mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-07 06:14:24 +08:00
994a5d2bc7
The name is misleading and the local variable serves no purpose. Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
996 lines
24 KiB
C
996 lines
24 KiB
C
/*
|
|
* Copyright (C) 2011 STRATO. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/workqueue.h>
|
|
#include "ctree.h"
|
|
#include "volumes.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "dev-replace.h"
|
|
|
|
#undef DEBUG
|
|
|
|
/*
|
|
* This is the implementation for the generic read ahead framework.
|
|
*
|
|
* To trigger a readahead, btrfs_reada_add must be called. It will start
|
|
* a read ahead for the given range [start, end) on tree root. The returned
|
|
* handle can either be used to wait on the readahead to finish
|
|
* (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
|
|
*
|
|
* The read ahead works as follows:
|
|
* On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
|
|
* reada_start_machine will then search for extents to prefetch and trigger
|
|
* some reads. When a read finishes for a node, all contained node/leaf
|
|
* pointers that lie in the given range will also be enqueued. The reads will
|
|
* be triggered in sequential order, thus giving a big win over a naive
|
|
* enumeration. It will also make use of multi-device layouts. Each disk
|
|
* will have its on read pointer and all disks will by utilized in parallel.
|
|
* Also will no two disks read both sides of a mirror simultaneously, as this
|
|
* would waste seeking capacity. Instead both disks will read different parts
|
|
* of the filesystem.
|
|
* Any number of readaheads can be started in parallel. The read order will be
|
|
* determined globally, i.e. 2 parallel readaheads will normally finish faster
|
|
* than the 2 started one after another.
|
|
*/
|
|
|
|
#define MAX_IN_FLIGHT 6
|
|
|
|
struct reada_extctl {
|
|
struct list_head list;
|
|
struct reada_control *rc;
|
|
u64 generation;
|
|
};
|
|
|
|
struct reada_extent {
|
|
u64 logical;
|
|
struct btrfs_key top;
|
|
int err;
|
|
struct list_head extctl;
|
|
int refcnt;
|
|
spinlock_t lock;
|
|
struct reada_zone *zones[BTRFS_MAX_MIRRORS];
|
|
int nzones;
|
|
int scheduled;
|
|
};
|
|
|
|
struct reada_zone {
|
|
u64 start;
|
|
u64 end;
|
|
u64 elems;
|
|
struct list_head list;
|
|
spinlock_t lock;
|
|
int locked;
|
|
struct btrfs_device *device;
|
|
struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
|
|
* self */
|
|
int ndevs;
|
|
struct kref refcnt;
|
|
};
|
|
|
|
struct reada_machine_work {
|
|
struct btrfs_work work;
|
|
struct btrfs_fs_info *fs_info;
|
|
};
|
|
|
|
static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
|
|
static void reada_control_release(struct kref *kref);
|
|
static void reada_zone_release(struct kref *kref);
|
|
static void reada_start_machine(struct btrfs_fs_info *fs_info);
|
|
static void __reada_start_machine(struct btrfs_fs_info *fs_info);
|
|
|
|
static int reada_add_block(struct reada_control *rc, u64 logical,
|
|
struct btrfs_key *top, u64 generation);
|
|
|
|
/* recurses */
|
|
/* in case of err, eb might be NULL */
|
|
static void __readahead_hook(struct btrfs_fs_info *fs_info,
|
|
struct reada_extent *re, struct extent_buffer *eb,
|
|
int err)
|
|
{
|
|
int nritems;
|
|
int i;
|
|
u64 bytenr;
|
|
u64 generation;
|
|
struct list_head list;
|
|
|
|
spin_lock(&re->lock);
|
|
/*
|
|
* just take the full list from the extent. afterwards we
|
|
* don't need the lock anymore
|
|
*/
|
|
list_replace_init(&re->extctl, &list);
|
|
re->scheduled = 0;
|
|
spin_unlock(&re->lock);
|
|
|
|
/*
|
|
* this is the error case, the extent buffer has not been
|
|
* read correctly. We won't access anything from it and
|
|
* just cleanup our data structures. Effectively this will
|
|
* cut the branch below this node from read ahead.
