mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-19 17:14:40 +08:00
a2310c74d4
On kprobe registration kernel allocate one insn_slot for new kprobe, but it forget to reclaim the insn_slot on unregistration, leading to a potential leakage. Reported-by: Chen Guokai <chenguokai17@mails.ucas.ac.cn> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Signed-off-by: Liao Chang <liaochang1@huawei.com> Signed-off-by: Guo Ren <guoren@kernel.org>
413 lines
9.7 KiB
C
413 lines
9.7 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
#define pr_fmt(fmt) "kprobes: " fmt
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <asm/ptrace.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "decode-insn.h"
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
|
|
|
|
struct csky_insn_patch {
|
|
kprobe_opcode_t *addr;
|
|
u32 opcode;
|
|
atomic_t cpu_count;
|
|
};
|
|
|
|
static int __kprobes patch_text_cb(void *priv)
|
|
{
|
|
struct csky_insn_patch *param = priv;
|
|
unsigned int addr = (unsigned int)param->addr;
|
|
|
|
if (atomic_inc_return(¶m->cpu_count) == num_online_cpus()) {
|
|
*(u16 *) addr = cpu_to_le16(param->opcode);
|
|
dcache_wb_range(addr, addr + 2);
|
|
atomic_inc(¶m->cpu_count);
|
|
} else {
|
|
while (atomic_read(¶m->cpu_count) <= num_online_cpus())
|
|
cpu_relax();
|
|
}
|
|
|
|
icache_inv_range(addr, addr + 2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
|
{
|
|
struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
|
|
|
|
return stop_machine_cpuslocked(patch_text_cb, ¶m, cpu_online_mask);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
|
{
|
|
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
|
|
|
|
p->ainsn.api.restore = (unsigned long)p->addr + offset;
|
|
|
|
patch_text(p->ainsn.api.insn, p->opcode);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_simulate(struct kprobe *p)
|
|
{
|
|
p->ainsn.api.restore = 0;
|
|
}
|
|
|
|
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (p->ainsn.api.handler)
|
|
p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
unsigned long probe_addr = (unsigned long)p->addr;
|
|
|
|
if (probe_addr & 0x1)
|
|
return -EILSEQ;
|
|
|
|
/* copy instruction */
|
|
p->opcode = le32_to_cpu(*p->addr);
|
|
|
|
/* decode instruction */
|
|
switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
|
|
case INSN_REJECTED: /* insn not supported */
|
|
return -EINVAL;
|
|
|
|
case INSN_GOOD_NO_SLOT: /* insn need simulation */
|
|
p->ainsn.api.insn = NULL;
|
|
break;
|
|
|
|
case INSN_GOOD: /* instruction uses slot */
|
|
p->ainsn.api.insn = get_insn_slot();
|
|
if (!p->ainsn.api.insn)
|
|
return -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/* prepare the instruction */
|
|
if (p->ainsn.api.insn)
|
|
arch_prepare_ss_slot(p);
|
|
else
|
|
arch_prepare_simulate(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* install breakpoint in text */
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, USR_BKPT);
|
|
}
|
|
|
|
/* remove breakpoint from text */
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, p->opcode);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.api.insn) {
|
|
free_insn_slot(p->ainsn.api.insn, 0);
|
|
p->ainsn.api.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
/*
|
|
* Interrupts need to be disabled before single-step mode is set, and not
|
|
* reenabled until after single-step mode ends.
|
|
* Without disabling interrupt on local CPU, there is a chance of
|
|
* interrupt occurrence in the period of exception return and start of
|
|
* out-of-line single-step, that result in wrongly single stepping
|
|
* into the interrupt handler.
|
|
*/
|
|
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
kcb->saved_sr = regs->sr;
|
|
regs->sr &= ~BIT(6);
|
|
}
|
|
|
|
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
regs->sr = kcb->saved_sr;
|
|
}
|
|
|
|
static void __kprobes
|
|
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
|
|
{
|
|
unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
|
|
|
|
kcb->ss_ctx.ss_pending = true;
|
|
kcb->ss_ctx.match_addr = addr + offset;
|
|
}
|
|
|
|
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->ss_ctx.ss_pending = false;
|
|
kcb->ss_ctx.match_addr = 0;
|
|
}
|
|
|
|
#define TRACE_MODE_SI BIT(14)
|
|
#define TRACE_MODE_MASK ~(0x3 << 14)
|
|
#define TRACE_MODE_RUN 0
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
unsigned long slot;
|
|
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
|
|
if (p->ainsn.api.insn) {
|
|
/* prepare for single stepping */
|
|
slot = (unsigned long)p->ainsn.api.insn;
|
|
|
|
set_ss_context(kcb, slot, p); /* mark pending ss */
|
|
|
|
/* IRQs and single stepping do not mix well. */
|
|
kprobes_save_local_irqflag(kcb, regs);
|
|
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
|
|
instruction_pointer_set(regs, slot);
|
|
} else {
|
|
/* insn simulation */
|
|
arch_simulate_insn(p, regs);
|
|
}
|
|
}
|
|
|
|
static int __kprobes reenter_kprobe(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
pr_warn("Failed to recover from reentered kprobes.\n");
|
|
dump_kprobe(p);
|
|
BUG();
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
|
|
if (!cur)
|
|
return;
|
|
|
|
/* return addr restore if non-branching insn */
|
|
if (cur->ainsn.api.restore != 0)
|
|
regs->pc = cur->ainsn.api.restore;
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
return;
|
|
}
|
|
|
|
/* call post handler */
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (cur->post_handler) {
|
|
/* post_handler can hit breakpoint and single step
|
|
* again, so we enable D-flag for recursive exception.
|
|
*/
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs->pc = (unsigned long) cur->addr;
|
|
BUG_ON(!instruction_pointer(regs));
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_breakpoint_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p, *cur_kprobe;
|
|
struct kprobe_ctlblk *kcb;
|
|
unsigned long addr = instruction_pointer(regs);
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
cur_kprobe = kprobe_running();
|
|
|
|
p = get_kprobe((kprobe_opcode_t *) addr);
|
|
|
|
if (p) {
|
|
if (cur_kprobe) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return 1;
|
|
} else {
|
|
/* Probe hit */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it will
|
|
* modify the execution path and no need to single
|
|
* stepping. Let's just reset current kprobe and exit.
|
|
*
|
|
* pre_handler can hit a breakpoint and can step thru
|
|
* before return.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs))
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
else
|
|
reset_current_kprobe();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Return back to original instruction, and continue.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_single_step_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if ((kcb->ss_ctx.ss_pending)
|
|
&& (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
|
|
clear_ss_context(kcb); /* clear pending ss */
|
|
|
|
kprobes_restore_local_irqflag(kcb, regs);
|
|
regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Provide a blacklist of symbols identifying ranges which cannot be kprobed.
|
|
* This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
|
|
*/
|
|
int __init arch_populate_kprobe_blacklist(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
|
|
(unsigned long)__irqentry_text_end);
|
|
return ret;
|
|
}
|
|
|
|
void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
|
|
{
|
|
return (void *)kretprobe_trampoline_handler(regs, NULL);
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->lr;
|
|
ri->fp = NULL;
|
|
regs->lr = (unsigned long) &__kretprobe_trampoline;
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|