linux/arch/riscv/kvm/vcpu_insn.c
Anup Patel 54e43320c2 RISC-V: KVM: Initial skeletal support for AIA
To incrementally implement AIA support, we first add minimal skeletal
support which only compiles and detects AIA hardware support at the
boot-time but does not provide any functionality.

Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
2023-04-21 17:45:48 +05:30

755 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Western Digital Corporation or its affiliates.
* Copyright (c) 2022 Ventana Micro Systems Inc.
*/
#include <linux/bitops.h>
#include <linux/kvm_host.h>
#define INSN_OPCODE_MASK 0x007c
#define INSN_OPCODE_SHIFT 2
#define INSN_OPCODE_SYSTEM 28
#define INSN_MASK_WFI 0xffffffff
#define INSN_MATCH_WFI 0x10500073
#define INSN_MATCH_CSRRW 0x1073
#define INSN_MASK_CSRRW 0x707f
#define INSN_MATCH_CSRRS 0x2073
#define INSN_MASK_CSRRS 0x707f
#define INSN_MATCH_CSRRC 0x3073
#define INSN_MASK_CSRRC 0x707f
#define INSN_MATCH_CSRRWI 0x5073
#define INSN_MASK_CSRRWI 0x707f
#define INSN_MATCH_CSRRSI 0x6073
#define INSN_MASK_CSRRSI 0x707f
#define INSN_MATCH_CSRRCI 0x7073
#define INSN_MASK_CSRRCI 0x707f
#define INSN_MATCH_LB 0x3
#define INSN_MASK_LB 0x707f
#define INSN_MATCH_LH 0x1003
#define INSN_MASK_LH 0x707f
#define INSN_MATCH_LW 0x2003
#define INSN_MASK_LW 0x707f
#define INSN_MATCH_LD 0x3003
#define INSN_MASK_LD 0x707f
#define INSN_MATCH_LBU 0x4003
#define INSN_MASK_LBU 0x707f
#define INSN_MATCH_LHU 0x5003
#define INSN_MASK_LHU 0x707f
#define INSN_MATCH_LWU 0x6003
#define INSN_MASK_LWU 0x707f
#define INSN_MATCH_SB 0x23
#define INSN_MASK_SB 0x707f
#define INSN_MATCH_SH 0x1023
#define INSN_MASK_SH 0x707f
#define INSN_MATCH_SW 0x2023
#define INSN_MASK_SW 0x707f
#define INSN_MATCH_SD 0x3023
#define INSN_MASK_SD 0x707f
#define INSN_MATCH_C_LD 0x6000
#define INSN_MASK_C_LD 0xe003
#define INSN_MATCH_C_SD 0xe000
#define INSN_MASK_C_SD 0xe003
#define INSN_MATCH_C_LW 0x4000
#define INSN_MASK_C_LW 0xe003
#define INSN_MATCH_C_SW 0xc000
#define INSN_MASK_C_SW 0xe003
#define INSN_MATCH_C_LDSP 0x6002
#define INSN_MASK_C_LDSP 0xe003
#define INSN_MATCH_C_SDSP 0xe002
#define INSN_MASK_C_SDSP 0xe003
#define INSN_MATCH_C_LWSP 0x4002
#define INSN_MASK_C_LWSP 0xe003
#define INSN_MATCH_C_SWSP 0xc002
#define INSN_MASK_C_SWSP 0xe003
#define INSN_16BIT_MASK 0x3
#define INSN_IS_16BIT(insn) (((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK)
#define INSN_LEN(insn) (INSN_IS_16BIT(insn) ? 2 : 4)
#ifdef CONFIG_64BIT
#define LOG_REGBYTES 3
#else
#define LOG_REGBYTES 2
#endif
#define REGBYTES (1 << LOG_REGBYTES)
#define SH_RD 7
#define SH_RS1 15
#define SH_RS2 20
#define SH_RS2C 2
#define MASK_RX 0x1f
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
#define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \
(RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 1) << 6))
#define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 5, 2) << 6))
#define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 2) << 6))
#define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \
(RV_X(x, 12, 1) << 5) | \
(RV_X(x, 2, 3) << 6))
#define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \
(RV_X(x, 7, 2) << 6))
#define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \
(RV_X(x, 7, 3) << 6))
#define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3))
#define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3))
#define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5)
#define SHIFT_RIGHT(x, y) \
((y) < 0 ? ((x) << -(y)) : ((x) >> (y)))
#define REG_MASK \
((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES))
#define REG_OFFSET(insn, pos) \
(SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK)
#define REG_PTR(insn, pos, regs) \
((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos)))
#define GET_FUNCT3(insn) (((insn) >> 12) & 7)
#define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs))
#define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs))
#define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs))
#define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs))
#define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs))
#define GET_SP(regs) (*REG_PTR(2, 0, regs))
#define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val))
#define IMM_I(insn) ((s32)(insn) >> 20)
#define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \
(s32)(((insn) >> 7) & 0x1f))
struct insn_func {
unsigned long mask;
unsigned long match;
/*
* Possible return values are as follows:
