (or more loosely more than once every round-trip time).
|
|
*/
|
|
if (time_after(jiffies, transport->last_time_ecne_reduced +
|
|
transport->rtt)) {
|
|
transport->ssthresh = max(transport->cwnd/2,
|
|
4*asoc->pathmtu);
|
|
transport->cwnd = transport->ssthresh;
|
|
transport->last_time_ecne_reduced = jiffies;
|
|
}
|
|
break;
|
|
|
|
case SCTP_LOWER_CWND_INACTIVE:
|
|
/* RFC 2960 Section 7.2.1, sctpimpguide
|
|
* When the endpoint does not transmit data on a given
|
|
* transport address, the cwnd of the transport address
|
|
* should be adjusted to max(cwnd/2, 4*MTU) per RTO.
|
|
* NOTE: Although the draft recommends that this check needs
|
|
* to be done every RTO interval, we do it every hearbeat
|
|
* interval.
|
|
*/
|
|
transport->cwnd = max(transport->cwnd/2,
|
|
4*asoc->pathmtu);
|
|
/* RFC 4960 Errata 3.27.2: also adjust sshthresh */
|
|
transport->ssthresh = transport->cwnd;
|
|
break;
|
|
}
|
|
|
|
transport->partial_bytes_acked = 0;
|
|
|
|
pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
|
|
__func__, transport, reason, transport->cwnd,
|
|
transport->ssthresh);
|
|
}
|
|
|
|
/* Apply Max.Burst limit to the congestion window:
|
|
* sctpimpguide-05 2.14.2
|
|
* D) When the time comes for the sender to
|
|
* transmit new DATA chunks, the protocol parameter Max.Burst MUST
|
|
* first be applied to limit how many new DATA chunks may be sent.
|
|
* The limit is applied by adjusting cwnd as follows:
|
|
* if ((flightsize+ Max.Burst * MTU) < cwnd)
|
|
* cwnd = flightsize + Max.Burst * MTU
|
|
*/
|
|
|
|
void sctp_transport_burst_limited(struct sctp_transport *t)
|
|
{
|
|
struct sctp_association *asoc = t->asoc;
|
|
u32 old_cwnd = t->cwnd;
|
|
u32 max_burst_bytes;
|
|
|
|
if (t->burst_limited || asoc->max_burst == 0)
|
|
return;
|
|
|
|
max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
|
|
if (max_burst_bytes < old_cwnd) {
|
|
t->cwnd = max_burst_bytes;
|
|
t->burst_limited = old_cwnd;
|
|
}
|
|
}
|
|
|
|
/* Restore the old cwnd congestion window, after the burst had it's
|
|
* desired effect.
|
|
*/
|
|
void sctp_transport_burst_reset(struct sctp_transport *t)
|
|
{
|
|
if (t->burst_limited) {
|
|
t->cwnd = t->burst_limited;
|
|
t->burst_limited = 0;
|
|
}
|
|
}
|
|
|
|
/* What is the next timeout value for this transport? */
|
|
unsigned long sctp_transport_timeout(struct sctp_transport *trans)
|
|
{
|
|
/* RTO + timer slack +/- 50% of RTO */
|
|
unsigned long timeout = trans->rto >> 1;
|
|
|
|
if (trans->state != SCTP_UNCONFIRMED &&
|
|
trans->state != SCTP_PF)
|
|
timeout += trans->hbinterval;
|
|
|
|
return timeout;
|
|
}
|
|
|
|
/* Reset transport variables to their initial values */
|
|
void sctp_transport_reset(struct sctp_transport *t)
|
|
{
|
|
struct sctp_association *asoc = t->asoc;
|
|
|
|
/* RFC 2960 (bis), Section 5.2.4
|
|
* All the congestion control parameters (e.g., cwnd, ssthresh)
|
|
* related to this peer MUST be reset to their initial values
|
|
* (see Section 6.2.1)
|
|
*/
|
|
t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
|
|
t->burst_limited = 0;
|
|
t->ssthresh = asoc->peer.i.a_rwnd;
|
|
t->rto = asoc->rto_initial;
|
|
sctp_max_rto(asoc, t);
|
|
t->rtt = 0;
|
|
t->srtt = 0;
|
|
t->rttvar = 0;
|
|
|
|
/* Reset these additional variables so that we have a clean slate. */
|
|
t->partial_bytes_acked = 0;
|
|
t->flight_size = 0;
|
|
t->error_count = 0;
|
|
t->rto_pending = 0;
|
|
t->hb_sent = 0;
|
|
|
|
/* Initialize the state information for SFR-CACC */
|
|
t->cacc.changeover_active = 0;
|
|
t->cacc.cycling_changeover = 0;
|
|
t->cacc.next_tsn_at_change = 0;
|
|
t->cacc.cacc_saw_newack = 0;
|
|
}
|
|
|
|
/* Schedule retransmission on the given transport */
|
|
void sctp_transport_immediate_rtx(struct sctp_transport *t)
|
|
{
|
|
/* Stop pending T3_rtx_timer */
|
|
if (del_timer(&t->T3_rtx_timer))
|
|
sctp_transport_put(t);
|
|
|
|
sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
|
|
if (!timer_pending(&t->T3_rtx_timer)) {
|
|
if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
|
|
sctp_transport_hold(t);
|
|
}
|
|
}
|
|
|
|
/* Drop dst */
|
|
void sctp_transport_dst_release(struct sctp_transport *t)
|
|
{
|
|
dst_release(t->dst);
|
|
t->dst = NULL;
|
|
t->dst_pending_confirm = 0;
|
|
}
|
|
|
|
/* Schedule neighbour confirm */
|
|
void sctp_transport_dst_confirm(struct sctp_transport *t)
|
|
{
|
|
t->dst_pending_confirm = 1;
|
|
}
|