|
|
*/
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
/*
|
|
* FIXME: currently we just set nritems to 0 if this is a leaf,
|
|
* effectively ignoring the content. In a next step we could
|
|
* trigger more readahead depending from the content, e.g.
|
|
* fetch the checksums for the extents in the leaf.
|
|
*/
|
|
if (!btrfs_header_level(eb))
|
|
goto cleanup;
|
|
|
|
nritems = btrfs_header_nritems(eb);
|
|
generation = btrfs_header_generation(eb);
|
|
for (i = 0; i < nritems; i++) {
|
|
struct reada_extctl *rec;
|
|
u64 n_gen;
|
|
struct btrfs_key key;
|
|
struct btrfs_key next_key;
|
|
|
|
btrfs_node_key_to_cpu(eb, &key, i);
|
|
if (i + 1 < nritems)
|
|
btrfs_node_key_to_cpu(eb, &next_key, i + 1);
|
|
else
|
|
next_key = re->top;
|
|
bytenr = btrfs_node_blockptr(eb, i);
|
|
n_gen = btrfs_node_ptr_generation(eb, i);
|
|
|
|
list_for_each_entry(rec, &list, list) {
|
|
struct reada_control *rc = rec->rc;
|
|
|
|
/*
|
|
* if the generation doesn't match, just ignore this
|
|
* extctl. This will probably cut off a branch from
|
|
* prefetch. Alternatively one could start a new (sub-)
|
|
* prefetch for this branch, starting again from root.
|
|
* FIXME: move the generation check out of this loop
|
|
*/
|
|
#ifdef DEBUG
|
|
if (rec->generation != generation) {
|
|
btrfs_debug(fs_info,
|
|
"generation mismatch for (%llu,%d,%llu) %llu != %llu",
|
|
key.objectid, key.type, key.offset,
|
|
rec->generation, generation);
|
|
}
|
|
#endif
|
|
if (rec->generation == generation &&
|
|
btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
|
|
btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
|
|
reada_add_block(rc, bytenr, &next_key, n_gen);
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
/*
|
|
* free extctl records
|
|
*/
|
|
while (!list_empty(&list)) {
|
|
struct reada_control *rc;
|
|
struct reada_extctl *rec;
|
|
|
|
rec = list_first_entry(&list, struct reada_extctl, list);
|
|
list_del(&rec->list);
|
|
rc = rec->rc;
|
|
kfree(rec);
|
|
|
|
kref_get(&rc->refcnt);
|
|
if (atomic_dec_and_test(&rc->elems)) {
|
|
kref_put(&rc->refcnt, reada_control_release);
|
|
wake_up(&rc->wait);
|
|
}
|
|
kref_put(&rc->refcnt, reada_control_release);
|
|
|
|
reada_extent_put(fs_info, re); /* one ref for each entry */
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
int btree_readahead_hook(struct extent_buffer *eb, int err)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
int ret = 0;
|
|
struct reada_extent *re;
|
|
|
|
/* find extent */
|
|
spin_lock(&fs_info->reada_lock);
|
|
re = radix_tree_lookup(&fs_info->reada_tree,
|
|
eb->start >> PAGE_SHIFT);
|
|
if (re)
|
|
re->refcnt++;
|
|
spin_unlock(&fs_info->reada_lock);
|
|
if (!re) {
|
|
ret = -1;
|
|
goto start_machine;
|
|
}
|
|
|
|
__readahead_hook(fs_info, re, eb, err);
|
|
reada_extent_put(fs_info, re); /* our ref */
|
|
|
|
start_machine:
|
|
reada_start_machine(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
|
|
struct btrfs_bio *bbio)
|
|
{
|
|
struct btrfs_fs_info *fs_info = dev->fs_info;
|
|
int ret;
|
|
struct reada_zone *zone;
|
|
struct btrfs_block_group_cache *cache = NULL;
|
|
u64 start;
|
|
u64 end;
|
|
int i;
|
|
|
|
zone = NULL;
|
|
spin_lock(&fs_info->reada_lock);
|
|
ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
|
|
logical >> PAGE_SHIFT, 1);
|
|
if (ret == 1 && logical >= zone->start && logical <= zone->end) {
|
|
kref_get(&zone->refcnt);
|
|
spin_unlock(&fs_info->reada_lock);
|
|
return zone;
|
|
}
|
|
|
|
spin_unlock(&fs_info->reada_lock);
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, logical);
|
|
if (!cache)
|
|
return NULL;
|
|
|
|
start = cache->key.objectid;
|
|
end = start + cache->key.offset - 1;
|
|
btrfs_put_block_group(cache);
|
|
|
|
zone = kzalloc(sizeof(*zone), GFP_KERNEL);
|
|
if (!zone)
|
|
return NULL;
|
|
|
|
ret = radix_tree_preload(GFP_KERNEL);
|
|
if (ret) {
|
|
kfree(zone);
|
|
return NULL;
|
|
}
|
|
|
|
zone->start = start;
|
|
zone->end = end;
|
|
INIT_LIST_HEAD(&zone->list);
|
|
spin_lock_init(&zone->lock);
|
|
zone->locked = 0;
|
|
kref_init(&zone->refcnt);
|
|
zone->elems = 0;
|
|
zone->device = dev; /* our device always sits at index 0 */
|
|
for (i = 0; i < bbio->num_stripes; ++i) {
|
|
/* bounds have already been checked */
|
|
zone->devs[i] = bbio->stripes[i].dev;
|
|
}
|
|
zone->ndevs = bbio->num_stripes;
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
ret = radix_tree_insert(&dev->reada_zones,
|
|
(unsigned long)(zone->end >> PAGE_SHIFT),
|
|
zone);
|
|
|
|
if (ret == -EEXIST) {
|
|
kfree(zone);
|
|
ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
|
|
logical >> PAGE_SHIFT, 1);
|
|
if (ret == 1 && logical >= zone->start && logical <= zone->end)
|
|
kref_get(&zone->refcnt);
|
|
else
|
|
zone = NULL;
|
|
}
|
|
spin_unlock(&fs_info->reada_lock);
|
|
radix_tree_preload_end();
|
|
|
|
return zone;
|
|
}
|
|
|
|
static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
|
|
u64 logical,
|
|
struct btrfs_key *top)
|
|
{
|
|
int ret;
|
|
struct reada_extent *re = NULL;
|
|
struct reada_extent *re_exist = NULL;
|
|
struct btrfs_bio *bbio = NULL;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_device *prev_dev;
|
|
u64 length;
|
|
int real_stripes;
|
|
int nzones = 0;
|
|
unsigned long index = logical >> PAGE_SHIFT;
|
|
int dev_replace_is_ongoing;
|
|
int have_zone = 0;
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
re = radix_tree_lookup(&fs_info->reada_tree, index);
|
|
if (re)
|
|
re->refcnt++;
|
|
spin_unlock(&fs_info->reada_lock);
|
|
|
|
if (re)
|
|
return re;
|
|
|
|
re = kzalloc(sizeof(*re), GFP_KERNEL);
|
|
if (!re)
|
|
return NULL;
|
|
|
|
re->logical = logical;
|
|
re->top = *top;
|
|
INIT_LIST_HEAD(&re->extctl);
|
|
spin_lock_init(&re->lock);
|
|
re->refcnt = 1;
|
|
|
|
/*
|
|
* map block
|
|
*/
|
|
length = fs_info->nodesize;
|
|
ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
|
|
&length, &bbio, 0);
|
|
if (ret || !bbio || length < fs_info->nodesize)
|
|
goto error;
|
|
|
|
if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
|
|
btrfs_err(fs_info,
|
|
"readahead: more than %d copies not supported",
|
|
BTRFS_MAX_MIRRORS);
|
|
goto error;
|
|
}
|
|
|
|
real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
|
|
for (nzones = 0; nzones < real_stripes; ++nzones) {
|
|
struct reada_zone *zone;
|
|
|
|
dev = bbio->stripes[nzones].dev;
|
|
|
|
/* cannot read ahead on missing device. */
|
|
if (!dev->bdev)
|
|
continue;
|
|
|
|