* 1) Returns < 0 for error case
* 2) Returns 0 for exit to user-space
* 3) Returns 1 to continue with next sepc
* 4) Returns 2 to continue with same sepc
* 5) Returns 3 to inject illegal instruction trap and continue
* 6) Returns 4 to inject virtual instruction trap and continue
*
* Use enum kvm_insn_return for return values
*/
int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn);
};
static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
struct kvm_cpu_trap utrap = { 0 };
/* Redirect trap to Guest VCPU */
utrap.sepc = vcpu->arch.guest_context.sepc;
utrap.scause = EXC_INST_ILLEGAL;
utrap.stval = insn;
utrap.htval = 0;
utrap.htinst = 0;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
struct kvm_cpu_trap utrap = { 0 };
/* Redirect trap to Guest VCPU */
utrap.sepc = vcpu->arch.guest_context.sepc;
utrap.scause = EXC_VIRTUAL_INST_FAULT;
utrap.stval = insn;
utrap.htval = 0;
utrap.htinst = 0;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
/**
* kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour
*
* @vcpu: The VCPU pointer
*/
void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu)
{
if (!kvm_arch_vcpu_runnable(vcpu)) {
kvm_vcpu_srcu_read_unlock(vcpu);
kvm_vcpu_halt(vcpu);
kvm_vcpu_srcu_read_lock(vcpu);
}
}
static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
vcpu->stat.wfi_exit_stat++;
kvm_riscv_vcpu_wfi(vcpu);
return KVM_INSN_CONTINUE_NEXT_SEPC;
}
struct csr_func {
unsigned int base;
unsigned int count;
/*
* Possible return values are as same as "func" callback in
* "struct insn_func".
*/
int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num,
unsigned long *val, unsigned long new_val,
unsigned long wr_mask);
};
static const struct csr_func csr_funcs[] = {
KVM_RISCV_VCPU_AIA_CSR_FUNCS
KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS
};
/**
* kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space
* emulation or in-kernel emulation
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the CSR data
*
* Returns > 0 upon failure and 0 upon success
*/
int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
ulong insn;
if (vcpu->arch.csr_decode.return_handled)
return 0;
vcpu->arch.csr_decode.return_handled = 1;
/* Update destination register for CSR reads */
insn = vcpu->arch.csr_decode.insn;
if ((insn >> SH_RD) & MASK_RX)
SET_RD(insn, &vcpu->arch.guest_context,
run->riscv_csr.ret_value);
/* Move to next instruction */
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
return 0;
}
static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn)
{
int i, rc = KVM_INSN_ILLEGAL_TRAP;
unsigned int csr_num = insn >> SH_RS2;
unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX;
ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context);
const struct csr_func *tcfn, *cfn = NULL;
ulong val = 0, wr_mask = 0, new_val = 0;
/* Decode the CSR instruction */
switch (GET_FUNCT3(insn)) {
case GET_FUNCT3(INSN_MATCH_CSRRW):
wr_mask = -1UL;
new_val = rs1_val;
break;
case GET_FUNCT3(INSN_MATCH_CSRRS):
wr_mask = rs1_val;
new_val = -1UL;
break;
case GET_FUNCT3(INSN_MATCH_CSRRC):
wr_mask = rs1_val;
new_val = 0;
break;
case GET_FUNCT3(INSN_MATCH_CSRRWI):
wr_mask = -1UL;
new_val = rs1_num;
break;
case GET_FUNCT3(INSN_MATCH_CSRRSI):
wr_mask = rs1_num;
new_val = -1UL;
break;
case GET_FUNCT3(INSN_MATCH_CSRRCI):
wr_mask = rs1_num;
new_val = 0;
break;
default:
return rc;
}
/* Save instruction decode info */
vcpu->arch.csr_decode.insn = insn;
vcpu->arch.csr_decode.return_handled = 0;
/* Update CSR details in kvm_run struct */
run->riscv_csr.csr_num = csr_num;
run->riscv_csr.new_value = new_val;
run->riscv_csr.write_mask = wr_mask;
run->riscv_csr.ret_value = 0;
/* Find in-kernel CSR function */
for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) {
tcfn = &csr_funcs[i];
if ((tcfn->base <= csr_num) &&
(csr_num < (tcfn->base + tcfn->count))) {
cfn = tcfn;
break;
}
}
/* First try in-kernel CSR emulation */
if (cfn && cfn->func) {
rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask);
if (rc > KVM_INSN_EXIT_TO_USER_SPACE) {
if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) {
run->riscv_csr.ret_value = val;
vcpu->stat.csr_exit_kernel++;
kvm_riscv_vcpu_csr_return(vcpu, run);
rc = KVM_INSN_CONTINUE_SAME_SEPC;
}
return rc;
}
}
/* Exit to user-space for CSR emulation */
if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) {
vcpu->stat.csr_exit_user++;
run->exit_reason = KVM_EXIT_RISCV_CSR;
}
return rc;
}