zone = reada_find_zone(dev, logical, bbio);
|
|
if (!zone)
|
|
continue;
|
|
|
|
re->zones[re->nzones++] = zone;
|
|
spin_lock(&zone->lock);
|
|
if (!zone->elems)
|
|
kref_get(&zone->refcnt);
|
|
++zone->elems;
|
|
spin_unlock(&zone->lock);
|
|
spin_lock(&fs_info->reada_lock);
|
|
kref_put(&zone->refcnt, reada_zone_release);
|
|
spin_unlock(&fs_info->reada_lock);
|
|
}
|
|
if (re->nzones == 0) {
|
|
/* not a single zone found, error and out */
|
|
goto error;
|
|
}
|
|
|
|
ret = radix_tree_preload(GFP_KERNEL);
|
|
if (ret)
|
|
goto error;
|
|
|
|
/* insert extent in reada_tree + all per-device trees, all or nothing */
|
|
btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
|
|
spin_lock(&fs_info->reada_lock);
|
|
ret = radix_tree_insert(&fs_info->reada_tree, index, re);
|
|
if (ret == -EEXIST) {
|
|
re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
|
|
re_exist->refcnt++;
|
|
spin_unlock(&fs_info->reada_lock);
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
|
|
radix_tree_preload_end();
|
|
goto error;
|
|
}
|
|
if (ret) {
|
|
spin_unlock(&fs_info->reada_lock);
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
|
|
radix_tree_preload_end();
|
|
goto error;
|
|
}
|
|
radix_tree_preload_end();
|
|
prev_dev = NULL;
|
|
dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
|
|
&fs_info->dev_replace);
|
|
for (nzones = 0; nzones < re->nzones; ++nzones) {
|
|
dev = re->zones[nzones]->device;
|
|
|
|
if (dev == prev_dev) {
|
|
/*
|
|
* in case of DUP, just add the first zone. As both
|
|
* are on the same device, there's nothing to gain
|
|
* from adding both.
|
|
* Also, it wouldn't work, as the tree is per device
|
|
* and adding would fail with EEXIST
|
|
*/
|
|
continue;
|
|
}
|
|
if (!dev->bdev)
|
|
continue;
|
|
|
|
if (dev_replace_is_ongoing &&
|
|
dev == fs_info->dev_replace.tgtdev) {
|
|
/*
|
|
* as this device is selected for reading only as
|
|
* a last resort, skip it for read ahead.
|
|
*/
|
|
continue;
|
|
}
|
|
prev_dev = dev;
|
|
ret = radix_tree_insert(&dev->reada_extents, index, re);
|
|
if (ret) {
|
|
while (--nzones >= 0) {
|
|
dev = re->zones[nzones]->device;
|
|
BUG_ON(dev == NULL);
|
|
/* ignore whether the entry was inserted */
|
|
radix_tree_delete(&dev->reada_extents, index);
|
|
}
|
|
radix_tree_delete(&fs_info->reada_tree, index);
|
|
spin_unlock(&fs_info->reada_lock);
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
|
|
goto error;
|
|
}
|
|
have_zone = 1;
|
|
}
|
|
spin_unlock(&fs_info->reada_lock);
|
|
btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
|
|
|
|
if (!have_zone)
|
|
goto error;
|
|
|
|
btrfs_put_bbio(bbio);
|
|
return re;
|
|
|
|
error:
|
|
for (nzones = 0; nzones < re->nzones; ++nzones) {
|
|
struct reada_zone *zone;
|
|
|
|
zone = re->zones[nzones];
|
|
kref_get(&zone->refcnt);
|
|
spin_lock(&zone->lock);
|
|
--zone->elems;
|
|
if (zone->elems == 0) {
|
|
/*
|
|
* no fs_info->reada_lock needed, as this can't be
|
|
* the last ref
|
|
*/
|
|
kref_put(&zone->refcnt, reada_zone_release);
|
|
}
|
|
spin_unlock(&zone->lock);
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
kref_put(&zone->refcnt, reada_zone_release);
|
|
spin_unlock(&fs_info->reada_lock);
|
|
}
|
|
btrfs_put_bbio(bbio);
|
|
kfree(re);
|
|
return re_exist;
|
|
}
|
|
|
|
static void reada_extent_put(struct btrfs_fs_info *fs_info,
|
|
struct reada_extent *re)
|
|
{
|
|
int i;
|
|
unsigned long index = re->logical >> PAGE_SHIFT;
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
if (--re->refcnt) {
|
|
spin_unlock(&fs_info->reada_lock);
|
|
return;
|
|
}
|
|
|
|
radix_tree_delete(&fs_info->reada_tree, index);
|
|
for (i = 0; i < re->nzones; ++i) {
|
|
struct reada_zone *zone = re->zones[i];
|
|
|
|
radix_tree_delete(&zone->device->reada_extents, index);
|
|
}
|
|
|
|
spin_unlock(&fs_info->reada_lock);
|
|
|
|
for (i = 0; i < re->nzones; ++i) {
|
|
struct reada_zone *zone = re->zones[i];
|
|
|
|
kref_get(&zone->refcnt);
|
|
spin_lock(&zone->lock);
|
|
--zone->elems;
|
|
if (zone->elems == 0) {
|
|
/* no fs_info->reada_lock needed, as this can't be
|
|
* the last ref */
|
|
kref_put(&zone->refcnt, reada_zone_release);
|
|
}
|
|
spin_unlock(&zone->lock);
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
kref_put(&zone->refcnt, reada_zone_release);
|
|
spin_unlock(&fs_info->reada_lock);
|
|
}
|
|
|
|
kfree(re);
|
|
}
|
|
|
|
static void reada_zone_release(struct kref *kref)
|
|
{
|
|
struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
|
|
|
|
radix_tree_delete(&zone->device->reada_zones,
|
|
zone->end >> PAGE_SHIFT);
|
|
|
|
kfree(zone);
|
|
}
|
|
|
|
static void reada_control_release(struct kref *kref)
|
|
{
|
|
struct reada_control *rc = container_of(kref, struct reada_control,
|
|
refcnt);
|
|
|
|
kfree(rc);
|
|
}
|
|
|
|
static int reada_add_block(struct reada_control *rc, u64 logical,
|
|
struct btrfs_key *top, u64 generation)
|
|
{
|
|
struct btrfs_fs_info *fs_info = rc->fs_info;
|
|
struct reada_extent *re;
|
|
struct reada_extctl *rec;
|
|
|
|
/* takes one ref */
|
|
re = reada_find_extent(fs_info, logical, top);
|
|
if (!re)
|
|
return -1;
|
|
|
|
rec = kzalloc(sizeof(*rec), GFP_KERNEL);
|
|
if (!rec) {
|
|
reada_extent_put(fs_info, re);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rec->rc = rc;
|
|
rec->generation = generation;
|
|
atomic_inc(&rc->elems);
|
|
|
|
spin_lock(&re->lock);
|
|
list_add_tail(&rec->list, &re->extctl);
|
|
spin_unlock(&re->lock);
|
|
|
|
/* leave the ref on the extent */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* called with fs_info->reada_lock held
|
|
*/
|
|
static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
|
|
{
|
|
int i;
|
|
unsigned long index = zone->end >> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < zone->ndevs; ++i) {
|
|
struct reada_zone *peer;
|
|
peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
|
|
if (peer && peer->device != zone->device)
|
|
peer->locked = lock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called with fs_info->reada_lock held
|
|
*/
|
|
static int reada_pick_zone(struct btrfs_device *dev)
|
|
{
|
|
struct reada_zone *top_zone = NULL;
|
|
struct reada_zone *top_locked_zone = NULL;
|
|
u64 top_elems = 0;
|
|
u64 top_locked_elems = 0;
|
|
unsigned long index = 0;
|
|
int ret;
|
|
|
|
if (dev->reada_curr_zone) {
|
|
reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
|
|
kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
|
|
dev->reada_curr_zone = NULL;
|