static const struct insn_func system_opcode_funcs[] = {
{
.mask = INSN_MASK_CSRRW,
.match = INSN_MATCH_CSRRW,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRS,
.match = INSN_MATCH_CSRRS,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRC,
.match = INSN_MATCH_CSRRC,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRWI,
.match = INSN_MATCH_CSRRWI,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRSI,
.match = INSN_MATCH_CSRRSI,
.func = csr_insn,
},
{
.mask = INSN_MASK_CSRRCI,
.match = INSN_MATCH_CSRRCI,
.func = csr_insn,
},
{
.mask = INSN_MASK_WFI,
.match = INSN_MATCH_WFI,
.func = wfi_insn,
},
};
static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
ulong insn)
{
int i, rc = KVM_INSN_ILLEGAL_TRAP;
const struct insn_func *ifn;
for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) {
ifn = &system_opcode_funcs[i];
if ((insn & ifn->mask) == ifn->match) {
rc = ifn->func(vcpu, run, insn);
break;
}
}
switch (rc) {
case KVM_INSN_ILLEGAL_TRAP:
return truly_illegal_insn(vcpu, run, insn);
case KVM_INSN_VIRTUAL_TRAP:
return truly_virtual_insn(vcpu, run, insn);
case KVM_INSN_CONTINUE_NEXT_SEPC:
vcpu->arch.guest_context.sepc += INSN_LEN(insn);
break;
default:
break;
}
return (rc <= 0) ? rc : 1;
}
/**
* kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the mmio data
* @trap: Trap details
*
* Returns > 0 to continue run-loop
* Returns 0 to exit run-loop and handle in user-space.
* Returns < 0 to report failure and exit run-loop
*/
int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run,
struct kvm_cpu_trap *trap)
{
unsigned long insn = trap->stval;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct;
if (unlikely(INSN_IS_16BIT(insn))) {
if (insn == 0) {
ct = &vcpu->arch.guest_context;
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true,
ct->sepc,
&utrap);
if (utrap.scause) {
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
}
if (INSN_IS_16BIT(insn))
return truly_illegal_insn(vcpu, run, insn);
}
switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) {
case INSN_OPCODE_SYSTEM:
return system_opcode_insn(vcpu, run, insn);
default:
return truly_illegal_insn(vcpu, run, insn);
}
}
/**
* kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the mmio data
* @fault_addr: Guest physical address to load
* @htinst: Transformed encoding of the load instruction
*
* Returns > 0 to continue run-loop
* Returns 0 to exit run-loop and handle in user-space.
* Returns < 0 to report failure and exit run-loop
*/
int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr,
unsigned long htinst)
{
u8 data_buf[8];
unsigned long insn;
int shift = 0, len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
/* Determine trapped instruction */
if (htinst & 0x1) {
/*
* Bit[0] == 1 implies trapped instruction value is
* transformed instruction or custom instruction.
*/
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
/*
* Bit[0] == 0 implies trapped instruction value is
* zero or special value.
*/
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
/* Redirect trap if we failed to read instruction */
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
/* Decode length of MMIO and shift */
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) {
len = 1;
shift = 8 * (sizeof(ulong) - len);
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(ulong) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(ulong) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(ulong) - len);
} else {
return -EOPNOTSUPP;
}
/* Fault address should be aligned to length of MMIO */
if (fault_addr & (len - 1))
return -EIO;
/* Save instruction decode info */
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = shift;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
/* Update MMIO details in kvm_run struct */
run->mmio.is_write = false;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
/* Try to handle MMIO access in the kernel */
if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) {
/* Successfully handled MMIO access in the kernel so resume */
memcpy(run->mmio.data, data_buf, len);
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
/* Exit to userspace for MMIO emulation */
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
/**
* kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the mmio data
* @fault_addr: Guest physical address to store
* @htinst: Transformed encoding of the store instruction
*
* Returns > 0 to continue run-loop
* Returns 0 to exit run-loop and handle in user-space.