|
}
|
|
/* pick the zone with the most elements */
|
|
while (1) {
|
|
struct reada_zone *zone;
|
|
|
|
ret = radix_tree_gang_lookup(&dev->reada_zones,
|
|
(void **)&zone, index, 1);
|
|
if (ret == 0)
|
|
break;
|
|
index = (zone->end >> PAGE_SHIFT) + 1;
|
|
if (zone->locked) {
|
|
if (zone->elems > top_locked_elems) {
|
|
top_locked_elems = zone->elems;
|
|
top_locked_zone = zone;
|
|
}
|
|
} else {
|
|
if (zone->elems > top_elems) {
|
|
top_elems = zone->elems;
|
|
top_zone = zone;
|
|
}
|
|
}
|
|
}
|
|
if (top_zone)
|
|
dev->reada_curr_zone = top_zone;
|
|
else if (top_locked_zone)
|
|
dev->reada_curr_zone = top_locked_zone;
|
|
else
|
|
return 0;
|
|
|
|
dev->reada_next = dev->reada_curr_zone->start;
|
|
kref_get(&dev->reada_curr_zone->refcnt);
|
|
reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int reada_start_machine_dev(struct btrfs_device *dev)
|
|
{
|
|
struct btrfs_fs_info *fs_info = dev->fs_info;
|
|
struct reada_extent *re = NULL;
|
|
int mirror_num = 0;
|
|
struct extent_buffer *eb = NULL;
|
|
u64 logical;
|
|
int ret;
|
|
int i;
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
if (dev->reada_curr_zone == NULL) {
|
|
ret = reada_pick_zone(dev);
|
|
if (!ret) {
|
|
spin_unlock(&fs_info->reada_lock);
|
|
return 0;
|
|
}
|
|
}
|
|
/*
|
|
* FIXME currently we issue the reads one extent at a time. If we have
|
|
* a contiguous block of extents, we could also coagulate them or use
|
|
* plugging to speed things up
|
|
*/
|
|
ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
|
|
dev->reada_next >> PAGE_SHIFT, 1);
|
|
if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
|
|
ret = reada_pick_zone(dev);
|
|
if (!ret) {
|
|
spin_unlock(&fs_info->reada_lock);
|
|
return 0;
|
|
}
|
|
re = NULL;
|
|
ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
|
|
dev->reada_next >> PAGE_SHIFT, 1);
|
|
}
|
|
if (ret == 0) {
|
|
spin_unlock(&fs_info->reada_lock);
|
|
return 0;
|
|
}
|
|
dev->reada_next = re->logical + fs_info->nodesize;
|
|
re->refcnt++;
|
|
|
|
spin_unlock(&fs_info->reada_lock);
|
|
|
|
spin_lock(&re->lock);
|
|
if (re->scheduled || list_empty(&re->extctl)) {
|
|
spin_unlock(&re->lock);
|
|
reada_extent_put(fs_info, re);
|
|
return 0;
|
|
}
|
|
re->scheduled = 1;
|
|
spin_unlock(&re->lock);
|
|
|
|
/*
|
|
* find mirror num
|
|
*/
|
|
for (i = 0; i < re->nzones; ++i) {
|
|
if (re->zones[i]->device == dev) {
|
|
mirror_num = i + 1;
|
|
break;
|
|
}
|
|
}
|
|
logical = re->logical;
|
|
|
|
atomic_inc(&dev->reada_in_flight);
|
|
ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
|
|
if (ret)
|
|
__readahead_hook(fs_info, re, NULL, ret);
|
|
else if (eb)
|
|
__readahead_hook(fs_info, re, eb, ret);
|
|
|
|
if (eb)
|
|
free_extent_buffer(eb);
|
|
|
|
atomic_dec(&dev->reada_in_flight);
|
|
reada_extent_put(fs_info, re);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
static void reada_start_machine_worker(struct btrfs_work *work)
|
|
{
|
|
struct reada_machine_work *rmw;
|
|
struct btrfs_fs_info *fs_info;
|
|
int old_ioprio;
|
|
|
|
rmw = container_of(work, struct reada_machine_work, work);
|
|
fs_info = rmw->fs_info;
|
|
|
|
kfree(rmw);
|
|
|
|
old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
|
|
task_nice_ioprio(current));
|
|
set_task_ioprio(current, BTRFS_IOPRIO_READA);
|
|
__reada_start_machine(fs_info);
|
|
set_task_ioprio(current, old_ioprio);
|
|
|
|
atomic_dec(&fs_info->reada_works_cnt);
|
|
}
|
|
|
|
static void __reada_start_machine(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u64 enqueued;
|
|
u64 total = 0;
|
|
int i;
|
|
|
|
do {
|
|
enqueued = 0;
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
if (atomic_read(&device->reada_in_flight) <
|
|
MAX_IN_FLIGHT)
|
|
enqueued += reada_start_machine_dev(device);
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
total += enqueued;
|
|
} while (enqueued && total < 10000);
|
|
|
|
if (enqueued == 0)
|
|
return;
|
|
|
|
/*
|
|
* If everything is already in the cache, this is effectively single
|
|
* threaded. To a) not hold the caller for too long and b) to utilize
|
|
* more cores, we broke the loop above after 10000 iterations and now
|
|
* enqueue to workers to finish it. This will distribute the load to
|
|
* the cores.
|
|
*/
|
|
for (i = 0; i < 2; ++i) {
|
|
reada_start_machine(fs_info);
|
|
if (atomic_read(&fs_info->reada_works_cnt) >
|
|
BTRFS_MAX_MIRRORS * 2)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void reada_start_machine(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct reada_machine_work *rmw;
|
|
|
|
rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
|
|
if (!rmw) {
|
|
/* FIXME we cannot handle this properly right now */
|
|
BUG();
|
|
}
|
|
btrfs_init_work(&rmw->work, btrfs_readahead_helper,
|
|
reada_start_machine_worker, NULL, NULL);
|
|
rmw->fs_info = fs_info;
|
|
|
|
btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
|
|
atomic_inc(&fs_info->reada_works_cnt);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void dump_devs(struct btrfs_fs_info *fs_info, int all)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
unsigned long index;
|
|
int ret;
|
|
int i;
|
|
int j;
|
|
int cnt;
|
|
|
|
spin_lock(&fs_info->reada_lock);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
|
|
atomic_read(&device->reada_in_flight));
|
|
index = 0;
|
|
while (1) {
|
|
struct reada_zone *zone;
|
|
ret = radix_tree_gang_lookup(&device->reada_zones,
|
|
(void **)&zone, index, 1);
|
|
if (ret == 0)
|
|
break;
|
|
pr_debug(" zone %llu-%llu elems %llu locked %d devs",
|
|
zone->start, zone->end, zone->elems,
|
|
zone->locked);
|
|
for (j = 0; j < zone->ndevs; ++j) {
|
|
pr_cont(" %lld",
|
|
zone->devs[j]->devid);
|
|
}
|
|
if (device->reada_curr_zone == zone)
|
|
pr_cont(" curr off %llu",
|
|
device->reada_next - zone->start);
|
|
pr_cont("\n");
|
|
index = (zone->end >> PAGE_SHIFT) + 1;
|
|
}
|
|
cnt = 0;
|
|
index = 0;
|
|
while (all) {
|
|
struct reada_extent *re = NULL;
|
|
|
|
ret = radix_tree_gang_lookup(&device->reada_extents,
|
|
(void **)&re, index, 1);
|
|
if (ret == 0)
|
|
break;
|
|
pr_debug(" re: logical %llu size %u empty %d scheduled %d",
|
|
re->logical, fs_info->nodesize,
|
|
list_empty(&re->extctl), re->scheduled);
|
|
|
|
for (i = 0; i < re->nzones; ++i) {
|
|
pr_cont(" zone %llu-%llu devs",
|
|
re->zones[i]->start,
|
|
re->zones[i]->end);
|
|
for (j = 0; j < re->zones[i]->ndevs; ++j) {
|
|
pr_cont(" %lld",
|
|
re->zones[i]->devs[j]->devid);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