* Returns < 0 to report failure and exit run-loop
*/
int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run,
unsigned long fault_addr,
unsigned long htinst)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong data;
unsigned long insn;
int len = 0, insn_len = 0;
struct kvm_cpu_trap utrap = { 0 };
struct kvm_cpu_context *ct = &vcpu->arch.guest_context;
/* Determine trapped instruction */
if (htinst & 0x1) {
/*
* Bit[0] == 1 implies trapped instruction value is
* transformed instruction or custom instruction.
*/
insn = htinst | INSN_16BIT_MASK;
insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2;
} else {
/*
* Bit[0] == 0 implies trapped instruction value is
* zero or special value.
*/
insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc,
&utrap);
if (utrap.scause) {
/* Redirect trap if we failed to read instruction */
utrap.sepc = ct->sepc;
kvm_riscv_vcpu_trap_redirect(vcpu, &utrap);
return 1;
}
insn_len = INSN_LEN(insn);
}
data = GET_RS2(insn, &vcpu->arch.guest_context);
data8 = data16 = data32 = data64 = data;
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
} else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) {
len = 1;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#ifdef CONFIG_64BIT
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
data64 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
data64 = GET_RS2C(insn, &vcpu->arch.guest_context);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
data32 = GET_RS2S(insn, &vcpu->arch.guest_context);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
data32 = GET_RS2C(insn, &vcpu->arch.guest_context);
} else {
return -EOPNOTSUPP;
}
/* Fault address should be aligned to length of MMIO */
if (fault_addr & (len - 1))
return -EIO;
/* Save instruction decode info */
vcpu->arch.mmio_decode.insn = insn;
vcpu->arch.mmio_decode.insn_len = insn_len;
vcpu->arch.mmio_decode.shift = 0;
vcpu->arch.mmio_decode.len = len;
vcpu->arch.mmio_decode.return_handled = 0;
/* Copy data to kvm_run instance */
switch (len) {
case 1:
*((u8 *)run->mmio.data) = data8;
break;
case 2:
*((u16 *)run->mmio.data) = data16;
break;
case 4:
*((u32 *)run->mmio.data) = data32;
break;
case 8:
*((u64 *)run->mmio.data) = data64;
break;
default:
return -EOPNOTSUPP;
}
/* Update MMIO details in kvm_run struct */
run->mmio.is_write = true;
run->mmio.phys_addr = fault_addr;
run->mmio.len = len;
/* Try to handle MMIO access in the kernel */
if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
fault_addr, len, run->mmio.data)) {
/* Successfully handled MMIO access in the kernel so resume */
vcpu->stat.mmio_exit_kernel++;
kvm_riscv_vcpu_mmio_return(vcpu, run);
return 1;
}
/* Exit to userspace for MMIO emulation */
vcpu->stat.mmio_exit_user++;
run->exit_reason = KVM_EXIT_MMIO;
return 0;
}
/**
* kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation
* or in-kernel IO emulation
*
* @vcpu: The VCPU pointer
* @run: The VCPU run struct containing the mmio data
*/
int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
u8 data8;
u16 data16;
u32 data32;
u64 data64;
ulong insn;
int len, shift;
if (vcpu->arch.mmio_decode.return_handled)
return 0;
vcpu->arch.mmio_decode.return_handled = 1;
insn = vcpu->arch.mmio_decode.insn;
if (run->mmio.is_write)
goto done;
len = vcpu->arch.mmio_decode.len;
shift = vcpu->arch.mmio_decode.shift;
switch (len) {
case 1:
data8 = *((u8 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data8 << shift >> shift);
break;
case 2:
data16 = *((u16 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data16 << shift >> shift);
break;
case 4:
data32 = *((u32 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data32 << shift >> shift);
break;
case 8:
data64 = *((u64 *)run->mmio.data);
SET_RD(insn, &vcpu->arch.guest_context,
(ulong)data64 << shift >> shift);
break;
default:
return -EOPNOTSUPP;
}
done:
/* Move to next instruction */
vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len;
return 0;
}