index = (re->logical >> PAGE_SHIFT) + 1;
|
|
if (++cnt > 15)
|
|
break;
|
|
}
|
|
}
|
|
|
|
index = 0;
|
|
cnt = 0;
|
|
while (all) {
|
|
struct reada_extent *re = NULL;
|
|
|
|
ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
|
|
index, 1);
|
|
if (ret == 0)
|
|
break;
|
|
if (!re->scheduled) {
|
|
index = (re->logical >> PAGE_SHIFT) + 1;
|
|
continue;
|
|
}
|
|
pr_debug("re: logical %llu size %u list empty %d scheduled %d",
|
|
re->logical, fs_info->nodesize,
|
|
list_empty(&re->extctl), re->scheduled);
|
|
for (i = 0; i < re->nzones; ++i) {
|
|
pr_cont(" zone %llu-%llu devs",
|
|
re->zones[i]->start,
|
|
re->zones[i]->end);
|
|
for (j = 0; j < re->zones[i]->ndevs; ++j) {
|
|
pr_cont(" %lld",
|
|
re->zones[i]->devs[j]->devid);
|
|
}
|
|
}
|
|
pr_cont("\n");
|
|
index = (re->logical >> PAGE_SHIFT) + 1;
|
|
}
|
|
spin_unlock(&fs_info->reada_lock);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* interface
|
|
*/
|
|
struct reada_control *btrfs_reada_add(struct btrfs_root *root,
|
|
struct btrfs_key *key_start, struct btrfs_key *key_end)
|
|
{
|
|
struct reada_control *rc;
|
|
u64 start;
|
|
u64 generation;
|
|
int ret;
|
|
struct extent_buffer *node;
|
|
static struct btrfs_key max_key = {
|
|
.objectid = (u64)-1,
|
|
.type = (u8)-1,
|
|
.offset = (u64)-1
|
|
};
|
|
|
|
rc = kzalloc(sizeof(*rc), GFP_KERNEL);
|
|
if (!rc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rc->fs_info = root->fs_info;
|
|
rc->key_start = *key_start;
|
|
rc->key_end = *key_end;
|
|
atomic_set(&rc->elems, 0);
|
|
init_waitqueue_head(&rc->wait);
|
|
kref_init(&rc->refcnt);
|
|
kref_get(&rc->refcnt); /* one ref for having elements */
|
|
|
|
node = btrfs_root_node(root);
|
|
start = node->start;
|
|
generation = btrfs_header_generation(node);
|
|
free_extent_buffer(node);
|
|
|
|
ret = reada_add_block(rc, start, &max_key, generation);
|
|
if (ret) {
|
|
kfree(rc);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
reada_start_machine(root->fs_info);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
int btrfs_reada_wait(void *handle)
|
|
{
|
|
struct reada_control *rc = handle;
|
|
struct btrfs_fs_info *fs_info = rc->fs_info;
|
|
|
|
while (atomic_read(&rc->elems)) {
|
|
if (!atomic_read(&fs_info->reada_works_cnt))
|
|
reada_start_machine(fs_info);
|
|
wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
|
|
5 * HZ);
|
|
dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
|
|
}
|
|
|
|
dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
|
|
|
|
kref_put(&rc->refcnt, reada_control_release);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int btrfs_reada_wait(void *handle)
|
|
{
|
|
struct reada_control *rc = handle;
|
|
struct btrfs_fs_info *fs_info = rc->fs_info;
|
|
|
|
while (atomic_read(&rc->elems)) {
|
|
if (!atomic_read(&fs_info->reada_works_cnt))
|
|
reada_start_machine(fs_info);
|
|
wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
|
|
(HZ + 9) / 10);
|
|
}
|
|
|
|
kref_put(&rc->refcnt, reada_control_release);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void btrfs_reada_detach(void *handle)
|
|
{
|
|
struct reada_control *rc = handle;
|
|
|
|
kref_put(&rc->refcnt, reada_control_release);
|
|
}
|